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Abstract
In this paper, long short-term memory (LSTM) and Transformer neural network models were developed for classifica-
tion of different conveyor belt conditions (loaded and unloaded). Comparative shallow models such as logistic regres-
sion, support vector machine and random forest were also developed and summarized. Six different-length belt pressure
signals were analyzed: 0.2, 0.4, 0.8, 1.6, 3.2, and 5.0 s. Both LSTM and Transformer models achieved 100% accuracy using
pressure raw signal. Furthermore, LSTM model reached the highest classification level with the shortest signals.
Accuracy and F1-score of 98% and 100% were reached using only 0.8 and 1.6 s-length signals, respectively. Also, LSTM
model performed training and testing procedures faster than Transformer. Random forest model demonstrated the best
classification level using aggregated signal data with accuracy of 85% and F1-score for loaded and unloaded conditions of
85% and 69%, respectively. Loaded conveyor belt condition was significantly easier to classify than the unloaded one in
all models. Only LSTM showed better classification recall for unloaded conveyor belt condition using short signal.
Experimental research dataset CORBEL (Conveyor belt pressure signal dataset) and models are open-sourced and
accessible on GitHub https://github.com/TadasZvirblis/CORBEL.
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Introduction

This study is dedicated to the belt conveyors (CB), one
of the many types of devices applied in industrial trans-
portation systems. Conveyors are used in production
process to ensure its efficiency in terms of timely trans-
portation of loose materials or components and assem-
bled units.1 In industrial applications, new CB solutions
may substantially reduce overall production costs.2

However, due to lack of systems for real-time monitor-
ing of CBs, interruptions in the manufacturing process
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may occur and generate additional expenses and
losses.3

Research data obtained by some authors from
metro-tomographic analysis showed that the initial
damage of the inner structure of the CB occurred at the
tensile load 2157 N.4 Under dynamic conditions, espe-
cially when sharp elements fall on the belt, much
smaller tensions may cause damages and breakdowns.
Therefore it was found important to perform experi-
mental research on the belt tension under working
conditions.

Within the Industry 4.0 framework, cyber-physical
systems (CPS) gain increasing significance and are
oriented to future realization of a CPS-based smart fac-
tories.5 The most recent CBs maintenance trends
include creating monitoring systems which would be
able to perform real-time data analysis with machine
learning algorithms and further decision making.6 Such
a CB-monitoring system can be integrated with a CPS
due to introduction of Internet of Things (IoT).7

Moreover, in recent studies failure analysis of the belts
employs virtual reality in order to achieve higher degree
of sustainability.8,9

The above-mentioned tasks can be performed by
monitoring some critical elements of the conveyor. In
some literature sources, electrical motor, gearbox, roll-
ers, joints, and the belt itself are mentioned among the
components that can be monitored and included to a
diagnostic system.10 CB fault classification analysis
includes a wide range of statistical and machine learn-
ing methods.

Simple statistical classification models were pre-
sented in several research works by Andrejova
et al.9,11,12 The same independent factors such as CB
type, impactor type, and the drop height were used in
all these studies. In the first article,11 the authors pre-
sented classification analysis of four-conditions CB
damage using naı̈ve Bayes classifier which showed
78.8% classification accuracy. Later, the authors
expanded their investigation by using additional mod-
els.12 Decision tree and linear regression models
showed identical accuracy of 81.5%. In the later
research paper,9 Andrejova et al. presented four classi-
fication models: logistic regression, linear regression,
decision tree, and naı̈ve Bayes classifier. All the models
showed identical accuracy of 85.0%. It should be noted
that in their latest research paper the authors developed
binary classification models.

For real-time monitoring of CBs, the measurement
of audio noise was proposed,13 also by using acoustic
camera that allows verification of correct operation of
individual elements of CB by searching for improper
frequencies in the analyzed spectrum during the opera-
tion.14 Other proposed solutions were multispectral
visual inspection based on visible, mid-infrared, and
far infrared images,15 and gearbox temperature

measurement with training process in the statistics
domain for complex decision making.16 An interesting
solution was proposed involving application of magne-
tized steel cord when the changes of magnetic field are
generated around the defects and the measurements of
these changes provide information on the growing
defects.17 However, existing methods either involve
advanced devices and thus are very expensive, or pro-
vide signals of low reliability. For instance, application
of permanent magnets embedded in CB identified by a
semiconductor magnetic field sensor to inspect the
belt18 generate additional costs of the belt preparation
and its utilization after damage. On the other hand,
impact of sharp material may lead to local anomalies
that are not recognizable as a breakdown because per-
foration for all CB layers does not take place so that
the belt cannot be unequivocally determined as suitable
or unsuitable for operating condition.19

Some authors proposed CB monitoring system based
on the combination of sound and thermal infrared
image which is able to perform fault analysis of CB
idlers.20 This study developed gradient boost decision
tree for classification of CB idler rolls’ faults which used
Mel-frequency cepstral coefficients of acoustic signal.
The proposed method achieved accuracy of 94.5% on
the average.

