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Abstract This article provides survival probability calculation formulas for bi-risk discrete
time risk model with income rate two. More precisely, the possibility for the stochastic process

u + 2t − ∑t
i=1 Xi − ∑�t/2�

j=1 Yj , u ∈ N ∪ {0}, to stay positive for all t ∈ {1, 2, . . . , T }, when
T ∈ N or T → ∞, is considered, where the subtracted random part consists of the sum of
random variables, which occur in time in the following order: X1, X2 +Y1, X3, X4 +Y2, . . .

Here Xi, i ∈ N, and Yj , j ∈ N, are independent copies of two independent, but not necessarily
identically distributed, nonnegative and integer-valued random variables X and Y . Following
the known survival probability formulas of the similar bi-seasonal model with income rate
two, u+2t −∑t

i=1 Xi1{i is odd} −
∑t

j=1 Yi1{j is even}, it is demonstrated how the bi-seasonal
model is used to express survival probability calculation formulas in the bi-risk case. Several
numerical examples are given where the derived theoretical statements are applied.

Keywords Bi-risk model, discrete time, finite time survival probability, ultimate time
survival probability, recursive calculation
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1 Introduction

A recent research paper [1] studied the possibility for a random walk (r.w.)
∑t

i=1 Zi to
hit the line u+ 2t , u ∈ N0 := N∪ {0}, t ∈ N, at least once in time, when r.w. consists
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of two interchangeably occurring discrete and nonnegative integer-valued random

variables, i.e. Z2i−1
d= X and Z2i

d= Y , i ∈ N. Here X and Y are independent but
not necessarily identically distributed. The described model is called the bi-seasonal
discrete time risk model with income rate two.

In this article we define a slightly different model

W(t) = u + 2t −
t∑

i=1

Xi −
�t/2�∑
j=1

Yj , (1)

where:

• t ∈ N and u ∈ N0,

• Xi
d= X, Yj

d= Y for all i, j ∈ N and X, Y are independent, integer-valued and
nonnegative random variables which may be distributed differently.

The present model (1) is called the bi-risk discrete time risk model with income rate
two. Its deterministic part u + 2t consists of two components: u is deemed as initial
wealth or savings in some financial context, and premium rate or income per unit
of time, which is just a multiplier of t . The subtracted stochastic part

∑t
i=1 Xi +∑�t/2�

j=1 Yj is treated as random expenses. In particular, the setup of the random part
in (1) is considered in such a way that r.v. X is present at every moment of time,
while Y additionally occurs at even moments of time. Of course, there are many other
different setups of such type of models as (1). One of the most general models was
introduced in [2] and is known as Sparre Andersen collective risk model. Equally,
Refs. [9–11, 15, 20] are known as classical works on the subject. The research variety
is mainly due to that every model assumption has its impact on the possibility that
stochastic part never exceeds deterministic, i.e. savings and earnings are sufficient to
cover occurring expenses. There are two objects we deal with investigating the model
(1):

ϕ(u, T ) := P

⎛
⎝ max

1�t�T

⎧⎨
⎩

t∑
i=1

(Xi − 2) +
�t/2�∑
j=1

Yj

⎫⎬
⎭ < u

⎞
⎠ , T ∈ N, (2)

ϕ(u) := P

⎛
⎝sup

t�1

⎧⎨
⎩

t∑
i=1

(Xi − 2) +
�t/2�∑
j=1

Yj

⎫⎬
⎭ < u

⎞
⎠ . (3)

The probability (2) is called the finite time survival probability while the later one
(3) is the ultimate time survival probability and they both deal with the possibility
that W(t) > 0 for all t ∈ {1, . . . , T }, when T is finite or T → ∞. The ultimate
time survival probability (3) heavily depends on the net profit condition, which for
the model (1), is defined as

2EX + EY < 4. (4)

The ultimate time survival probability also depends directly on the minimal value of
the sum X1 + X2 + Y – see Theorems 2–6.
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Table 1. Map between bi-seasonal and bi-risk models

Case min X min Y min(X + Y ) min(2X + Y )

1 0 0 0 0
2 0 1 1 1
3 1 0 1 2
4 1 1 2 3
5 2 0 2 �4
6 0 2 2 2
7 0 3 3 3
8 1 2 3 �4
9 2 1 3 �5
10 3 0 3 �6

As mentioned previously, this article is based on the research done in [1] where
the bi-seasonal model is studied. The relationship of the ultimate time survival prob-
ability expressions between bi-seasonal and bi-risk models is given in Table 1.

