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INTRODUCTION

Ultracold atom systems are composed of neutral atomic gases that are cooled
to tens of microkelvin or even lower temperatures and trapped in an external
potential. Exact engineering and control of the external potential allows ex-
ploring a large variety of quantum effects while avoiding problems arising from
impurities and defects in condensed matter samples.

The advent of the experimental exploration of ultracold atom systems was
the creation of Bose-Einstein condensate in 1995 [1,2]. A cloud of atomic gas
was trapped in a magnetic trap and slowed down by using novel laser and evap-
orative cooling techniques to reach this exotic state of matter at extremely low
temperatures where the quantum effects dominate. The experiments confirmed
the theoretical predictions of Bose and Einstein [3,4] proposed in the early 20th
century and paved the way for further research of superfluid states of matter
(collective oscillations [5], quantized vortex formation [6], Josephson type ef-
fects [7]). In the following years, the condensates of fermions were explored
as well: momentum distribution changes due to Pauli exclusion principle were
observed in an ultracold gas of °K atoms in 1999 [8], superfluidity predicted
by the Bardeen-Cooper-Schrieffer theory was realized experimentally [9]. An
extensive review of Fermi gas experiments and theory can be found in Ref. [10].

A natural step from the study of a cloud of atomic gas is to investigate its
behavior when trapped in periodic potentials. Such potentials can be created
with the help of optical lattices. Optical lattices are interfering laser beams
that form periodic spatial intensity patterns [11]. Atoms placed in the lattice
interact with the light field via the electric field-dipole interaction and get
trapped in the periodic minima or maxima of the field intensity depending
on their polarizability. These light crystals are of particular interest since
they can be used as many-body quantum simulators proposed by Feynman in
1982 [12,13]. Adjusting the laser beam configuration allows forming lattices of
different geometries while tuning the intensity modifies the tunneling rate of
particles between lattice sites and changes the interparticle interactions. The
high controllability of the parameters describing the system and purity of the
lattices provides the perfect conditions to straightforwardly implement and test
theoretical models in experiments. Some prominent examples are Hubbard
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type models [14-17] which allow to approximate the behavior of interacting
fermions and bosons in a lattice. Fermi-Hubbard model offers insight to high-T
superconductivity [18,19] and probes quantum spin models [20]. Bose-Hubbard
Hamiltonians can be used to explore quantum phase transitions in Bose gases
[21-23]. The universality of optical traps and lattices offers a platform to
realize new states of matter such as discrete time crystals [24,25], phase space
crystals [26] and supersolids [27,28].

Additional complexity can be introduced by considering effects that typi-
cally appear in the presence of magnetic fields in condensed matter physics.
Atoms trapped in optical lattices are neutral therefore to use these systems
as models of lattices affected by magnetic forces some ingenuity is needed.
One way to create an artificial magnetic field is to periodically drive the sys-
tem [29,30] to create a Coriolis-type force which simulates a gauge field equiva-
lent to a magnetic field. Another way is to imprint a phase to the wavefunction
of a particle hopping between the lattice sites through Raman [31,32] or op-
tical clock [33] transitions. Equipped with the tools necessary to realize an
effective magnetic field one can probe quantum Hall effect [34,35] and explore
topological quantum matter [36-38] that is robust to external perturbations.
The insight gained about the properties of such systems in a highly control-
lable environment is an important step towards realizing topological electronic
devices [39] and for potential applications in quantum computing [40].

Optical lattices also provide the ability to access higher-dimensional physics
by employing the internal degrees of freedom of the system as an additional
synthetic dimension [41,42]. The internal atomic states or spin degrees of
freedom of particles composing the trapped gas can be interpreted as an extra
spatial dimension. This allows one to look for the quantum Hall effect in
four [43,44] or even six [45] dimensions which is of particular interest when
analyzing the topology of quasicrystals [46], time-reversal invariant insulators
[47] and other exotic phenomena [48,49].

The versatility of ultracold atom lattices pushes the boundaries of the nu-
merical tools as well. On one hand, analytical and numerical calculations help
to identify the parameter regimes that support interesting phases of matter and
guide the experimental setups. On the other hand, the expanding experimental
capabilities provide new control variables requiring increasing computational
resources to benchmark the observed results. Due to the complexity arising
from the interplay of a large number of particles, the analytical approxima-
tions have a limited range of validity [50,51] necessitating the development
and improvement of numerical methods [52]. The lowest energy states of small
lattices containing few particles are successfully obtained by employing exact
diagonalization [53]. For larger systems tensor network [54,55], quantum Monte
Carlo [56] or possibly even neural network methods [57-61] can be applied, al-
though the precise method selection depends on the problem specifics and often



requires novel approaches.

The aim of this thesis is twofold and touches upon both analytical and nu-
merical aspects of the vast field of ultracold atom physics. The first aim is
to apply the ideas of discrete time crystals to driven optical lattices and de-
rive effective higher-dimensional systems termed time-space crystalline struc-
tures that complement the currently known lattices with synthetic dimensions.
The second aim is to numerically explore the application of neural networks
to determine the properties of quasi-one-dimensional lattices (several coupled
one-dimensional lattices that form a finite width ribbon) and open boundary
segments of two-dimensional lattices.

The objective of the thesis

The first goal of this thesis is to propose a lattice model with a synthetic
temporal dimension — a time-space crystalline structure which effectively allows
probing physics in up to six dimensional lattice models and to show that such
a system supports topological properties. To achieve this goal the following
tasks are set:

¢ Analyze the origin of the periodic time domain structure in a single well
of a resonantly driven sine-squared potential lattice using the classical
Hamiltonian mechanics picture.

e Develop a quantum description that couples the temporal structure at
each lattice well with the structures in the neighboring spatial wells to
obtain an effective quasi-one-dimensional lattice.

o Generalize the resonantly driven potentials to create a lattice that sup-
ports higher dimensions.

o Employ laser-assisted tunneling together with a potential tilt to realize
controllable magnetic fluxes piercing the lattice and check for topological
properties in the time-space crystalline structure.

The second objective is to investigate an artificial neural network as a nu-
merical tool to obtain the ground states of restricted geometry lattices. The
tasks to be done are as follows:

e Choose the architecture of the artificial neural network and its weight
optimization algorithm.

¢ Select the lattice models for the network to learn.

e Analyze the convergence of local and global features that define the den-
sity structure of the lattice ground state for various network and lattice
model parameters.



¢ Check how the convergence of characteristic expectation values changes
with the scale of the systems.

Practical and scientific novelty

e Time-space crystalline structure is a novel high-dimensional lattice cre-
ated by utilizing periodic resonant driving of the periodic trapping spatial
potentials. It provides an alternative to other proposed models that host
synthetic dimensions [41,42] and supplies a toolbox to probe topological
properties such as the formation of localized edge states [62] or Thouless
pumping in higher dimensions [45].

e The application of artificial neural networks for ground-state calculations
of lattice Hamiltionians is a recently emerging field [57,63] which offers a
method that can potentially complement the typically used exact diago-
nalization and tensor network algorithms. Although analytical evidence
suggests that artificial neural networks can accurately represent many-
body states [64], optimizability of the networks is still an open issue —
it is unclear if the network will manage to successfully learn the features
of a given model. In the thesis we set out to investigate the ability of
two distinct neural network architectures to determine or improve the
ground-state estimate of restricted geometry lattices. In particular, a lot
of attention will be given to flat band models which are interesting due to
their flat spectral band highlighting the role of interactions while at the
same time posing a reasonable challenge for the networks to overcome. If
successfully applied, the neural networks could potentially probe larger
systems than possible with other numerical tools.

Statements to be defended

1. A resonantly periodically driven lattice supports a parameter regime
which realizes a time-space crystalline lattice — a spatial lattice equipped
with periodic temporal structure at each site acting as a synthetic dimen-
sion.

2. Time-space crystalline structures offer a platform to probe topological

properties in six dimensions.

3. Artificial neural networks with restricted Boltzmann machine architecture
successfully encode the global structure of the ground state of dispersion-
less band lattice models while only guided by the energy minimization.

4. Artificial neural networks are prone to getting stuck at a density config-
uration corresponding to a local energy minima for large systems.
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5. Autoencoder-aided analysis allows one to extract an improved ground-
state estimate based on a set of noisy states with dominant ground-state

contribution.

Layout of the dissertation

Chapter 1 introduces the main ideas used when modeling the behavior of
trapped particles in optical lattices. Section 1.1 describes the physical origin
of optical lattice trapping, the Hamiltonian formalism and the second quan-
tization representation of such systems. Section 1.2 elucidates how effective
magnetic fields can be engineered in a lattice with neutral particles by exploit-
ing the inherently geometric nature of the effect and gives a short overview of
the resulting topological properties. Section 1.3 presents the Floquet formalism
which provides a convenient basis to solve time-periodic problems.

Chapter 2 establishes the theoretical description of a time-space crystalline
structure. Section 2.1 concentrates on the classical motion of a particle in
a periodically resonantly driven one-dimensional sine-squared potential, the
emergence of a periodic structure in the stroboscopic phase-space picture of
the system and its effective description. Section 2.2 extends the description
to encompass the quantum case and develops a two-dimensional time-space
crystalline lattice. Section 2.3 generalizes the model to six dimensions in the
tight-binding approximation formalism. Section 2.4 gives a concrete example
of a quasi-one-dimensional time-space crystalline structure and discusses the
conditions required for it to form. Finally, in section 2.5 a scheme to create
and control magnetic fluxes in the system is proposed which allows probing
topological properties such as formation of topologically protected edge states.

Chapter 3 focuses on the ability of artificial neural networks to calculate
the ground state and encode its features for lattice models with finite geome-
tries. Section 3.1 introduces a network with restricted Boltzmann machine
structure, the ansatz for the ground state in terms of the network parame-
ters and the learning procedure. The established model is applied in section
3.2 to investigate the convergence of characteristic parameters of a flat band
quasi-one-dimensional sawtooth lattice and a finite segment of a kagome lattice.
The impact of lattice and network scaling to convergence rate is explored. In
section 3.3, a different type of network structure is considered — a feedforward
autoencoder, which tackles the problem of improving the ground-state estimate
from a noisy set of states. Its encoding/decoding capabilities are analyzed for
sample states that have a dominant ground-state contribution and the network
is applied to find the improved estimates of ground-state densities of a finite
two-dimensional square and sawtooth lattices.
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Chapter 1

MODELING OPTICAL LATTICES

The processes that occur in ultracold atoms trapped in optical lattices are
modeled based on a variety of concepts that can be found in the fields of
quantum optics, condensed matter and statistical physics. In this chapter,
we will give a short introduction to the selected topics which cover the basic
description of an optical lattice, the tight-binding model, artificial gauge fields,
topological properties associated with such systems and Floquet theory.

1.1 Optical lattices

The key ingredient of exploring condensed matter physics in ultracold atom
systems is an optical lattice that traps neutral atoms in clean periodic arrays
with highly tunable parameters. In this section, we will overview the atom-light
interaction that captures the atoms in a periodic potential and introduce the
Hamiltonian formulation describing the behavior of particles in optical lattices
following Refs. [65, 66].

1.1.1 Atom-light interaction

Optical lattices capture neutral atoms in the intensity maxima or minima of
interfering laser beams. Let us analyze a semi-classical system that consists
of a single atom placed in a classical electric field to elucidate the trapping
mechanism.

Let an atom be placed in a position 7 and time ¢ dependent electric field
E(ﬁ t) generated by a laser of frequency wy,. If the laser frequency is detuned
from the allowed transitions of the atom, then the light-induced electric dipole
follows the oscillations of the electric field without creating an electronic exci-
tation. The effect this has on the energy levels of the atom can be considered
perturbatively.

We focus on a two-level system that consists of a zero-energy ground state
lg) and a state |e) that has the energy hw.. Here we is the transition frequency
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and /i — the reduced Plank’s constant. The choice of state |e) is determined
by its frequency w, being the closest one to the laser frequency out of all the
frequencies of non-resonant transitions. The energy detuning between the laser
field and state |e) is denoted by A = hA(wr, — we). The two-level system is
coupled to the electric field through the interaction Hamiltonian

If[dip = 7,[7 (7,), (1.1)

where ﬁ is the electric dipole operator. If the natural linewidth I" of the transi-
tion from the excited state to the ground state is much smaller than the detun-
ing A, then the second-order perturbation theory can be applied to the interac-
tion term. Assuming the rotating-wave approximation regime (wy,/w. =~ 1) to
cancel out time dependence, the perturbation theory gives a spatially depen-
dent energy correction de to the ground and excited states respectively [65]:

CANER|  gre

&:g(f)’ “ | = T I, (12)
CANED|  gre

5ee<m:—‘ AN (1.3)

where the intensity is defined as I(7) = 2eoc|E(7)|? with ¢y being vacuum per-
mittivity and ¢ — speed of light in vacuum. This light induced shift is known as
AC Stark effect [67]. Ultracold atom gases are usually experimentally prepared
in their ground state, therefore we focus on the ground state energy correction
deq4(7) that forms the potential pattern capturing the atoms in the minima.
Two types of traps can be realized depending on the choice of detuning A. If
the laser frequency is blue-detuned, i.e. larger than the resonance frequency
between the two atom levels (A > 0), then the energy minima where the atoms
are trapped coincide with the intensity minima since all quantities in Eq. 1.2
are positive. On the other hand, if the light is red-detuned (A < 0), then
the energy minima form at the maxima of intensity to which the atoms are
attracted.

The geometry of the trapping potential V() o< de4(7) o< I(7) is completely
determined by the intensity of the electric field. In practice, a choice of inter-
fering laser beam configurations allows to realize a variety of 1D, 2D and 3D
lattice geometries [11]. Different phases of matter can be simulated by tuning
the amplitude of the intensity [22]. A simple example of a 1D optical lattice
formation is two interfering counter-propagating plane waves with wavevectors
iEL oriented parallel to the ¥ direction creating a cosine squared periodic po-
tential V(z) oc [eFr® 4 7|2 o cos?(kpz) with the period equal to half of
the wavelength of the waves.

So far we have introduced optical lattice potentials that induce conservative
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forces trapping the particles. Another important aspect is the decoherence ef-
fects that cause particle losses to excited states. Decoherence can occur due to
technical noise like optical lattice intensity fluctuations [68] or more fundamen-
tally due to incoherent light scattering. The incoherent light scattering rate
which is the electric field power absorbed/emitted by the system per electric
field quantum

ra = 27 (5) 1o, (149

defines the timescale of the observed experiment, i.e. the observable event rate
should be higher than the scattering rate. We see that it is related to the
lattice potential by I's(7) = 75624 (7). An immediate observation follows that
to minimize dissipation, the detuning should be large.

Having briefly overviewed the basic underlying physics of an optical lattice
we will proceed to simplified models that describe the behavior of particles

trapped in such potentials.

1.1.2 Single-particle lattice Hamiltonian

Neutral atom gas trapped in an optical lattice can be treated in terms of the
Hamiltonian formalism. Here we restrict the analysis to a 1D lattice but it is
easily generalized for higher dimensions.

For non-interacting systems, the quantum description can be obtained by
performing first quantization — promoting the classical canonical position x and
momentum p, coordinates to linear operators & = x and p, = —ih% in the
position basis satisfying the commutation relation [, p,| = ii. These operators
act on the single-particle complex Hilbert space H; of physical states and map
them onto other states of the same space. In this case, the Hamiltonian operator
governing the dynamics of the system is

H= s +V(z) (1.5)
2m ’
where the first term describes the kinetic energy of a mass m particle and the
second term — its potential energy due to the presence of an optical lattice.
Solving the Scrédinger’s equation for such a system provides the eigenstates
from which all of the expectation values of observables of interest can be cal-
culated.

To simplify analytical derivations the lattices are usually modeled as either
having infinite number of sites (potential minima) or satisfying the periodic
boundary condition where the last site is coupled to the first site of a finite
lattice forming a ring. These assumptions allow to accurately capture the
bulk properties of the lattice by exploiting the discrete translational symmetry
of the potential. Employing the Bloch’s theorem [69] which states that for
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any periodic potential the time-independent Scrédinger’s equation has Bloch
wavefunction solutions of the form

Yrn(x) = eikxukm(x), (1.6)

where ug(z) is a function that has the same periodicity as the potential, k is
the quasi-momentum characterizing the translational symmetry of the lattice
and n is the band index associated with energy eigenvalue of the given state.
The quasi-momentum can take values k = 2%] with j € Z for a lattice with L
sites and the periodic boundary condition or it can take any continuous value if
the number of sites is infinite. However, due to periodicity, all of the necessary
information is contained in the first Brillouin zone (BZ) —% < k < 5 where d
is the spatial period of the potential. Acting on the Bloch wavefunction with

the Hamiltonian (1.5) we get

(Bo + hk)?

ﬁwk,n(x) — eikz o

+ V(@) | won(a). (17)

Denoting the Hamiltonian with the modified momentum by

T (ﬁx + hk’)2

o+ V(@), (1.8)

the time-independent Scrédinger’s equation is simplified to independent eigen-
value problems for each k-mode

ﬁkuk,n(x) = Einupn(z), (1.9)

with Ej , being the energy eigenvalue. The solutions uy ,(x) can be either
calculated numerically or, in certain cases, analytically — e.g. in the weak
potential limit or the tight-binding regime [70].

The obtained energy eigenspectrum contains information about the trans-
port properties of the system. A narrow wavepacket corresponding to a par-

ticle’s wavefunction centered around ko quasimomentum and placed in the
1 9B (k)

"o Ok |k0'
E,(k) = Ej, maps the quasimomenta of the first Brillouin zone to the en-

n-th band has a group velocity vy(ko) =

Here, the function

ergy eigenvalues. Note that if the energy band is flat, i.e. F,(k) = const.
for all k, the kinetics of the wavepacket are suppressed. Systems that support
flat bands are good candidates to probe many-body effects where interactions
dominate [71] and will be of main interest in section 3.2.
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1.1.3 Second quantization and the tight-binding approx-
imation

Using the first quantization formalism, many-body states describing interact-
ing bosons (fermions) trapped in an optical lattice are the (anti-)symmetrized
tensor products of their single-particle states. Each time a particle is spatially
exchanged or removed/added to the system, the state symmetry has to be ad-
dressed, therefore it is often more convenient to work in an occupation number
representation also known as second quantization. In this representation, in-
stead of tracking the state of each particle, the many-body state lists how many
particles occupy each single-particle state while the symmetry is taken care of
implicitly by the construction of the space of states.

In second quantization, the many-body state is an element of Fock space
F which is the direct sum of all products of single-particle Hilbert spaces
F = @, HP" where the tensor product of single-particle spaces HP" =
Hi®...®Hp is symmetrized (antisymmetrized) for bosons (fermions) and

n
’H?O = C is the 1D vector space spanned by the vacuum state. A state in
Fock space can be represented in an orthonormal and complete occupation
number basis where n; particles occupy the j-th single-particle state. Such
a many-body state can be denoted by an ordered list of occupation numbers
|n1,n2,...,nj,...). In order to include or remove a particle in the j—th mode,
T

the creation @; and annihilation a@; operators are introduced. They satisfy the

canonical commutation relations for bosons
[a;,a1) = a;a] — ala; = 6.5 las,a5] = [a],al] = 0, (1.10)
and anticommutation relations for fermions

{a;,al} = aal +ala; = 6,57 {asa;} = {al,aly =0,  (1.11)
with d;; being the Kronecker delta. Creation and annihilation operators acting
on the j-th mode of a bosonic system correspondingly add and substract a
particle from the targeted mode:

d}|n1, My o) = /N5 + 1Ny, gng + 1,00, (1.12)
dj|’l’L1, ceey Mgy > = /Ny |7’Ll, sy Ty — 1, >, (113)

where for bosons n; can be any number of particles. For fermions, due to the
Pauli exclusion principle, we have that the number of particles per each mode
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is restricted to n; € {0, 1}, thus the operators act as

(“1)Zim ™ (1 — ), e 1 — 1y, ), (1.14)

d}|ﬂ1, sy Ty, >

DI

dj|’l’L1,...7’l’Lj,...> (—1) =1 ”enj|n1,...,1—nj,...>. (115)
Here the alternating sign that dependens on the order of the single-particle
state occupancy appears due to the anticommutation relations. An operator
that counts the number of particles in the j-th mode can be defined in terms

of the creation and annihilation operators 7; = al

jaj:

ﬁj|n1,...,nj7...> :nj|n17...7nj,...>. (116)

It is known as the particle number or density operator and is identical for both
bosons and fermions.

Having introduced the creation and annihilation operators we define the
quantum field operators

o0

=Y ¢r(2)al and U(x ij (1.17)
j=1

that are expressed in terms of a complete orthonormal set of first quantization
functions t;(z) in position representation. The operator Wf(z) creates and
\i'(x) destroys a particle at position x while accounting for all of the single-
particle mode contributions. Bosonic field operators inherit the commutation
relations for bosons

A

[F(2), Ui ()] = 6(x —2');  [¥(2), ¥(2)] = [¥1(2), ¥T()] =0, (1.18)
and fermionic field operators obey the anticommutation relations

{(2), U@} = b6(z —a); {¥(2), ¥(a")} = {¥7(2), PP ()} =0, (1.19)

where §(z — ) is the Dirac delta function.

Let us generalize the Hamiltonian (1.5) for many trapped ultracold gas
particles in an optical lattice and include an interaction term with an exper-
imentally controllable [72] potential U(z; — x;) that depends on the distance
between two particles at positions z; and x;:

_Z[ ;;8822 } ZZU i = ). (1.20)

i jFe

The sums run over all particles in the lattice. The same Hamiltonian can be
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written in terms of field operators [73]
A A K2 92 N
= t 2
H /dx Ul (z) [ 5 D +V(z)| ¥(x)
1 A o A N
+3 /dx/dm’ U () 0T (2 U (2 — o)V (") (). (1.21)

Ultracold atom systems exist at extremely low temperatures and energies there-
fore we will employ the tight-binding approximation. It assumes that the parti-
cles are in the lowest energy band and localized around the lattice minima while
the interaction energy is insufficient to excite the particles to a higher energy
band. In this case the field operators can be expanded in terms of localized
Wannier functions [74]

wi(z) =w(x —z;) =N dk e ke ZG kg n (), (1.22)

where N is the normalization constant, ¢, ,(2) is the Bloch function (1.6), =
is the lattice site coordinate around which the Wannier function is centered
and G, (k) is a gauge transformation coefficient. The Wannier functions are
not uniquely defined due to the arbitrary phase of the Bloch functions therefore
an ansatz is made that G,,(k) coeflicients are chosen to minimize the spatial
spread of the Wannier function thus uniquely defining it. This can be done
analytically for 1D periodic and symmetric potentials [75] and numerically for
more complex systems [76]. Expanding the field operators in Wannier basis
¥(z) = Z;’il w;(x)é; and plugging them in to the Hamiltonian (1.21) we can
express the result in terms of creation and annihilation operators

= ZJ,JdT&] + = Z lena al Jauan, (1.23)
(i7) i,7,l,m

with (ij) indicating the summation over directed links connecting adjacent sites
(i.e. for fixed neighboring sites ¢ and j, terms proportional to both J;; and Jj;
are included in the sum). Here the tunneling strength from site j to i is defined
as

2m Ox?

Ty =— /dx wi(z) [—71282 V()| w;(a) (1.24)

and the interaction strength is

Uijin = /d;z:/dx' w; (z)wj (2" )U(x — 2" )w (2" )wn (z). (1.25)

The first term of this Hamiltonian is known as the tight-binding model Hamil-
tonian which describes particle hopping between nearest neighboring lattice
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sites
Hyp = — Z Jijala; (1.26)
(i5)
and (ij) indicates summation of all directed links connecting neighbors. The
tight-binding Hamiltonian together with the interaction term form the so called
Hubbard-type models [17] which are widely used in condensed matter physics to
describe quantum phase transitions [21,22], topological properties [77,78] and
phenomena such as many-body localization [79,80] of ultracold gases trapped
in periodic potentials.
This framework will be used for the construction of time-space crystalline
structures in chapter 2. In chapter 3, the Hamiltonians of the flat band lattice
systems will be assumed to have the form of Hubbard-type models of Eq. (1.23).

1.2 Magnetic flux in a lattice of neutral atoms

Atoms trapped in optical lattice experiments are neutral therefore they do
not experience Lorentz force when placed in a magnetic field. This seems
like an immediate drawback of such systems since phenomena like integer and
fractional Hall effects which are hallmark examples of topological order would
be barred from exploration. Fortunately, magnetic effects can be simulated by
employing laser-induced gauge fields [81] or periodically driving the lattice [30].

In this section, we focus on the theoretical description of gauge fields that
affect the transport properties of particles similarly to magnetic fields and show
how they are accommodated in the lattice tight-binding Hamiltonian following
Refs. [32,82,83]. Topological properties and the related effects that arise due
to the presence of such gauge fields will be introduced as well.

1.2.1 Gauge field induced flux

Assume that a system is described by a Hamiltonian H (M) that depends on a
collection of parameters A = (A, ..., AM) where the superscript indicates the
components of the MD parameter space. According to the adiabatic theorem,
if the parameters A(t) vary slowly in time compared to the typical time scales
determined by the gaps between the energy bands, a non-degenerate eigenstate
of H(A(t)) remains in the same instantaneous eigenstate throughout the evo-
lution up to a phase factor. In general, the global phase factor of the state
does not impact the expectation values of measured observables, however in
interference experiments the relative phase between the interfering states has
physical significance, e.g. as seen from the Aharonov-Bohm effect [84]. In the
following subsection, we adiabatically evolve the parameters A(t) in a closed
loop in the parameter space and analyze why the accumulated phase arises in
the system.
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Let the system be initially prepared in an eigenstate |¢;; A(t = 0)). After
adiabatically evolving the state for time ¢, the solution of the time-dependent
Schrodinger equantion will have the form

[W(t)) = M W[y Mt)) + € > e (M) |vs5 (L)) (1.27)
J#i

The first term is the initial state that acquired the usual dynamical phase
0;(t) = —= dt’ E;(A\(t')) and another phase factor ;(¢) that we will determine
later. Here E is the eigenenergy of the i-th state. The second term is the sum
over the remaining eigenstates with some complex coefficients c;(A(t)) that
are weighed by small dimensionless factor e characterizing adiabaticity which
goes to zero in the adiabatic limit. To determine the phase ;(t ), we plug the
solution in the time-dependent Schrédinger equation 1hd|\p(t>> H(A®)|w(t))

and arrive at

Ay, d —i0; —iv, i dc;
el . — _ i60; iv; *E
(15 + ) s x(0) = =™ > (e i ) b A),
(1.28)
where the time dependence of the coeflicients and phases is omitted for brevity.

The terms on the left-hand side (LHS) are of the same order as e since they
vanish if there is no change in the Hamiltonian parameters. The first two terms
on the right-hand side (RHS) have the prefactor € hence they match the order
of the LHS. The third term is of second order in € since it is a product of €
and c; dw’] (t» which is of order e. Neglecting this term and projecting the
initial state on Eq. (1.28), we see that the RHS vanishes and we are left with

equation

d% d
O 4 i O 2 0) = 0. (1.29)
Solving it allows us to determlne the phase factor
¢ /\(t)
() =i [t WMl A) =1 [ AN, (130)
0 dt A(0)

where we have used the chain rule in the last equality to obtain the derivative
with respect to the parameter space variable A\* with the implicit summation
over the repeating parameter index p € {1,2,...,M}. For a path OT' that
forms a closed loop in parameter space (i.e. A(0) = A(¢)) this phase cannot be
gauged away (modulo 27) by a choice of a global phase. This phase is known
as Berry [85] or geometric phase

i GI‘ =i d\* i A i A y 1.31
(O0) =i § AN (i i) (1.31)
due to its dependence only on the path taken in the parameter space. This
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can be written more compactly by introducing Berry connection (also known

as Berry potential)

0
WW& A (1.32)
which is gauge-dependent since if a state is phase shifted by some parameter
dependent phase —w(\), i.e. [1h;; A) = e M |¢;; \), then the potential trans-

forms as A, — A, + ag/\()‘). Berry connection describes the transport of the
m

A =i(is Al

eigenstate through parameter space. An associated gauge-independent quan-
tity that describes the curvature arising due to the potential is Berry curvature

(or field)
0A, 0A,

N AN
Using these definitions we can rewrite Berry phase while applying Stoke’s the-

Fuw = (1.33)

orem

i = ]grw A, = /FdS”” Fun- (1.34)

In the last equality, we integrate over the surface I" bounded by the curve OT.
Here dS*¥ is the volume form of the surface and summation over repeating
Greek indices is implied with the condition that u < v.