Che et al.21 proposed a new method, named audio-
visual fusion (AVF), for detecting longitudinal tear of
CB. Authors used both visible light and microphone
array to monitor CB in different running states. Mel-
frequency cepstral coefficients, spectral centroid, short-
time energy, zero crossing rate, and spectral roll-off
were used for extraction of the audio feature and histo-
gram of oriented gradient was used for extraction of the
visual feature. Using K-nearest neighbors, support vec-
tor machine, and random forest algorithms the authors
reached excellent accuracy of 93%–97%. However, the
authors did not specify selection of their training and
testing sets, therefore it is not clear if that accuracy level
was reached by using unseen data.

Santos et al.22 presented binary classification models
which use using CB images. This classification was per-
formed using convolutional neural networks such as
visual geometry group (VGG) network, residual net-
work (ResNet) and densely connected convolutional
network (DenseNet). The best average accuracy
(89.8%) result was reached by using DenseNet model.

A comprehensive machine learning (ML) algorithms’
research was performed by Zhang et al.23 The authors
compared a wide range of sophisticated ML algorithms
such as Faster R-CNN, SSD, RFBnet, M2det, Yolov3,
and Yolov4. The Yolov3 algorithm was improved by
the authors and reached a 97.3% precision on the aver-
age for four classes.

To summarize, despite many proposals of real-time
devices for the monitoring of CB condition, no
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satisfactory measurement system has been built yet. In
this research, we propose a novel solution of cheap and
simple measurement method that is able to perform
real-time monitoring tasks (see Figure 1). The objec-
tives of this study are the following: (1) to develop ML
models for distinguishing loaded and unloaded condi-
tions of CB; (2) to identify optimal signal length of ten-
sile pressure which enables achieving the best
classification accuracy; (3) to evaluate the robustness of
the best model for distinguishing CB conditions when
CB and measurement system are not calibrated.

After the novel monitoring system had been pro-
jected, it was necessary to find the algorithm to identify
reliably the collected signals for further decision mak-
ing. The main contributions of this paper are:

� For the first time, conveyor belt load status was
classified using only belt tension signals;

� Developed LSTM and transformer neural net-
works was able to classify conveyor belt load sta-
tus with accuracy of 100%;

� The sensitivity analysis was suggested to investi-
gate the robustness of developed models;

� The largest known conveyor belt pressure signal
dataset was created and open-sourced.

The rest of the paper is organized as follows: first,
CB real-time monitoring concept and mathematical
methods are described; secondly, design and setup of
our experiment are presented; later on, the results of the
investigated algorithms of classification of CB pressure
signal are presented, and conclusions close the article.

Methodology and data description

We started our study by creating CB-monitoring sys-
tem based on strain gages. We have built an

experimental rig (Figure 2) in order to simulate the
work of CB. It consisted of two rollers with controlla-
ble rotational speed and a rubber belt between them.
We used the belt of type EDV08PB-AS 2.0, 2mm thick-
ness, and adapted to work with rollers of minimal dia-
meter of 30mm. It had two inner layers and the PVC
outer coating on the one side, which ensured the inner
working force F1%= 8N/mm.

The experimental rig enabled initial adjustment of
the tension in order to achieve similar pressing forces
on the roller at both sides of the belt width. In the mid-
dle of the belt width, the pressing force is always slightly
higher. In this way, the system with strain gages solved
several problems indicated by other researchers who
investigated belt tension24 and the belt mistracking dur-
ing conveyor’s operation.25

Our test campaign included measuring static tension
under 2 kg load in different points of the CB and mea-
surements in dynamic conditions. The latter conditions
presumed the range of the linear belt speeds between
n1 = 0:5 and nmax= 1:7m/s, which corresponded with
the typical conditions of industrial transportation of the

Figure 1. Graphical abstract: Conveyor belt pressure signals
are collected from CB work. The machine learning algorithms
classify the load impact.

Figure 2. Schematic and the photo of the conveyor belt
tension experimental rig: 1 – measurement system imbedded to
the roller, 2 – reducer fixing plate, 3 – seal of the driving roller,
4 – tension regulation, 5 – leading thread, 6 – regulating nut,
7 – precise hollow shaft, 8 – rubber belt, 9 – strain gage on the
roller surface, 10 – bearing, 11 – motor reducer.
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small components. The tension of the moving belt was
measured both under loaded and unloaded conditions.