Table 1 should be read as follows. The net profit condition for the bi-seasonal
risk model with income rate two is EX + EY < 4. Therefore, the third column
min(X + Y) indicates where the distribution of X + Y may start not violating the net
profit condition. That, of course, depends on which minimal value can be attained by
X and Y as depicted in the second and the third columns. Turning to the bi-risk model
with income rate two, a similar question arises: which minimal value can be attained
by X1 +X2 +Y so that the net profit condition remain valid? The answer is present in
the last column min(2X+Y), and it shows that four cases are not valid for the ultimate
time as they never satisfy 2EX + EY < 4. Moreover, comparing bi-risk model with
bi-seasonal one, some of the cases get rearranged due to min(2X+Y) 	= min(X+Y)

– see cases number 3 and 4 in Table 1.
For more convenient expressions of ϕ(u, T ) and ϕ(u), we introduce the following

notations. For u ∈ N0, we denote the probability mass functions (PMFs)

xu := P(X = u), yu := P(Y = u),

su := P(X + Y = u), au := P(X1 + X2 + Y = u),

the cumulative distribution functions (CDFs)

FX(u) :=
u∑

i=0

xi, FY (u) :=
u∑

i=0

yi, FS(u) :=
u∑

i=0

si , FA(u) :=
u∑

i=0

ai,

and tails

FX(u) := 1 − FX(u), F Y (u) := 1 − FY (u),

F S(u) := 1 − FS(u), FA(u) := 1 − FA(u).

The following equality, implied by [1, eq. (2)],

ϕ(u) =
u+4∑
k=1

ϕ(k)au+4−k − (xu+3s0 + xu+2s1)ϕ(1) − xu+2s0ϕ(2), (5)
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shows where the problem of finding ϕ(u) for all u ∈ N0 stems from. In order to
use the recurrence relation (5), we need to know several initial values. How many of
them exactly? This depends on the smallest value of X1 + X2 + Y . For example, if
a0 > 0 and u = 0, the formula (5) implies the relation among ϕ(0), . . ., ϕ(4), if
u = 0 and a0 = 0, a1 > 0, then we have the relation among ϕ(0), . . ., ϕ(3), etc. With
that said, the next Section 2 is structured as follows: Theorem 1 deals with the finite
time survival probability, Theorems 2–5 express the ultimate time survival probability
under the net profit condition and the remaining Theorem 6 provides the values of
ϕ(u) under the breach of the net profit condition. In Section 3 we present the outputs
of these mentioned theorems with some chosen random variables X and Y , while
in Section 4 we give a summarized overview and a brief look at more generalized
discrete time risk models.

It is worth mentioning that research related to the present one can also be found
in papers [7] and [12]. In general, the research done in this paper might be considered
as a study of a certain randomness in attaining some large values. Multiple research
papers are written each year on the subject, just few of them are [4–6, 8, 13, 14] and
[17]. Also, due to some model’s specifics, only particular distributions of a random
part are considered, see [19].

2 Statements and proofs

We start with the statement for finite time survival probability ϕ(u, T ) for the bi-risk
discrete time risk model with premium two. The model is defined in (1).

Theorem 1. For any u ∈ N0, the finite time survival probability of the bi-risk discrete
time risk model with income rate two, satisfies

ϕ(u, 1) = FX(u + 1),

ϕ(u, 2) =
u+1∑
k=0

xkFS(u + 3 − k),

ϕ(u, T ) =
u+3∑
k=0

ϕ(u + 4 − k, T − 2)ak

− (xu+2s1 + xu+3s0)ϕ(1, T − 2) − xu+2s0ϕ(2, T − 2), T � 3.