From Eq. (1.34) we see that the Berry phase acquired by an eigenstate
transported along a closed loop in parameter space is equivalent to a flux,
induced by the Berry curvature, integrated over the area enclosed by the taken
path. An example of such a phenomenon is the Aharonov-Bohm effect, where
two wave packets prepared in the same state at the same spatial point are
propagated along different spatial routes in the presence of a magnetic vector
potential A(Z) and interfered at some final point [86-88]. The interference
pattern shows a phase difference between the two states that depends on the
magnetic flux enclosed by their paths. To elucidate the equivalence with the
Berry phase, the effect can be formulated as transporting a single wave packet
along a closed path and interfering it with a wave packet at the initial position.
This leads to an Aharonov-Bohm phase

_ AR =2 a5 . B =4
VAB = ﬁ]{apdx A(Z) h/PdS B(Z) h<I>7 (1.35)

where ¢ is charge, OP is the closed trajectory taken by the wave-packet, P is
the area enclosed by the trajectory, ® is the magnetic flux piercing this area,
dS is an area element and B(&) = V x A is the magnetic field. Since the Berry
connection and the magnetic vector potential share the same gauge properties
we can identify the Berry connection as A= %ff and the spatial coordinates
of the system in this case act as parameters. Thus we see that the Aharonov-
Bohm phase is just a particular manifestation of the Berry phase.

The geometric nature of the electromagnetic effects allows us to simulate
their presence by engineering suitable gauge fields. This overcomes the inherent
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problem of optical lattices filled with neutral atoms since the charge is no longer
a crucial component to induce and observe magnetic phenomena. Note that
the discussed Berry phase factor belongs to the unitary group U(1) and the
Berry connection is an element of the corresponding Lie algebra u(1). The
created gauge field is static since it is not affected by the motion of particles.
Higher n-degree symmetries can be realized by applying non-Abelian artificial
gauge potentials belonging to u(n) or su(n) and the dynamic gauge fields can
be created by using different species of particles laying a path for exploration
of lattice gauge theories in ultracold atom systems [89-91].

1.2.2 Tight-binding model with flux

Introduction of artificial gauge fields in the tight-binding lattice model is known
as Peierls substitution [92,93] which results in complex tunneling parameters
that emulate magnetic effects. It states that the tunneling element of particle
hopping from site j to site ¢ in a presence of a sufficiently slow varying gauge
field acquires a phase factor called the Peierls phase

eij:/l di - A(&), (1.36)

—

where A(Z) is a gauge potential generating the field and the integral is per-
formed along the line connecting the sites at ; and &;. The tight-binding
Hamiltonian (1.26) can be straightforwardly updated to account for this phase
as

Hp = =) Ty ala;, (1.37)
(24)

assuming that J;; parameters are real. The Peierls phase is a gauge-dependent
quantity, however if the particle tunnels along a closed path it accumulates the
Berry phase that can not be gauged away. For 2D lattices, the area enclosed
by the path is called a plaquette, e.g. for a 2D square lattice affected by some
gauge potential, the dimensionless flux (Berry phase) v = 614 + 043 + 032 + 021
piercing a lattice plaquette is shown in Fig. 1.1. One of the most prominent
models that can be expressed as the tight-binding Hamiltonian with flux is the
Hofstadter model [35,94] which describes a 2D square lattice with homogeneous
flux throughout each of the lattice plaquettes and features quantum Hall phases
with topological order. Another important example is the Haldane model which
showed that the essential component of the Hall effect is not the magnetic field
but the time-reversal symmetry breaking [95,96] — the explored system is a
hexagonal lattice which in addition to the nearest-neighbor tunneling includes
next-nearest neighbor hoppings that create a non-zero local magnetic flux while
the total magnetic flux remains zero.

Experimentally the Peierls phase can be induced by using the laser-assisted
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Figure 1.1: A single 2D lattice cell with four sites labeled 1 to 4. A particle
hopping along the directed links indicated by arrows with appropriate weights
Ji;el%i completes a closed loop 1 —2 — 3 — 4 — 1 and acquires a phase 7. It is
equivalent to a dimensionless flux « piercing the square lattice plaquette.

tunneling method [97,98] which relies on suppression of spontaneous tunneling
between the neighboring sites and reestablishment of controllable hopping via
external atom-light coupling lasers or lattice shaking. Comprehensive reviews
can be found in Refs. [30,32]. A particular realization of a controllable phase
using Raman laser beams will be introduced in subsection 2.5.3 for adjustment

of flux in time-space crystalline structures.

1.2.3 Topological properties

Lattice systems with artificial gauge fields host a variety of topological phases
of matter that are robust to perturbations such as quantum anomalous Hall
insulators (Chern insulators) [99-101], topological Mott insulators [102-104],
Zs topological insulators [105,106] and topological superconductors [107]. Here
we will briefly introduce the key characteristics that are prevalent in such sys-
tems — an invariant associated with the bulk properties of the lattice and the
topological edge states.

The experimental observation of quantized Hall conductance in cold 2D elec-
tron gas in a strong perpendicular magnetic field [34] prompted the theoretical
exploration of this effect which is known as integer quantum Hall effect and
revealed its connection with topology [108]. It was shown that the transverse
conductance o, obtained from the linear response theory can be expressed in
terms of a topological invariant V§m) classifying the m non-degenerate isolated
energy bands of the 2D Hamiltonian describing the system

Ony = —— > ™. (1.38)
m

Here the summation runs over the m occupied energy bands and e is the elec-
tron charge. The topological invariant 1/§m) € Z is known as the first Chern

number [109] and it assigns an integer to a manifold of states defined over a
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closed parameter surface. In this situation, it is related to the Berry curvature
F(m) associated with the m-th energy band through the following equality

o = L gk, F, (1.39)
21 Jzy

The integral is taken over the first Brillouin zone where the periodic quasi-

momentum k = (k1,k2) forms a closed 2D manifold. The Berry curvature is

defined in terms of the cigenstates |un, (k)) of the reciprocal Hamiltonian H (k)

describing the 2D system:

Fiy = %—;‘f —%, with A, = i(um(E)|£L|um(E)>, pe{1,2}. (1.40)
Since the Chern number can only take integer values, the Hall conductance
(1.38) is robust against perturbations of the system’s Hamiltanian that do not
close the gaps between the energy bands. A non-zero Chern number implies
that the wavefunctions exhibit a non-trivial topological structure in the Bril-
louin zone, i.e. there is no continuous and smooth global gauge choice for the
wavefunctions thus multiple different phase conventions are needed for separate
regions to cover the whole Brillouin zone.

The same formalism can be applied to calculate the Chern numbers of iso-
lated energy bands of trapped ultracold atom gases in optical lattices where the
artificial gauge field is engineered by some Peierls phase-inducing method. The
eigenstates required to calculate the gauge potential in Eq. (1.40) are obtained
by diagonalizing the tight-binding Hamiltonian (1.37) in quasimomentum rep-
resentation. The presence of non-trivial Chern numbers in such systems gives
rise to the quantum anomalous Hall effect where the conductance is quantized
as in the quantum integer Hall effect and it is called anomalous because no ex-
ternal magnetic field is present. A lattice that supports this effect is termed a
Chern insulator [36] with one of the most famous examples hosting such a phase
being the Haldane model [95,110]. With the advancement of technology, higher-
dimensional systems became experimentally accessible [44,111] prompting in-
terest in applying the generalized Chern number to describe higher-dimensional
topological effects as well [45,112].

Another important characteristic of systems with non-trivial Chern number
is the topological edge state. It appears at an interface where the topological in-
variant changes, e.g. where a lattice shares an open boundary with the vacuum.
For the 2D integer quantum Hall effect, it can be understood semiclassicaly as
describing the chiral motion of an electron bouncing in skipping orbits at the
edge of the system. In the energy band structure it appears as a gapless mode
connecting the otherwise gapped bulk bands [113,114]. An example of energy
dispersion with edge states present will be shown in section 2.5.4 Fig. 2.11(b)

for a quasi-one-dimensional square lattice with flux.
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Although measuring transport properties like conductance in condensed
matter systems is straightforward, for quantum gases it becomes challenging
since it requires more complicated setups, e.g. connecting reservoirs of par-
ticles to the system and devising a way to observe the currents [115] or by
inducing trap modulations to probe resistivity [116]. Fortunately, complemen-
tary methods can be introduced to measure the topological properties of the
system: atom densities measured at different values of the artificial flux allow
for calculating the sum of Chern numbers [117], a variety of time-of-flight mea-
surements where the expansion of the atomic cloud is monitored after turning
off the external trap also provides access to the Chern number [118-121] and
semiclassical dynamics of quasimomentum wave-packets can map the Berry
curvature of the Brillouin zone [96,122]. The edge states can be detected by
Bragg spectroscopy [123,124] and observing the time evolution of the quantum
gas after suddenly releasing constraining walls [125].

The introduced artificial gauge fields overcome the limitations of observ-
ing magnetic effects in neutral ultracold atom systems. The ability to mea-
sure topological quantities combined with the versatility of optical lattice trap
schemes paves the way to exploring exotic phases of matter in low- and high-
dimensional settings.

1.3 Floquet picture

Periodic driving of ultracold atom systems provides the means to explore and
control novel dynamical behavior and phases of quantum matter. The most
prominent effects induced by shaking are dynamic localization [126,127], dy-
namic superfluid-Mott insulator phase transition [128], creation of artificial
magnetic fields [30], topological phases [129] and new phases of matter such
as phase space crystals [26] and time crystals [24,25]. The theoretical descrip-
tion of time-periodic systems is covered by Floquet formalism which we briefly
introduce following Refs. [25,130].

The Floquet theorem states that for a time-periodic Hamiltonian H(t) =
H (t + T) with period T = %’T and associated angular frequency w a general
solutions of the time-dependent Scrodinger equation can be written as

P t) = ene o Uy (2, 1), (1.41)

with complex coefficients ¢, and time-periodic functions u, (x,t) = w,(z, t+T).
Plugging the solutions in the time-dependent Scrédinger equation

(ﬁ[(t) - ihi) Un (T,1) = eptiy (2, 1), (1.42)
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we see that u,(z,t) are eigenfuctions (also known as Floquet functions) of the
Floquet Hamiltonian H = H(t) fiha% and the eigenvalues are termed as quasi-
energies €,,. Much like the quasimomentum in Bloch functions, the quasienergy
is also periodic in its respective domain with energy shifts of Aiw. This implies
that shifting the quasienergies by some integer multiple m € Z of Aw provides
a set of states related to the n-th Floquet state

e wEnby, (z,8) = e BEntmAW)tgimwty (0 4y — o= wEnly (g 1), (1.43)

with @, (2, t) = @ (x,t +T) = ™y, (z,t) being the associated Floquet func-
tions with a class of quasienergies £, = ¢, + mhw that are equivalent. Due
to this periodicity, it is enough to consider a single Floquet zone of width fw
in the energy spectrum since it contains all the energies of the unique states
describing the system.

The Floquet Hamiltonian eigenvalue problem (1.43) can be solved by treat-
ing time not as an evolution variable but as a degree of freedom representing
the coordinate of time much the same as position. The Floquet function is
Fourier expanded with respect to time

u(z,t) = Z U P ()51 (1.44)

where a,, ,, are complex coefficients, s is an integer related to the choice of the
periodicity, ¢,(x) are the basis functions of the Hilbert space describing the

im<
im*t

particle and e are the Fourier basis functions. The Hilbert and Fourier
bases together can be regarded as forming an extended Hilbert space, spanned
by states |n,m)) which when projected on the position and time coordinates

give ((x,t|n,m)) = ¢,(x)e™%t. These states are orthonormal

sT

{{n,m|n/,m")) = SLT/ dt /d:z: or (x)e ™S, (z)el™ 5t = Onn Oy -

’ (1.45)

Expressing the Floquet Hamiltonian matrix elements in this basis
((n,m|H|n/,m’)) and diagonalizing the resulting matrix yields the quasienergy
spectrum (periodic with %“ period) and the Floquet states (1.44) that we were
looking for. Note that the choice of s € Z arises from the periodicity of the
Hamiltonian H(t) = H(t + sT), thus all s are valid selections for the basis
construction and the eigenstates expressed in any of the bases provide the
same information, however, the periodicity of the resulting eigenspectrum is
modified.

The introduced formalism will allow us to establish the Floquet Hamiltonian
of resonantly driven lattice systems in chapter 2 and gain insight into the
behavior of wave-packets formed by resonant Floquet states.
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Chapter 2

TIME-SPACE CRYSTALLINE
STRUCTURES

An ordinary crystal is a periodic array of atoms with a structure determined
by inter-particle interactions. Such a crystal can be viewed as a stable quan-
tum mechanical state that forms after spontaneous space translation symmetry
breaking occurs due to an external perturbation, e.g. interaction with the envi-
ronment or a measurement. The crystal state is symmetric under translations
by an integer multiple of the lattice constant while the Hamiltonian describ-
ing the system possesses a higher, continuous translation symmetry which the
eigenstates inherit. A time crystal [24,25,131-133], by analogy, is a system
where the roles of time and space are interchanged. Either discrete or contin-
uous time translation symmetry is spontaneously broken leading to a periodic
behavior of the system in time that hosts a lower symmetry state than the initial
Hamiltonian supported. While there are fundamental limitations of creating
time crystals in equilibrium provided they do not exhibit long-range interac-
tions [132,134], periodically driven many-body systems allow to realize time
crystals both in theory [135-138] and practice [139-144]. A hallmark exam-
ple of a discrete time crystal is a Bose-Einstein condensate of ultracold atoms
bouncing on a resonantly driven mirror [135], where the driving frequency is
an integer multiple of the natural atom oscillation frequency, i.e. the period of
the bouncing particles becomes larger than the driving period in the symmetry
broken state.

Spontaneous symmetry breaking is not the only way to realize a periodic
structure in the time domain. Much like in optical lattices, where the light
field traps and arranges particles in a periodic potential, an effective periodic
potential can be created in the temporal dimension by choosing a suitable
resonant time-periodic driving [24,25,133,145]. These engineered time crys-
talline structures provide a platform to explore condensed matter phenomena
in the temporal domain. Phenomena such as Anderson localization [146-149],
Mott insulating phase [150], topologically protected edge states [151,152] and
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flat-band lattices [153] are predicted.

In this chapter, we introduce time-space crystalline structures (TSCS) that
exhibit both spatial and temporal periodicity. Employing the ideas of time
crystalline structures we set out to construct a novel high-dimensional lattice
where the time domain acts as a synthetic dimension attached to each spatial
degree of freedom. The main results of this chapter are based on publication
[Al]. Firstly, a time crystalline structure is engineered at each potential well
of a spatially periodic lattice by employing a suitably chosen resonant periodic
driving of the system. This effectively forms a 2D TSCS. Secondly, we show that
the dimensionality can be extended by adding equivalent 1D spatial lattices
that are mutually orthogonal with the initial spatial lattice and follow the
same driving protocol. In this way, the temporal structure is exploited to
effectively double the number of dimensions for each available spatial degree
of freedom, leading to a TSCS with up to six dimensions given a 3D spatial
lattice. Finally, artificial gauge fields are introduced in the TSCS, providing a
toolbox for probing quantum Hall physics and topological properties of high-
dimensional systems.

2.1 Classical analysis of a 1D driven potential

We will begin with a classical 1D potential periodically driven in time, move to a
frame oscillating with the potential and then analyze the phase space diagram
of such a system to gain intuition for the reason behind the appearance of
the discrete localization of particles in time. A secular approximation will be
introduced to simplify the description and provide a convenient way to compare
quantized classical results with the quantum calculations encountered in section
2.2. A detailed overview of the underlying theory of driven systems used for
the aforementioned derivations can be found in Refs. [154,155].

2.1.1 Phase space diagram

The classical Hamiltonian of a 1D driven system with a sine-squared potential
is given by
2
H(z,pg,t) = ;—x + Vo sin? (kp, [z — Acos(wt)]) . (2.1)
m
Here m is the mass of a test particle, Vi — amplitude of the trapping potential,
k1, — wavevector describing the spatial periodicity of the lattice, A — maxi-
mum displacement of the lattice in the = direction due to the driving and w
is the shaking frequency. Next, we switch to the driven frame to decouple the
coordinate and time-dependent term. This is done by applying a canonical
transformation where we utilize the type 2 generating function G4 to relate the

old position and momentum coordinates (z,p,) to the new ones denoted by
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tilde (Z,p,) in the following way:

S 0G, L 0Gy . 0G,
H(x,pm,t)—H(x,pm,t)JrW, Pe=, T 95

Selecting Go = p; [ — A cos(wt)] leads to the Hamiltonian in the driven frame
that has the form

=2

H (%, po,t) = % + Vo sin?(kpZ) + po Aw sin(wt). (2.2)

h2k3
2m

Finally, we express this equation in recoil energy units Eg = to minimize
the number of interdependent parameters. This is done by introducing primed
dimensionless quantities p/, = p,/(hky), 2’ = kpZ, H = H/Eg, V§ = Vo /FRr,
N =Mk, w' = hw/ER and t' = Egrt/h. Re-expressing the Hamiltonian in di-
mensionless quantities and dropping the primes to reduce notational clutter
we arrive at the dimensionless Hamiltonian periodic in time and space with

separated spatial and temporal terms:
H(z,ps,t) = p2 + Vg sin?(z) + py \wsin(wt). (2.3)

The equations of motion of the Hamiltonian (2.3) completely determine the
properties of the classical system:

T e~ —Vp sin(2z), (2.4)
dv  OH(x,pg,t) )
i s = 2p, + Awsin(wt). (2.5)

To obtain an understanding of what kind of motion can be seen in this peri-
odically driven system, it is useful to calculate the stroboscopic evolution of
its phase space points at times equal to integer multiples of the driving period
T = 2?” Assuming small driving A, a typical result for a single potential well
is shown in Fig. 2.1. It encodes the three key features: regular trajectories,
chaotic regions and resonant islands. Regular trajectories are quasi-periodic
trajectories that follow an invariant curve in phase space. An example of such
a curve can be seen for small momenta where we have circular trajectories
around the origin which correspond to the system maintaining harmonic oscil-
lations as in the undriven case. Chaotic regions become apparent at the edges
of the phase space picture depicted in Fig. 2.1, their typical characteristic is
that a small change of distance between two neighboring phase space points
leads to on average exponentially increasing separation between their generated
trajectories during stroboscopic evolution. Increasing the driving amplitude A
leads to larger chaotic regions because the regularity of the high energy trajec-
tories gets destroyed, i.e. the perturbation is strong enough to drive the system
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away from the regular undriven trajectories. Finally, we have resonant islands
— closed regular trajectories that do not enclose the origin point. These islands
correspond to the case when the external driving frequency is resonant to an
integer multiple of a particle’s frequency €2 in the unperturbed potential, i.e.
w = 8, where s € N (e.g. s = 3 for gray loops and s = 5 for red loops in
Fig. 2.1).

Px

-0.4 -0.2 0.0 0.2 0.4

Figure 2.1: Stroboscopic phase space picture of a 1D driven system described
by (2.3). The parameters used here are w = 350, Vj = 4320 and A = 0.01.

Concentrating on the s = 3 case in Fig. 2.1, the particle initially present at
one of the three resonance islands will appear at the second one after a period
T, at the third one after 27" and return to the initial island after 37". This
gives the localized behavior that we set out to find, since on average, after each
period the particle is localized at one of the three islands.

The resonant islands at each spatial potential well provide a localized struc-
ture needed for the construction of the lattice in the time domain.

2.1.2 Action-angle picture

Before we can apply the secular approximation which gives an effective de-
scription in the resonant region we are interested in, an intermediate step is
required. A canonical change of variables will be applied to transform the z—p,
phase space into the so-called action-angle phase space that will lend itself to
a more convenient description for the secular approximation.

The new canonical variables — action I and angle 6 are introduced for the
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stationary part of the Hamiltonian (2.3) denoted by
Ho(x,ps) = p; + Vosin®(z). (2.6)

Since we are interested in the periodic motion at a single potential well, we will
concentrate on the case when the dimensionless energy E = p2 + Vj sin?(z) of
a particle is smaller than the potential amplitude Vp, i.e. E < V. The action
is defined to be proportional to the phase space area enclosed by a trajectory
of energy E:

I(E) = % ]{px(E)dm = 72r/0Jco \/ E — Vg sin?(x)dz, (2.7)

where the second equality uses the fact that Hy is symmetric with respect to
both z and p,, thus it is enough to integrate the first quadrant of the phase
space and multiply it by four to obtain the whole area. xy = arcsin \/VEO is the
right classical turning point at which the momentum changes sign.

Angle 6 is the conjugate coordinate to the action. It can be calculated using
the generating function

S(x,I) = /xm(x’,l)da:', (2.8)

since it allows us to use the canonical relation

0z, ) = 855}’ D _ % (62%3))_ /I:p;l(x’,l)dx'. (2.9)

It is straightforward to obtain the equations of motions of the unperturbed
Hamiltonian in the action-angle variables:

dl _ 9Ho(I) —0
dt 00 ’
o 9Hy(I)
dt oI

Action is by definition a constant of motion thus it has no angle dependence.
The angle evolution at some constant action I is linear in time

o(t) = 8}20;1) )

t+6(0), (2.10)

where Q(I;) = BH%I) defines the natural frequency of an oscillating particle
I

that has the energy F(I;). This will be useful during the derivation of the
Hamiltonian under the secular approximation.
Finally, we can use the action-angle variables of the unperturbed problem
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Figure 2.2: Stroboscopic phase space in action-angle variables of the same
driven system as depicted in Fig. 2.1.

to map the solutions of the driven Hamiltonian to the action-angle phase space.
This is done by taking the values of the = — p, phase space evaluated at integer
multiples of the driving period T' (as shown in Fig. 2.1) and associating each
point to § — I space by the equations (2.7) and (2.9). The resulting phase space
is depicted in Fig. 2.2. What the transformation did is it "unwrapped" the an-
gular part and rescaled the radial part of the x — p, space. The advantages that
this representation offers are the improved discernibility of resonance islands
as can be seen for the s = 5 case where the red islands became more prominent
and it is easier to determine the resonant action values by inspection which will
be needed to select the working point of the secular approximation.

Having introduced the action-angle variables we now have the complete set
of tools necessary to build an effective description of a resonantly driven system
around a particular high-order resonance by employing the secular approxima-
tion.

2.1.3 Classical secular approximation

Quantum mechanical calculations are usually computationally demanding and
if we have a large parameter space that we want to probe it is often convenient to
find an effective model of a system that would allow estimating the interesting
parameter regions. To this end, the secular classical approximation will be
introduced here. The main idea behind the secular approximation is that for
a system driven close to the s € N resonance, the dynamics are captured by

35



an effective time-independent (secular) Hamiltonian. This is done by taking
the driven Hamiltonian (2.3) written in the action-angle coordinates, moving
to a frame rotating at the resonant frequency and time averaging over the
fast oscillating terms. These steps will be shown in detail in the following
subsection.

The driven Hamiltonian in the action-angle variables is

H(0,1,t) = Ho(I)+ p(0, 1) \wsin(wt). (2.11)
Moving to a rotating frame oscillating at natural frequency 2 = < can be
done by performing a canonical transformation with the generating function
Go =1 (0 — ). Then the new variables are © = § — <L and I = I (the actions
are identical thus we immediately drop the tilde from the notation) with the
Hamiltonian in the rotating frame being

H(O,1,t) = Hy(I) — 21 +p, (@ e 1) Awsin(wt). (2.12)
S S

Since momentum is a periodic quantity with respect to angle, it can be ex-
panded into a Fourier series

+o0

n=—oo

The momentum expression is plugged into (2.12) and the Hamiltonian is av-
eraged over a single driving period. The off-resonant modes get canceled out
and we arrive at the secular Hamiltonian

Hyeo(©,1) = Ho(I) — %1 — Mwlps(I)| cos(sO). (2.14)

Our interest lies in the region around the resonance islands thus we expand
the unperturbed Hamiltonian Hy(I) around the resonant action I, of the s
resonance, where we expect to find the fixed points of the secular Hamiltonian.
Hy(I) is expanded up to the second order:

OHy(I) 1 0%Ho(I) 2 3
Hy(I) = Hy(I, I-1)+-———=| (I-I1,)"+0(I°). (2.15
o) = HoL)+=5=| (I =L)+5=p—| (-L)+ (1) (215)
From the previous subsection we have that 8}%([) L= QI;) = <. Applying

this to (2.14) we can finally write down the effectivestime—independent Hamil-
tonian

P2
2meff

Heooo(0,1) ~ Ho(0,1) = [HO(IS) - gls} n ~ Vigcos(sO).  (2.16)
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8% Hy(I)

Here we defined the effective mass meg = o512

-1
) , potential

Vet = Mwl|ps(I)| and momentum P = [ — I;. The first term in the brack-
ets of Eq. (2.16) is constant and does not affect the dynamics therefore it is

sometimes omitted.

40+
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Figure 2.3: Phase space region of the effective secular Hamiltonian (2.16). The
effective parameters are meg = —0.83 and Vg = 2.2.

The effective secular Hamiltonian shows that the particles moving in a ro-
tating frame act just like particles in an s-site lattice with a periodic boundary
condition with respect to ©. Each spatial site of the 1D driven lattice comes
equipped with such a © periodic structure which acts as the discrete time di-
mension. This temporal part together with the spatially periodic potential
wells form the 2D TSCS.

Let us put this effective Hamiltonian in action by considering the previously
analyzed example in Fig. 2.1 and Fig. 2.2. Solving the equations of motion for
the effective Hamiltonian near the s = 3 resonance we get the phase space
diagram shown in Fig. 2.3 where the three resonant islands are reproduced. To
ensure that the effective Hamiltonian provides a quantitatively correct descrip-
tion of the system, the obtained picture should be compared with Fig. 2.2. If
the driving amplitude is sufficiently small, the stroboscopic phase space region
is not distorted and the effective Hamiltonian approximation is valid.

This concludes the classical analysis of a periodically and resonantly driven
1D sine-squared potential. Driving at resonant frequencies creates a phase
space structure that supports particle localization in the rotating frame of the

37



corresponding frequency. It is described by the effective secular Hamiltonian.
This classical model will aid to estimate the parameters of a system needed
to realize TSCS in the quantum regime and its quantized version will provide
validity tests for the quantum computations which will be the topic of section
2.4.

2.2 Quantum analysis of a 1D driven potential

In this section, we turn to the quantum problem of the 1D driven sine-squared
potential. The ideas of the previous section are utilized to derive the quantum
secular Hamiltonian for this system. A 2D tight-binding model is obtained by
using Wannier states constructed from the eigenstates of the driven Hamilto-
nian. The resulting tight-binding model will correspond to the 2D TSCS.

2.2.1 Floquet Hamiltonian

We begin with the canonically quantized version of the initial classical Hamil-
tonian (2.1). The Hamiltonian operator H is given by:

A

-2
H(t) = % + Vosin? (kr, [£ — A cos(wt)]) . (2.17)
The position Z and momentum p,, operators satisfy the canonical commutation
relation [£, p,] = ih. A reminder that m is the mass of a particle, Vj — trapping
potential amplitude, ky, — lattice wavevector, A — maximum displacement of the
lattice in the x direction due to the driving and w — shaking frequency. We can
move to the oscillating frame by applying a unitary transformation U(t):

4

() = U@ aGUTE) — k0 (1) =

Ut(t), (2.18)
with U (t) = ein cos@tin Tt g equivalent to the canonical transformation we
did in the classical case to separate the time and position dependent term.
Plugging U (t) into (2.18) gives us

_ B

}:I(t) =5 + Vo sin? (kr2) + Mw sin(wt)p,. (2.19)

The obtained Hamiltonian preserves both time and space periodicity. Express-

. Lo . . h2kE . . .
ing the equation in recoil energy units Egr = =+ we get primed dimension-

less quantities p), = p,/(hky), ' = kpZ, H = }:I/ER, Vo = Vo/ERr, N = Mkp,
w' = hw/Egr and t' = Egt/h. Thus the dimensionless Hamiltonian is

H(t) = p? + Vysin? (&) + Aw sin(wt)py, (2.20)
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where the primes have been dropped. This is the form of the Hamiltonian we
will be working with.