CB-monitoring system concept and calibration issue

The main idea of our novel concept was to place strain
gages directly on roller’s surface making them the
object of the tension-dependent pressuring force from
the belt. The unit consisted of two strain gages, one in
the middle of the roller’s length and the other at its
end, signal-receiving and transmitting system, and the
dedicated software for data processing and presenta-
tion. After the initial tests, strain gages CP 152 NS were
found to be optimal.26 Their nominal sensitivity was
0.5–0.8mV/V, sampling frequency up to 20,000Hz,
and response time was 5ms, what qualified the gages to
perform dynamical measurements.

The strain gages, subject to the pressing force from
the CB, were connected with electronic system placed in
the hollow roller. The as-formed measurement system
was able to measure the belt pressing force F continu-
ously, as well as to collect and transmit data through a
Bluetooth port. The data received by the computer were
then processed in the real-time mode using a specialized
program based on the LabView software.27

However, before the strain gages could be applied
properly, it was necessary to perform relevant calibra-
tion procedure. We decided to use a well-equipped
laboratory of Radwag Company in Radom, Poland in
order to minimize the impact of reference weights’
uncertainty, reading resolution, approximation error,
and environmental conditions on the calibration uncer-
tainty. It was also necessary to build special instrumen-
tation providing repeatable contact conditions between
the standard weight and the surface of the calibrated
strain gage, as well as stable vertical movement able to
transmit the force directly on the gage surface. After
calibration in fully repeatable conditions with weights
from 0.5 up to 10kg, the strain gage characteristics were

approximated as a polynomial with maximum error of
conductance 7.73 [mS] determined with expanded
uncertainty U0:99 = 0:75 [mS], assuming 99% level of
confidence and corresponding coverage factor k = 3.28

Data acquisition

The strain gages with working area diameter of 16mm
were placed on the one side of the roller, so that they
would be subject to the pressing force only when this
particular side was under the belt. Thus, the gages
emitted the signals of pressuring force only during half
of the roller’s revolution time. Theoretically, assuming
steady distribution of inner tensions in the belt, the sig-
nals would follow certain predictable pattern shown in
Figure 3, where each rotation corresponds with a cyclic
signal indicating a relevant pulse of pressure on the
strain gage. However, in reality, very complex dynami-
cal distribution of inner tensions resulted in certain dif-
ferences between the shape of the pulses and in the
forms of the pulses itself, as it is shown in Figure 3.
Additional attention was paid to the maxima distin-
guishable at the beginning of a pulse and in its middle
area.

The curves in Figure 4 were clipped peak-by-peak
and centered by their starting point. It can be seen in
Figure 4 that, on the average, load signals had higher
tension peak values (see bold red vs blue curves).
However, any time moment of the at curve shows that
no-load/load distributions overlapped to such an extent
that even their means were slightly shifted, and the
curves were inseparable since both distributions totally
overlapped. It is worthy to note that under no-load the
curves were distributed with higher variation than
under load condition. This also lead to conclusion that
the curves, except for their shape, were inseparable at
any time moment.

We chose a 400Hz unified sampling frequency for
the experiments. It corresponded with 140 samples per

Figure 3. Conveyor belt tension signals of both strain gages.
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revolution at the minimum rotational speed of 159 rpm
(for linear belt speed n1 = 0:5m/s) and 45 samples per
revolution at the maximum rotational speed of 540 rpm
(linear belt speed nmax= 1:7m/s). The experiment
design was created based on the time stamps as follows:
for the first 5 s there was no load, then for 15 s — load
of 2 kg and for the last 5 s — no load (see Figure 3).
Such experimental design allowed easy and quick data
labeling based on fixed time stamps when preparing
data for ML models. A special program based on the
LabView software updates the plot each time when
new data appear in the serial port buffer after initializ-
ing the measurement. There is a possibility to remove
new data manually or stop recording them at any time.
Operator can choose to export data to Excel file for
additional analysis or to archive it. In the industrial
monitoring system, all the data are planned to be
archived and available for authorized users. Elsewhere
in this publication, we define the dataset of collected
data as CORBEL (Conveyor belt pressure signal
dataset).

Machine learning methods

In this section, we cover the supervised ML methods
and methodology used in our experiments. In this sub-
section Y will be treated as CB load status and indepen-
dent variable X should be treated as input variable, that
is, CB tension signal. Realizations (load target class/
dependent variable) of Y and X are defined as y and x,
respectively.

Logistic regression. Logistic regression model is com-
monly used for solution of binary classification prob-
lems. For binary response models, dependent variable
Y can take one of two possible values of the experiment
outcome Y 2 f0, 1g. Suppose X � R

d is a vector of
explanatory (independent) variables, x is a vector of
observed vector X and P(Y = 1jX = x) is the response

probability to be modeled. Then logistic regression
model takes the form 29:

p(x)=P(Y = 1jX = x)

=
exp (a+b1x1 . . . +bdxd)

1+ exp (a+b1x1 + . . . +bdxd)
,

ð1Þ

where a is the intercept parameter and
b=(b1, . . . ,bd)

T is the vector of slope parameters.