Proof. The proof follows by replacing Y 
→ X + Y and X + Y 
→ X1 + X2 + Y in
Theorem 2.1 in [1].

Let us observe that Theorem 1 is independent of the net profit condition. We note
that [3, Thm. 1] may be adopted for the considered finite time survival probability
calculation as well.

Lets turn to the ultimate time. To express the ultimate time survival probability for
model (1), when the sum X1 +X2 +Y can attain zero with some positive probability,
we define four recurrent sequences αn, βn, γn and δn. For n = 0, 1, 2, 3 we define
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n αn βn γn δn

0 1 0 0 0
1 0 1 0 0
2 0 0 1 0

3 − 1
a0

−FA(2)+FX(2)s0+FX(1)s1
a0

−FA(1)+FX(1)s0
a0

1
a0

and, for n = 4, 5, . . .,

αn = 1

a0

(
αn−4 −

n−1∑
k=1

an−kαk

)
,

βn = 1

a0

(
βn−4 −

n−1∑
k=1

an−kβk + xn−1s0 + xn−2s1

)
,

γn = 1

a0

(
γn−4 −

n−1∑
k=1

an−kγk + xn−2s0

)
, δn = 1

a0

(
δn−4 −

n−1∑
k=1

an−kδk

)
.

Theorem 2. Suppose that a0 > 0 and 2EX + EY < 4. Then, the ultimate time sur-
vival probability of the bi-risk discrete time risk model with income rate two satisfies

⎛
⎝ αn+1 − αn βn+1 − βn γn+1 − γn

αn+2 − αn βn+2 − βn γn+2 − γn

αn+3 − αn βn+3 − βn γn+3 − γn

⎞
⎠ ×

⎛
⎝ ϕ(0)

ϕ(1)

ϕ(2)

⎞
⎠ (6)

+
⎛
⎝ δn+1 − δn

δn+2 − δn

δn+3 − δn

⎞
⎠ × (4 − 2EX − EY) =

⎛
⎝ ϕ(n + 1) − ϕ(n)

ϕ(n + 2) − ϕ(n)

ϕ(n + 3) − ϕ(n)

⎞
⎠ , n ∈ N0,

ϕ(3) = −ϕ(0) − (FA(2) + FX(2)s0 + FX(1)s1)ϕ(1)

a0

− (FA(1) + FX(1)s0)ϕ(2) − 4 + 2EX + EY

a0
,

ϕ(u) = 1

a0

(
ϕ(u − 4) + (xu−1s0 + xu−2s1)ϕ(1) + xu−2s0ϕ(2) −

u−1∑
k=1

au−kϕ(k)

)
,

u = 4, 5, . . . .

Proof. The proof is implied by Theorem 2.2 in [1] replacing Y 
→ X + Y and X +
Y 
→ X1 + X2 + Y there.

We now turn to the case when the lowest possible value of X1 + X2 + Y (with
positive probability) is one. Note that there is just one underlying case satisfying
the mentioned condition – case number two in Table 1. Let’s define three recurrent
sequences αn, βn and δn. For n = 0, 1, 2,
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n αn βn δn

0 1 0 0
1 0 1 0

2 − 1
a1

−FA(2)+FX(1)s1
a1

1
a1

and, for n = 3, 4, . . .,

αn = 1

a1

(
αn−3 −

n−1∑
k=1

an+1−kαk

)
,

βn = 1

a1

(
βn−3 −

n−1∑
k=1

an+1−kβk + xn−1s1

)
,

δn = 1

a1

(
δn−3 −

n−1∑
k=1

an+1−kδk

)
.