It is convenient to define the Floquet Hamiltonian since the system is peri-
odic in time:

. N 9
H(t) = H(t) — 15
The Floquet Hamiltonian has discrete coordinate translational symmetry there-
fore the eigenfunctions of the Floquet Hamiltonian are Bloch waves @, o(x,t) =
e* @y, o (x,t), with functions uy o (2,t) = up(z 4+ 7,t) = up,a (z,t + 2) peri-
odic both in time and space. Here k is the dimensionless quasimomentum of
the Bloch wave and « is a quantum number labeling the energy eigenvalue.

The eigenvalue problem consists of solving

A

,H(t)q)k,a(li,t) = Eha‘bk’a(df,t), (221)

where Ej , are the eigenenergies. Finding ®, o(z,t) will provide the complete
information about the single-particle system. Before attempting to solve the
problem we simplify the equation by introducing a few eigenstate basis trans-
formations. We start by inserting the explicit form of the Floquet Hamiltonian
and Bloch functions into the eigenvalue equation and multiplying both sides
by e *% from the left

e ik (ﬁ?p +W sin® (‘%) + \w Sin(“-’t)ﬁz - i) ellmuk,a(xa t) = Ek,auk,oz(xa t)'

ot
(2.22)
The first and third terms can be simplified to
e_ikxﬁi (eikIuk,a(x7 t)) = (ﬁz + k)z Uk,a(xv t)a (223)

e M w sin(wt)py (€ up o (2, 1)) = Awsin(wt) (py + k) uga(z,t).  (2.24)

This leads to the eigenvalue problem

((ﬁz + k)% + Vysin® (&) + Awsin(wt) (P + k) — i(i)uk’a(x, t)

= Ek’aukya(x,t). (225)

wt)k

Applying the unitary transformation ﬁk(t) = e~ 1A cos( on the left and in-

serting an identity element U,I Uy, = 1 into the equation

O\ ~un
U <(ﬁx + k)2 + Vp sin? (2) + Mwsin(wt) (P + k) — i@t) U;Ukukﬁa(x, t)

= Ek,aUkuk,a (.’t, t)v
(2.26)
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eliminates the oscillating term proportional to k. This is the way we arrive to
the final form of the eigenvalue problem

H'uj o (2, 8) = Epatif o(,1), (2.27)

where P
H' = (Pp + k)* + Vi sin® (&) + Iw sin(wt)py — 15 (2.28)
and uy (7,t) = Unup.o(z,t).  Calculating uy, (w,t) with the associated

eigenenergies will provide all the necessary information because backtracking
through the definitions we see that it relates to the eigenstate of the Floquet
Hamiltonian by

Dy o2, 1) = Fuy, o (2, ) = eikwﬁg(t)u%’a(xj) = elhreiteos@hiy (2,1).
(2.29)
In this subsection we established the form of the quantum problem that
describes the 1D driven system. In the following subsections we will proceed
to solve it by employing the quantum secular approximation.

2.2.2 Time-independent Hamiltonian basis

We will solve the driven Hamiltonian problem in the stationary Hamiltonian
H© basis therefore we dedicate this subsection to finding the unperturbed
eigenvectors of the eigenvalue problem ﬁ(o)wk,n(x) = E,(Cor)lz/)kn(x) Here we
will assume that the eigenbasis of H©) has the plane wave form vy, ,(z) =
% jfioo (n) e90)® where g(j) = i—’gj is the 1D reciprocal lattice vector
projection w1th j € Z and the lattice constant is chosen to be ay = 7. n labels
the eigenstates and k is the quasimomentum. The complex coeflicients cj, ; are
calculated numerically.

Given the unperturbed Hamiltonian
HO = (p, + k)* + Vysin? (2), (2.30)
the matrix elements of this operator in the exponential basis can be written as

T Ay o
H](,O)] E/ o™iz FO)ei2im gy, (2.31)

us
2

Integrating over the lattice site we get

Vo Vo

D) T 0 [5 j.g'—1 7+ 5]] +1] (2-32)

where we have used the orthogonahty of the basis [, ¢20'~0)* dg = 76, ,,
d;:,; being the Kronecker delta for j',j € Z. By dlagonahzlng the matrix com-
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prised of elements of (2.32) we obtain the eigenvalues E,(Cor)l and the associated

wavefunction coefficients c,(cnj) Note that to diagonalize the Hamiltonian nu-

merically, the number of basis elements c;nj) needs to be truncated to a finite

range of j = —jcutoff, ---» Jeutofts Jeutoff € N. It is important to pick a large
enough jeutof SO that the description of the system in the resonant energy
vicinity would be valid.

Now that we can numerically calculate the eigenstates of the time-
1 Jeutost (n) i2jx

independent Hamiltonian vy, (z) = T 2 e R ©

ling the eigenproblem of the driven system.

, we return to tack-

2.2.3 Quantum secular approximation

The quantum secular approximation applied to the driven Hamiltonian will
complete the description of the 1D driven system. Much like the classical
secular approximation, the quantum version averages the Hamiltonian over a
single driving period which neglects rapidly oscillating terms. The solution
to the eigenvalue problem of the quantum secular Hamiltonian will provide
the means to calculate the tunneling probabilities of particle densities between
time-like and space-like lattice sites.

As in the classical case, we begin by moving to a frame rotating with the
resonant frequency. This is done by applying the time-dependent unitary trans-
formation on the unperturbed eigenfunctions derived in the previous subsection

Vi (@, 1) = 75 ey (), (2.33)

w is the driving frequency and s is an integer labeling the s : 1 resonance. Using
these functions as a basis for the Floquet Hamiltonian, the operator is written
in matrix form with elements

N 3 .
H{n/7n = 1/);::71’ (I,t)%’?/);%n(l',t) dz. (234)

jus
2

We write out the elements explicitly

1, —(EO _,%)s \w si i(n'—n)<t N R
wn = Epm—n S ) o + dwsin(wt)e E wk’n,(m)pmwk,n(m‘) dx
-3

(2.35)
where the integral term can be expressed in the unperturbed Hamiltonian’s
wavefunction coefficients

Jeutoff

% N« (n
Uk (@ potbim(@)de =2 Y g el (2.36)

<wk,n’ |ﬁx|¢k,n>

s . .
2 J="Jcutoff

Finally, we arrive at the quantum secular Hamiltonian by averaging (2.35) over
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time, thus neglecting the fast oscillating terms:
=, (0) w idw
Hn',n = (Ek,n - ng) 5n’,n + 7 (5n”n+s - n/ n— s) <1/Jk n’ ‘pzwk n> (2~37)

The eigenvalue problem for this Hamiltonian H ﬂ;c_’a = Ekﬂﬁ;’a is solved
numerically. The eigenstates of the quantum secular Hamiltonian ﬂ;,a ap-
proximate the eigenstates of the Floquet Hamiltonian around the s resonance
Uy o N Uy, With By o ~ Ej. o . The validity of this approximation is checked
by compufing the analogous quantized classical effective Hamiltonian and af-
firming that the energy spectrum is reproduced. This will be explicitly shown
in subsection 2.4 when analyzing a specific example for the s = 3 case.

The periodic part of the Bloch-Floquet function uj, , ~ ﬂjﬁa is the solution
of the eigenvalue problem (2.27) we set out to find. It will be used to obtain
localized Wannier functions which are the basis of the 2D TSCS tight-binding
model.

2.2.4 Tight-binding model of a time-space crystal

The periodically driven 1D lattice considered in the previous sections can be
described by a 2D tight-binding model which captures the essence of the 2D
TSCS. We will obtain the hopping parameters that completely determine the
dynamics of the system.

The first step is to construct localized Wannier functions that describe the
system at the s resonance. This is done by diagonalizing the position operator
2 with respect to the resonant Bloch-Floquet functions @y, (z,t) (2.29), where
the quantum number o) = 1, ..., s corresponds to the s resonant states. The
matrix elements of this operator are

IL
2

() e = / B, (1, 1) & By o, 1) dor, (2.38)
)

[SE]

here L is the number of lattice sites. Note that (2.38) parametrically depends
on the choice of time t and if at ¢t the wavefunctions strongly overlap, the
eigenvalues of the position operator might be degenerate which leads to eigen-
states that are linear combinations of the Wannier functions. If this happens
to be the case, an addition of a small time shift compared to the driving period
should be enough to lift the degeneracy and resolve the orthogonal Wannier
functions. Assuming the time ¢ was chosen properly, diagonalization of the
position operator allows us to obtain the Wannier functions [76]

wja(z,t) Zb 5Pr5(2, 1), (2.39)
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where the summation runs over all the quasi-momenta k and 8 =1, ..., s. Index
j =1, ..., L labels the spatial site on which the Wannier function is localized and
« is the time-like dimension that indicates which temporal site is considered.
The coefficients bi% are obtained from the numerical diagonalization of the
position operator.

Using the tight-binding approximation we can construct a field operator
&(x,t) in the orthogonal Wannier function basis

t) = Z Wj.o (T, 1)) 0, (2.40)

with @;. being the particle annihilation operator for the indexed site. Then
we get the tight-binding Hamiltonian in the second quantization form from the
Floquet Hamiltonian of the system

HTB—*/ di <z>*<x 1) H(t) dla, t Z T ) g0ty

% ] o 7j «@
(2.41)
where the complex hopping parameter JJJ-V 2% here is defined as
Jie = " / W o (2, 8) H(E) w) o (w, 1) da. (2.42)
L
It can be simplified by using (2.21) and (2.39):
T =23 Bes (W57) i (2.43)
kB

Ey g are the quasi-energies of the initial Floquet Hamiltonian. The hopping
parameter describes the tunneling of a particle from the temporal site a of
spatial site j to a temporal site o’ of spatial site j'. If all of the indices coincide,
the term represents an on-site energy shift. This completes the description of
the tight-binding model which corresponds to the 2D TSCS.

To summarize, we started with the Hamiltonian of a 1D driven lattice,
applied the quantum secular approximation and used the obtained resonant
eigenstates to build Wannier-like states that are localized spatially. This local-
ization coupled together with the localization of states in the time dimension
as seen from the resonant islands of the classical picture forms a 2D time-space
crystalline structure. Due to the localized nature of these states, a tight-binding
model derived in this subsection accurately captures the physics of the system.
So far only single-particle physics was addressed in the preceding discussion,
the next subsection will provide a brief look at how interactions can be included
in this description.
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2.2.5 Interactions

Although we will only consider the single-particle analysis of time-space crys-
talline structures throughout this chapter, it is worth mentioning that interac-
tions can be easily described by the current framework as well.

To provide an example how interactions can be included, let us focus on a
system that consists of bosons with contact interactions governed by a Dirac
delta potential of strength gy proportional to the s-wave scattering length. We
assume that the interactions are not strong enough to couple the resonant
states to the rest of the states in the Hilbert space. This interaction term can
be written as

] - dt gO n N
0
o'l a A N R
Z Z JJ,Oé 1,3 7 aj a/a;’ﬁ'aj,aal,ﬁ, (2.44)

J a’\l,p" j,a,l,B

with the interaction coefficient
v ﬂ sT dt
Ujaal B = /0 T /d:r Gows oo (T, )W) 5o (T, 1w o (2, t)wy g, ), (2.45)

where the introduced dummy indices 1) and ﬁ(/) label spatial and temporal

J,a,g,0
UJaJa

ticles in the same wavepacket but long range interactions can be introduced

sites respectively. Typically the on-site interactions dominate for par-
as well by periodically modulating s-wave scattering length described by the
term go(t) = go(t + sT') in such a way that the interactions are increased when
neighboring wavepackets on the same spatial site overlap. This would lead to
a significant contribution of the interaction term U]’ ]Jﬁ

The interaction term together with the tight blnd Hamiltonian form a
Hubbard-type model as discussed in subsection 1.1.3. Being able to formulate
the description of time-space crystalline structures in this framework provides
the tools to probe well-known many-body condensed matter phenomena in the
time domain [24, 150, 156].

We have established the construction of time-space crystalline structures
and now with the inclusion of interactions we conclude the basic theoretical
description of a 2D TSCS.

2.3 Higher dimensional time-space crystalline

structures

A straightforward way to generalize a 2D time-space crystalline structure to
higher dimensions is to consider a system that consists of two or three reso-
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nantly driven 1D sine-squared potentials that are orthogonal to each other in
terms of spatial directions. Each of these 1D potentials comes equipped with a
temporal degree of freedom, therefore a 2D (3D) spatial potential would allow
the creation of a 4D (6D) TSCS. Let us proceed by explicitly constructing the
tight-binding model of a 6D time-space crystalline structure.

Recall that the system with a driven 1D sine-squared potential is described
by the Hamiltonian (2.20) in the oscillating frame:

A

H,(t) = ﬁ?] + Vp sin? (cj) + Aw sin(wt)p. (2.46)

We have introduced ¢ € {z,y, z} to distinguish the spatial directions z, y and z
along which the driving is conducted in the lab frame. This allows us to write
the Hamiltonian corresponding to a 3D spatial lattice as

H3P(t) = H,(t) + H,(t) + H.(t). (2.47)

It is a separable Hamiltonian therefore we can obtain the Wannier functions
wj, a,(q,t) for each direction ¢ independently. The product of these functions
is a Wannier function of the spatially 3D system:

W5 4(F, 1) = wj, a, (2, D)wj, 0, (¥, DWj. a. (2, 1) (2.48)

Here the vector quantities are defined as 7 = (z,y, 2), j= (Jzs Jy, J=) and
& = (ag, 0y, ;). The 3D spatial lattice sites are labeled by 7 and the time
domain sites are indexed by & with components a, € {1,...,s} for all ¢, s
being the resonance number. We see that the Wannier function ws 5(75t)
has six degrees of freedom corresponding to each of the component of j and
a@. It forms the basis of the 6D time-space crystalline structure which can be
visualized as a 3D spatial lattice where each individual site hosts an additional
s X s X s temporal lattice.

Once the Wannier functions are obtained, the same procedure as in subsec-
tion 2.2.4 can be followed to construct the tight-binding model. For a resonantly
driven system, the field operator ngS(F, t) can be expressed in the Wannier basis
as

G(F,t) = Ws 4(7, )i 4 (2.49)
j.a

The tight-binding Hamiltonian in second quantization is then derived to be

R 1 sT
H — dt | d d
T 0 / x/
1 /]
a &1’

& a

y / dz 6* (7, 1) <E3D(t) ”ai) (7, 1)

(2.50)
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where the spatial integrals are integrated over a single site. We see that the
form of the Hamiltonian remains the same as in Eq. (2.41), except now we
have to sum over all the components of vectors j and & indexing the sites. The
hopping parameters in this case are

0
:_7/ dt/dx/dy/de~, (7 1) (H3D() iat> W 4(7,1).
(2.51)
This expression can be simplified by using the orthogonality of the Wannier

functions at each moment of time, that is

/da:’ W}, o (@, ) wjr or (2',8) = 057 5,00 ;s (2.52)

when integrating along the ¢ direction. Employing the aforementioned orthog-
onality and the notation of 1D tunneling parameters (2.42) for the three or-
thogonal spatial dimensions, the 6D time-space lattice hopping parameters are
expressed as

76 _ giu o jy’ y o
J J N mé]yv]'f/éa;vayéj;v]zaa/ az + J 5]27]26 z(s];g-,]méo‘/Zgam

+ 0 B IR (2.53)

N 5%
We see that tunneling occurs independently in each direction as expected for a
system with a separable Hamiltonian. So if the 2D TSCS tight-binding problem
is solved, the higher dimensional tight-binding model is readily available in this
considered case. The interactions can also be included in the same manner
as in subsection 2.2.5 to construct Hubbard-type models for 6D time-space
crystalline structures.

The simple setup of driving three spatially orthogonal potentials described
in this section creates a system that is up to six-dimensional. Thus time-
space crystalline structures can be an alternative to systems with synthetic
dimensions [41,42] which utilize the internal degrees of the constituents (e.g.
spin degree of freedom of atoms) to probe higher-dimensional physics.

2.4 Case study: driven sine-squared lattice at

s = 3 resonance

The developed theoretical tools that describe a 2D TSCS are applied to a
periodically driven 1D sine-squared lattice of L = 5 spatial sites at the s =
3 resonance. We select a working point by fixing a set of parameters that
describe the system and analyze the validity of the secular approximation.
After asserting that the results are valid within the approximation, the tight-

46



binding model is used to determine the geometry of the system and a plausible
experimental scheme is suggested.

2.4.1 Parameter selection

Let us start with the classical Hamiltonian (2.3):
H(x,py,t) = pi + Vo Sinz(z) + prAw sin(wt),

the parameters that we are free to choose are the potential amplitude V,
angular driving frequency w and spatial driving amplitude A (reminder that
dimensionless units are used here). Since our interest lies in the s = 3 resonance
we scan the parameter space to find the single spatial site phase-space portraits
with three resonant islands present (e.g. the islands shown by grey points in
Fig. 2.1 or Fig. 2.2). If the classical secular Hamiltonian is used to scan the
parameters, one needs to check if the final choice satisfies the assumptions of the
secular approximation by comparing the obtained result to the exact solution
of the equations of motion.

Once the s resonance islands are located, further parameter tuning is done
to adjust the position and the area of the islands in the phase space. In the
quantum problem, we want to induce tunneling between neighboring spatial
lattice sites for some resonant states therefore it is reasonable to choose such
parameters that maximize the overlap of their Wannier functions. Classically
this corresponds to a system where the s resonance energy is located near the
top of the driven potential. Such a selection minimizes the distance between the
classical turning points of neighboring sites which allows favorable tunneling
in the quantum case. The other important condition is that the area of an
individual resonant island has to be larger or at least comparable to the quanta
of the analyzed quantum system in order to observe quantum effects. In the
driven lattice case with dimensionless units, we had the canonical commutation
relation given by [Z,p,| = i, which means the area of the island in z-p, phase
space has to be larger than one.

It is often useful to employ the scaling relations for the variables of the
system to reduce the number of parameters which need to be varied to scan
the parameter space. For our driven system, one of the parameters can be fixed
while others are tuned until the resonance islands are obtained. After selecting
the working point, scaling allows us to adjust the size of the islands while
maintaining the equations of motion the same up to a constant. To state this
explicitly, let  be a scaling parameter, then the scaled values of the classical
Hamiltonian can be written as

0= (2.54)



Here the exponents denoted by Latin letters a to g define the scaling law of
each parameter. To determine these laws we plug in the scaled parameters into
the Hamilton equations of Hamiltonian (2.3)

d .
nb‘f% = —1°Vosin(21"x),
a—ypdz b e+d o dtf
0N e = 207pe T Awsin(TH wt),

and the Hamiltonian itself
n"H = i?p; +nVosin®(nz) + 1" py dwsin(nwt).

The requirement for the equations of motion to remain the same up to a scalar
multiplier implies that the exponents obey the following relations: a = e = 0,
c=g=2b,d=">0and f = —b, as seen from the equations above. The exponent
b is set to b = 1 since its choice is arbitrary and it can be absorbed into the
definition of 7, then the final scaling relations are

y Dz NPz nVve, w nw, (255)
n

=X 0
=\ t=n'% H=

>8I

An important point to note here is that the scaling applied to the classical
case does not respect the scaling of the canonical quantization commutator.
When the commutator given in the scaled operators [f, f)r] =1 is re-expressed

1

in terms of the original operators [#,5,] = n~'i we see that scaling changes

the effective quanta of the system. The effective dimensionless Planck constant

becomes 1!

instead of the unit value it had before, thus for large 7 it becomes
easier to attain big enough resonant islands that support quantum effects.
Having described the guidelines of parameter selection, we follow the dis-
cussion above and choose the values that provide an illustrative example of a
system with three resonant islands. After scanning the parameter region we
set the potential to Vp = 4320 and the driving frequency to w = 240. To
select the driving amplitude one has to keep in mind that it has to be suffi-
ciently small to ensure the validity of the secular approximation. Let us look
at the phase space pictures of the system in Fig. 2.4 for two choices of the
driving amplitude — A = 0.01 and A = 0.025. In the first row of the figure
we have the action-angle phase space picture of the effective classical Hamil-
tonian (2.16) for both of the amplitudes (left — A = 0.01, right — A = 0.025).
Looking at these solutions obtained from the effective Hamiltonian one could
assume that amplitude A = 0.025 is the favorable choice since it provides larger
resonant islands and smaller distances between turning points of neighboring
sites. However, if the classical equations of motion are solved exactly we see
that this is not the case. The bottom row of Fig. 2.4 depicts the phase space of
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Figure 2.4: Top panels: Action-angle phase space picture of a single spatial
lattice site calculated from the equations of motion of the effective classical
Hamiltonian (2.16) for Vo = 4320 and w = 240 with A = 0.01 (left) and
A = 0.025 (right). Bottom panels: stroboscopic phase space pictures obtained
by numerically integrating the exact equations of motion of the classical Hamil-
tonian (2.3). The parameters used for the bottom pictures are the same as the
ones used for the pictures directly above them.

the exact solutions of the equations of motion for the same parameters as the
plots above them. We see that the exact results and the approximate solution
match qualitatively well for A = 0.01. For A = 0.025 the exact solution reveals
that the amplitude is too large and the approximation is invalid — most of the
area of the resonance islands predicted by the effective classical Hamiltonian
is actually in the chaotic region of the exact solution space and the islands are
too small to support quantum states. Therefore for further calculations the
driving amplitude A = 0.01 is chosen.

The classical framework provides a useful tool to efficiently probe the pa-
rameter space for time-space crystalline structure candidates. In this subsection
the general ideas of the selection process have been walked through and illus-
trated by an example that shows the selection of a working point for a system
with three resonant islands. In the following subsections, we will calculate the
properties of such a system in the quantum case using the selected parameters.

2.4.2 Validity of the quantum secular Hamiltonian

In subsection 2.2.3 we have derived the quantum secular Hamiltonian that
captures the properties of a resonantly driven system in the vicinity of s : 1
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resonance. Before using this description to obtain the relevant information
about the system one needs to assert the validity of the quantum secular ap-
proximation. Since the classical effective Hamiltonian reproduces the correct
phase space trajectories of the analyzed system at the chosen working point,
we expect that the correct energy spectra will be observed for the quantized
version of the classical effective Hamiltonian. Therefore the validity is checked
by comparing the eigenenergies obtained from the quantum secular Hamilto-
nian (2.37) with the energy spectrum calculated from the quantized effective
classical Hamiltonian (2.16).

Let us begin by quantizing the effective classical Hamiltonian. The canon-
ical quantization is performed by promoting the canonical coordinates of mo-
mentum P = (I — I;) which is proportional to action and coordinate © —
the angle into corresponding operators P and © that satisfy the commutation
relation [©, P] = i. Then the quantized classical Hamiltonian can be written as

A

P2
2Meft

Heg = — Ve cos(50) + const., (2.56)
where the constants are defined as in subsection 2.1.3.

We now consider the system discussed in the previous subsection described
by this Hamiltonian. For the chosen working point at s = 3 we use the def-
initions of the effective parameters to get the effective mass meg = —0.368
and effective potential Vg = 10.1 at resonant action Iy = 35.5. Negative
effective mass implies that the energy spectrum will be bounded from above
as seen from the first term of the Hamiltonian — the negative sign flips the
spectrum obtained from the square of the momentum which is bounded from
below by zero. The consequence of this is that the ground state of the system
corresponds to the highest energy of the spectrum, the first excited state — the
second-highest energy value, and so on. It is straightforward to calculate the
energy spectrum by diagonalizing H_ g written in the plane wave basis as it was
done in section 2.2.2 for a Hamiltonian of similar form. The calculated energies
Ejassical (red dashed lines) are plotted for a range of driving amplitudes A in
Fig. 2.5.

To establish a comparison between the spectra, we proceed to calculate the
eigenenergies of the quantum secular Hamiltonian with matrix elements written
in the plane wave basis (2.37):

= w idw
H;/’n — (E(O) g) 677/,71 - 7 (5n’,nfs - n n+s) Wo n’ |pz|w0 n>

Here the quasimomentum is set to k = 0 since we compare the single spatial
site results of both descriptions. The resulting energies Ey ., are shown as black
lines in Fig. 2.5 as functions of driving amplitude .

Inspecting Fig. 2.5 we focus on the three highest energy levels which cor-

50



- EO,a
10304 Eclassical
1020 ]
E
1010 ===
1100 |
0O e E— 1000 1
900 I
0.000 0.005 0.010 0.015

Figure 2.5: Energy levels of the quantized effective classical Hamiltonian (red
dashed lines) and the quantum secular Hamiltonian (black lines) over a range
of driving amplitudes A. The parameters used for the quantum secular approx-
imation case are Vy = 4320 and w = 240; for the quantized effective classical
case — Meg = —0.368, Veg = 10.1 and I; = 35.5. The grey loop encircles the
energy levels corresponding to the resonant eigenstates. Inset depicts a zoomed
out picture of the spectra for the same interval of driving amplitudes.

respond to the s = 3 resonant states we are interested in. These three energy
levels are indicated by a grey loop that encloses them. The first two excited
levels are nearly degenerate thus visually it appears that there are only two
curves encircled instead of three. The inset shows a wider range of energies
and the same range of driving amplitudes to emphasize that we are indeed
looking at the upper bound of the spectrum.

Comparing the energies obtained from the quantized effective classical
Hamiltonian and quantum secular Hamiltonian we see that the encircled en-
ergy levels of interest match perfectly in a wide range of driving amplitudes,
therefore we can assert that the quantum secular description is valid.

The quantum secular description reproduces the eigenenergies correspond-
ing to the quantized effective classical results for a single site. Using this as
validation that the quantum secular approximation gives the correct physical
description we will proceed by building the Wannier functions and determining
the hopping parameters in this framework.
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2.4.3 Quasi-one-dimensional time-space crystalline struc-
ture

We are finally ready to construct an example of a time-space crystalline struc-
ture described by the quantum secular approximation. Let us consider a quasi-
one-dimensional system with L spatial sites (labeled j = 1,...,L) and three
temporal sites (indexed o« = 1,2,3) at each spatial site created by periodic
resonant driving. The system is described by the quantum secular Hamilto-
nian (2.37) with parameters V; = 4320, w = 240 and A = 0.01. Imposing the
periodic boundary condition in the spatial direction we get the quasimomen-
tum values k € {% — %| me{l,..., L}}, where the assumption that the lattice
constant is ag = 7 is used.

Recalling the results derived in subsections 2.2.3 and 2.2.4, we numeri-
cally solve the eigenvalue problem to obtain the resonant Bloch-Floquet states
Oy p(x,t) = e uy g(w,t) = ekrelreos@hlyl o (z ) of the driven lattice. The
highest energy eigenstates are labeled by 8 € {1,2,3}. They are used to con-
struct the Wannier states w; o(z,t) — wavepackets that correspond to temporal
sites at each spatial site.

Let us concentrate on three out of L spatial sites in the lattice and observe
how the densities of some of these states behave when evolved in time in the lab
frame (Fig. 2.6). Panels (a) to (c) depict the system at three different times.
The initial time for panel (a) corresponding to the phase wt = 7/5 is chosen
in such a way to ensure that no Bloch-Floquet states overlap identically thus
the Wannier functions are constructed correctly (see discussion in subsection
2.2.4). Panel (b) shows how the densities of the states have evolved after half
of the driving period (wt = w/5 + ) and (c) depicts the density after the full
driving period (wt = 7/5 + 27). The density of one of the periodic Floquet
ik$uk,5($,t)|2

curve). It illustrates that the Floquet states respect the periodicity of the

states |e is plotted at & = 0 as a function of position = (black
driven Hamiltonian — after a single driving period T the state has completed
a single oscillation and the final density of the state in panel (c) matches the
density of the initial state of panel (a). The colored dashed curves are the
densities of Wannier states localized on each of the spatial sites. Only one out
of three Wannier states per site is plotted, the remaining two are omitted to
not clutter the plot. We see that the Wannier states do not return to the initial
position after a single period, in fact, it takes three periods for the localized
packets to complete the oscillation and return to their initial distribution. This
is consistent with the classical description in 2.1.1 where we have seen from the
stroboscopic picture of the z-p, phase-space that if the system is initially in
one of the s resonance islands, it takes sT' to return to its initial island.