Support vector machine. Support vector machine (SVM)
model is widely applied for classification tasks in many
research fields: text categorization, image classification,
bioinformatics, fault detection, and other.30

Assume that a dataset consists of pairs:

(~x1, y1), (~x2, y2), . . . , (~xn, yn), ð2Þ

where ~xi 2 Rd and yi 2 (+ 1, � 1), i= 1, 2, . . . , n.
There is an infinite number of hyperplanes
~wT

xi + b= 0 that can separate data into two classes
and there is only one hyperplane that separates data
with a maximum margin. The latter hyperplane is
called optimal separation hyperplane.

In order to estimate the parameters, Lagrangian for-
mulation is used:

L(~w, b,a)=
1

2
h~w �~wi �

Xl

i= 1

ai½~yi(h~w �~xii+ b)� 1�, ð3Þ

where ai are the Lagrange’s multipliers, and h�i - is dot
product.

Random forest. Random forest is a classification model
which enables a typical ensemble learning algorithm
with a large number of decision trees.31 First, selected
number k of weak classifiers of decision tree
gj(x

�, jjfj), j= 1, . . . , k with given depth w and number
of variables l is constructed on random subset of

Figure 4. Conveyor belt tension peak.
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variables x�, j � R
l � R

d . Afterward, the ensemble of
weak classifiers is considered to construct the final
model.

Long short-term memory. In deep learning, the problems
of sequential and time series data X =(x1, x2, . . . , xT )
are very often approximated by recurrent neural net-
works.32 LSTM33 is one of the prevailing models in the
field of time series which relies on the combination of
gate mechanism and state updates. The states of LSTM
make a pair of hidden state vectors (ct, ht).

After receiving new data input xt, t = 0, . . . , T ,
LSTM updates hidden state vector ht�1 to a new cell
state ~ct and gate transformations are applied to calcu-
late new variables it, ft, and ot, which are known as
input, forget, and output gates, respectively. The input
gate it has an interpretation of integration of cell vector
~ct into ct. The forget gate ft has an interpretation of
integration of ct�1 and the output gate ot transforms
cell ct into a new hidden state ht:

it =s(c1, ixt +c2, iht�1 + bi), ð4Þ

ft =s(c1, f xt +c2, f ht�1 + bf ), ð5Þ

ot =s(c1, oxt +c2, oht�1 + bo), ð6Þ

~ct = tanh (c1, cxt +c2, cht�1 + bc), ð7Þ

ct = ft � ct�1 + it � ~ct, ð8Þ

ht = ot � tanh (ct), ð9Þ

where � denotes element-wise multiplication, s

denotes sigmoid, tanh denotes hyperbolic tangent acti-
vations and c denotes the unknown weights estimated
from data. A fully connected layer
y=softmax(cht + b) is selected is an output for the
many-to-one classification model.

Transformer neural network. Transformer neural net-
works34 become state-of-the-art technique in natural
language processing,35 speech recognition,36 time
series37, and many more sequential tasks.

Transformer’s mathematical model consists from
multiple transformations: attention blocks, multi-head
attention blocks, and fully connected layers.34 The
attention transformation Attention(X ) : Rdx ! R

dv is
used to transform the sequence x=(x1, x2, . . . , xdx

) to
lower dimension. First, the input is decomposed by

calculating the three matrices Q=cQx, K =cKx, and
V =cVx, then the attention is calculated:

Attention(Q,K,V )= softmax(cQKT )V , ð10Þ

where c= 1=
ffiffiffiffiffi
dk

p
is the normalization constant, dk is

the dimension of K. Q is the matrix of unknown
parameters.

Equivalently to multi layer perceptron (MLP), the
attentions can be combined by using multi-head atten-
tion transformation MHA, which combines informa-
tion from different attention representations of input at
different positions:

MHA(Q,K,V )= (Attention1, . . . ,Attentionh)c
Y , ð11Þ

where Attentioni =Attention(Qc
Q
i ,KcK

i ,VcV
i ). Here the

projections are parameter matrices c
Q
i 2 R

dx 3 dk ,
cK

i 2 R
dx 3 dk , cV

i 2 R
dx 3 dv , and cY 2 R

dy 3 dx .
Finally, the multi-head attention layer follows with

fully connected transformation:

Y =relu(c �MHA(Q,K,V )), c 2 R
dy 3 (dh + 1): ð12Þ

The final output is calculated by applying the
sigmoid function, since we have a binary classification
task.

Classification accuracy metrics

In our study, we used four accuracy measures for eva-
luation of accuracy of classification models:

� Accuracy
� Precision
� Recall
� F1-score

All of these measurements can be calculated accord-
ing to the classification table which describes predicted
and actual observed conditions (see Table 1).