Theorem 3. Suppose that a0 = 0, a1 > 0 and 2EX + EY < 4. Then, the ultimate
time survival probability of the bi-risk discrete time risk model with income rate two
satisfies(

αn+1 − αn βn+1 − βn

αn+2 − αn βn+2 − βn

)
×

(
ϕ(0)

ϕ(1)

)
+

(
δn+1 − δn

δn+2 − δn

)
× (4 − EA)

=
(

ϕ(n + 1) − ϕ(n)

ϕ(n + 2) − ϕ(n)

)
, n ∈ N0, (7)

ϕ(2) = −ϕ(0) − (FA(2) + FX(1)s1)ϕ(1) + 4 − 2EX − EY

a1
,

ϕ(u) = 1

a1

(
ϕ(u − 3) + xu−1s1ϕ(1) −

u−1∑
k=1

au+1−kϕ(k)

)
, u = 3, 4, . . .

Proof. The proof follows from Theorem 2.3 in [1] by replacing Y 
→ X + Y , X +
Y 
→ X1 + X2 + Y there and observing that s0 = 0 because of y0 = 0 under the
current assumptions.

We now ask when does the sum X1 + X2 + Y attains its minimum value of two
with some positive probability? That happens in cases three and six in Table 1. The
next theorem requires two recurrent sequences to be defined:

α̂0 = 1, α̂1 = − 1

FX(1)s1 + a2
,

α̂n = 1

a2

(
α̂n−2 −

n−1∑
k=1

an+2−kα̂k + xns1α̂1

)
, n = 2, 3, . . . ,

δ̂0 = 0, δ̂1 = 1

FX(1)s1 + a2
,
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δ̂n = 1

a2

(
δ̂n−2 −

n−1∑
k=1

an+2−kδ̂k + xns1δ̂1

)
, n = 2, 3, . . . .

Theorem 4. Suppose that a0 = a1 = 0, a2 > 0 and 2EX + EY < 4. Then, the
ultimate time survival probability of the bi-risk discrete time risk model with income
rate two satisfies

(α̂n+1 − α̂n)ϕ(0) + (δ̂n+1 − δ̂n)(4 − 2EX − EY) = ϕ(n + 1) − ϕ(n), n ∈ N0,

ϕ(1) = α̂1ϕ(0) + δ̂1(4 − 2EX − EY),

ϕ(u) = 1

a2

(
ϕ(u − 2) −

u−1∑
k=1

au+2−kϕ(k) + xus1ϕ(1)

)
, u = 2, 3, . . .

Moreover, α̂n+1 − α̂n 	= 0 for all n ∈ N0.

Proof. The proof is implied by Theorem 2.4 in [1] replacing Y 
→ X + Y , X + Y 
→
X1 + X2 + Y there and observing that s1 = 0 under the current assumptions.

The last case, when the net profit condition can be satisfied, is when the sum
X1 + X2 + Y can attain its minimum value of three with some positive probability.
This is illustrated in cases number four and seven in Table 1 and consequently, the
expression of the ultimate time survival probability is straightforward.

Theorem 5. Suppose that a0 = a1 = a2 = 0, a3 > 0 and 2EX + EY < 4. Then, the
ultimate time survival probability of the bi-risk discrete time risk model with income
rate two satisfies

ϕ(0) = 4 − 2EX − EY, ϕ(1) = ϕ(0)/a3,

ϕ(u) = 1

a3

(
ϕ(u − 1) −

u−1∑
k=1

au+3−kϕ(k)

)
, u = 2, 3, . . . .

Proof. The proof follows from Theorem 2.5 in [1] by replacing Y 
→ X + Y ,
X + Y 
→ X1 + X2 + Y there and observing that s0 = s1 = 0 under the current
assumptions.

The next theorem shows that survival is impossible, in all but a few trivial cases,
if the net profit condition is violated.