The obtained Wannier states act as a basis for an effectively 2D lattice
which consists of L spatial and s temporal sites. If s < L we can claim that
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Figure 2.6: Probability density of the highest energy resonant Bloch-Floquet
state at k = 0 (black curve) and probability densities of Wannier states (dashed
colored lines) as functions of coordinate. The functions are depicted at three
instances of time which correspond to phases: (a) wt = 7/5, (b) wt =7n/5+w
and (c) wt = 7/5 + 2m. Three spatial lattice sites are shown. Ounly one out of
three Wannier states per site is plotted.

a lattice is quasi-one-dimensional. This is our case, since s = 3, meaning that
we only have three resonant states available per spatial site. To determine the
exact geometry of the lattice the tunneling parameters must be computed — the
tunneling amplitude between the sites will show which hoppings are relevant
for the description of the system and which can be neglected. Since we have
already calculated the Wannier states, it is straightforward to calculate the

hopping parameters Jj”&a/ of our lattice using the previously derived result
(2.42):

o 2 sT L .
Jjﬂ.m;a :_E/o dt/_ Lw;,’a/(x,t)?l(t) wj,a(,t) dz,

s
2

where H(t) is the Floquet Hamiltonian of the system. Jj’lo’ta/ describes the
tunneling amplitude of a particle hopping from site indexed by spatial and
temporal labels (j, a) to a site (j/,a’).

Numerical calculations reveal that for the current choice of parameters we
have the triangular geometry of the lattice as shown in Fig. 2.7. The lattice sites
are depicted by colored circles, the xz-axis corresponds to spatial dimension sites
and y-axis — to the time domain sites i.e. the wavepackets moving in a single
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Figure 2.7: A lattice depiction of the quasi-one-dimensional time-space crys-
talline structure with parameters Vy = 4320, w = 240 and A = 0.01. z axis
corresponds to the spatial dimension and time domain sites are index in the
y direction. Colors indicate which time domain wavepackets have matching
phase before time averaging. |Ji| and |Jo| are absolute values of hopping pa-
rameters between sites connected by corresponding solid and dashed links. -~y
is the flux piercing the plaquettes.

spatial lattice site. There is no implicit ordering of the time domain sites thus
we take an arbitrary time point ¢ and in Fig. 2.7 assign a color to each wave-
packet that has matching phase. E.g. the red sites of Fig. 2.7 could correspond
to the three Wannier functions of Fig. 2.6(a) which have the same phase. Once
the color is assigned at time ¢, we assume that the labeling  of Wannier
function wj o (z,t) by that color is inherited for all times ¢. The lattice sites are
linked by lines that represent tunneling between the connected sites. There are
two sets of dominant hoppings: |J1| & 0.25 — tunneling purely between time
domain sites (solid lines) and |J2| =~ 0.015 — tunneling between spatial lattice
sites (dashed lines). Tunneling terms of order 1073 and smaller are neglected.
From the calculated hopping parameters we learn that the lattice is periodic
in the temporal direction — this is no surprise because the three wavepackets
on each spatial site oscillate periodically and the particles can tunnel between
them when the Wannier functions overlap. Since these oscillating wavepackets
are a property of time-space crystalline structures, these periodic boundaries
are a general result for any s resonance system described by a Hamiltonian of
the form (2.20). The periodicity is depicted by open-ended vertical solid and
diagonal dashed lines at the top and bottom of the lattice in Fig. 2.7. The
open-ended lines to the right and left of the lattice indicate that we are looking
only at a portion of a lattice that extends for L sites. The final information that
is shown in the picture is the flux v piercing the triangular lattice plaquettes.
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It is the phase accumulated by the wavefunction after it traveled around the
closed plaquette counterclockwise and returned to its origin (shown by circular
arrows). We see that the sign of + alternates from plaquette to plaquette
forming a so-called staggered flux. An additional flux forms if we loop around
the periodic dimension of the system, i.e. a non-zero flux forms when the
wavefunction is dragged around the three time domain sites on a single spatial
site (not shown in the figure). It is important to stress that the staggered flux
is not a general result but a consequence of the choice of our current working
point. In general, tuning the parameters will modify both the flux and the
geometry of the hoppings of the system. To introduce flux in a more controlled
fashion an additional potential driving term has to be introduced, this will be
discussed in section 2.5.

Here we have constructed an example of a quasi-one-dimensional time-space
crystalline structure. After discussing the general strategy of parameter selec-
tion and choosing a working point, we applied the ideas of sections 2.1 and 2.2
to check the validity of the quantum secular description. Finally, we discussed
how to determine the geometry of a given system and provided an explicit
example for a particular choice of parameters.

2.4.4 Experimental scheme

Having obtained the hopping parameters for the time-space crystalline struc-
ture we can evaluate the viability of creating it experimentally and propose a
loading scheme to prepare the resonant wavepackets which make up the time-
space lattice.

Typically the numerically obtained tunneling amplitudes in the spatial di-
rection are of the orders |szlo‘| ~ 1073 +1072. If we consider that our system
consists of Rubidium 3’Rb atoms and a 10.6 pm COy lattice laser [157] then
we get that the calculated hoppings are larger than the incoherent scattering
rate (J > Al'sc/Er) by one or two orders of magnitude [65]. This ensures that
there is sufficient time to observe the relevant dynamics of the system in an
experimental run.

The preparation of the resonant wavepackets is schematically depicted in
Fig. 2.8. The idea is to prepare ground states of an auxiliary superlattice
that would resemble the structure of desired resonant states, then release them
into a shaken lattice where they should follow the predicted resonant behavior.
Similar approaches were considered and evaluated in Refs. [147,158]. Initially,
in Fig. 2.8(a) a superlattice (black curve) is constructed to host ground state
densities (colored curves) at each of the narrow potential wells. The potential
is chosen so that the width of these densities matches the width of the Wannier
function densities |w;o|* at the turning point of the wavepackets. The next
step shown in Fig. 2.8(b) consists of turning off the superlattice (dashed black
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Figure 2.8: Time-space lattice loading procedure. (a) Auxiliary lattice (black
curve) used to prepare ground states (colored lines) corresponding to resonant
states at each well. (b) Driven lattice is turned on (solid black curve) and

auxiliary lattice is turned off (dashed black curve) allowing the ground states

to propagate from the turning point at wt = £. (c) States after evolving to

wt = £ + 7. Arrows indicate the direction of wavepacket propagation.

curve) and turning on the periodically driven lattice (solid black curve) whose
minima are offset from the initial positions of the prepared ground state. At
this point, the ground states can be identified with the Wannier states depicted
in Fig. 2.6(a) at wt = £. The arrows indicate the propagation direction of
the released ground states. Fig. 2.8(c) presents that released ground states
follow the path of the predicted resonant states at the time wt = ¥ + 7 as
in Fig. 2.6(b). This procedure populates one of the time-like branches of the
time-space crystalline lattice. To populate all of the branches the procedure
needs to be repeated every driving period T until the lattice is filled.

Following the provided loading protocol should allow in principle to realize
a time-space crystalline structure. The typical hopping parameters are suffi-
ciently large to overcome the loss effects due to the incoherent scattering during
an experiment’s time frame.

2.5 Engineering artificial magnetic flux in a

time-space lattice

Controlling the flux piercing the plaquettes of the time-space crystalline lattice
is important for realizing topological effects such as quantum Hall effect. The
typical experimental scheme for creating artificial magnetic fluxes in 2D optical
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lattices first of all involves creating a lattice potential gradient that suppresses
particle hopping along one of the spatial directions. Secondly, the tunneling
is restored by laser-induced Raman transitions that imprint a certain phase
which contributes to the creation of the flux. Such a scheme was utilized in
simulating Harper—Hofstadter type Hamiltonians which realize quantum Hall
effect [35,159]. In this section we will consider a similar scheme — the potential
tilt will be introduced in the time domain by choosing a proper driving of the
system and the phase will be controlled by the wavevector difference of the laser
beams that restore the hoppings. Once again we will focus on the 2D TSCS
since the ideas can be straightforwardly generalized to higher dimensions as
it will be shown by exploring higher dimensional topological properties of a
time-space crystalline structure.

2.5.1 Tilted potential in the time domain

First, let us concentrate on the potential tilt that suppresses the tunneling be-
tween the time domain sites. The easiest way to introduce this energy detuning
between the s resonant states is to require that the previously discussed clas-
sical effective Hamiltonian Hg (0, I) describing temporal structure in a single
spatial site has an additional sawtooth potential term v(©):

Heg(0,1) = Hg(0,I) +v(0), (2.57)

where the sawtooth potential is defined by v(0©) = U,(© — ) on the interval
© € [-m+ 8,7+ ) and the values for the remaining © domain are obtained
through the periodicity condition v(© + 27m) = v(0) with m € Z. Here U,
describes the tilt of the sawtooth function and (5 is a parameter that allows to
control the shift of the function along ©.

In the ideal case the schematic representation of the new potential would
look like the one depicted in Fig. 2.9 with the original potential — Vg cos(sO)
taken from subsection 2.1.3. The tilt U, is chosen in such a way that the gaps
between the minima of neighboring potentials A; and Ay are much larger than
the natural hopping parameter |.J| between the neighboring temporal sites.

Having the target effective Hamiltonian (2.57) in mind, we can engineer the
initial time-dependent Hamiltonian that creates the sawtooth potential after
time averaging. To this end, we include a general time-dependent signal f(¢) to
the driving protocol which can be later tailored to produce the needed energy
offsets between the time-domain sites. We start with a modified Hamiltonian
(2.1) in the lab frame

Hiy(x,peyt) = % + Vo sin? (kr, [z — Acos(wt) — £(1)])
+ Vi sin? (2k, [z — Acos(wt) — f(1)] + ©2), (2.58)
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Figure 2.9: A schematic representation of a tilted potential in the temporal
direction for a single spatial lattice site with s = 3 resonant states. The plot is
shown in Vg units, g = 0.

where an additional potential of strength V; and a new time-dependent driving
signal f(t) have been introduced. The new potential has a spatial period twice
as short as the original potential and its position can be adjusted by tuning the
relative phase ¢,. The purpose of this potential is to allow the creation of a
slight asymmetry in the system which will be needed and justified when relating
f(¢t) to the final sawtooth potential. We assume that the signal f(¢) is periodic
in time with the system’s natural period T' = Qwﬂ and can in general be Fourier
expanded as f(t) = 5 n£0 %ei”%t. Next, to obtain the correspondence
between the driven Hamiltonian (2.58) and the tilted effective Hamiltonian
(2.57), the secular approximation will be applied for the driven Hamiltonian
expressed in action-angle coordinates around the resonant action.

Firstly, following the methods of subsection 2.1.1, the Hamiltonian can be
transformed to the co-moving frame via a canonical transformation and written

in dimensionless units as
Hie (2, pry t) = Ho(x) + por | Awsin(wt) + Z fnel™St] (2.59)
n#0
with Hy denoting the static part
Hy(z) = p2 + Vosin®(z) + Vi sin?(2z + ¢,). (2.60)

Secondly, in the vein of subsection 2.1.3, the Hamiltonian is expressed in action-

angle variables in the frame rotating at the natural frequency 2 = #:

Huo(©,1) = Ho(I) — <1 +p, <@ +2 ) Nosin(wt) + Y fae" ¥
S S
n#0
(2.61)

Finally, employing the secular approximation around the resonant action value
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I, one arrives at the effective Hamiltonian

He(©,1) = Heg(0,1) + > p_n(I)fre™°. (2.62)
n#0

The part that does not depend on the new driving signal is denoted by

w P?
Hg(0,I)= Hyo(Is) — —Is + —— — Vegsin [s© + arg (ps(1))] , (2.63)
s 2Mefr
-1
. . o . - _ [ 82Ho(I)
with effective momentum P = I — [, effective mass meg = | =55 —
I

and effective potential Veg = Aw|ps(I)|. The function arg (ps(I)) takes the
argument of the Fourier component p, = [ps|e'®8 (»s(1) which in general can
be complex, depending on the shape of the static potential.

The obtained effective Hamiltonian (2.62) can now be directly compared to
the target Hamiltonian (2.57). We see that in order to create the potential tilt
the Fourier components of the driving signal f(t) have to be chosen to satisfy
the following equality

0(O) = 3 poa(l)fue ™. (2.64)

n#0

The components fr can be expressed explicitly if the sawtooth potential is
expanded as a Fourier series. Let the expansion be

v(0) = Z v, e~ (2.65)

n#0
with the components
O - (DM g
Up = — (© — B) [cos(n®) +isin(nO®)] dO = iU, ———e"", (2.66)
2T —r+8 n

forn > 0 and v, = Ul*n\ for n < 0. The index n = 0 is omitted in the sum
since vo = 0. Plugging this expansion into the equality (2.64) gives the f,
components

-1 n+l |

( ) elnﬂ.
np_n(I)

At this point it becomes apparent why the potential proportional to Vi is

frn=1Uy (2.67)

needed. If V; = 0, the even momentum components vanish (pg, = 0, n € Z)
due to the symmetry of the Hamiltonian thus the condition (2.67) cannot be
satisfied. Setting V1 # 0 and ¢, # 0 breaks the symmetry allowing for non-zero
even momentum components to appear and the sawtooth potential can then
be realized. In practice, we only consider around |n| < 10 components which
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are enough to construct a sufficiently straight sawtooth potential, this is done
to avoid f, divergence for large n, when p_,, goes to zero.

Having derived the form of the components f,,, we only need to determine
the proper set of parameters for the tilted potential. The main conditions that
the potential has to satisfy are:

o The energy gaps A; (for i € {1,..,s — 1}) between neighboring minima
of the tilted lattice have to be much larger than the natural hoppings |J|
between the neighboring sites to restrict the tunneling, i.e. |J| < A; for
all 4.

e The energy gaps A; should be smaller than the energy needed to excite
the resonant states to a higher energy band.

e The parameters should be chosen in such a way that all energy gaps A;
would have roughly the same energy A. This ensures that a single pair
of counter-propagating laser beams is enough to restore the tunnelings
with an imprinted phase.

Keeping these requirements in mind one can numerically scan the parameter
space of U, and 3 to find the optimal choice.

Uy,=0 Ug=1
1.0 )
= |(D,-(6)|
0.5 1
M Q [
0'00 1 20 1 2
o/n o/n

Figure 2.10: Left panel: Delocalized densities of the resonant states |®;(©)|?

on a single spatial lattice site when the tilt potential is turned off i.e. U, = 0.
Right panel: Localized densities when the tilt potential is turned on: U, = 1,
B = 0.987. The system parameters in both cases are Vy = 4320, w = 240,
A=0.01, V; =0.1V; and ¢, = 7/8.

The introduced tilt localizes the probability densities at each of the time
domain sites thus suppressing the tunneling. This can be qualitatively checked
by looking at the probability density of the resonant states |®;(0)[? (i = 1, ..., s)
given by the quantized version of the classical effective Hamiltonian (2.62) with
the same quantization procedure applied as in the beginning of subsection 2.4.2.
Let us look at a concrete implementation of a system with and without the
tilted potential for parameters Vy = 4320, w = 240, A = 0.01, V; = 0.1V}
and ¢, = 7/8 in both untilted and tilted cases. Note that V3 < V; is chosen
to maintain the main resonant state structure similar to what we had in the

60



previous section. For the tilted case we set the tilt coefficient to U, = 1 and the
phase to f = 0.987. Without the tilt we see that the resonant state densities
are delocalized over the s = 3 sites in the time domain (Fig. 2.10 (left)), here
two of the states have nearly degenerate energies hence their densities overlap.
When the tilt is turned on each resonant state localizes at each of the time
domain sites shown in Fig. 2.10 (right) indicating the suppression of hoppings.

So far we have applied the classical secular approximation and shown that it
is possible to create a potential tilt in the time domain lattice by introducing an
additional periodic driving with a particular choice of its Fourier components.
In the next subsection, we will use the same ideas to extend the description to
the quantum case.

2.5.2 Wannier functions of a tilted lattice

Our goal is to write down the Floquet Hamiltonian of the periodically driven
system with the time-domain tilt inducing driving signal f(¢) and to find its
resonant eigenfunctions. With the eigenfunctions at hand, we will acquire the
localized Wannier functions of the resonant wavepackets which will be subse-
quently required to calculate the laser-restored tunneling parameters.

We start by canonically quantizing the lab frame Hamiltonian (2.58) which
we considered in the previous subsection

HYjo (2, s t) = % + Vo sin? (kr, [ — Acos(wt) — f(t)])
+ Vi sin? (2ky, [# — A cos(wt) — f(1)] + ¢z) - (2.68)

Conceptually following section 2.2, we proceed by rotating the Hamiltonian
to the oscillating frame via a unitary transformation U(t) = enreos(@t)+f(1)]pe
and writing it in dimensionless units

Hye(t) = Ho + | Awsin(wt) + > fae™ =" | po, (2.69)
n#0
where we have denoted the static part as Hy = p> + Vpsin?(2) +

Vi sin? (24 + ¢,). The Floquet Hamiltonian of such a system is ﬁtilt(t) =
ﬁmt(t) 71% with solutions of its eigenvalue problem being Floquet-Bloch waves
Py o(m,t) = *®uy o(x,t) written in terms of periodic functions u o (z,t) =
Uk,o(T + T,1) = Uk,a (m,t + %) For numerical calculations it is convenient
to perform another unitary transformation U, = e ireos@) O]k which al-
lows us to represent the eigensolutions of the transformed Floquet Hamilto-

nian Hiy, (1) = Uy Han ()0 ,I as a purely spatially periodic function denoted by
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up o(2,t) = Untiho(,t). The transformed Hamiltonian #J;, (t) has the form

N . o w 0
te(t) = Ho(k) + [Mwsin(wt) + Y fae" 5| p, — s (2.70)
n#0
with the static part
Ho(k) = (pp + k) + Vosin® (&) + Vi sin? (22 + ¢.) (2.71)

now dependent on the wavevector k. If we solve the eigenvalue problem

Hige (Duy, o(2,1) = By ouy o (2,t) we can relate its solutions uy ,(z,t) to the
wavefunctions @y . (x,t) of the original Floquet Hamiltonian Heine (t):

Do (1, 1) = eklteos@DH Wy (g, ¢). (2.72)

Since our interest lies in the s resonant states of the system, the quan-
tum secular approximation will be employed to obtain the states 14670((3:,15)7
a =1,...,s, from Hamiltonian #j;,(t). The approximation was explicitly in-
troduced in subsection 2.2.3 and verified in subsection 2.4.2; therefore here
we straightforwardly calculate the resulting time averaged Hamiltonian matrix
elements !, . (k):

~ ]. sT sl w A foy W
Mo (F) = */0 dt (Pre e[ = H (B [r ), (2.73)

sT
where the time is averaged over s natural periods T of the system. The elements
are written in the stationary Hamiltonian Ho(k) basis . ,(z) with the time-

in$t applied to move into a frame that

dependent unitary transformation e
rotates with the resonant frequency <. Here n is the quantum number labeling
the states of the stationary Hamiltonian. After time averaging we get the final

form of the quantum secular Hamiltonian matrix elements

= 0 w
Ho k) = (B =12 ) durn
iIdw .
+ (2 [5n’,n+s - 5n’,n75] + fnn’;éO) <wk,n’ ‘pm|¢k,n>7 (274)

with E,(Coi being the n-th eigenenergy of the stationary Hamiltonian and
frn—nr#0 is the n — n’ Fourier component of the new driving signal, provided
that n —n/ # 0. If n = n/, the term f,,_,/»¢ vanishes.

The resonant eigenfunctions @j, , and eigenenergies Ef, , of the quantum sec-

ular Hamiltonian ﬁ’(k) approximate the solutions of the Hamiltonian H/, ()
for o € {1, ...s}. In turn, by diagonalizing (2.74) we already obtain the solutions
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of the Floquet Hamiltonian:
Do, 1) o TN O () (2.75)

These solutions allows us to calculate the localized Wannier functions w; o (x,t)
at spatial site j (determined by the eigenvalue of position operator) and time
domain site « by diagonalizing the position operator:

T
2
(&) _/ 0o, 1) 8 By o (2, ) da. (2.76)
—ZL

us
2

Note that now the position operator matrix is block-diagonal since the different
resonances « € {1,...s} do not couple due to the tilt in the time domain.

We have constructed the Floquet Hamiltonian for a system with a time-
domain tilt and applied the secular approximation to obtain its eigenfunctions.
This allowed us to construct the localized wavepackets which will be used to
determine the hopping parameters restored with the Raman laser beams.

2.5.3 Laser-assisted tunneling

After applying the new driving protocol f(t) we now effectively have a 2D TSCS
with natural hoppings along the spatial direction and no hoppings between
time-domain sites. The driving introduced energy shifts A between neighboring
time-domain sites which suppress the tunneling. We will use a well-known
approach that employs a two-photon transition [32] to restore these hoppings
with a controllable phase.

Let us start with two Raman laser beams with frequencies wy and ws trav-
eling in directions defined by their wavevectors El and Eg. Assume that the
superposition of these beams creates a traveling wave described by the di-
mensionless coupling potential V¢(Z,t) = Qpp COS(AEphf — (w1 — we)t) which
couples two energy levels that differ by energy |wq — ws|, with Rabi frequency

Qpn describing the coupling strength. The potential in general dependb on the
position vector Z and the difference of the beam wavevectors Ak, ph = k2 - k:1
Choosing the frequencies of the lasers to be such that w; —ws ~ A is satisfied
allows us to couple the neighboring time-domain sites precisely. This can be
seen in the interaction picture where the coupling potential cancels out the en-
ergy offsets A between the sites and introduces a position-dependent complex
phase in the tunneling elements. Explicitly, the restored hopping parameters
between time-domain sites o and a+ 1 on a single spatial site j have the form

sT
. dt )
,a+1 * iAkpn
nat= / AT (0) Qe wja (1), (2TT)
5L

where w; o(x,t) are the Wannier functions of the tilted lattice. We have as-
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sumed that the spatial lattice is aligned with the z direction thus we only
take the projection of the product (Alzphf):c = Akpnx onto z. Changing the
wavevector difference Ak, provides us with a way to control the complex phase
of JJJS 1 and in turn the artificial magnetic fluxes e.g. the fluxes that appeared
in Fig. 2.7. There is also a possibility to tune tunneling amplitudes by intro-
ducing a time-dependent coupling strength €, (¢) which can be engineered to
enhance or diminish the tunneling when the wavepackets overlap in space.

One noteworthy consequence of the potential tilt in the time-domain is that
the periodicity of the time-domain lattice is broken, unlike the case we had
with a simply driven system in Fig. 2.7. The restored hopping parameter Jj;
between the s-th and the first resonant wave-packet is zero since laser-assisted
tunneling does not provide sufficient energy to compensate for multiple energy
offsets A required for the levels to couple. This is true for all spatial sites
j, therefore we end up with a system that has open boundaries in the time
direction. The appearance of hard edges can be used to probe edge localization
and edge currents as will be seen in the next subsection.

To summarize, we have completed the mathematical toolbox required to
engineer controllable complex hopping parameters in a TSCS by using the
ideas of laser-assisted tunneling. This allows us to tune the fluxes that appear
in our system by adjusting the wavevector difference of the Raman laser beams
and probe topological effects in a TSCS.

2.5.4 Topological properties of time-space crystalline
structures

The ability to create and control magnetic-like fluxes opens up the possibility
to explore the quantum Hall effect in time-space crystalline structures. In this
subsection, we will express the Chern number characterizing the topology of
the TSCS and numerically show the emergence of topologically protected edge
states for a finite time-space lattice, following the ideas presented in section 1.2.

The hallmark signature of the integer quantum Hall effect is the quantiza-
tion of Hall conductance in a 2D system pierced by magnetic fluxes perpen-
dicular to the surface. A direct way to evaluate if the quantization is present
is to calculate the so-called first Chern number v;. It is an integer topologi-
cal invariant proportional to Hall conductance — its non-zero value implies the
presence of topologically protected edge currents and in turn the integer quan-
tum Hall effect. The first Chern number is obtained from the bulk properties
of the system, therefore to calculate it we first extend the size of our system
so that the number of spatial and time-domain sites approaches infinity. Then
we Fourier expand the creation and annihilation operators of the infinite 2D
time-space crystalline lattice tight-binding Hamiltonian (2.41) with modified
flux-adjusting hoppings in terms of spatial quasi-momentum % and temporal

64



quasi-momentum K. Assuming that the solutions for the n-th energy band of

Ri+Ke) Ing ) with j and o

the Hamiltonian have the form of Bloch waves ei(
indexing spatial and time-like sites respectively, the first Chern number can be

explicitly expressed as

o 1
) = 7/ dk dKC F**. (2.78)
27T BZ

Here we integrate the Berry curvature F*! = %A;@ — %Ak over the first Bril-
louin zone (BZ) with the Berry connection components Ax = i(ng x| 2 |1, i)
and Ay = i(nky,d%mk,;c) completely determined by the eigenvectors |ng k) of
the system. The superscript (z) indicates that the considered Chern number
is associated with the 1D spatial lattice aligned along the x direction.

Similarly, the quantization of Hall conductance can be evaluated in a higher-
dimensional lattice. Let us start with a 6D time-space crystalline structure
described in section 2.3. Introducing additional driving signals for each spatial
direction according to subsection 2.5.1 creates adjustable energy offsets between
time-domain sites for each orthogonal direction separately. The hoppings sup-
pressed by the added potential tilt are then restored with a controllable phase
by employing laser-assisted tunneling of subsection 2.5.3. This requires three
pairs of Raman laser beams that are tuned to compensate for the energy off-
sets between time-like sites in each spatial direction. After applying all the
preceding steps we obtain a 6D lattice where spatial lattices in each orthogonal
direction are accompanied by their time-domain sites and come equipped with
controllable fluxes. These fluxes pierce each of the 2D surfaces formed by a lat-
tice in one of the directions and its corresponding time-domain sites. Since our
Hamiltonian is separable its solution in quasi-momentum space is a product of
three 2D Bloch waves ei(’g;”@)|nk17;cz>\nkyylcy)mkz,;cz), where the vectorized
quantities are associated with each spatial direction, i.e. ¥ = (vy,vy,v,) for
any ¢. For a 6D system the third-order response due to the appearing fluxes is
characterized by the third Chern number v3 which in our case is just a product
of the three first Chern numbers in each of the directions v = Vix)uiy)uﬁz)
due to the separability of the eigenstate of the n-th band [45]. The present
calculations of Chern number provide a numerical way to detect the integer
quantum Hall in the multidimensional time-space crystalline structures.

A non-trivial topology can also be identified by the presence of topologically
protected edge states. Let us take a 6D time-space crystalline structure that
is periodic in the spatial directions but has a finite number of sites s in the
time-like directions. The open boundaries in the time-domain appear natu-
rally when we introduce the tilted lattice and the phase-inducing laser-assisted
hoppings as discussed in the last subsection. The complex hoppings are en-

gineered to produce a square lattice with a ribbon geometry for each pair of

s

spatial and temporal directions with a flux 7 piercing each square plaquette.
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(a)Flux per plaquette: m/2  (b)Flux per plaquette: r/2
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Figure 2.11: Top panels: Energy dispersion relation of one of the three 2D time-
space ribbons that compose the 6D time-space lattice. The square plaquettes of
the ribbons are pierced by a flux of 7. Number of sites in the time-like direction
considered: (a) s = 3 and (b) s = 11. Red circles indicate the selected edge
states for the projected density results shown bellow. Bottom panels: Edge
state probability density projected onto the time-domain sites for (¢) s = 3 and
(d) s = 11 time-domain sites. Parameters for the s = 3 case are V = 4320,
w = 240, A = 0.01, V4 = 0.1V, ¢, = «/8 and U, = 1, ten components
of the driving signal f(t) were used. For s = 11, the tight-binding model
was artificially extended in the time-domain by using the hopping parameters
obtained from s = 3 case.

Fig. 2.11 depicts the energy dispersion of one of these 2D ribbons that consist
of s = 3 (a) and s = 11 (b) time-domain sites. The topological edge states
are the states whose energies cross the gap between the energy bands in the
dispersion relation. These states correspond to the chiral edge modes at the
open boundaries of the ribbon related to the non-zero Chern number. Topo-
logical edge states are clearly present in the energy dispersion Fig. 2.11(b) of
the broad ribbon and the onset of their formation can be already seen for the
narrow ribbon in Fig. 2.11(a) as well. To further exemplify the localization of
the edge state |¢) at the edge of the 6D time-space lattice we define the on-site
probability density as p; ; = (1/1\&1’a&5., z|¥) and calculate the density projected
on the time-like dimension pg = ) 7 p7 5- As a working point we select an edge
state at quasi-momentum k, = k, = k, = 7 denoted by red circles on the
dispersion plots of Fig. 2.11(a,b). The logarithm of the projected density onto
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time-domain sites of the chosen states is shown in Fig. 2.11(c) for s = 3 and
Fig. 2.11(d) for s = 11. Here the magnitude of the projected density is encoded
by both color and size of the circles. The size changes linearly with color. We
see that in both projected density plots the density is localized at a single co-
ordinate point (ag = ay = a, = 3 in Fig. 2.11(c) and o, = ay =, =11 in
Fig. 2.11(d)). This means that when the densities are summed over the spatial
sites for each temporal site branch, the 1D branch at the edge of the lattice
has the largest total density for all of the time-like directions «; which is the
expected result for the edge state. Thus we have shown that the non-trivial
topology of a time-space lattice can be indicated by the presence of gap crossing
energies in dispersion relations and confirmed that the states corresponding to
those energies are indeed localized at the edge.