Classification accuracy shows how accurately the
model identifies investigated object conditions.
Mathematically, accuracy can be expressed as:

Accuracy=
Number of correct predictions

Total number of predictions

=
TP+TN

TP+FN+FP+TP
:

ð13Þ

Table 1. Classification table.

Predicted condition

Actual condition Condition Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
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Unfortunately, accuracy is an insufficient measure
when experimental data are class-imbalanced.

Precision and recall are also well-known and com-
monly used classification accuracy metrics. Precision
(or positive predictive value) shows the ratio of TP
between all positively predicted conditions, while recall
is the ratio of TP between all truly positive conditions:

Precision=
TP

TP+FP
, ð14Þ

Recall=
TP

TP+FN
: ð15Þ

One more measure of classification accuracy, F1-
score, is a so-called weighted mean of precision and
recall. Also, F1-score can be treated as harmonic mean
of the precision and recall and can be expressed as:

F1� score=
2TP

2TP+FP+FN
: ð16Þ

The F1-score is commonly used for class-imbalanced
data, that is, when positive (or negative) condition ratio
is significantly higher in the dataset.

Data processing

During our experiment, we have gathered the sequential
data of both loaded and unloaded data as presented in
Figure 3. Unfortunately, this amount of data was insuf-
ficient for model building, that is, for compilation of
model training, validation, and testing sets. Under the
homogeneity assumption, we developed two-step data
augmentation approach for increasing the amount of
experimental data. In the first data augmentation step,
we divided signal into fixed-length (points P) signals of
0.2 s (80 points), 0.4 s (160 points), 0.8 s (320 points),
1.6 s (640 points), 3.2 s (1280 points), and 5.0 s (2000
points). The signal division interval was based on the
principle of a sliding window:

Si
m = ½1+ i; m+ i�, i= 0, 1, . . . , 2000� m, ð17Þ

where Si
m is m-length i th signal, m is the fixed length of

signal, i is the step of signal generation. After the first
data augmentation, the set of shortest signals (0.2 s)
had the highest number of new signals (N = 384200)
(see Table 2).

The second step of data augmentation was per-
formed in order to equalize the number of signals in
the sets of signals of different length. For time series
data various other augmentations could be done like
Hamiltonian Monte Carlo sampler38 or Conditional
GAN’s.39 However, in order to measure the robustness
of the created model, we using the noise generation
techniques. The sum of two types of signal noise were
used for this purpose. The first type of signal noise was

a cumulative value Ni of normally distributed random
variables N i(xjm,s2) with mean m= 0 and dispersion
s2 in order to achieve slight drifts on signal. The sec-
ond noise was a random variable of Laplace distribu-
tion in order to have small number of observations
with large deviations. These signal noises are defined as
follows:

Ui =U�1(0, 1), i= 1, 2, . . . ,m, ð18Þ

F1(x)=N i(xj0,s2)=
1

s
ffiffiffiffiffiffi
2p
p e�

1
2
(x=s)2 , ð19Þ

F2(x)=
1

2s
e�jxj=2s, ð20Þ

Ni =NCNorm
i +N

Lap
i =(

Xi

j= 1

F�1
1 (Uj))+F�1

2 (Ui) ð21Þ

here Ui is random observations generated from uniform
distribution, s is standard deviation of the distribution.

These random noises were summed up with the raw
signals which were obtained from the first augmenta-
tion step. The results of data augmentation of the sec-
ond step are shown in Table 2.

Results and discussion

Five models were developed for distinguishing loaded
and unloaded conditions of CB: LR, SVM, RF, LSTM,
and Transformer. Training and test data sets contained
80% and 20% of total separate experiments sessions to
have realistic testing, respectively, for LR, SVM, and
RF. For LSTM and Transformer, an additional valida-
tion data set was assigned from training set so that
training, validation and test data sets contained 70%
(268,940), 10% (38,420), and 20% (76,840), with same
test set as for LR, SVM, and RF.

The experiments were run by using Google
Colaboratory Platform, with GPU Tesla K80.

Table 2. Data augmentation: Number of signals after the first
step and number of signals required to generate in the second
augmentation step.

Signal length, s #time points Data augmentation

Step 1 Step 2

0.2 80 384,200 0
0.4 160 368,200 16,000
0.8 320 336,200 48,000
1.6 640 272,200 112,000
3.2 1280 144,200 240,000
5.0 2000 200 384,000

Total number of signals after two steps of data augmentation were

384,200.

Žvirblis et al. 7



In this research, multiple configurations of all the
considered models were investigated. Experimentally,
the best-fitted models for our research objectives were
identified. The architectures of those models are pre-
sented in Table 3. For all models, training and valida-
tion were carried out for 20 epochs with batch size of
eight. The binary cross-entropy loss function was used
for LSTM and Transformer.