Theorem 6. Suppose that 2EX + EY � 4. Then, the ultimate time survival proba-
bility of the bi-risk discrete time risk model with income rate two is as follows:

(i) ϕ(u) = 0 for all u ∈ N0, when 2EX + EY > 4,

(ii) ϕ(u) = 0 for all u ∈ N0, when 2EX + EY = 4 and a4 < 1,

(iii) ϕ(0) = 0 and ϕ(u) = 1 for all u ∈ N, when 2EX + EY = 4 and a4 = 1.
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Proof. For the model (1), the equality (20) in [1] implies

ϕ(0) + (x0s2 + s1 + s0)ϕ(1) + (x0s1 + s0)ϕ(2) + x0s0ϕ(3)

= (4 − 2EX − EY) · ϕ(∞), (8)

where
ϕ(∞) := lim

u→∞ ϕ(u).

Due to (8), the condition 2EX + EY > 4 implies ϕ(∞) = 0 and consequently
ϕ(u) = 0 for all u ∈ N0 because of ϕ(u) � ϕ(u + 1). Therefore (i) is correct.

If 2EX + EY = 4 and a4 < 1, then, by (8),

ϕ(0) + (x0s2 + s1 + s0)ϕ(1) + (x0s1 + s0)ϕ(2) + x0s0ϕ(3) = 0. (9)

In view of (9), we have the following cases:

a0 > 0 ⇒ ϕ(0) = ϕ(1) = ϕ(2) = ϕ(3) = 0,

a0 = 0, a1 > 0 ⇒ ϕ(0) = ϕ(1) = ϕ(2) = 0,

a0 = a1 = 0, a2 > 0 ⇒ ϕ(0) = ϕ(1) = 0,

a0 = a1 = a2 = 0, a3 > 0 ⇒ ϕ(0) = 0,

while ϕ(u) = 0 for all u ∈ N0 is implied by (5). Thus, (ii) is correct.
Suppose that 2EX + EY = 4 and a4 = 1. Then, there are just three degenerated

distributions:

X ≡ 0, Y ≡ 4 or X ≡ 2, Y ≡ 0 or X ≡ 1, Y ≡ 2,

all of which, by model definition (1), imply ϕ(0) = 0 and ϕ(u) = 1 for all u ∈ N.

3 Numerical examples

In this section we verify the formulated Theorems 1–6 with some chosen r.vs. That
is performed by choosing particular distributions of X and Y and obtaining ϕ(u, T )

and ϕ(u) for some u ∈ N0 and T ∈ N. Initial wealth u and time T are chosen
individually aiming to reflect the dynamics of survival probabilities. The presented
survival probabilities are calculated with Python [16] and confirmed with Wolfram
Mathematica [18]. Results are rounded up to three decimal places except when the
rounding result is 0 or 1. As the initial values of the ultimate time survival probability
in Theorems 2–4 depend on n ∈ N, there n = 100 is chosen as large enough when
applying them. Ideally, we should set n → ∞ and, for example, Theorem 4 would
imply

ϕ(0) = (4 − 2EX − EY) lim
n→∞

δ̂n − δ̂n+1

α̂n+1 − α̂n

.

However, it is not easy to find such limit, especially the corresponding one in Theo-
rems 2 and 3. Therefore, we consider the chosen n as large enough when a relative
change of the obtained initial value (or values) is negligible comparing results be-
tween n and n + 1, i.e. |Ln+1/Ln| < ε, where Ln = (δ̂n − δ̂n+1)/(α̂n+1 − α̂n).
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The distribution

P(X = k) = (1 − p)kp, k = 0, 1, . . . ,

is called geometric with parameter 0 < p < 1 (denoted X ∼ G(p)), while the
generalized one

P(X = k) =
(

k − 1

r − 1

)
(1 − p)k−rpr , k = r, r + 1, . . . ,

is known as negative binomial or Pascal with parameters 0 < p < 1 and r ∈ N

(denoted X ∼ NB(r, p)).

Example 1. Assume that X ∼ G(3/4) and Y ∼ G(1/4). Then, 2EX +EY = 3 2
3 < 4

and, according to Theorems 1 and 2, we obtain Table 2.