We have shown that topological properties can be probed in higher di-
mensional time-space crystalline structures with artificial gauge fields present
and provided the expression to evaluate the topological invariant character-
izing these systems. We asserted the presence of topological edge states by
calculating the dispersion of finite systems along the temporal direction and
checked that their probability densities are localized at the open boundaries of
the system.

2.6 Summary

Starting with the classical analysis of a periodically and resonantly driven lat-
tice we have shown that additional periodic structure emerges at the potential
wells in a reference frame rotating with the natural resonance frequency. This
structure can be exploited as a synthetic dimension which we refer to as time-
like or temporal. The quantum description of such a system allowed us to
construct an effectively 2D lattice from a 1D resonantly driven spatial po-
tential. The 2D system consists of a spatial and a temporal dimension and is
termed a time-space crystalline structure. We have analyzed a concrete realiza-
tion of a quasi-1D time-space lattice: explored its parameter selection regime,
asserted the validity of the theoretical description, determined the geometry of
the lattice and proposed an experimental scheme. Since each orthogonal spa-
tial direction of a driven lattice comes equipped with the time-like dimension,
we extended the description to include 4D and 6D time-space crystalline struc-
tures for 2D and 3D spatial lattices respectively. Having a general description
of time-space lattices we employed a laser-assisted tunneling scheme to intro-
duce controllable complex tunnelings in the lattice. The complex tunnelings
provided a way to create artificial gauge fields within the lattice and allowed
us to probe the topological properties of the system. This completed the theo-
retical toolbox of a time-space crystalline structure which will hopefully prove
to be a versatile system to explore higher-dimensional electronics.
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Chapter 3

LEARNING THE GROUND STATE
STRUCTURE WITH ARTIFICIAL
NEURAL NETWORKS

Many-body phenomena observed in ultracold atom gases trapped in optical
lattices pose a significant computational challenge due to the vast number of
interacting particles present in such systems. While the current numerical tools
are capable of obtaining the ground-state of lattices that consist of tens to hun-
dreds of sites with varying success depending on the particular problem [52],
novel methods are developed that target the relevant low-energy subspace po-
tentially allowing to increase accuracy or address larger systems [160]. Machine
learning has proven its worth in high-dimensional data analysis in language
processing, classification problems and image recognition [161,162]. Recently
it has found increasing success in condensed matter physics as well — it was ap-
plied to classify phases of matter [163,164], extrapolate phase transitions [165],
classify experimental data [166,167] and perform quantum tomography [168].
Of particular interest for quantum computations is a general ansatz that al-
lows representing a lowest-energy state as an artificial neural network [57, 60].
Neural network quantum states can encode ground states that are highly en-
tangled [64,169] and have been used to analyze strongly correlated quantum
matter [170-176], providing comparable or even higher accuracy results than
well-established methods.

Our goal is to apply the neural network state formalism to flat-band lattice
systems and analyze the accuracy of the obtained results, as well as explore the
possibility to improve the ground state given a set of noisy superpositions of
states. In this chapter, we will introduce two types of artificial neural networks
— a restricted Boltzmann machine and a feedforward autoencoder. Following
[A2] in sections 3.1 and 3.2, the restricted Boltzmann machine will be applied
to obtain lattice ground states and probe their structure while being guided by
energy minimization. In particular, two lattice geometries that support com-
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pact localized eigenstates will be analyzed — a quasi-one-dimensional sawtooth
lattice and a 2D kagome lattice. The application of the autoencoder takes a
different approach. In section 3.3, it will be used as a secondary analysis tool
that takes the approximate ground state solutions obtained by other numerical
methods and attempts to produce an improved ground state estimate, based on
[A3]. Its capabilities will be explored by recovering the ground state densities
of a square and sawtooth lattice from a noisy initial sample set.

3.1 Artificial neural network for ground state

determination

We start by defining the artificial neural network model used for ground-state
structure determination. Firstly we discuss the restricted Boltzmann machine
architecture that encodes the wavefunction. Secondly, the reinforced learning
procedure is described. It utilizes the variational Monte Carlo method to mini-
mize the energy of the lattice Hamiltonian and hence encodes the lowest energy
wavefunction in the network weights. After setting up the general machinery
of the network we will apply it to concrete physical systems.

3.1.1 Restricted Boltzmann machine

The choice of the architecture of the artificial neural network is highly depen-
dent on the task at hand. The most prominent networks for solving quantum
problems aimed at obtaining the ground state are restricted Boltzmann ma-
chines [57-59] and feedforward neural networks [60]. Some work is being done
with convolutional neural networks as well [61,171]. Motivated by the success
of ground state energy estimations of the restricted Boltzmann machines we
select this network architecture to probe the structure of ground states. In the
following, we show how the wavefunction is encoded in the chosen representa-
tion.

The information about the quantum system is stored in its state |¢). For
lattice Hamiltonians it is convenient to express the state |¢) in occupation
number basis |y) = |ng,n1,...,nz) where ny is the particle number on site
¢ € {0,1,...,L} with L + 1 being the total number of lattice sites. We have
denoted a particular particle configuration in the lattice by . Then a general
state can be expressed as

[9) =D ImGrlw) =YD, 3.1)

where () are complex probability amplitudes.
The restricted Boltzmann machine is a generative neural network based
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on variational energy minimization. Its main ansatz is that the probability
amplitudes ¥ () can be modeled as marginalized Boltzmann distributions

) = D10, ) = 3 @demo T g gy Wesnahy t )L bt
{h;}

)

(3.2)
where h; is the hidden node parameter, n, is the visible node parameter which
in our case corresponds to the occupation number of site £, Wy; is the coupling
of the /-th visible node to the j-th hidden node, finally a; and b; are respec-
tively visible and hidden node biases. We denote the collection of the weights
that define the network as a set @ = {Wp;, ar, b;} for all £ and j. The sums are
performed over all hidden node values {h;}, the L+1 visible nodes and M hid-
den nodes. Schematically the model is depicted in Fig. 3.1 as a fully connected
two layer artificial neural network. This Boltzmann machine is called restricted

Figure 3.1: Restricted Boltzmann machine as a two layer neural network. All
L + 1 visible nodes n, are connected with all M hidden nodes h; by straight
lines which correspond to the couplings W;.

because there are no intra-layer connections, i.e. the visible/hidden nodes are
not connected between each other. It simplifies the learning procedure of the
network [160]. Setting the hidden node parameters to be h; € {—1,1} the
hidden node values are straightforwardly traced out in the expression of the
probability amplitude giving

L M L
w(fy) = ezzzo agng H 2 cosh (Z Wejne + bj) . (3.3)

J=1 £=0

This representation encodes the wavefunction in N' = LM +2M + L + 1
complex parameters that are elements of the weights w. L is determined by the
size of the considered lattice and M is the number of hidden nodes that can be
adjusted to control the representational power. It can be compared to the exact
number of complex coefficients required to describe the state. Assuming that
the lattice of size L+1 is occupied by a fixed number of particles N, = ZzL:o Ny
then the configuration space consists of

(N, + L)!

C="NiL

(3.4)
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elements that define the state. For the calculations to be efficient we expect
that only a small subspace of the Hilbert space is sufficient to describe the
system, i.e. a network with A/ < C weights captures the physics of the ground
state. This is satisfied for the lattices analyzed in this work. The efficiency
and limitations of restricted Boltzmann machines for a larger class of states
are explored in detail in Ref. [177].

We have introduced the artificial neural network structure that encodes
the probability amplitudes of a wavefunction in its weights. The next section
provides the methods required to update the weights to obtain the ground
state.

3.1.2 Reinforced learning

A reinforced learning scheme can be outlined as the adjustment of weights of
a neural network guided by the minimization of a cost function. The cost
function in our case is the energy. The minimization procedure consists of two
steps. First, we use the variational Monte Carlo method which samples the
configuration space and provides average energy estimates. Then the network
weights get updated using a gradient-based optimization algorithm.

Let H be a Hamiltonian describing a lattice. The goal is to minimize the
energy

g (W) (3.5)

(Y1)

by varying the neural network weights w that define |¢)). Since we will use
a gradient-based minimization algorithm, we start by evaluating the energy
derivatives with respect to each weight w € :

OF
% = <Elocow> - <Eloc><ow> + c.C., (36)
where Eioc = % is the so-called local energy, O, = al%ﬁm and c.c.

denotes the complex conjugated part. The key idea here is that instead of
calculating the expectation values in the derivative (3.6) which involve a sum
over all of the configurations |y) of the system, the expectation values are re-
placed by statistical averages of a finite set of samples of the configuration
space. The sampling is based on a Monte-Carlo procedure where each newly
generated configuration |y') is connected to the previous state |y) by a transi-
tion permitted by the single-particle lattice Hamiltonian. The new state |y')

is accepted with the probability min {1, |‘<(77/ |%>‘|; } to ensure detailed balance.

After performing Ny Monte Carlo moves, we calculate the averages of Fj,
O,, and their product over the generated Markov chain of sampled states. This
allows us to evaluate the energy gradient (3.6) and update the weights. Note
that the stochasticity of the estimated averages due to Monte Carlo sampling
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in this case is useful since it helps escaping local energy minima. The variance
of these fluctuations is inversely proportional to the number of samples taken,
thus it can be decreased by performing more Nyc steps as needed.

At this point, we can choose a preferred gradient-based optimization algo-
rithm to perform minimization. The simplest method is the gradient descent
where the updated weights are calculated as

oF

W41 = Wt
Here 7 is the learning rate and the index ¢ € N denotes the ¢-th iteration of
weight updates. Gradient descent has a problem that it easily gets stuck to a
local energy minima while scanning the weight space due to the learning rate
being constant. One solution to this problem is to use stochastic gradient de-
scent which replaces the exact derivative over the parameters by an estimator
that takes the derivative obtained from only a few random samples [178,179].
This allows it to escape the local energy minima but the convergence to the
target energy is slow due to the high variance of each weight update. Alterna-
tively, one of the optimizers that can be used is an adaptive moment estimation
method (Adam) which computes adaptive learning rates for all of the param-
eters from estimates of first and second moments of the gradients [180]. The
first and second moment of the gradient updates can be written respectively as

oF
pe = Brpg—1 + (1 — ﬁl)%’ (3.8)
2
ot = P01+ (1 — f2) (:;i) ) (3.9)

where 51 = 0.9 and 2 = 0.999 are meta-parameters of the method with the
typical suggested values. The initial moments are set to zero (ug = 0,09 = 0).
Then the weights are updated using the Adam method’s expression:

n Ht

Ot .1— £’
1_%—1—6 1

(3.10)

W41 = Wt —

here a regularization parameter e = 1078 is introduced to prevent the gradient
term from diverging if o, = 0. For the lattice ground state estimation we
use a variation of Adam algorithm called AdaMax. It implements one main
change in Adam — instead of damping the learning rate by the 2-norm of the
energy gradient i.e. /oy, it uses the co-norm of a p-power gradient update
vy = o1 + (1 — BY)OE/Ow|P with vy = 0, which also provides stable
numerical results. Writing co-norm u,; explicitly

) , (3.11)

o
au)t

p—o0

1
ug = lim (v)? = max (ﬁgut_l,
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gives a numerically simple update law. The weight optimization by AdaMax is
then defined as

Wyl = Wi — A (3.12)

with learning rate n = 0.002 and ug = 0.
Having discussed the components of reinforced learning we provide the pro-
tocol of our calculations:

1. Initiate the neural network with random small weights @ and choose a
random initial configuration of the system |7).

2. Perform Nyc Monte Carlo moves sampling the configuration space to
evaluate the energy of the network with the current weights.

3. Update weights using Adam/AdaMax methods.

4. Repeat from 2. for a fixed amount of updates Nypdate or until the desired
convergence of the observed parameters is reached.

After the network has been optimized to represent the ground state we can use
it to estimate the expectation value of an arbitrary operator A. Tt is obtained by
performing Monte Carlo sampling one last time and calculating the statistical

average of <AZ,|;?K> over the generated samples.

We have covered the basic ideas of ground state representation as a re-
stricted Boltzmann machine and looked at the reinforced learning procedure
which employs variational Monte Carlo and gradient-based optimization to ob-
tain the state with minimal energy. We are now ready to tackle the problem
of calculating ground-state features of a lattice system within the described
artificial neural network framework.

3.2 Learning ground state features of flat band

lattices

Lattices that support flat dispersionless energy bands give rise to a lot of inter-
esting phenomena such as fractional quantum Hall effect [100,181,182], correla-
tions in superconductivity [183,184], flat band magnetism in spin systems [185]
and other, see review Ref. [71]. We will consider a particular class of ground
states that can be expressed as compact localized eigenstates [186,187] which
are associated with the lowest energy flat band of a lattice. These states are
superpositions of Bloch waves localized at several neighboring sites while be-
ing separated from each other by at least one empty site due to destructive
quantum interference of the wavefunctions. They provide sufficiently complex
density patterns for the neural network to learn while being guided by the en-
ergy of a non-trivial many-body Hamiltonian. In this section, we will analyze
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the performance of the artificial neural network for two flat band lattices that
have a quasi-1D sawtooth and 2D kagome geometries.

3.2.1 Sawtooth lattice

One of the simplest flat band systems is the sawtooth lattice. There have been
proposals [188,189] and experimental realizations of such models in photonic
lattices [190] and ultracold atom systems [191]. We will introduce a particular
parameter regime of this lattice that establishes the ground state features used
for neural network testing.

(=0 2 4] me=1} 7 L=16
2 4
(b) d=0 (c) O =1
0 2
E(k) E(k)
[J’] |J’]
-2 0
—4 -2
- 0 m - 0 m
kd kd

Figure 3.2: (a) Sawtooth lattice of L + 1 = 17 sites with lattice constant d.
Hoppings J and J’ are depicted by black and grey lines respectively. Dashed
box marks the second density island with a single particle localized over three
sites with corresponding teal-colored on-site occupations s = ny = % and
Mg = 3. (b) Energy dispersion relation for J' > 0 with no flux ® = 0 piercing
the triangular plaquettes. (c¢) Dispersion relation for J' < 0 with flux ® =«

piercing the plaquettes.

The single-particle physics of a sawtooth lattice of L + 1 sites (Fig. 3.2(a))
is described by the tight-binding Hamiltonian

L L/2
Hy=—J ajap_y —J'Y  a;as;»+hec, (3.13)
=1 j=1

with annihilation (creation) operators dg) at site £ and the hermitian conjugate

part of both terms denoted by h.c.. Hopping parameter J is the tunneling am-
plitude between neighboring lattice sites (solid black diagonal and off-diagonal
links in Fig. 3.2(a)) and J’ is the tunneling between next-neighbor sites labeled
by even numbers in Fig. 3.2(a) (grey links).
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The band structure of this model can be straightforwardly calculated by
assuming the periodic boundary condition for the lattice and diagonalizing the
Hamiltonian in quasi-momentum k representation [192]. The obtained energy
dispersion relation reads

E(k) = —J' cos(kd) £ \/J2 cos2(kd) + 2J2 cos(kd) + 2.J2, (3.14)

with d being the lattice constant. The flat band regime is achieved by setting
J =+/2|J'| in Eq. (3.14). This gives the two solutions for the energy bands

2J
Bk) = {—2J’ cos(kd) +1] (3.15)

From this relation we see that there are two distinct cases: J' > 0 where the
dispersionless band has the highest energy (Fig. 3.2(b)) and J' < 0 with a flat
band having the lowest energy ]‘Eﬁ) = —2 (Fig. 3.2(c)). We will only consider
J' < 0 case onward since it not only has the flat band at the bottom of the

energy spectrum but it also has m-flux ® piercing each triangle plaquette. I.e.
the wavefunction of a particle that hops around the closed triangular plaquette
accumulates a m Peierls phase each loop due to the presence of a negative
hopping parameter. This adds a level of complexity for the neural network to
learn. For J’ > 0 all of the hopping parameters are positive thus we have the
trivial case ® = 0.

The richness of flat band models usually reveals itself with the inclusion of
interactions. We will consider bosonic on-site interactions

U L
flae = 5 Sl ) (3.16)

where ny = d;&g is the occupation number operator for site ¢ and U is the
interaction strength. The interaction term is positive therefore it costs energy
to place two or more particles at the same site.

The features of the groundstate of the complete system Ho + Hine highly
depend on the filling of the lattice defined as Y2 For filling less than or equal to
i the particles try and succeed to avoid each other. This can be seen from the
densities of the so-called compact localized states. They are linear combinations
of Bloch states with various quasi-momenta that localize the particle density in
the presence of a flat band. The average occupation of these states for quarter-
filling of the lattice is depicted by the teal color in Fig. 3.2(a). A single particle
occupies one V shaped island that consists of three sites with corresponding

on-site densities &, % and % that are separated from the rest of the lattice by

19
empty sites at the edges. An example of such a density island is marked by

a dashed box in Fig. 3.2(a). Since the system at i filling is partitioned into
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these islands it is easy to calculate the total energy of a system of an arbitrary
length L + 1 if we know the energy of a single island. A state of an island can
be written as

1 A R
;) = 3 (\/ia} - a;_l — a;_H) |vac), (3.17)

with j labeling an even site and |vac) being the vacuum state of an empty
lattice. Calculating the energy of such a state (i);] (ﬁo + I:Iint> |1;) we see
that it is equal to —2|J'| keeping in mind that J' < 0. It is important to stress
that it does not depend on the interaction strength, i.e. <1/)j|ﬁint|1/)j> = 0.
Thus for a finite lattice of L + 1 sites the full energy of the ground state is
Ee = —#. For filling larger than % the calculations are more difficult and
in most cases calculated numerically.

For the purpose of studying the neural network, we will focus on the flat
band regime with J = /2|.J’| and J’ < 0. We set the lattice filling to be 1 and
take several values of interaction strength U. This regime provides sufficiently
rich features for the neural network to learn and at the same time the exact
results can be easily calculated analytically for comparison. The goal of the
neural network is to obtain the ground state density wave depicted in Fig. 3.2(a)
as accurately as possible.

3.2.2 Learning the density wave

The characteristic properties of the ground state are calculated using the imple-
mentation of a restricted Boltzmann machine by the Netket collaboration [193].
The considered physical system is a L+1 = 17 site sawtooth lattice with N, = 4
particles corresponding to the quarter-filling regime. The hopping parameters
are chosen to establish a dispersionless band as described in the previous sub-
section and the interactions are set to % = 0.1. For the artificial neural
network we select the number of hidden nodes to be M = |a(L +1)] with
a = 2.5 being the hidden node density and |-] denoting the floor function.
We perform Nypdate = 15000 weight @ updates using AdaMax optimization
routine with its default meta-parameters defined in subsection 3.1.2. Before
each update of weights, Ny = 5000 Monte Carlo moves are made to explore
the configuration space. The choice of the lattice and hidden layer sizes is mo-
tivated by the fact that the selected number of sites provides a configuration
space that is larger than the number of network weights. This means that if
the ground state is learned by the network we effectively encoded the state into
a reduced representation.

The main parameters that are monitored during the learning process of
the network are the ground state energy FE,s, the overlap f between exact
and network predicted ground states, the on-site occupation of three sites that
have different densities: the empty site at the edge of an island with expected
density 4 = 0, the site at the edge of the V-shaped island 75 = % and the site
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at the center of the island g = % The total density of the second island Y is
observed as well and it is expected to be equal to i =n5 +7ng+7ny =1. The
decimal logarithm of the absolute error € for each of these values is shown in
Fig. 3.3 after every weight update. We will focus on the densities of a single
density island for concreteness but the results are general for each island. Let

us look at the behavior of each observable more carefully.

0 5000 10000 15000
updates

Figure 3.3: Absolute error ¢ convergence of properties describing the ground
state of a sawtooth lattice: ground state energy Egs error (black dashes), av-
erage occupation error on sites 4 (red), 5 (green) and 6 (blue), deviation from
the total density ¥ on the second V shaped island (cyan) and the deviation
from unity of overlap f between exact and calculated ground states (magenta).

The convergence of absolute error of the ground state energy Eq is depicted
by black dashes. Each dash is 300 updates long and its value is the average of
energy errors binned during those iterations. The error decreases exponentially
for the first 10000 updates and then levels out when the deviation from the
exact energy value f]i,sl = —8 is between 10~° and 10~*. This is comparable to
the energy errors obtained with neural networks for other quantum models [57,
60, 63]. The high convergence rate and accuracy of ground state energy is
not surprising since reinforced learning of the network is guided by energy
minimization.

The global and local density structure recognition can be judged by the
convergence of on-site densities. Empty sites separating each density island
define the global structure of the density wave. It is accurately captured by
the neural network as can be seen from the on-site occupation of the empty site
labeled ‘4’. During the initial updates, the error decrease of the zero density site
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lags behind the energy error which is expected because density is not the target
quantity being optimized by the network. Despite the slower convergence, the
final density of the empty site is determined with accuracy comparable to that
of the ground state energy, i.e. the deviation from true value is within the range
107° and 10~%. The local structure is defined by the densities within each V-
shaped island. We concentrate on the second island depicted by the dashed box
in Fig. 3.2(a). The occupation error evolution of sites with expected densities
ng = i and ng = % is labeled by ‘5’ and ‘6’ respectively in Fig. 3.3. Firstly, we
note that the sharp downward peaks of errors is not a physical effect but an
artifact of absolute error changing sign. Secondly, we see that the end result is
not as accurate compared to the previously considered observables. Initially,
the error of density on site ‘5’ seems to be lower than the rest of the density
errors. This is because the on-site density i is very close to the average density
% of the lattice therefore a typical random distribution can estimate it straight
away, nevertheless, the initial small error does not improve or accelerate the
convergence to the exact value. The final deviation from exact density values
for both sites is of the order 10~3 which is more than a magnitude larger than
the energy or empty site density errors. The relatively high fluctuations of
these errors at the final updates show that the network struggles to distribute
the density between the three sites of the island. Thus the network efficiently
and accurately determines the global structure of the density wave but the local
features are obtained with lower accuracy.

Finally, we look at the overlap f of the calculated state with the exact
ground state and the sum of densities ¥ of the second island sites. These
quantities support the previously obtained results. The overlap essentially
accounts for densities over all sites thus its convergence rate mimics the plotted
densities and arrives at the error of 10~2 which is mostly due to the local density
fluctuations within the islands. The sum of densities follows a similar pattern of
convergence for the initial 10000 updates but then it achieves an error smaller
than that of density errors of sites ‘5’ and ‘6’ This indicates that the network
fairly accurately predicts the presence of a single particle per one island and
larger on-site density errors show that indeed the difficulties arise due to local
density fluctuation balancing on an individual island.

The results shown in Fig. 3.3 correspond to a single statistical sample of ob-
servables obtained from a restricted Boltzmann machine throughout the learn-
ing process. Starting the learning procedure with different initial weights pro-
duces qualitatively similar behavior of error values. To check if the global and
local features are reproduced for larger systems we look at the occupation of
all sites for quarter-filled lattices of sizes L € {20,60,100}. The evolution of
densities in Fig. 3.4 for L = 20 (a), L = 60 (b) and L = 100 (c) share the
key feature that the formation of the global density wave structure appears on
average after the same number of updates independently on the system size.
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Figure 3.4: On-site density evolution for lattices of size L = 20 (a), L = 60 (b)
and L = 100 (c) with parameters o = 2.5, Nyie = 5000 and % =0.1.

However, in the depicted case, only the smaller lattices (a) and (b) manage
to converge to the exact ground state. For the largest lattice (c) local defects
are created which are hard for the network to eliminate. The origin of these
defects can be explained as independent island formation in separate parts of
the lattice — the independent islands seed the global structure in their regions
which permeates until the regions meet. If the initial islands did not have
matching periodicity, the regions clash and form the observed defect. In prin-
ciple, this defect can appear in a system of any size but it is more likely to
form in larger systems. The network has difficulties escaping this configuration
because a global structure change of one of the regions is required to restore
proper periodicity of the full density wave. It is equivalent to a problem of
escaping a local energy minimum which is a typical obstacle that optimization

79



algorithms face [194]. One needs to either improve the optimization protocol
or sample multiple networks initiated with different weights to obtain the exact
ground state.

To summarize, the restricted Boltzmann machine accurately determines
the global structure of the ground state of a sawtooth lattice by identifying
the partition of the lattice into density islands with high precision. However,
the local structure within each island is obtained with an accuracy lower by an
order of magnitude. The convergence rate of densities does not depend on the
lattice size although for larger lattices local defects can appear preventing the
density wave formation.

3.2.3 Impact of hidden layer size

In the previous section, we have explored a typical learning process of a neural
network for a fixed set of lattice and network parameters. In this section, we
will check how the change of hidden node density affects the learning rate of
the main observables.

The hidden node density « allows controlling the number of weights that
encode the wavefunction. By choosing a = 2.5 with L+1 = 17 sites and IV, = 4
particles considered previously, the number of coefficients needed to describe
the ground state was reduced to %/ ~ 16% (recall that A is the number of
network weights and C is the number of complex coefficients describing the full
state). In the following, the size and filling of the system remain as before but
the network hidden node density is set to be o € {1,2,2.5,4} corresponding to
a reduction of the total coefficients to 7%, 13%, 16% and 26% respectively.

We will concentrate on two quantities that allow us to evaluate the accu-
racy of the neural network — absolute error of ground state energy E and the
deviation from the total occupation ¥ of the second island. First let us look
at the evolution of ground state energy error for different hidden layer sizes in
Fig. 3.5. The increase of hidden node density provides a twofold improvement
— the convergence to the expected value is faster and the deviation from the ex-
act value is smaller. A prominent improvement is observed in the detection of
total second island occupation as well (Fig. 3.6). The estimated density value
improves by two orders of magnitude going from a = 1 to @ = 4. The number
of updates required to reach higher accuracy is decreased by incrementing « as
well. Note that even though the precision increases for both parameters with
large a, the single island density still does not reach the accuracy of the ground
state energy which means the problem of learning local structure remains. The
results shown in the figures are obtained from a single learning procedure of a
restricted Boltzmann machine for each a. To strengthen the observations we
collect the statistics of how long it takes for the observables to reach the error of
1073 from their exact values. Ten independent networks are initiated for each
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Figure 3.5: Convergence of the absolute error (in decimal logarithm) of ground
state energy for hidden node density « € {1,2,2.5,4}. Parameters used for the
simulation: L +1 =17, 2 = 0.1 and Nyc = 5000.
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Figure 3.6: Deviation from unity of the total density on the second island
throughout the learning process for hidden node density « € {1,2,2.5,4}.

«, the average number of updates it takes to arrive at the aforementioned error
for energy and total second island density is plotted in Fig. 3.7 by black and
red points respectively. There is a clear downward trend for both observables
in the number of required iterations to achieve the same error with the increase
of hidden layer size. The update number starts to level off for large a. This
confirms that increasing the hidden node density improves convergence. The
downside of having a large hidden node density is that although the accuracy
is improved the computational time of each weight update increases depending
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Figure 3.7: The average number of updates required to reach the ground state
energy (black) and total second island occupation (red) error of 10~ given
the hidden node density o € {1,2,2.5,4}. The errorbars show the standard
deviation calculated from ten independent learning procedures for each a.

on the chosen optimizer. Therefore it is often the case that accuracy has to be
sacrificed for the network to learn in a reasonable amount of time.

Overall increasing the size of the hidden layer proves to be beneficial to
obtain more accurate results in a smaller amount of updates. The limiting
factor of this improvement is the computational time required by the optimizer
to efficiently adjust the enlarged weight space. This leads to only marginal
precision gain for large hidden node density.

3.2.4 Role of interaction strength

The ground state of a flat band sawtooth lattice with quarter-filling is a special
case — it does not depend on the interaction strength since it is composed of
separated single-particle islands. For the neural network to reach this density
wave state, it inevitably explores the excited state manifold which does depend
on interactions thus the learning rate and accuracy can be affected by the pres-
ence of interparticle effects. We will look at how different interaction strength
changes the convergence of the ground state energy and the total occupation
of one of the density islands.