We estimated 16 parameters of time domain instead
of raw signals in order to reduce the dimension of clas-
sification model input for LR, SVM, and RF models
(see Table 4). Thus, all signals of 0.2 s (80 points), 0.4 s
(160 points), 0.8 s (320 points), 1.6 s (640 points), 3.2 s
(1280 points), and 5.0 s (2000 points) length were trans-
formed to estimates of 16 parameters. Such a signal
transformation allowed highlighting predominant fea-
tures of the classes and allowed interpreting the results
of LR, SVM, and RF models more accurately. Since
deep neural network?/model? can obtain better general-
ization from raw data, we used raw signal data for both
LSTM and Transformer neural networks.

Aggregated signal classification models

Training time for models LR, SVM, and RF did not
depend on signal length because the number of model
input parameters was always stable and equal to 16. LR
model was able to perform the training in the fastest
way in ;4 s. RF and SVM models were much slower;
their training session took ;86 s and even ;10,000 s,
respectively.

The results that we present further are based on
independent test data which was generated during
independent experiment session. Testing of the models
showed that the accuracy of the model classification
increases monotonically as the input signal
lengthens (see Table 5) with models used aggregated
signal statistics. In LR, SVM, and RF models the
accuracy of the model increased by 4% on the
average each time when the signal length was doubled.
RF was the most accurate among the three models and
was able to classify 3.2 and 5.0 s-length signals with an
accuracy of 79% and 78%, which was by 3%
higher than that of LR or SVM. It is worth to pay

Table 4. Statistical parameters LR, SVM, and RF models.

Model Architecture/hyper-parameters

LR no hyper-parameters
SVM regularization parameter-1.0, kernel-radial basis function, degree of the polynomial 2 3,
RF number of trees in RF-100, supported criteria-Gini, maximum depth of the tree-8 bootstrap used
LSTM� LSTM! dropout! LSTM! linear! sigmoid
Transformer � four sequential blocks:

normalization! multi head attention
dropout! normalization
1D convolution! dropout!
1D convolution!
concatenation

multilayer perceptron:
global average pooling!
linear! dropout!
linear! sigmoid

�Number of LSTM model hyper-parameters was 70,953. Transformer model hyper-parameters variated from 17,033 to 78,473 for 0.2 and

5.0 s-length signal models, respectively.

Table 3. Configurations of classification models.

Parameter expression

T1 =
1

N

XN

n= 1
xn T2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n= 1
x2

n

r
T3 =

1

N

XN

n= 1

ffiffiffiffiffiffiffi
jxnj

p� �2

T4 =
1

N

XN

n= 1
jxnj

T5 =
1

N

XN

n= 1
(xn � T1)

3 T6 =
1

N

XN

n= 1
(xn � T1)

4 T7 = maxn xn T8 = minn xn

T9 = T7 � T8 T10 =
1

N� 1

XN

n= 1
(xn � T1)

2 T11 =
T2

T4
T12 =

T7

T2

T13 =
T7

T4
T14 =

T7

T3
T15 =

T5

T3
2

T16 =
T6

T4
2

N: signal length.
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attention that RF was the most accurate in classifying
the signals of all lengths. Only 0.4 s length signal classi-
fication accuracy was the same in RF as in SVM. In
general, the accuracy of the models satisfied the
inequality:

accuracyLR ł accuracySVM ł accuracyRF ð22Þ

for all length signals.
Precision of the models in classifying CB without

load increased significantly faster with increasing signal
length: precision of LR, SVM, and RF increased from
the shortest to the longest signal by 23% and 13%, by
21% and 12%, by 28% and 7% for unloaded and
loaded CB condition, respectively. Since 0.2 s is equiva-
lent to the length of one peak cycle, this fact shows that
the models were able to identify more accurately the

unloaded signals as they lengthened what confirms the
assumption that numerical characteristics of short sig-
nals of loaded and unloaded CB are very similar and
only individual signal peaks stand out for their numeri-
cal characteristics. It follows that the models, combin-
ing the peaks into longer peak circuits, are able to
classify the signals more accurately with less fluctuating
numerical characteristics.

In all three models using aggregated signals, the
highest recall was observed for classification of a
loaded condition. Recall of the loaded condition classi-
fication has been considerably increasing with the sig-
nal elongation: LR, SVM, and RF models’ recall of
loaded CB classification increased by 11%, 14%, and
even 32%, respectively, while unloaded classification
recall increased by 8%, 8%, and 6% for LR, SVM, and
RF, respectively. Recall results show that by increasing

Table 5. Classification metrics for all models.