Table 2. Survival probability when X ∼ G(3/4) and Y ∼ G(1/4)

T u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 10 u = 25 u = 50
1 0.938 0.984 0.996 0.999 1 1 1 1 1
2 0.582 0.695 0.774 0.831 0.873 0.905 0.977 1 1
3 0.580 0.693 0.772 0.830 0.872 0.904 0.977 1 1
4 0.465 0.576 0.661 0.729 0.784 0.829 0.948 0.999 1
5 0.465 0.575 0.660 0.728 0.784 0.828 0.948 0.999 1
10 0.338 0.430 0.508 0.576 0.637 0.689 0.866 0.993 1
20 0.267 0.343 0.410 0.472 0.528 0.579 0.772 0.974 1
30 0.235 0.303 0.364 0.420 0.472 0.521 0.713 0.953 0.999
40 0.216 0.279 0.336 0.389 0.438 0.484 0.672 0.933 0.997
50 0.203 0.263 0.317 0.367 0.414 0.458 0.642 0.914 0.996

100 0.172 0.224 0.270 0.314 0.355 0.395 0.562 0.850 0.982
∞ 0.138 0.18 0.218 0.253 0.287 0.319 0.460 0.731 0.915

Example 2. Assume that X ∼ G(3/4) and Y ∼ NB(1, 1/2). Then, 2EX + EY =
2 2

3 < 4 and, according to Theorems 1 and 3, we obtain Table 3.

Table 3. Survival probability when X ∼ G(3/4) and Y ∼ NB(1, 1/2)

T u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 10 u = 15
1 0.938 0.984 0.996 0.999 1 1 1 1
2 0.738 0.866 0.932 0.965 0.983 0.991 1 1
3 0.734 0.863 0.930 0.964 0.982 0.991 1 1
4 0.686 0.823 0.902 0.946 0.970 0.984 0.999 1
5 0.684 0.822 0.901 0.945 0.970 0.984 0.999 1
10 0.647 0.787 0.872 0.924 0.955 0.973 0.998 1
20 0.638 0.778 0.864 0.917 0.949 0.969 0.997 1
30 0.637 0.776 0.862 0.916 0.948 0.968 0.997 1
40 0.636 0.776 0.862 0.915 0.948 0.968 0.997 1
∞ 0.636 0.776 0.862 0.915 0.948 0.968 0.997 1

Example 3. Assume that X ∼ NB(1, 3/4) and Y ∼ G(1/2). Then, 2EX + EY =
3 2

3 < 4 and, according to Theorems 1 and 4, we obtain Table 4.

Example 4. Assume that X ∼ NB(1, 3/4) and Y ∼ NB(1, 4/5). Then, 2EX +
EY = 3 11

12 < 4 and, according to Theorems 1 and 5, we obtain Table 5.
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Table 4. Survival probability when X ∼ NB(1, 3/4) and Y ∼ G(1/2)

T u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 10 u = 25 u = 40
1 0.750 0.938 0.984 0.996 0.999 1 1 1 1
2 0.492 0.738 0.866 0.932 0.965 0.983 0.999 1 1
3 0.475 0.722 0.854 0.925 0.962 0.981 0.999 1 1
4 0.399 0.635 0.782 0.872 0.927 0.958 0.998 1 1
5 0.393 0.627 0.775 0.867 0.923 0.956 0.998 1 1
10 0.307 0.511 0.658 0.765 0.841 0.894 0.989 1 1
20 0.260 0.440 0.577 0.684 0.766 0.829 0.969 1 1
30 0.241 0.409 0.540 0.644 0.726 0.791 0.952 1 1
40 0.230 0.392 0.518 0.620 0.702 0.768 0.938 0.999 1
50 0.223 0.381 0.505 0.605 0.686 0.751 0.928 0.999 1

100 0.210 0.358 0.476 0.572 0.651 0.716 0.901 0.997 1
∞ 0.203 0.347 0.462 0.556 0.633 0.967 0.884 0.993 1

Table 5. Survival probability when X ∼ NB(1, 3/4) and Y ∼ NB(1, 4/5)