Once again we consider a quarter-filled sawtooth lattice of L + 1 = 17 sites
and a network with hidden node density = 2.5. The interaction values taken
for the learning process are ITU’I € {0.02,0.1,0.5,00}. Here % = oo is the hard-
core boson regime that prohibits two or more bosons from occupying the same
site which effectively corresponds to infinite repulsive interactions. We look
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Figure 3.8: Ground state energy error convergence for different interaction
strengths ‘TU,| € {0.02,0.1,0.5, 00}
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Figure 3.9: Evolution of the total occupation of the second density island error
throughout the learning process for interactions % € {0.02,0.1,0.5, c0}.

at the evolution of the decimal logarithm of the ground state energy error in
Fig. 3.8 and the total density error on the second island in Fig. 3.9 for different
interaction strengths. Both cases show significantly faster learning rates when
interaction strength is increased. This is a similar result as observed in Ref. [60].
A possible explanation is that stronger interactions lead to a larger energy gap
Eqop = B — Egg between the ground state energy Egs and the first excited state
energy F; thus making the lowest energy more discernible for the optimizer
exploring the energy manifold. Exact diagonalization of the full Hamiltonian
shows that in our case the gap is indeed getting wider for the selected interaction
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Figure 3.10: Energy gap between the ground and the first excited state energies
of the sawtooth lattice for a set of interaction strengths.

strength values as seen in Fig. 3.10. The accuracy of the final values also
improves however up to a certain point. For the energy error in Fig. 3.8 the
converged accuracy improves significantly when the interaction is increased
from % = 0.02 to ITU’I = 0.1 but does not effectively change when tuning from
% =0.1to \TU’I = 0.5. The hard-core boson limit % = oo provides the most
accurate prediction of energy but it is a special case since it reduces the Fock
space that is sampled — the states with two or more particles on a single site are
ignored. This means that the high accuracy can be attributed to the improved
representability of the wavefunction since the number of coefficients required
to describe the full state is reduced but the amount of weights remains the
same. It is equivalent to increasing the hidden node density as discussed in the

previous subsection. The final precision of the island density in Fig. 3.9 shows

improvement with increasing interaction strength until it reaches ILETJ’I = 0.5
which fluctuates around the same value as the hard-core boson case.

Thus even though the observed values converge to the final value in a lesser
number of updates for larger interaction strength, the final precision is not
necessarily improved — the neural network reaches a limit over which there is
no improvement.

This concludes the overview of the neural network convergence results ob-
tained for the sawtooth lattice. By observing the on-site particle densities and
the ground state evolution during the learning procedure and analyzing the
precision of the final results we have determined that the global structure of
the ground state density wave is learned with high precision while the local
structure is detected with lower accuracy. Increasing the hidden layer size im-
proves both the learning rate and the final result whereas increasing interaction
strength significantly improves the learning rate but fails to improve accuracy
for sufficiently high enough interaction strength values. In the following sub-
sections, we will apply these observations to see if the neural network manages
to successfully learn the properties of a higher dimensional flat-band system as
well.
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3.2.5 Kagome lattice

The kagome lattice forms a trihexagonal pattern shown in Fig. 3.11(a). It is
an example of a 2D lattice that supports a flat band [192,195]. The main
challenge that this system poses for the artificial neural network to overcome
is the extended dimensionality compared to the sawtooth lattice.

(a) (b)

r M K r

Figure 3.11: (a) Kagome lattice segment with lattice constant d. Hopping J is
indicated by black links connecting all neighboring sites. Each teal-colored ring-
like islands represent the density of a single localized particle, the remaining
sites are empty. (b) Energy dispersion along the high symmetry lines of the
Brillouin zone for J < 0. The inset contains the contour of the Brillouin zone
(grey) with the high-symmetry points I', M, K and the path taken across the
quasi-momentum space to plot the dispersion (black).

The Hamiltonian of the kagome lattice is
ﬁ:—JZdT&»+gZﬁi(ﬁi—l) (3.18)
7 2 £ ’
¥ 1

with J being the hopping parameter between neighboring sites, U — on-site
Q)

interaction strength, a;'’ — particle annihilation (creation) operator at site i,
Ny = &Idi — particle number operator and (ij) denotes summation over directed
links connecting nearest neighbor sites. The energy bands calculated from the

single-particle kinetic term are

E\(F)=2J, and FEas(k)=J (—1 +\/8A(K) + 1) , (3.19)

where we have denoted

A(k)

3 1 3 1
cos <\2[/€wd + 2k:yd) coS (—\Q[kzd + 2kyal) cos (kyd) . (3.20)

Here k = (kz, ky) is the quasi-momentum vector and d — the lattice constant.
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The system hosts a dispersionless band F4 (k) and two dispersive energy bands
E,(K) and Ej(k) that differ by the sign in front of the square root term. If
the hopping parameter is set to J < 0, then the flat band corresponds to
the ground state energy and 7 fluxes appear piercing the triangular plaquettes
of the lattice, like in the sawtooth geometry. The energy dispersion relation
for this choice is plotted in Fig. 3.11(b) along the lines connecting the high
symmetry points of the Brillouin zone shown in the inset. This parameter
setting with the inclusion of non-zero repulsive interactions supports compact
localized states for filling less than %. From now on we will only consider this
filling regime since it establishes a localized island formation phenomena with
a global structure similar to the one used to probe neural network capabilities
in the sawtooth case. For the kagome lattice, the density islands form isolated
hexagonal ring shapes (Fig. 3.11(a)) separated by sites having zero on-site
occupation. Explicitly the localized state is [192]:

) = % i(—l)eo%l\’%% (3.21)

lo=1

where /- indicates the summation over the sites of a single hexagonal ring.
The ground state is the union of these non-overlapping single-particle states,
therefore the ground state energy Fgs of the system with filling less than %
is the energy of a compact localized state (1)|H|¢) = —2|J| multiplied by the
number of particles N, in the lattice. Finally the average occupation of each
site of the island is 7 = § which follows from the construction (3.21).

The analytical results obtained in this section will provide the exact values
of observables to compare with the estimates calculated by the neural network.

3.2.6 Learning hexagonal density islands

After fairly successful attempts at recognizing the structure of the quasi-1D
sawtooth lattice, in this section, we explore how the neural network fairs in
determining the density islands of the 2D kagome lattice.

Let us start with finite kagome lattice segments that consist of either 30
sites with 3 particles or 41 sites with 4 particles present in the system. The
geometry of these segments is shown in insets of Fig. 3.12(a) and Fig. 3.12(b)
respectively. The hopping parameter is chosen to be J < 0 and the interaction
strength is set to % = 00. The hard-core boson regime is selected because even
though the ground state does not depend on the interactions, a significant
increase in network convergence rate and precision is obtained as seen from
the results of the sawtooth case. This set of parameters and fillings satisfy
the island formation conditions described in the previous subsection. For the
neural network learning procedure, the hidden node density is « = 2.5 and the
number of Monte Carlo moves is Ny = 5000.
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Figure 3.12: Convergence of (a) 30 site, 3 particle and (b) 41 site, 4 parti-
cle kagome lattice observables: evolution of logarithmic error of ground state
energy (black bars), total occupation of a hexagonal island (cyan curve) and
on-site density of selected sites (red and blue curves). The insets in the upper
right corners show localized density islands indicated by the black hexagons,
the hexagon with a thick black outline corresponds to the island selected for
total occupation ne monitoring, the red square and blue circle indicate the po-
sition of empty sites selected for density measurements. The small inset in (b)
depicts a transient density structure forming during the plateau of the learning
process.

Having established the system defining parameters we look at the evolution
of absolute errors of observables in Fig. 3.12. The monitored observables are
the ground state energy (black bars), the total occupation of a single density
island (cyan curve) and on-site densities of two selected empty sites with their
positions indicated by colored symbols in the inset (red square and blue circle).

The expected values of ground state energy are “Ej‘s = —6 for the 3 particle
and = = —8 for the 4 particle system. A single hexagonal density island is

7]
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occupied by one particle hence the expected density of such an island is ny = 1.
For the smaller lattice that hosts three localized islands (Fig. 3.12(a)), we see
that the neural network has no problems determining the energy with precision
comparable to the sawtooth case. The empty site densities converge to zero
fast and with high precision which indicates that global structure is recognized.
The occupation of a single island precision after 15000 updates is of the order
107%+ 107> which affirms the localization of a particle. Similar results for final
errors can be seen for the larger lattice with four compact localized states in
Fig. 3.12(b). One distinct feature during the learning procedure for the larger
segment is the plateau where the errors stay constant for a certain amount
of updates. This happens because the network gets stuck into a local energy
minimum when a local structure depicted by a thick black line in the lower inset
of Fig. 3.12(b) forms. Due to the destructive interference of the wavefunction
at the center of this transient structure, it takes a while for the optimizer to
escape the minimum by locally rearranging the density to form one single-
particle island.

The restricted Boltzmann machine successfully encodes the ground state
of the kagome lattice. The global structure is determined with high accuracy
but for larger lattices, local energy minima can hinder the learning rate of the
network.

3.2.7 Summary

Employing an artificial neural network equipped with the restricted Boltzmann
machine architecture we have analyzed the success of encoding the ground state
of flat band systems in the network weights. Guided by energy minimization
the network detected global features of the ground state with high accuracy for
quasi-1D sawtooth and 2D kagome lattices. The empty sites separating com-
pact localized single-particle states were detected with precision comparable to
that of energy. The fidelity of local density distribution within a localized den-
sity island was typically a magnitude lower in the sawtooth case. Adjusting the
size of the network we have seen that an increase of hidden layer nodes leads to
improved learning rates and final results due to the increased representability.
Faster learning rates were also observed with higher interaction strength values
which can be explained by larger energy gaps between the ground and excited
states improving the discernability of the lowest state. Finally, the performance
of the network was tested with lattice scaling. For large lattices there was no
decrease in precision however the optimizer tends to get stuck in local energy
minima more frequently. This results in local density defects that hamper the
learning rate or prevent the system from converging. To resolve this issue the
learning procedure has to be restarted or the optimizer has to be improved.
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3.3 Autoencoder-based ground state fidelity

improvement

A general quantum state is described by a vector in a Hilbert space. For a
system of N spins with m spin degrees of freedom, the number of coefficients
needed to express such a state in a local basis is m”. The number of coeffi-
cients increases exponentially with the size of the system and quickly becomes
computationally intractable even for a moderate number of particles N ~ 10*
typically considered in ultracold atom experiments. Hilbert space is a big
place [196,197]. Luckily, the interest usually lies in the lowest energy states.
This allows numerical methods to target the small subspace of the Hilbert space
that these states occupy. Various strategies are employed to reach the said man-
ifold — a reduction of the complexity of the many-body quantum problem by
projector operator based approaches [198], ground state solution calculation
using imaginary time evolution [199,200], variational methods based on an ef-
ficient representation of the wavefunction as a tensor network [54, 55] or an
artificial neural network [57,60,63]. In the end, the output of these methods is
an approximate ground state function.

In this section, we aim to employ a type of artificial neural network called
an autoencoder [201] to perform a secondary analysis of the results obtained by
approximate methods mentioned above. Assuming that the numerical meth-
ods generate a set of possible ground states with errors arising either due to
the inherent truncation of the problem or randomness due to sampling and
optimization, we use these states as a training input for the autoencoder. The
autoencoder reduces the dimensionality of the provided results and encodes
them in a low-dimensional subspace. By analyzing the structure of this encod-
ing followed by autoencoder-preformed decoding, we explore the separability
of low-lying energy states and potentially extract an improved estimate of the
ground state.

3.3.1 Approximate states via feedforward neural network

The approximate methods used for ground-state calculation of a quantum prob-
lem provide a solution which is a random superposition of the lowest-lying en-
ergy states. The key assumption that we make is that the contribution of the
ground state in this superposition is dominant. Based on this supposition we
choose a training set of quantum states where the target ground state has on
average the largest weight. In this section, we look at an example of a system
where this can occur when applying artificial neural network-based methods.
To illustrate where the error can arise in practice and that indeed the ground
state is dominant in the final result of the selected approximate method we
look at the lowest energy state calculation performed by a feedforward neural
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Figure 3.13: Ground state energy estimate E of a square 5 x 5 lattice with 4
interacting particles and homogeneous flux for a single training run of a feedfor-
ward neural network (black curve) with respect to the true ground state energy
Eys. The exact spectra of the lowest energy levels is denoted by horizontal blue
lines for reference. The considered lattice scheme is depicted in the inset.

network for a many-body 2D square lattice problem with magnetic flux (inset
of Fig. 3.13). The considered lattice is described by the dimensionless Bose-
Hubbard model Hamiltonian

R : 1
H:_Z}%@m+§2ymm—n, (3.22)
(i) i

(1)

cupation number operator on site ¢. The first term describes particle kinetics,

with @;'’ being bosonic annihilation (creation) operator on site ¢ and #; — oc-
i.e tunneling between neighboring sites ¢ and j. The summation over (ij) in-
dicates the addition of all the terms that link two neighboring sites, including
their Hermitian conjugates. The complex hopping elements are defined through
the position-dependent Peierls phase 0;; and are chosen to produce a constant
artificial magnetic flux through the lattice plaquettes. The second term is the
on-site repulsion. The interplay of homogeneous flux and strong interactions
is expected to give rise to topological effects such as the presence of topolog-
ically protected fractional Chern insulating states [100]. Accurate numerical
computations for large systems would provide guidance on parameter selection
for experimental realization and allow the possibility to probe effects related

to the scaling of the system size. A lattice of Ngites sites occupied by Nparticles
(Nparticles+Nsites—1)!
(Nparticles)!(NSiteS_l)!
ization algorithms become computationally intractable even for small systems

bosons will have Fock basis elements, thus exact diagonal-

(Npartictes ~ 1, Ngites ~ 10). A possible solution is the use of an artificial neural

network that reduces the number of coeflicients required to describe the ground
state and applies the Monte Carlo method to target only the relevant subspace
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of low-lying energy states. We apply such a network following Ref. [60] for a
5 x 5 square lattice with 4 bosons and a homogeneous flux of 1/8 flux quanta
per plaquette. The chosen system size is small enough to allow a direct compar-
ison between the neural network and the exact diagonalization results shown
in Fig. 3.13. The black curve depicts the energy E convergence to the ground
state energy F,s for each iteration of the weight update of the network. The
blue lines mark the precise lowest energy levels of the system obtained by per-
forming exact diagonalization. We see that in this particular run of the neural
network learning procedure, after 3000 iterations the energy converges only to
the first excited energy. On the other hand, if we check the overlaps of the
network estimated ground state ) and the n exact lowest energy eigenstates
[tgs), |¥1), ... |¥n—1), we see that the contribution of the ground state is domi-
nant in the estimate |(1|¢4s)|* = 0.765, followed by the overlap with the first
excited state |(1[¢1)|?> = 0.124 and the remaining small contribution consists
of a mixture of higher energy states.

This is a result provided by a single run of a network learning procedure.
Multiple runs form a set of ground state estimates |1)) where each state is a
superposition of the system’s eigenstates with the highest contribution given by
the true ground state. The values of coefficients in each superposition will vary
due to random initialization of network weights and the random Monte Carlo
sampling of states but the general tendencies given by the considered example
sample run remain. Due to the variations of these states in the vicinity of the
true ground state, the feedforward neural network generated set of states is
a perfect candidate for the autoencoder aided analysis which should deduce a
more accurate result from the approximate data.

3.3.2 Feedforward autoencoder

The analysis of the wavefunctions of interest will be done by employing a feed-
forward autoencoder. The goal of this artificial neural network is to encode and
decode the provided input to match the output while guided by some loss func-
tion. Applications of such a network range from denoising, feature recognition
and dimensional reduction to being used as a generative model [161]. In this
subsection, we describe its architecture which is used in subsequent calculations
for dimensional reduction in quantum systems.

The autoencoder structure is characterized by three parts. The first part
is the encoder — here the provided input is compressed by decreasing network
layer size for each successive layer. It is followed by a code (bottleneck) layer
that consists of only a few nodes that store the latent variables describing the
encoding. Finally, the decoder part unpacks the information from the code
layer by increasing the number of nodes in each subsequent layer until the
size of the output layer matches the size of the input layer. An example of a
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Figure 3.14: Schematic depiction of a fully connected five layer autoencoder.

five-layer autoencoder is shown in Fig. 3.14. The nodes are denoted by circles
(@)
J

node index respectively. Since the number of nodes in the subsequent layers

with coefficients n;’ — the superscript and subscript indicate the layer and the
increases (decreases) in the encoder (decoder) we have that the number of nodes
for the hidden 2nd and 4th layers are L’ < L, where L is the number of input
coefficients. The network is fully connected with connection weight matrices
W@ and the coupling coefficients are indicated by black lines connecting all
nodes between each neighboring ¢ and i + 1 layers.

Given an input vector 7(t) = (ngl), ...,n(Ll)

) the autoencoder produces an
output vector following the standard feedforward model procedure. Starting
from the initial data the coefficients for each subsequent layer are calculated
iteratively:

AOHD = o(WOFD 4 5y, (3.23)

with network weights W) and bias parameters b). The function o is com-
monly known as the activation function. It is a non-linear mapping that pro-
vides the complexity required for the network to learn. For the output to be
meaningful, the network needs to be trained i.e. the network parameters W)
and b need to be updated to produce the desired outcome given a training
set. Since we are interested in dimensional reduction, the training procedure of
the autoencoder aims to map the input to the output as close as possible. This
corresponds to minimizing the error between the input 7! and the output 7(?)
vectors for all training samples. To quantify the error we use the mean squared

L Qa2
N.L Z Z (nl,u - nl,u) ) (3.24)
ST u=11=1

where we have introduced an additional subscript p to indicated the summa-

error function

FE =

tion over all Ny training samples. The error is minimized with respect to
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the network parameters W and b by employing the AdaMax optimization
routine described in subsection 3.1.2 and using the standard backpropagation
method [202,203] that applies the weight and bias updates iteratively to each
preceding layer starting from the last one.

The discussed fully-connected feedforward autoencoder is implemented us-
ing the Keras library [204]. Throughout this section we will consider systems
that are described by normed vectors of M = 500 complex coefficients, there-
fore we set the node number in each autoencoder layer to follow the pattern
L-100-50-25-2-25-50-100-L. For the encountered illustrative cases the number
of nodes is sufficient to encode the given input, however for larger initial data,
if the error function does not converge to zero, the size has to be increased at
the cost of training time. Since the utilized neural network uses weights that
are real numbers, the real and imaginary parts of each initial coefficient are
separated into two vectors that are concatenated and provided as input of size
L = 2M. The activation function o is set to be the hyperbolic tangent func-
tion tanh(-) for all layers since its generated output falls in the range [—1, 1]
which contains all possible values of the normalized vector coefficients. In each
considered example the training set consists of 1000 samples and the network
weights are updated for 3000 iterations. The update cutoff is chosen to prevent
overfitting while the error is sufficiently converged.

A successfully trained autoencoder will store the compressed information
about the training set vectors in the code layer. The goal is to analyze the
distribution of the code layer coefficients for separable features that would allow
to improve or generate the decoded results that surpass the initial sample set
by some desired quantity.

3.3.3 Encoding the Bloch sphere

We start by analyzing the autoencoder trained with a superposition of eigen-
states of a simple two-level quantum system. To gain intuition about the dis-
tribution of the code layer parameters we examine the cases for superpositions
covering different sectors of the Bloch sphere.

A normalized state of a two-level system

) = cos (Z) la) + ¢ sin (Z) 1b) (3.25)

can be represented as a point on a unit 2-sphere parametrized by the polar angle
0 € [0, 7] and the azimuthal angle ¢ € [0,27). This sphere is called the Bloch
sphere. Its poles at # = 0 and 8 = 7 correspond to the orthonormal eigenstates
|a) and |b) accordingly. We will be interested in three cases: when one of the
states is dominant, when all possible superpositions of the two states contribute
and when the samples are neglected if one of the state is highly dominant. To
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generate the training set of states that have the form (3.25) for each case we
uniformly sample different sectors of the Bloch sphere. Angle ¢ is uniformly
sampled from the interval ¢ € [0,27) for all cases. The allowed range of
angle 6 determines the contribution of each eigenstate to the final state. The
first considered case assumes that state |a) is dominant and restricts 6 to a
range [0, 7/2]. It is covered by assigning 6 = arccos(z) by a random uniformly
distributed variate z of interval [0,1]. The sampled Bloch sector is shown in
Fig. 3.15(a1). Analogously, when all possible superpositions are present we
have 0 € [0, 7] with z € [—1, 1] covering the whole Bloch sphere (Fig. 3.15(b1))
and when none of the states are strongly dominant 6 € [r/3,27/3] with z €
[-1/3,1/3] only the equator of the Bloch sphere is sampled (Fig. 3.15(cy)).
Before the training state is supplied to the autoencoder with a particular pair
of parameters (p,0), the eigenstates are expressed in an auxiliary MD basis
{|u)} so that |j) = Zﬁil cg)m) where j € {a,b}. Without the loss of generality
we can fix the global phase of each sample such that the p/ component is real,
i.e. Im(u/ |y = 0 for all ¢p. As it turns out this improves separability of the
encoded data.

The generated input, consisting of 1000 sample states in each case, is used
to train the autoencoder discussed in the previous subsection. After training
the network we concentrate on the code layer to analyze the encoding quality
of the system. The code layer for the selected network structure consists of

gCOde) and y = n(QCOde). Their values

two nodes storing two real numbers x = n
for all generated states are plotted in Fig. 3.15(mg-mg3) for m € {a,b,c}. Each
point (x,y) is calculated by supplying a sample state taken from the Bloch
sphere sector of Fig. 3.15(mj) to the trained autoencoder as an input. To
illustrate how the represented encoding distributions can vary depending on
the initialization of network weights and the generated training set, the two
figures Fig. 3.15(my-mg) are shown for different initial sampling of each selected
Bloch sector (m;). Evaluation of the encoding quality is aided by introducing
the overlap Qi = [{a|1)|? of a sample state [¢p) with an exact eigenstate |a).
The values of the overlap are depicted by color with the range shown by the
colorbar. Providing exact eigenstates to the trained autoencoder we recover
their position in the encoded layer marked by cyan point for state |a) and
magenta point for state |b). With the established notation, each case can be
now explored in detail.

Concentrating on the first column of Fig. 3.15, we see that the autoencoder
for the |a) dominant case encodes the samples in a compact elliptical distri-
bution (ag) centered around the state |a) and well separated from the state
|b). The encoding using a different seed of the same Bloch sector in (a3) shows
that an inverted case can occur as well — an elliptical void forms around state
|b) while the samples are distributed around the edges of the said ellipse with
a larger concentration near the state |a). The overlap Qj, forms a contin-
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Figure 3.15: Sample distributions of the targeted Bloch sphere sectors (a;),
(b1) and (cq) with their corresponding encodings in the code layer (as), (ba)
and (c3). The overlap of an eigenstate with a sample state Q;, = |(a|y)|?
is shown by color. The cyan (magenta) point marks state |a) (|b)). Figures
(ag), (bs) and (c3) depict the encodings of the same Bloch sectors as in the
second row but with a sample set and initial network weights generated using
a different seed.

uous gradient indicating that each superposition is systematically separated.
The middle column of Fig. 3.15 describes the encoding of the whole uniformly
sampled Bloch sphere. Subplots (bz) and (bs) show a circular distribution
of encoded samples in the parameter space of the code layer. Both of the
eigenstates lie within the distribution and the overlap shows a clear distinction
between the regions where each of the eigenstates dominate. Finally, the third
column of Fig. 3.15 focuses on superpositions where both of the eigenstates
have similar contributions. The resulting encoding is consistent with previous
observations — if the dominant samples mapped close to the eigenstates were to
be subtracted from the encoding presented for the fully sampled Bloch sphere
we would obtain ring-like distributions seen in (cz) and (c3). Note that due to
the random initialization of the simulation and the symmetry of the sampling
either state |a) or |b) can end up at the center of the ring-like distribution
as shown by the overlap of two different seeds. It is important to stress that
the overlap is an external parameter that assumes the knowledge of the exact
eigenstate. While it aids the analysis of the encoding it is not available when
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tackling the problem of ground state determination. One way to extract the
information would be by looking at the geometric properties of the distribution
provided the sampling is not uniform, e.g. in the two-level system, we see that
when one state is dominant (ag), the ground state could be found by taking
the center of the ellipse. An alternative would be to scan the code layer and
subject the output state generated by each point (x,y) to some goal function
which when extremized would determine the code space point giving the opti-
mal output (e.g. find the output state that produces the energy minimum by
exploring the code layer parameters).

We have analyzed the encoding of a two-level system for various samplings of
the Bloch sphere which provided an overview of how the code variables behave
for a simple, well-controlled study case. The gained intuition will be useful
when considering the system we initially set out to explore — a system that
hosts multiple energy levels described by a set of approximate lowest energy
solutions with a dominant ground state contribution. In the next subsection,
we define the model that generates the training set for such a system with a
small number of controllable parameters.

3.3.4 Sample set generation with dominant ground state

In subsection 3.3.1 we found good candidates for a set of training states for an

autoencoder by exploring a specific problem and method. Now we would like

to consider a general model which does not depend on a particular problem

and only relies on the dominance of the ground state in the estimated solution.
Let a sample state have the form

N
W) = w?el¥i]), (3.26)
j=1

where w; is the weight contribution of the [j) orthogonal basis state with a
uniformly sampled random phase factor ¢; € [0,27). The set of states {|j)}
spanning the ND Hilbert space is the solution obtained by diagonalizing the
Hamiltonian of a specific problem, one of the states being the ground state we
are looking for. In general these states can be expressed in some convenient
MD basis {|u)} (e.g. configuration space elements):

M .
) =Y P w), (3.27)
p=1

with probability amplitudes cff ), Although the states are determined by a dis-
tinct problem, the encoding exhibits universal behavior as asserted by consid-
ering different systems with M = 500 sites/configurations. States obtained by

solving 23 x 23 single-particle square lattice tight-binding problem (M = 529)
96



with and without uniform flux of 1/8 flux quanta piercing the plaquettes, many-
body problem of a 3 x 3 square lattice with 4 bosons (M = 495) described by
Hamiltonian (3.22) and orthogonal complex vectors obtained via reduced QR
decomposition (M = 500) all give similar grouping of the code variables in the
autoencoder provided that the weights w; follow the same distribution. Fol-
lowing this observation we restrict our analysis of the code variable layer by
considering orthogonal vectors generated from a random complex matrix A.
The matrix A consists of M x N complex elements with real and imaginary
parts sampled uniformly from an interval [—1,1]. By performing reduced QR
decomposition of A we get N orthogonal vectors &) = (cgj ),...,cggj)) which
form the set of basis states {|j)}. Having the basis at hand we are left to
choose the weight w; generation method for each sample state.

The weights need to satisfy the normalization condition ) jwj =1 and
have a dominant value for the ground state with decaying values for higher
energy excited states. A natural choice that preserves the normalization is the
random division of the unit interval method [205]. The idea is to randomly draw
N — 1 points from some probability density function f(z) with domain [0, 1]
that divide the interval [0, 1] into N subintervals. The length of a subinterval

w1 wo w3 Wy
0 1

Figure 3.16: Division of the unit interval by N—1 = 3 points generated from the
probability density function f(z) oc 2. The length of the N = 4 subintervals
gives the values of the weights wy, ..., wy.

corresponds to a weight w;. Choosing the probability density function to be
f(x) oc P with p > 0 guarantees the existence of a structure with subintervals
of on average decreasing length. Typically the subinterval closest to zero will be
the longest hence we map the weights w1y, ws, ..., wy to the subinterval lengths
going left to right on the interval [0,1] as illustrated in Fig. 3.16. For the
selected labeling the ground state is associated with |j = 1) and the excited
states are |j = 2),...,|j = N).

The described construction of a sample state (3.26) allows generating a
training set of vectors that depends only on two parameters — the number
of eigenstates N which give non-zero overlap with the sample state and the
parameter p of the chosen probability density function which describes how
fast the contribution of excited states decays. This set will serve as a tool
to probe the encoding/decoding capabilities of the autoencoder for a different
number of states and varying contributions of eigenstates in the sample state
while keeping the ground state weight dominant.
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3.3.5 Endcoding few-level systems

Let us consider few-level systems where the main contribution to the noisy
sample state comes from N € {2,5,50} eigenstates. The key assumption is
that the ground state has a large contribution in the sample state compared
to the remaining excited states. The training set that contains such samples
is generated using the random division of the unit interval to assign weights
to the eigenstates as described in the previous subsection. We will look at
the encoding properties of the autoencoder when the power-law exponent p
determining the eigenstate weight distribution in a sample is p = 2 or p = 10
and the basis states (3.27) are generated via QR decomposition on a support
basis of M = 500 elements.