Model Signal length, s

0.2 0.4 0.8 1.6 3.2 5.0

Accuracy, %
LR 57 61 65 69 72 76
SVM 58 62 66 71 74 76
RF 60 62 67 74 79 78
Transformer 60 63 69 81 92 100
LSTM 72 77 98 100 100 100
Precision
LR Unloaded 47 51 56 60 64 70

Loaded 68 71 73 76 78 81
SVM Unloaded 48 52 56 64 67 69

Loaded 69 70 73 76 79 81
RF Unloaded 50 51 57 66 75 78

Loaded 71 72 78 79 82 78
Transformer Unloaded 50 54 60 73 88 100

Loaded 68 70 76 87 96 100
LSTM Unloaded 60 65 97 100 100 100

Loaded 88 92 98 100 100 100
Recall
LR Unloaded 64 63 63 66 69 72

Loaded 68 60 67 71 75 79
SVM Unloaded 64 59 63 64 69 72

Loaded 65 64 68 77 78 79
RF Unloaded 66 67 74 70 72 63

Loaded 56 58 52 76 84 88
Transformer Unloaded 55 58 67 81 94 100

Loaded 63 67 70 80 92 100
LSTM Unloaded 87 92 98 100 100 100

Loaded 62 68 98 100 100 100
F1-score
LR Unloaded 54 56 59 63 67 71

Loaded 59 65 70 73 76 80
SVM Unloaded 55 56 59 64 68 71

Loaded 61 67 70 76 78 80
RF Unloaded 57 58 64 68 73 70

Loaded 63 64 69 77 83 83
Transformer Unloaded 53 56 63 77 91 100

Loaded 65 69 73 83 94 100
LSTM Unloaded 71 76 98 100 100 100

Loaded 72 78 98 100 100 100
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signal length higher number of signals represented
loaded CB condition can be correctly classified, while
they were incorrectly classified as unloaded with shorter
signal length. In this way, recall support the assumption
that the signal peaks obtained from the CB under load
are more characteristic, whereas rotating empty CBs
generate signal peaks of different spectra, which are
often incorrectly assigned to the load class and the
models can classify unloaded CB more sensitively only
by combining the peaks into longer sequences.

The F1-score summarizes the results of precision and
recall tests. F1-score reflects the accuracy of the classifi-
cation of models with imbalanced data better than the
accuracy measure, therefore it can be argued that the
models LR, SVM, and RF classify different CB condi-
tions almost identically.

The latter analysis allows concluding that all classifi-
cation models of aggregated signals gave similar classi-
fication results. Noteworthy, SVM model took
unacceptably long time to train the model and due to
this reason SVM is not suitable for solving this type of
classification tasks. Meanwhile, although the classifica-
tion statistics were almost identical for LR and RF, RF
showed slightly higher accuracy and F1-score.
However, the training time of LR was 21.5 times
shorter than that of RF (4 and 86 s, respectively).

Raw signal classification models

LSTM and Transformer models were developed to clas-
sify raw CB signals. Each model was trained with sig-
nals of different lengths (0.2, 0.4, 0.8, 1.6, 3.2, and 5.0 s)
by repeating the training for 20 epochs.

Training time for LSTM and Transformer models
was strongly dependent on the length of the signal. The
shortest signals of 0.2 s trained faster and the training
for one epoch interfered with 343 s for LSTM and 410
s for Transformer using GPU memory. Meanwhile,
models with the longest 5.0 s length signal also took the
longest time to be trained and its training for one epoch
interfered with 4600 s for LSTM and 14,800 s for
Transformer using GPU memory, which took 17.5 and

36.1 times longer than training for 0.2 s signal, respec-
tively (see Table 6).

Classification metrics of the models are shown in
Table 5. The accuracy of LSTM and Transformer mod-
els increased very rapidly with increasing signal length
and an accuracy of 100% was achieved when using
both models with the longest signals. The accuracy of
Transformer increased on average by 8% when dou-
bling the signal length and after training with the long-
est signal of 5.0 s, its accuracy reached 100%. The
accuracy of LSTM model grew even faster and after
training with the 1.6 s signal, the accuracy reached
100%. In the case of Transformer, a monotonically
constant increase in accuracy was observed with the
elongation of the signal, but in the case of LSTM the
accuracy of the model increased by 5%, and doubling
the signal length up to 0.8 s led to increase in accuracy
by 21% points up to 98%.

Comparative analysis of the precision of the models
shows that LSTM classified the loaded CB even by
20% points more precisely than Transformer and
reached 88$ with the shortest (0.2 s) signal.
Transformer’s precision with the same-length signal
reached 63% only. However, as in the case of classifica-
tion of aggregated signals, both models classified the
loaded CB much more precisely than the idle CB when
using short signals. Nevertheless, both models achieved
a precision of 100% when classifying both CB states:
Transformer achieved this level of accuracy with 5.0 s-
length signal and LSTM with 1.6 s-length signal.