T u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 10 u = 25 u = 50
1 0.750 0.938 0.984 0.996 0.999 1 1 1 1
2 0.450 0.765 0.912 0.970 0.990 0.997 1 1 1
3 0.422 0.738 0.896 0.962 0.987 0.996 1 1 1
4 0.344 0.652 0.837 0.930 0.972 0.989 1 1 1
5 0.332 0.636 0.824 0.922 0.968 0.987 1 1 1
10 0.240 0.497 0.694 0.825 0.905 0.951 0.999 1 1
20 0.185 0.398 0.579 0.717 0.817 0.885 0.993 1 1
30 0.161 0.350 0.517 0.652 0.755 0.832 0.982 1 1
40 0.146 0.320 0.477 0.607 0.711 0.792 0.969 1 1
50 0.137 0.300 0.449 0.575 0.678 0.760 0.956 1 1

100 0.113 0.250 0.378 0.490 0.586 0.666 0.900 0.999 1
∞ 0.083 0.185 0.282 0.368 0.445 0.512 0.744 0.963 0.999

Example 5. Assume that X ∼ NB(1, 3/4) and Y ∼ NB(3, 3/4). Then, the net profit
condition is violated, 2EX +EY = 6 2

3 > 4, and, according to Theorems 1 and 6, we
obtain Table 6.

Table 6. Survival probability when X ∼ NB(1, 3/4) and Y ∼ NB(3, 3/4)

T u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 10 u = 25 u = 50
1 0.750 0.938 0.984 0.996 0.999 1 1 1 1
2 0 0 0.237 0.534 0.756 0.886 0.999 1 1
3 0 0 0.222 0.512 0.737 0.873 0.999 1 1
4 0 0 0 0.056 0.197 0.391 0.960 1 1
5 0 0 0 0.053 0.187 0.376 0.956 1 1
10 0 0 0 0 0 0 0.115 0.997 1
20 0 0 0 0 0 0 0 0.340 1
30 0 0 0 0 0 0 0 0.001 0.943
40 0 0 0 0 0 0 0 0 0.292
50 0 0 0 0 0 0 0 0 0.006
55 0 0 0 0 0 0 0 0 0.001
∞ 0 0 0 0 0 0 0 0 0
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4 Concluding remarks

Random walks appear in many natural sciences where birth/death, gain/loss and up-
turn/downturn processes are studied. In this work, we investigated the possibility that
the random walk

t∑
i=1

Xi +
�t/2�∑
j=1

Yj

never hits the line u + 2t, u ∈ N0, when Xi
d= X, Yj

d= Y for all i, j ∈ N and
X, Y are integer-valued, nonnegative and independent random variables, which may
be distributed differently. Here t ∈ {1, 2, . . . , T }, T ∈ N or T → ∞. The fi-
nite time survival probability ϕ(u, T ) does not depend on the net profit condition
2EX + EY < 4 and its recurrent expressions are given in Theorem 1. Theorems 2–5
express the ultimate time survival probability ϕ(u) when the net profit condition is
satisfied, and show ϕ(u) dependency on min(2X +Y). The last Theorem 6 states that
survival is impossible, in all but few trivial cases, if the net profit condition is violated.
In Section 3, there are examples given for particular values of survival probabilities
calculated according to Theorems 1–6. Summarizing, the ultimate time survival prob-
ability of the bi-risk discrete time risk model with income rate two is expressible via
certain recurrent sequences and limit laws, i.e. initial values of ϕ are determined by
the limits of certain recurrent sequences.

As mentioned in the introduction, each distinct setup of random or deterministic
part in any discrete time risk model influences an expression of survival probability.
This work might be deemed as preparation for studying more generalized discrete
time risk models with an arbitrary income rate κ ∈ N in deterministic part u + κt

and/or an arbitrary number of nonidentically distributed random variables generat-
ing the random walk

∑t
i=1 Zi . To avoid being buried in too many details, we just

mention that such generalized models raise the level of abstraction significantly: a
corresponding version of recurrence relation (5) would require more initial values
and consequently much more effort in finding them.
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