The main results of a trained autoencoder are shown in Fig. 3.17. The same
autoencoder structure is used as in the Bloch sphere encoding case. The plots
depict the code layer parameter (x,y) distribution of a 1000 sample states,
where the first column of subplots is obtained for p = 2 and the second column
for p = 10. Each row considers different number of contributing eigenstates in
the sample: first row — N = 2 (Fig. 3.17(a-b)), second row — N = 5 (Fig. 3.17(c-
d)) and third row — N = 50 (Fig. 3.17(e-f)). The mapping of the exact ground
state |1) to the code layer parameter space is depicted by the cyan point,
the first excited state |2) is marked by a magenta point and the remaining
[3), ..., |IN) excited states in Fig. 3.17(c-f) with smaller contributions are shown
by red points. The overlaps of samples with the ground state Qy, = |(1|)|?
are depicted by color.

First, let us focus on the two-level systems in Fig. 3.17(a-b). In both p =
2 and p = 10 cases the samples are well separated based on their overlaps,
clustering near appropriate eigenstates. The main difference between (a) and
(b) is the overlap range due to the different power-law statistics. For p = 2
we have that the weight contribution to the sample state on average is 3/4 for
the ground state |1) and 1/4 for the excited state |2). Meanwhile, for p = 10
the corresponding mean weights of the ground and excited states are 0.917 and
0.083, hence in this case the sample distribution is denser near the ground state
with overall larger overlaps. The observed distributions are consistent with the
results seen in the Bloch sphere encoding. Moving on to systems with N =5
contributing states, in Fig. 3.17(c-d) we see that the ground state (cyan) and
the first excited state (magenta) are clearly separated in the encoding space
with the higher excited states (red) located in-between. The noisy overlap
distribution in Fig. 3.17(c) arises due to the five eigenstates, that compose each
sample, having comparable mean weights ranging between 0.074 and 0.534.
Therefore it is harder for the autoencoder to separate higher-dimensional data
with comparable information content (weights) in the 2D code layer. In (d) the
ground state has a much larger contribution (with a weight 0.832) compared
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Figure 3.17: Sample distributions of systems with N = 2 (a-b), N = 5 (c¢-d)
and N = 50 (e-f) eigenstates contributing to the superposition of the sample.
The first column shows the encoding of samples with weights generated by the
power-law with exponent p = 2 and the second column — p = 10. Color of the
colorbar denotes the overlap of a sample and exact ground state. Encoding of
the exact ground state is marked by a cyan point, first excited state — magenta
point and higher excited states — red points.

to the excited states thus the neighboring overlaps in parameter space vary
mildly which is reflected in the range of the overlaps as well. Similar results
are observed for N = 2,3,4. If the contributing state number is increased
considerably, e.g. N = 50, then the typically observed encoding is depicted
in Fig. 3.17(e-f). The ground state and all of the excited states are separated
into two regions by a ring-shaped distribution of sample states. Calculating the
mean weight of the ground state in the sample states gives 0.243 for p = 2 (e)
and 0.67 for p = 10 (f) with the remaining exciting states having a significantly
smaller impact. This is similar to the Bloch sphere case when the samples
did not have a dominant contribution from either of the eigenstates leading
to isolated exact ground and excited states. The inclusion of many additional
excited eigenstates here does not change the picture qualitatively — their small
contributions translate to the lack of information content which leads to their
clustering in the center of the ring.

The general features seen in the two-level system are reflected in the few-
level systems studied above which exemplify the universality of the encoding.
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For N = 5 the presence of noisy overlap encoding arises due to comparable
contributions of eigenstates in the samples. This does not cause problems for
decoding the ground state provided one of the eigenstates is dominant as we
shall see in the next subsection. In general, one can relax the restriction of
having only two nodes at the code layer which can improve separability at the
cost of universality in the sense that an additional network meta parameter
controlling the code layer size is introduced which is tuned depending on the
system.

3.3.6 Decoding few-level systems

Structurally we have addressed the encoding part of the autoencoder which
describes the separability of features in the code layer given an initial set of
states. This was done by inspecting the encoded distribution of overlaps of
input samples and the exact ground state. We now analyze the decoding part
to see if it can generate an improved ground state estimate. The decoding is
firstly considered by taking overlaps between the output and the input states to
assess the accuracy of the one-to-one correspondence between them. Secondly,
the overlap of the output and the exact ground state is calculated to evaluate
if the ground state can be recovered by sampling the code layer variables.

The first quantity we consider is the overlap of an arbitrary sample state
[)) and the output state |1out) it produces after being propagated through
the autoencoder. It is denoted by Q = [{{out|t0)|? that represents the accu-
racy of the bijective mapping between the states by the autoencoder. The
second quantity is the overlap Qout = [{1]tout)|? between the ground state |1)
and the output state. It is referred to as decoding quality since it provides
information about the ability of the neural network to reproduce the ground
state, e.g. if Quut = 1 for some pair of code layer variables, then the exact
ground state is recovered. To illustrate the typical decoding properties we use
the trained autoencoder of the previous subsection that produced the encoded
sample distribution shown in the first column of Fig. 3.17. The accuracy Q
and quality Qo are depicted in Fig. 3.18 for samples with N =2 (a,b), N =5
(c,d) and N = 50 (e,f) eigenstates contributing to the superposition. The de-
coding quality values are obtained by sampling the code layer parameter pairs
(z,y) € [-1.5,1.5] x [—1.5,1.5] with both intervals uniformly discretized to a
100 points. The point of the code layer variables that results in the largest
value of Quy is marked by 4. The coloring of the points representing the
ground state and the excited states in the code layer parameter space is the
same as in the encoding case.

Starting with the N = 2 system we see that the input and the output states
are mapped to each other almost identically with Q ranging between 0.99 and
1 (Fig. 3.18(a)) which is expected since the initial weight data matches the
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Figure 3.18: The decoding accuracy Q = [(Yout|0)|? and quality Quu =
|(1|$out)|? of the autoencoder trained with samples composed of N = 2 (a,b),
N =5 (c,d) and N = 50 (e,f) contributing eigenstates. The weights are gener-
ated using random division of unit interval for p = 2 case. Cyan point marks
the ground state, magenta — first excited and red — higher excited states. Sym-
bol '+’ denotes the maximum of Q.. Black borders in the second column
indicate the sample region of the first column.

dimensionality of the code layer. The decoding quality Q¢ is close to unity
and the code layer point '+’ corresponding to the predicted optimal decoding
value almost exactly coincides with the cyan point representing the encoded
ground state (Fig. 3.18(b)). For N = 5, the accuracy Q in Fig. 3.18(c) mimics
the noise seen in the encoding analysis due to multidimensionality of weights
mapped to a 2D code layer, indicating that the initially encoded state does
not necessarily map to the same state after decoding, however the decoding
quality Qout in Fig. 3.18(d) covers the whole range of possible overlaps hence
the improved ground state estimate can be reconstructed. Finally, for N = 50
the decoding accuracy Q is almost identical to the Q;, values in Fig. 3.17(e)
that depict the overlaps of encoded states with the ground state. This suggests
that the output states might be close to the ground state which is indeed the
case as seen from the decoding quality in Fig. 3.18(f). Unlike the previous
few-state systems, the current one has broad regions of high decoding quality.
This is because it becomes easier for the autoencoder to interpret the high
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variability of the weights of many excited eigenstates in each sample as noise
and separate it from the consistently large ground state contribution.

The decoding analysis of the autoencoder shows that it is possible to obtain
an improved ground state estimate by sampling the code layer parameters.
However, it does not provide a direct way to find the feature space variables
that generate the best improvement. In the next subsection, a few examples
are given of how the optimal point can be found for a 2D square and quasi-
1D sawtooth lattices by minimizing the energy with respect to the code layer

parameters.

3.3.7 Application: square and sawtooth lattices

To illustrate the ground state reconstruction capabilities of the autoencoder we
consider that it is trained using a noisy set of superpositions of the lowest energy
eigenstates of either a 2D square or a quasi-1D sawtooth lattice. The improved
ground state estimate is calculated by sampling the code layer variables guided
by the minimization of the energy of the system.

The simple 2D square lattice is described by the single-particle tight-binding
Hamiltonian

H=-7 ala;, (3.28)
(i)

with J characterizing the hopping parameter along directed links (ij) connect-
ing the nearest-neighboring lattice sites and &ET) being the particle annihilation
(creation) operator at site j. We will be interested in the qualitative compar-
ison of on-site densities between the exact and autoencoder estimated ground
state, therefore it is useful to recall that the density of some state |¢) at a
site j is defined as the expectation value of the usual particle number operator

(y) = (glalas|e).
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Figure 3.19: (a) Exact ground state density (i) of a 23 x 23 site lattice. (b)
Density of the initially generated sample that has the largest overlap with the
ground state. (c) Density of the optimal state produced by the autoencoder
based on energy minimization.

For numerical computations, a 23 x 23 site lattice with the open boundary
condition is used and the hopping parameter is set to J = 1. The sites are
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indexed by their spatial coordinate (x1, z2) with z1, 29 € {0, 1, ..., 22}, assuming
that the lattice spacing is unity. Solving the eigenvalue problem of the finite
lattice Hamiltonian we see that the ground state of this system is a product of
two sine functions forming the density profile (A) shown in Fig. 3.19(a). Our
goal is to recover this density while initially having a noisy set of sample states.
A thousand sample states |¢) are constructed as superpositions of the first 50
lowest energy eigenstates of the square lattice with eigenstate weights assigned
using the random division of unit interval method. The points that divide
the interval are drawn from the power-law probability density function of the
power p = 2. The autoencoder is trained using the generated sample set for
3000 weight updates while its layer structure remains as before. Fig. 3.19(b)
shows the density of the sample producing the largest overlap with the ground
state. It clearly does not resemble the density of the lowest energy state. To
get the improved ground state estimate we require some additional information
about the system that would allow us to evaluate the output’s closeness to
the target state. The obvious choice is the energy since it is computationally
efficient to calculate and the lowest energy state should be close to the ground
state. We minimize the energy E = (@out (¢, y)| H |pout (z, 7)) of the system with
respect to the code layer variables (x, y) that produce the state |pout(x, y)). The
optimal code layer point (Zmin, Ymin) is calculated using the AdaMax optimizer
described in subsection 3.1.2 and the density of the corresponding optimal state
| Gout (Tmin, Ymin)) is depicted in Fig. 3.19(c). Although the result is not perfect,
it is a drastic improvement compared to the initially given samples.

The second system we explore is the flat-band quasi-1D sawtooth lattice
at the quarter-filling regime that we have encountered in subsection 3.2.1. It
poses additional challenge since it includes interactions and the support basis is
composed of more configurations compared to the square lattice case. Recalling
the Hamiltonian terms (3.13) and (3.16) describing this lattice

L L/2 L

N A LD ZA . ZA . UZA .

H = HO+Hint = —JZ 1 a}a271 . J/ 2 (L12-jCL2j,2 + h.c. +§ ‘ Ong(ng—l),
= j= =

(3.29)
we select a system of L+1 = 17 sites with open boundaries and 4 particles. The
hopping parameters are set to J = v/2|.J'| and J’ = —1 which realizes the flat
energy band at the bottom of the energy spectrum. The interaction strength
is chosen to be U = 0.1. This selection produces the previously analyzed
ground state density wave structure (Fig 3.2(a)) which is plotted once again
for convenience with respect to the site index x; in Fig. 3.20 (black squares).

To test the autoencoder’s ground state reconstruction capability, we first
repeat the noisy sample state set generation in the same manner as we did
for the square lattice. The autoencoder structure, node count and training
procedure are unchanged. For reference, we check the density of the sample
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Figure 3.20: Spatially dependent density of the exact ground state of the
quarter-filled 17 site sawtooth lattice (black squares), density of the sample
giving the largest overlap with the ground state (blue triangles) and density of
the ground state estimate produced by the autoencoder (red circles).

that produces the best overlap with the ground state depicted by blue triangles
in Fig. 3.20. It fails to capture the isolated nature of the density islands.
Using energy minimization as before, the autoencoder constructs the ground
state estimate represented by red circles in Fig. 3.20. It achieves significant
improvement and recognizes the main feature — separation of localized densities.

In both considered lattices the autoencoder successfully improved the
ground state estimate having only a noisy set of states to work with. Note
that even though the support basis of the many-body sawtooth lattice is much
larger (M = 4845 configurations) than the previously considered systems, e.g.
square lattice (M = 529), it does not qualitatively impact the reconstruction
of the ground state, which emphasizes the universality of the autoencoder.

3.3.8 Summary

Approximate ground state determination methods provide the solution of the
eigenvalue problem up to a certain error which originates either from inherent
randomness or truncation procedure of the method. Autoencoder-based sec-
ondary analysis of the set of the approximate ground states offers a possibility
to improve the final result. To this end, the encoding and decoding capabilities
of the autoencoder featuring a two-node code layer were explored, guided by the
key assumption that the ground state contribution is dominant in the superpo-
sitions of the lowest-lying eigenstates forming the initially provided solutions.
For input states satisfying this condition, the encoding displayed universality
and efficiently separated the states based on their ground state contribution
regardless of the number of contributing eigenstates. This is reflected by the
generated output obtained by sampling the code layer variables — nearly all of
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the range of overlaps between the output states and the lowest energy state
is covered. Although the trained autoencoder is able to represent the target
state, there is no straightforward way to obtain the optimal result from the
initial data alone. A way to quantify the search is to select a goal function
that is optimized over the code layer parameters. Choosing to minimize the
energy which should lead to the lowest-lying eigenstate, two systems were con-
sidered — a square and a quasi-1D sawtooth lattices. After optimization, the
ground state estimate was significantly improved in both cases compared to
the initially supplied sample states.
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CONCLUSIONS

In the first part of this thesis, we have proposed a novel type of system coined as
the time-space crystalline structure that exhibits periodicity in both space and
synthetic temporal dimension arising from the resonant periodic driving of the
lattice. We have established the quantum description of such a system guided
by the insights acquired from the classical picture and provided an explicit
example of how to construct a quasi-1D time-space crystalline structure. A
generalization to 4D and 6D structures was provided as well. From these results
we form the first statement of the thesis:

1. A resonantly periodically driven lattice supports a parameter regime that
realizes a time-space crystalline lattice — a spatial lattice equipped with
periodic temporal structure at each site acting as a synthetic dimension.

Employing additional potential driving modulation an energy offset is created
that suppresses tunneling between different temporal lattice sites. The intro-
duction of Raman laser beams restores the couplings and in addition imprints
a controllable phase to the hopping parameters. The control of these phases
allows to create plaquette-piercing artificial magnetic fluxes that are key to
the presence of topological phenomena. This is illustrated by the presence of
topologically protected edge states in the 6D time-space crystalline structure.
It leads to the second statement:

2. Time-space crystalline structures offer a platform to probe topological
properties in six dimensions.

The second part of the thesis first considered the ability of an artificial
neural network with restricted Boltzmann machine architecture to learn the
ground-state features of flat dispersion band models. The learning procedure
was based on minimizing the energy of the system. Quasi-1D sawtooth and
finite 2D kagome lattices were taken as models to be learned by the network.
Both systems exhibit global density wave-type ground state structure which
the neural network successfully learned, however, local features were recognized
with lower fidelity. This allows us to form the third statement:
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3. Artificial neural networks with restricted Boltzmann machine architecture
successfully encode the global structure of the ground state of dispersion-
less band lattice models while only guided by the energy minimization.

For large systems there is a higher chance for the observed parameters to
fail to converge and get trapped in a local energy minimum, requiring a re-
initialization of the learning procedure. This is caused by global structure
formation at different local regions which upon touching form a defect in the
density wave. Restoration of the ordered structure requires a global rearrange-
ment of densities of one of the clashing regions. This is energetically highly
unfavorable and the learning procedure fails to escape such a configuration,
hence we state that:

4. Restricted Boltzmann machines are prone to getting stuck at a density
configuration corresponding to a local energy minimum for large systems.

Finally, a different neural network architecture was explored as a means of sec-
ondary data analysis. An autoencoder was utilized to filter out the ground state
from a given collection of sample states that are superpositions of lowest energy
eigenstates with the ground state providing on average the largest weight. The
trained autoencoder encoded sufficient information about the initial data to
reconstruct an improved ground-state estimate which has an overlap close to
unity with the exact result. Thus we conclude that:

5. Autoencoder-aided analysis allows one to extract an improved ground-
state estimate based on a set of noisy states with a dominant ground-state
contribution.
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SANTRAUKA LIETUVIU KALBA

Ivadas

Saltyjy atomy sistemos yra sudarytos i$ atSaldyty neutraliy atomy dujy, kuriy
temperatiira yra mazesné uz desimtis mikrokelviny. Sios dujos yra laikomos tik-
sliai valdomose elektromagnetinése gaudyklése. Keiciant gaudykliy parametrus
imanoma tirti jvairius kvantinius efektus, iSvengiant problemy atsirandanciy dél
priemaisy ir defekty jprastuose medziagy bandiniuose.

Bose Einstein kondensato sukurimas 1995 m. [1,2] Zymi intensyviy tyrimy
pradzia Saltyjuy atomy sistemy srityje. Pirmuosiuose eksperimentuose atominiy
dujy debesis buvo pagaunamas magnetinéje gaudykléje ir Saldomas pasitelkiant
naujus lazerinio vésinimo ir auksc¢iausiy energijos daleliy iSgarinimo metodus.
Tai leisdavo pasiekti itin Saltas temperaturas ir sukurti egzotiska medziagos
busena, kurioje dominuoja kvantiniai efektai. Sie eksperimentai patvirtino Bose
ir Einstein teorinius skaic¢iavimus atliktus XX a. pirmoje puséje [3, 4] bei
paskatino tolimesnius supertakios medziagos tyrimus (kolektyvinius svyrav-
imus [5], kvantuoty sukuriy susidaryma [6], Josephson tipo efektus [7]). Po
sékmingy bozoniniy dujy eksperimenty seké fermioniniy kondensaty bandy-
mai: 1999 m. analizuoti judesio kiekio poky¢iai °K atomy dujose, atsirandan-
tys dél Pauli draudimo principo [8], uzfiksuotas supertakumas, kurj prognozavo
Bardeen-Cooper-Schrieffer teorija [9]. Issami fermioniniy duju eksperimenty ir
teorijos apzvalga pateikiama [10].

Sekantis zingsnis Saltyjy atomy dujy tyrime buvo skirtingy gaudykliy formy
iSbandymas — pradéti kurti periodiniai potencialai leidziantys simuliuoti kietyjy
kuny struktura. Pagrindinis jrankis, leidziantis sukurti periodines strukturas
tokiose ekstremaliose salygose yra optinés gardelés. Optinés gardelés — inter-
feruojanciy lazeriy pluosty intensyvumo skirstinys pasizymintis erdviniu pe-
riodiskumu [11]. Tokioje gardeléje atomai saveikauja su Sviesa per elektrinio
lauko ir atomo dipolinio momento saveika, kurios déka atomai pagaunami pe-
riodiniuose $viesos intensyvumo maksimumuose arba minimumuose, priklauso-
mai nuo poliarizuojamumo. Tokie Sviesos kristalai sulaukia didelio démesio, nes
jie gali buti panaudojami kaip daugiadaleliniai kvantiniai simuliatoriai pasiulyti
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Feynman 1982 m. [12,13]. Reguliuojant lazeriuy pluosty konfiguracija galima
sukurti jvairiy geometriju gardeles, tuo tarpu keiCiant lazerio intensyvuma,
parenkama daleliy tuneliavimo sparta tarp gardelés mazgy bei modifikuojama
tarpdaleliné sgveika. Tikslus Saltyjuy atomy gardele aprasanciy parametry kon-
troliavimas ir mazas kiekis defekty leidzia lengvai iSbandyti teorinius modelius
eksperimentuose. Daznai nagrinéjamy modeliy pavyzdziai yra Hubbard tipo
modeliai [14-17] aproksimuojantys saveikaujan¢iy fermiony ir bozony elgesj
gardeléje. Fermi-Hubbard modelis suteikia jzvalgy aukstos temperaturos super-
laidininky tyrime [18,19] bei nagrinéja kvantines sukiniy sistemas [20]. Bose-
Hubbard hamiltonianai gali buti naudojami kvantiniy faziniy virsmy aprasymui
bozony dujose [21-23]. Optiniy gaudykliy ir gardeliy universalumas taip pat
atveria galimybes sukurti naujas medziagos formas, tokias kaip diskretaus laiko
kristalai [24,25], fazinés erdveés kristalai [26] ir superkietieji kunai [27, 28].

Kondensuoty medziagy fizikoje jprasta tirti sistemos atsaka patalpinant
bandinj j iSorinj magnetinj lauka. Tuo tarpu saltyjy atomy dujos yra neutralios,
todél magnetiniai efektai turi buti indukuoti alternatyviais budais. Vienas is
metody yra periodinis sistemos purtymas [29, 30], kuris sukelia Coriolis tipo
jéga, sukuriancia dirbtinj kalibruotés lauka ekvivalenty magnetiniam laukui.
Kitas budas yra panaudoti Raman [31,32] arba optinio laikrodzio Suolius [33],
suteikianc¢ius daleliy banginéms funkcijoms faze, kurig jos jgytuy judédamos
magnetiniame lauke. Sie jrankiai, sukuriantys efektinj magnetinj lauka leidzia
saltyjy atomy sistemose nagrinéti kvantinj Hall efekta [34,35] bei topologines
medziagos formas [36-38] atsparias iSoriniams trikdziams. Tokiy sistemy tyri-
mas tiksliai valdomoje aplinkoje yra svarbus zingsnis jgyvendinant topologinius
elektroninius prietaisus [39] bei prisideda prie potencialaus taikymo kvantiniy
skaic¢iavimy srityje [40].

Saltyjy atomy dujos optinése gardelése taip pat suteikia prieiga prie aukstes-
niy dimensijy fizikos. Vidiniai sistemos laisvés laipsniai, pvz. dujas sudaranciy
atomy sukabintos vidinés busenos ar sukininiai laisvés laipsniai gali buti is-
naudoti kaip papildoma sintetiné dimensija. Tai leidzia tirti keturmatj [43, 44]
arba net SeSiamatj [45] kvantinj Hall efekta, kuris yra reikSmingas kvazikristaly
topologijos supratimui [46], laiko apgrazai invariantisky izoliatoriy nagrinéjime
[47] bei kituose egzotiniuose reiskiniuose [48,49].

Saltyjy atomy gardeliy visapusiskumas veréia tobuléti ir skaitmeninius
metodus. IS vienos puseés, analitiniai ir skaitiniai skai¢iavimai padeda atpazinti
parametry rezimus, kuriuose pasireiskia jdomios medziagos fazés ir kartu uz-
duoda eksperimentiniy tyrimy linkme. IS kitos pusés, besipleciancios eksper-
imentinés galimybés suteikia daugiau valdomy parametry, leidzianc¢iy sukurti
sudétingesnes sistemas, kuriy stebéjimy tikrinimui ir lyginimui su teoriniais
modeliais reikia vis daugiau skai¢iavimo resursy. Analitinés aproksimacijos turi
ribotas galiojimo ribas [50,51], todél norint spresti daugiadalelinius uzdavinius
tenka taikyti skaitinius metodus, kurie yra nuolat tobulinami siekiant didesnio
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tikslumo bei pritaikomumo didesnéms sistemoms [52]. Mazy gardeliy su ke-
liomis dalelémis zemiausios energijos busenos sékmingai suskaiciuojamos pa-
sitelkiant tikslios diagonalizacijos algoritmus [53]. Didesnéms sistemoms tenka
taikyti tenzoriniy tinkly metodus [54,55], kvantinj Monte Carlo metoda [56] ar
net neuroninius tinklus [57-61]. Konkretaus metodo parinkimas priklauso nuo
sprendziamos problemos specifikos.

Sios disertacijos tikslas yra dvilypis, palietiantis tiek analitinius, tiek
skaitinius Saltyjy atomy dujy fizikos aspektus. Pirmas tikslas yra pritaikyti
diskreciy laiko kristaly idéjas periodiskai purtomoms optinéms gardeléms ir
sukurti efektine daugiamate gardele, kurig vadinsime laiko-erdvés kristaline
struktura. Tokia sistema potencialiai leisty nagrinéti topologinius efektus
Sesiamatéje erdvéje. Antras tikslas yra skaitmeniskai iStirti neuroniniy tinkly
taikyma kvazivienmaciy gardeliy (vienmadciy gardeliy, sukabinty i baigtinio
plocio juosta) ir dvimaciy gardeliy segmenty savybiy nustatymui.

Darbo tikslai ir sprendziami uzdaviniai

Pirmas darbo tikslas yra pasiulyti gardelés modelj su sintetine laikine di-
mensija — laiko-erdvés kristaling struktura, kuri leisty tirti fizikinius proce-
sus gardelése, turinciose iki Sesiy dimensijy bei parodyti, kad tokia sistema gali
pasizymeéti topologinémis savybémis. Siam tikslui pasiekti yra iskelti atitinkami

uzdaviniai:

o Istirti laikinio periodiskumo strukturos kilme viename is rezonansiniu
dazniu purtomo sinuso kvadrato formos potencialo minimumy, pa-

sitelkiant klasikinés Hamiltono mechanikos formalizma.

o Ivesti kvantinj sistemos aprasyma, kuriame sukabinama laikiné struk-
tura kiekviename erdvéje periodinés gardelés minimume su strukturomis,
esanciomis gretimuose gardelés mazguose, taip suformuojant kvazivien-

mate gardele.

o Pritaikyti periodiskai rezonansiniu dazniu purtomos gardelés potencialy
efektinés daugiamatés gardelés sukurimui.

o Sukurti dirbtinj magnetinj srauta, kuris kerta laiko-erdves kristal-
inés gardelés elementariuosius narvelius bei istirti topologiniy efekty
pasireiskima, pasitelkiant lazeriu indukuotus daleliy suolius ir tiesinj
gardelés potencialo iSderinima.

Antras tikslas yra istirti dirbtiniy neuroniniy tinkly taikymo galimybes
Zemiausiy energijos buisenos radimui bei stebimy dydziy nustatymui ribotos
geometrijos gardelése. Uzdaviniai Siai problemai spresti yra:

o Pasirinkti tinkama dirbtinio neuroninio tinklo architektura ir tinklo koe-
ficienty optimizavimo algoritma.
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o Pasirinkti tiriamus gardelés modelius, kurie pasizyméty netrivialiomis
savybémis, bet kartu turéty zinomus analitinius sprendinius, leidziancius

jvertinti tinklo rasty rezultaty tiksluma.

o Istirti lokaliy ir globaliy daleliy tankio pasiskirstymo bruozus, parenkant
ivairius tinklo ir gardeliy modeliy parametrus.

o Patikrinti kaip keic¢iasi charakteringu dydziu konvergavimo sparta didi-
nant sistems.

Mokslinis darbo naujumas

o Laiko-erdvés kristaliné struktura yra nauja auksto dimensiskumo gardelé,
sukuriama pasitelkiant erdvéje periodinio gaudyklés potencialo rezo-
nansinj purtyma. Si sistema papildo Zinomy gardeliy su sintetinémis
dimensijomis gretas [41,42], pasiulydama alternatyvu jgyvendinimo buda
ir suteikia jrankius nagrinéti topologinius efektus, tokius kaip lokalizuoty
krastiniy buseny susidaryma [62] ar Thouless pumpavimg daugiamatéje
erdvéje [45].

e Dirbtiniy neuroniniy tinkly taikymas gardeliy Zemiausios energijos
busenos radimui yra nauja sritis [57,63], kuri pasiulo skai¢iavimo metoda
papildantj tipiskai naudojamus tikslaus diagonalizavimo ir tenzoriniy tin-
kly algoritmus. Analitiné analizé rodo, kad dirbtiniai neuroniniai tinklai
gali tiksliai atvaizduoti daugiadalelines busenas [64], taciau yra iSlikes
atviras optimizavimo klausimas — neaisku ar duotas tinklas sugebés tik-
sliai i¥mokti duoto modelio bruozus. Siame darbe tiriamos dvi skirtingos
tinkly architekturos, siekiancios tiksliai nustatyti arba pagerinti zemiau-
sios energijos busenos jvertj ribotos geometrijos gardelése. Ypac¢ daug
démesio skiriama gardeléms su ploks¢iomis energijos juostomis. Fizikiniu
poziuriu jos yra jdomios dél dominuojancio saveiky indélio ploksciose ju-
ostose, o skai¢iavimy atzvilgiu, Sios gardelés iSkelia pakankamai sudét-
inga problema dirbtiniams neuroniniams tinklams jveikti. Kadangi neu-
roniniai tinklai remiasi efektyviu banginés funkcijos kodavimu, juos sék-
mingai pritaikius potencialiai atsiverty galimybés tirti didesnes sistemas

negu jmanoma su kitais skaic¢iavimo metodais.