The sensitivity of the models demonstrated some
noteworthy aspects. Transformer, like other models
(LR, SVM, and RF), classified loaded CBs more sen-
sitively when using short signals than when using the
longer ones. However, starting from 1.6 s-length signal
Transformer’s sensitivity of classifying unloaded CB
condition jumped significantly by 23% and reached
85%, while the sensitivity of loaded CB classification
increased by only 5% and reached 79% for this length
of the signal, that is, the model has started to classify
the idle CB state more sensitively. In the case of
LSTM model, the sensitivity to classify the unloaded
CB condition using the shortest signal is significantly
higher than that of the loaded CB (87% vs 62%,
respectively), but starting from 0.8 s-length signal, the
sensitivity started to be same for both CB conditions,
and starting from 1.6 s-length signal, the sensitivity
reached 100%.

The F1-score, which is more suitable to measure the
accuracy of classification of imbalanced data, showed
that LSTM model was the optimal one and was able to
classify both CB states with equal accuracy for all
lengths of signal. Meanwhile Transformer performed in
exactly the same way as LR, SVM, or RF, that is, it
classified the state of loaded CB more accurately than
that of a idle CB regardless of signal length.

Table 6. Time required to train one epoch for LSTM and
transformer models using raw signal.

Signal
length, s

#time
points

One epoch training time, s

LSTM Transformer

0.2 80 343 410
0.4 160 510 450
0.8 320 830 750
1.6 640 1550 1950
3.2 1280 2850 6460
5.0 2000 4600 14,800
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Summarizing our analysis of raw signal classification
models, LSTM model demonstrated clear advantages
in terms of both shorter training time and significantly
better classification accuracy measurements.

Investigation of model robustness

We chose LSTM model with signal length of 1.6 s for
evaluation of sensitivity of correct classification of CB
conditions. Beginning with the first step of augmenta-
tion, we used 1.6 s-length signals as the set for the test
of robustness assessment. Three types of noise (see
equation (21)) were added to the signals:

1. Random Laplace noise NLap. The errors of this
type are caused by unpredictable fluctuations in
signal reading and are not dependent on the
deterioration of CB or the qualification of the
experimenter. Random Laplace noise have small
number of large deviations.

2. Drifted noise NCNorm. It cumulative error which
can appear due to either the flaws of the mea-
surement system, the deterioration of CB or
poor qualification of the experimenter. Drifted

noise is a cumulative value of normally distribu-
ted random variable.

3. Noise N . It is a sum of random and drifted
noise.

Eleven different noise levels were selected for evalua-
tion of the sensitivity of the model. The signal with the
highest noise was generated by adding the noise
depending on the standard variation of the raw signal
to the raw signal. The signal noise was further reduced
by reducing the standard deviation by 10, 20, . . . , 100

times (see Figure 5(a)–(c)).
Classification of signals with different types and lev-

els of noise showed that the model was the least sensi-
tive to the random element-wise Laplace noise. The
random noise had almost no effect on the accuracy of
the model until the noise reached 20-times lower value
of the standard deviation, that is, only at extremely
high noises .std3 10�1 (see Figure 6). However, the
biased noise had a much greater effect on the accuracy
of the model, although under relatively large standard
deviation the model was able to classify with the accu-
racy of .90%. Figure 6 shows that the biased noise
was considerably more significant than the random
noise and had higher effect at all noise levels.

(a) (b)

(c)

Figure 5. Signals with noise: (a) random Laplace noise NLap , (b) drifted noise NCNorm, and (c) noise N=NLap +NCNorm.
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Conclusion

In this article, the investigation of ML methods to clas-
sify CB load is presented. We have introduced
CORBEL dataset and developed five ML models (LR,
SVM, RF, LSTM, and Transformer) for distinguishing
loaded and unloaded conditions of CB. The objective of
this research was reached by working out the algorithm
able to identify 100% and distinguish loads placed on
the belt conveyor. The proposed LSTM and
Transformer models were able to classify signals pre-
cisely with accuracy, precision, recall, and F1-score of
100%. Shallow models such as LR, SVM, and RF per-
formed considerably worse in classification of different
CB conditions. The final and the best-performing model
is based on LSTM and can successfully classify CB con-
dition starting even from 1.6 s-signal, while other mod-
els reach their best performance with the longest (5.0 s)
signal only. The proposed LSTM and Transformer
models solve the problem of signal classification by
using raw signal information. Our experiments prove
that class-weighting in addressing class imbalance can
improve the model performance. Moreover, final model
can be trained relatively quickly and have short infer-
ence time, therefore it can be meaningfully employed
for practical use. Promising results of this paper indicate
the feasibility of the model for identification of loaded
states of the belt in real-time mode. In our future
research, we plan to perform different tests on various
failures and malfunctions. Finally, we have made avail-
able to the public the code of the proposed network
architectures, our research data and the interface for
CB classification. The repository can be found online at
GitHub https://github.com/TadasZvirblis/CORBEL.
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