Ginamieji teiginiai
1. Rezonansiniu dazniu purtoma gardelé palaiko parametry rézima, kuriame

susidaro laiko-erdveés kristaliné struktura — erdviné gardelé su periodine
laikine struktura kiekviename erdvinés gardelés mazge.

2. Laiko-erdvés kristalinés strukturos leidzia tirti SeSiamaciy gardeliy
topologines savybes.
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3. Apribotos Boltzmann architektiros neuroniniai tinklai sékmingai ko-
duoja ploksciy energijos juosty gardeliy modeliy globalia banginés
busenos tikimybeés tankio struktura, pasitelkdami energijos minimizav-
ima.

4. Dirbtiniai neuroniniai tinklai didelése sistemose yra linke uzstrigti tikimy-
bés tankio konfiguracijose atitinkanciose lokalius energijos minimumus.

5. Autoenkoderio taikymas triukSmingy duomeny analizei leidzia patikslinti
zZemiausios energijos busenos jvertj, turint aibe apytiksliy banginiy buseny

superpozicijy su dominuojanciu zemiausios energijos busenos indéliu.
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Laiko-erdvés kristalinés strukturos

Iprastas kristalas yra periodinis atomy iSsidéstymas, kurio struktura nulemia
tarpdalelinés saveikos. Tokj kristalag galima aprasyti kaip stabilia kvanting
buseng, susidarancia po spontaninio banginiy buseny tolydinés transliacinés
simetrijos sulauzymo déka isoriniy trikdziy, pvz. saveikos su aplinka ar at-
likto matavimo. Kristalo busena yra simetriné gardelés konstantos karto-
tinio postumio atzvilgiu, tuo tarpu hamiltonianas, aprasantis sistema, turi
aukstesne, tolydine transliacijos simetrija, kuria taip pat pasizymi sistemos
tikrinés busenos. Laiko kristala [24,25,131-133] galima jsivaizduoti analogiskai,
tereikia sukeisti erdvés ir laiko vaidmenis. Siuo atveju spontaniskai sulauzoma
arba diskreti, arba tolydiné laiko transliaciné simetrija, todél sistema pasizymi
laikiniu periodiskumu, aprasomu bangine busena, kurios simetrija yra zemesné
negu sistemos hamiltoniano. Termodinaminéje pusiausvyroje iskyla fundamen-
taliy laiko kristaly sukurimo apribojimy [132,134], tafiau periodiskai pur-
tomos daugiadalelés sistemos leidzia jgyvendinti laiko kristalus tiek teoriskai
[135-138], tiek ir eksperimentiskai [139-144]. Gerai zinomas diskretaus laiko
kristalo pavyzdys yra Saltyjy atomy Bose Einstein kondensatas, Sokinéjantis ant
rezonansiskai virpinamo veidrodzio [135], kai virpinimo daZnis yra naturalios
atomy osciliacijos kartotinis. Tuomet Sokinéjanciy daleliy periodas sulauzytos
simetrijos busenoje tampa didesnis uz virpinimo perioda.

Spontaninis simetrijos sulauzymas yra ne vienintelis budas sukurti peri-
odiska struktura laike. Panasiai kaip optinés gardelés sugaunancios daleles
Sviesos sudarytame periodiniame potenciale, taip ir tinkamai parinktas rezo-
nansinis sistemos purtymas gali sukurti efektinj potenciala iSrikiuojantj daleles
periodigkai laike [24,25,133,145]. Sios sukonstruotos laiko kristalinés struk-
turos suteikia galimybes tirti kondensuoty medziagy reiskinius laiko dimensi-
joje — teoriskai yra numatyta Anderson lokalizacija [146-149], Mott izoliatori-
aus fazeé [150], topologiskai apsaugotos busenos [151,152] ir ploks¢iy energijos
juostu gardeliy sukurimas [153].

Sekanciuose skyreliuose pristatysime laiko-erdvés kristalines strukturas, ku-
rios yra periodiskos laike ir erdvéje. Pasinaudodami laiko kristaliniy struk-
tury idéjomis, sukonstruosime naujo tipo auksto dimensiskumo gardele, ku-
rioje laikas elgiasi kaip sintetiné dimensija susieta su kiekvienu erdviniu
laisvés laipsniu. Pagrindiniai Siu skyreliy rezultatai publikuoti [Al]. Pirmi-
ausia sudarysime laikines strukturas kiekvienoje erdvinés gardelés potencinéje
duobéje (mazge) parinke atitinkama gardelés purtyma. Taip efektyviai su-
formuosime dvimate sistema, susidedancig is erdvéje ir laike pasikartojanciy
gardelés mazgy. Toliau parodysime, kad pridedant papildomus du tarpusavyje
ortogonalius erdvinius periodiskai purtomus potencialus galima padidinti siste-
mos iSmatavimy skaiciy iki Sesiy dimensijy. Daugiamaté sistema susiformuoja,
nes su kiekviena erdvine kryptimi yra susieta laikiné dimensija. IS to seka, kad
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purtoma trimaté erdviné gardelé sudaro Sesiamate laiko-erdvés kristaline struk-
tura. Galiausiai jvesime dirbtinius kalibruotés laukus, kurie leis tirti kvantinj
Hall efekta ir topologines savybes auksty dimensijy sistemose.

Laikiné kristaliné struktura

Laiko-erdveés kristalinés strukturos konstravimag pradésime nuo laikinés struk-
turos, atsirandancios viename i$ periodiskai purtomos erdvinés gardelés mini-
mumy, tyrimo. Musy nagrinéjama vienmate sistema apraso klasikinis hamil-
tonianas )

H(w,pa,t) = 25 + Vosin® (k. [z — Acos(wt)]) (1)
kai m yra dalelés masé, x — koordinaté, p, — judesio kiekis, Vy — gardelés po-
tencialo amplitudé, kr, — banginis vektorius, aprasantis gardelés periodiskuma,
w — purtymo daznis ir A — maksimali gardelés nuokrypio amplitudé = kryp-
timi, dél periodinio purtymo. Jei nesutrikdytame potenciale pagautos dalelés
judéjimo daznis 2 sutampa su sistemos virpinimo dazniu, arba sudaro jo kar-
totinj, t.y. w = s, kai s € Z, tuomet kiekviename gardelés minimume stebimas
stroboskopinis fazinis portretas pasizymi diskrecia struktura (1 pav.). Susidaro
rezonansinés salos — uzdaros trajektorijos neapimancios koordinaciy pradzios
tasko: s = 3 atveju 1 pav. matomos trys pilkos salos, o s = 5 — penkios raudonos
salos fazinés erdves krastuose. Sios salos yra periodinés laikinés strukttros pa-
grindas — dalelés ties pasirinkta rezonansine trajektorija kiekvienoje i$ saly
vidutiniskai praleidzia vieng virpinimo perioda T = 27w, kas sukuria diskrety
ir lokalizuota sistemos elges;.

g

= N

-0.4 -0.2 0.0 0.2 0.4

1 pav. Tipinis periodigkai purtomos vienmatés gardelés stroboskopinis fazinis
portretas su charakteringomis rezonansinémis salomis.
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2 pav. Stroboskopinis fazinis portretas veikimo-kampo koordinaciy sistemoje
su tais paciais parametrais kaip ir 1 pav.
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3 pav. Efektinio hamiltoniano (2) judéjimo lygéiy sprendiniai su 2 pav. naudo-
tais parametrais.

Norint gauti efektinj sistemos aprasyma ties rezonansinémis salomis, patogu
atlikti kanonine transformacija, leidziancia atvaizduoti fazinj portreta veikimo
I ir kampo 6 koordinadiy sistemoje [154]. Tuomet 1 pav. naujoje koordinaciy
sistemoje atrodys kaip pavaizduota 2 pav. Sis atvaizdavimas leidzia lengvai nus-
tatyti veikimo I verte, ties kuria formuojasi s-tojo rezonanso salos. Taikant
sekuliaria aproksimacija, suvidurkinanéia hamiltoniang per laika, atmetami
sparciai osciliuojantys nariai. Tuomet galime uzrasyti efektinj hamiltoniana
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wt

besisukancioje koordinaciy sistemoje © = 6 — “* nusakantj sistemos elgesj ties

s-tuoju rezonansu [155]:

2

Hex(0,1) = — Vet cos(sO) + const. (2)

Meft

X 8% Ho (1
Cia meg = 8102( )

-1
> yra efektiné masé, nustatoma i$ nepurtomo hamil-
.

toniano Ho(I), o Vg = Aw|ps(I)| yra efektinis potencialas, kai ps — s-toji jude-
sio kiekio Fourier komponenté. Taip pat apibréziamas efektinis judesio kiekis
P = I — I;. Norint jsitikinti, kad S$is hamiltonianas gerai aproksimuoja pur-
tomos sistemos elgesj, iSsprendziame judéjimo lygtis aplink s = 3 rezonansa ir
matome, kad sprendiniai (3 pav.) gerai jvertina rezonansiniy saly dydj pavaiz-
duota 2 pav. Efektinio hamiltoniano (2) forma atitinka tipinj kietojo kuno
kristalo aprasyma pagautam elektronui. Naudodamiesi Sia analogija sakome,
kad ties kiekvienu erdviniu gardelés minimumu egzistuoja periodiné sistema
aprasoma (2) hamiltonianu, kuria vadinsime laikine struktira.

Analizuojant Sig sistema klasikiniame rézime mes pamatéme, kad purtant
vienmate gardele rezonansiniu dazniu galime lokaliai sukurti efektyvias peri-
odines strukturas kiekviename gardelés mazge. Norint kiekvieng struktura suk-
abinti su gretimuose gardelés mazguose esanc¢iomis strukturomis ir pagaminti
laiko-erdveés kristaline gardele, tenka naudoti kvantinj aprasyma, kuris leidzia
iskaityti tuneliavima tarp skirtingy mazgy.

Laiko-erdvés kristaliniy struktury kvantinis aprasymas

Kvantine problemos analize pradésime nuo kanoniskai kvantuoto (1) hamilto-
niano: )
H(t) = é’i + Vosin? (kr, [£ — Acos(wt)]) . (3)
m
Peréjus j virpinama atskaitos sistema ir perrasius hamiltoniang atatrankos en-
2

.. . . Rk}
ergijos vienetais Fr = 5, gauname

H(t) = p? + Vysin? (2) + Aw sin(wt)pe. (4)

Sis hamiltonianas yra periodinis laike, todél patogu taikyti Floquet formalizma.
Teskosime Floquet hamiltoniano H(t) = H(t) — i% tikriniy verciy problemos

~

H(t)q)k,a(x;t) = Ek,a@k,a(zvt)a (5)

sprendiniy, kurie yra Bloch funkcijos formos @ (z,t) = e*@uy o(z,t).
Funkcija ug o(z,t) = ugo(z + 7,t) = ko (a:,t—!— %’T) yra periodiné tiek erd-
véje, tiek laike. Kvazienergija Ej . priklauso nuo kvazijudesio kiekio k ir ja
indeksuoja kvantinis skaicius .
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Skaitmeninis problemos sprendimas leidzia rasti Floquet funkcijuy ® g(z, t)
sprendinius s-tojo rezonanso aplinkoje. Vieno is iy sprendiniy tikimybeés tankis
pavaizduotas 4 pav. juoda linija skirtingais laiko momentais, trijuose periodinio
erdvinio potencialo mazguose. Matome, kad po vieno virpinimo periodo §i
funkcija sugrizta | pradine padétj, t.y. iSlaiko hamiltoniano periodiskuma. IS
Siy rezonansiniy Floquet buseny galima sudaryti lokalizuotas Wannier busenas,
skaitmeniskai diagonalizuojant pozicijos operatoriy rezonansiniy buseny bazéje
[76]. Gautas Wannier funkcijas galime uzraSyti kaip

wjalz,t) = Zbﬁ%@kﬁ(x,t), (6)
k,B
kai k sumuojamas per visus leidziamus kvazijudesio kiekius, o g = 1,...,s

per visas rezonansines busenas. bk% — skaitmeniskai nustatyti koeficientai.
Kiekviena iS Wannier buseny yra lokalizuota tam tikrame j-ajame erdviniame
gardelés mazge ir laikiniame mazge a. Laikinj mazga atitinka vienas i$ laikinio
potencialo minimumy ties rezonansine sala. Pazvelge i trijy Wannier funkcijy,
pazyméty skirtingomis spalvomis, evoliucija trijuose gardelés mazguose 4 pav.,
matome, kad per purtymo perioda 7" funkcijos nesugrizta i pradine padétj — ju
periodiskumas sT" yra budingas s mazgy laikinei strukturai.

(a) wt=n/5

£)1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/n

4 pav. Vienos is rezonansiniy Floquet buseny tikimybés tankio (juoda kreive) ir

Wannier buseny tikimybeés tankio (spalvotos bruksninés linijos) priklausomybeé

nuo erdvinés koordinatés trijuose mazguose. Funkcijos pavaizduotos trimis

laiko momentais, atitinkandiais fazes: (a) wt = 7/5, (b) wt = 7/5 + 7 ir (¢)

wt =7/5+ 2m.

Wannier funkcijy lokalumas leidzia jas panaudoti kaip baze stipraus rysio
artinio hamiltonianui uzrasyti, t.y. apibrézti efektinj modelj, aprasantj laiko-

118



erdveés kristaline struktura kaip gardele:
A o ]_ j,,a/ /\T ~
Hyg=—5 > Jlal, ,aja, (7)

A(T)

kai operatorius @, sunaikina (sukuria) dalele ] aJame erdviniame mazge ir o-

jame laikiniame mazge. Tuneliavimo stipris J ]J 2% apraso kompleksines Suolio
amplitudes i$ mazgo (j,«) i (j/,a'):

Jie =-— dt / W o (2, 8) H(t) wa(z,t) da, (8)
L
¢ia L — gardele sudaranciy erdviniy mazgy skaicius.

Viena i§ tokiy gardeliy realizacijy yra pavaizduota 5 pav. Isilgai horizon-
talios asies turime iSsidésciusius L erdvinius gardelés mazgus, o iSilgai ver-
tikalios asies yra pasiskirste s laikiniai mazgai. Suoliy matrica sudaryta is J]J::O’la
elementy apibrézia galimus tuneliavimus, kurie yra pavaizduoti skirtingomis
mazgus jungianciomis linijomis ir pilnai nusako gardelés geometrija. Esant
kompleksiniams Suoliams taip pat gali atsirasti ir uzdarus gardelés konturus
(plaketes) kertantys dirbtiniai magnetiniai srautai v. Modifikuojant purtymo
ir potencialo parametrus, gardelés geometrija ir srautai gali keistis i$ esmeés,
todél norint tiksliau reguliuoti srautus reikia jvesti papildoma potencialo mod-

&Q $ O 4
o o2

B N | SN Q-

ISR

~.

uliavima.

\~

ook

5 pav. Kvazivienmateé laiko-erdveés kristaliné struktura, kai Vj = 4320, s = 3,
w = 240 ir A = 0.01. Horizontali asis atitinka erdvés dimensija, o vertikali
— laikine. Tos pacios spalvos mazgai zymi vienodos fazés Wannier funkcijas
pries laikinj vidurkinima. |Jp| ir |J2| yra Suoliy parametry vertés tarp mazgu
atitinkamai sujungty vientisa ir bruksniuota linija. + yra dirbtinis magnetinis
srautas kertantis gardelés plakeciy plotus.
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Auksciau nagrinéta laiko-erdvés struktura nesunku generalizuoti aukstes-
néms dimensijoms. Prie turimos purtomos vienmatés gardelés aprasomos hamil-
tonianu (4) galime pridéti dvi papildomas virpinamas vienmates gardeles
nukreiptas ortogonaliomis kryptimis, taip sukuriant trimatj erdvinj kristala.
Kadangi kiekviena vienmaté gardelé palaiko periodinj laikinj potenciala, toki-
ame kristale galime jgyvendinti Sesiamate laiko-erdves kristaling struktura. Ja

apibrézia hamiltonianas

AP () = Hy () + Hy () + H.(2), (9)

kai fIq(t), q € {z,y, z} yra hamiltonianas (4), aprasantis sistema ¢ asies kryp-
timi. Sis trimatis hamiltonianas yra atskiriamas, todél galime rasti Wannier
funkcijas wj, o, (g, t) kiekvienai asiai atskirai. Tuomet bendras erdvéje trimacio
kristalo sprendinys yra siy Wannier funkcijy sandauga:

W_" _’(F’ t) = wjz:az (x’ t)wjy:ay (y7 t)wjz;az (Z? t)' (10)

Vektoriniai dydziai apibrézti kaip ¥ = (z,y,2), j = (Jus JysJz) It & =
(0uz, iy, ;). Erdviniai mazgai yra indeksuojami vektoriumi f, o laikiniai —
& su komponentémis a, € {1, ..., s}, kai s yra rezonanso, ties kuriuo purtoma
sistema, skaic¢ius. Pasinaudojant Siomis Wannier funkcijomis galime sudaryti
laiko-erdveés kristaline struktiira aprasoma stipraus rysio modeliu

A 1 21 =
_ _ - Jhalat A
HTB = B ) J;‘,d’ a;,’&,aLw (].].)
Jhalg,a
su Suolio parametrais
gia _ 2 STdt/d /d /d we o (B — i) we
- = - X z = o, T, —1— = (1, 1).
j,O_Z ST 0 y j/’a/ at J,e

(12)
Matome, kad kiekvienas mazgas indeksuojamas Sesiais indeksais, taigi gauta
gardelé yra Sesiamaté. Toks pats iSvedimas galioja sistemai sudarytai iS poros
lazeriy — tuomet gauta struktiira bus keturmate. Sios daugiamatés struktiiros
gali buti alternatyva sistemoms su sintetinémis dimensijomis [41, 42], kurios
iSnaudoja vidine daleliy sandara aukstesnéms dimensijoms pasiekti.
Laiko-erdveés kristalinés strukturos yra taip pat tinkamos topologinéms
medziagy savybiu tyrimams aukstesnése dimensijose. Kontroliuojamy dirbtiniy
kalibruotes lauky sukurimui galima pasitelkti metodus zinomus optiniy gardeliy
fizikoje [35,159] — i8derinus laikiniy mazgy energija periodiskai moduliuotu po-
tencialu sustabdomi naturalus Suoliai laikine kryptimi, tuomet panaudojant
papildomus lazerius atstatomas tuneliavimas, taciau su valdoma, lazeriy sa-
lygota faze. Tinkamai parinkus Siy lazeriy kryptis, jmanoma sukurti bet kokj
efektinj magnetinj srauta kertant] daugiamatés gardelés plaketes.
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(a)Flux per plaquette: m/2  (b)Flux per plaquette: n/2

2 2

Y Y
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log100z
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® o -2

6 pav. Virsutiné eiluté: Vienos 2D kvadratinés laiko-erdvés strukturos su-
darancios 6D gardele energijos dispersijos sarysis, kai mazgu skaicius laikine
kryptimi yra (a) s = 3 ir (b) s = 11. Gardelés plaketes kerta dirbtinis mag-
netinis srautas 7. Raudoni taskai Zymi pasirinkta krasting busena, kurios
tikimybeés tankio projekcijos pg i laiking dimensija pavaizduotos (c) ir (d) po
atitinkamomis dispersijomis.

Vienas i$ topologiniy efekty, kur] jmanoma realizuoti Sesiamatéje laiko-
erdveés strukturoje, yra topologinés krastinés busenos. Tai yra busenos, ku-
rios lokalizuojasi ties atvirais gardelés krastais ir apibudinamos netrivialiu
topologiniu invariantu [45]. Tarkim turima kubiné gardelé yra periodiné vi-
somis erdvinémis kryptimis, o kiekviena su erdvine 1D gardele susieta laik-
iné kryptis turi baigtinj skaic¢iy s mazgy. Jei gardelés kvadratines laiko-
erdvés plaketes kerta magnetinis srautas v = 7, energijos dispersijoje at-
siranda charakteringos linijos atitinkancios krastiniy buseny energija ir jun-
giancios energijos juostas per draustinj tarpa (6 pav. (a), kai s = 3, (b) —
s = 11). Apibrézus tikimybeés tankj krastingje busenoje |¢) ties mazgu (j, a)
kaip p; ; = <w|&}7&&;@|w>, galime suskaiciuoti tankio projekcija pa = > 5 p7 4-
Si projekcija nusako kokj tankio indelj sudaro kiekvienas laikinis mazgas &
susumavus per visus to mazgo erdvinius indeksus 7. Pasirinke krastine busena
ties kvaziimpulsu k, = k, = k, = 7 paZyméta dispersijos sarysiuose raudonu
tasku, matome, kad tankio projekcijos pgz pavaizduotos 6 pav. (c, d) lokalizuo-
jasi kampiniuose taskuose. Tai reiskia, kad busena yra lokalizuota visy 2D
laiko-erdves struktury (is kuriy sudaryta 6D struktura) viename is laikiniy
krasty.

Apibendrinant, startave nuo klasikinés virpinamos gardelés pamatéme, kad
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purtant sistema rezonansiniu dazniu isryskéja papildoma periodiné struktura
kiekvienoje gardelés potencinéje duobéje. Si struktiira gali buti i$naudojama
kaip sintetiné dimensija, kuria vadiname laikine arba laiko dimensija. Kvanti-
nis Sios sistemos tyrimas leido aprasyti purtoma vienmate gardele kaip efektine
dvimate laiko-erdvés strukturg ir jvertinti tokiy sistemy geometrija is leistiny
tuneliavimo parametry tarp mazgy. Kadangi kiekviena 1D erdviné purtoma
gardelé palaiko laikine struktiira, pasitelkiant du arba tris lazerius galima
igyvendinti 4D arba atitinkamai 6D laiko-erdvés kristalines strukturas. Turé-
dami Siy struktury aprasyma, i sistemas jvedéme kontroliuojamus efektinius
magnetinius srautus, leidzianc¢ius kurti topologines savybes svarbias kvantiniy
kompiuteriy veikimui. Taigi laiko-erdveés kristalinés strukturos yra universalios
daugiamatés gardelés, kurios atveria kelig tirti ir tobulinti elektronika aukstes-
nése dimensijose.

Dirbtiniy neuroniniy tinkly taikymas Zemiausiai
energijos busenai nustatyti

Optinése gardelése pagauty saltyjy atomy dujy daugiadaleliniy procesy skait-
meninis modeliavimas yra sudétingas, daug kompiuteriniy resursy reikalaujan-
tis uzdavinys. Dabartiniai skaitmeniniai metodai, priklausomai nuo uzdavinio
specifikos, geba surasti gardeliy, susidedanciy i desiméiy/S8imty mazgy Zemi-
ausios energijos busenas [52]. Norint pasiekti didesnj tiksluma ir spresti prob-
lemas, susidedancias i daugiau daleliy, plétojami seni bei kuriami nauji algo-
ritmai veikiantys zemy energijy poerdvyje [160]. Masininis mokymasis yra jau
ilgg laika taikomas dideliy duomeny apdorojimui — kalbos analizei, klasifikav-
imo problemos ir vaizdy atpazinimui [161,162]. Pastaruoju metu $is metodas
sulaukia vis daugiau sékmeés ir kondensuoty medziagy fizikoje. Jis pradétas
taikyti medziagu fazéms atpazinti [163, 164], ekstrapoliuoti informacija apie
fazinius virsmus [165], klasifikuoti eksperimentinius duomenis [166,167] ir at-
likti kvantine tomografija [168]. Ypaé¢ aktualus taikymas kvantiniy problemy
skaiciavimy sri¢iai yra galimybé atvaizduoti bangine busena kaip neuroninj
tinkla [57,60]. Neuroninis tinklas gali uzkoduoti Zemiausios energijos busenas,
kurios yra labai susietos [64,169] bei pritaikyti §j kodavima stipriai koreliuotos
kvantinés medziagos skai¢iavimams su tikslumu prilygstancéiu arba net geresniu
negu jprastai naudojamuy algoritmy [170-176].

Musy tikslas yra pritaikyti dirbtiniais neuroniniais tinklais koduojamuy
buseny formalizma ploksciy energijos juosty gardeléms ir iStirti rezultaty
tiksluma, taip pat iSnagrinéti galimybe iSgauti Zemiausios energijos bangine
buseng i triuksmingy banginiy buseny imties, kurios busenos yra artimos tik-
sliam rezultatui. Siems tikslams jgyvendinti mes pasitelksime dviejy tipy dirb-

tinius neuroninius tinklus — apribota Boltzmann masing ir tiesioginio sklidimo
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autoenkoderj. Apribota Boltzmann magina bus taikoma gardeliy Zemiausios
energijos busenos nustatymui ir jos tikimybiy tankio strukturos tyrimui, pa-
sitelkiant neuroninio tinklo koeficienty optimizavima minimizuojant sistemos
energija. Sekant [A2], ypatingas démesys bus skirtas dviems gardeliy geometri-
joms palaikancioms kompaktiskas lokalias busenas — kvazivienmatei trikam-
pei gardelei ir dvimatei kagome gardelei. Tuo tarpu autoenkoderis bus taiko-
mas kaip antrinés analizés jrankis, kaip jvestj priimantis apytiksles zemiausios
energijos busenos israiskas, gautas kitais skaic¢iavimo metodais, ir bandantis
sugeneruoti geresnj jvertj. Sio tinklo galimybés bus tiriamos bandant iSgauti
kvadratinés ir kvazivienmateés trikampés gardeliy tikimybiy tankius is pradinés
triukSmingy buseny aibés pagal [A3].

Apribota Boltzmann masina

Dirbtinio neuroninio tinklo architekturos pasirinkimas priklauso nuo sprendzi-
amos problemos. Labiausiai paplitusios architekturos skirtos zemiausiy
kvantinés sistemos buseny radimui yra apribota Boltzmann masina [57-59] ir
tiesioginio sklidimo neuroniniai tinklai [60]. Taip pat taikomi konvoliuciniai
neuroniniai tinklai [61,171]. Motyvuoti apriboty Boltzmann masiny sékme
nustatant zemiausia sistemos energija, mes pasirenkame Sig architektura zemi-

ausiy energijos buseny struktury tyrimui.

7 pav. Apribota Boltzmann masina. Kiekvienas i§ L + 1 jvesties mazgy ng
yra sujungtas su M paslépty mazgy h; tiesiomis linijomis, kurios atvaizduoja
svorinius koeficientus Wp;.

Apribota Boltzmann magina atvaizduoja bangine buisena kaip dviejuy slu-
oksniy neuroninj tinkla. Jis yra visiskai sujungtas — kiekvienas vieno slu-
oksnio mazgas yra sujungtas su visais kito sluoksnio mazgais. Si struktiira
schematiskai pavaizduota 7 pav. Mazgai pazyméti ny priklauso taip vadinamam
matomam sluoksniui ir zZymi jvesties koeficientus, o h; yra paslépti mazgai,
kurie gali jgyti vertes {—1,1}. Sary§} tarp matomy ir paslépty mazgy apraso
svoriai Wy;. Pagrindiné prielaida apie Zemiausios energijos buisenos koeficientus
¥ () yra gaunama susumavus neuroninj tinkla aprasanc¢ius Boltzmann fakto-
rius per visas jmanomas paslépty mazgy vertes [57]. Sie koeficientai nusako,
kokj svorj turi bazinis vektorius atitinkantis v = (ng,n1,...,nz) konfiguracija
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Zemiausios energijos busenoje:

L M L
P(y) = eZz:o aene H 2 cosh (Z Wiing + bj) ) (13)

J=1 £=0

kai ay yra matomo sluoksnio koeficienty pataisa ir b, — paslépto sluoksnio ko-
eficiento pataisa. Neuroninio tinklo koeficienty aibé @ = {Wy;, ar, b;} visiems
j=12,...,.Mir ¢ =0,1,..., L pilnai nusako sistema. Norint rasti jy vertes
neuroninis tinklas turi buti apmokomas. Mokymo procedura susideda i$ dviejy
zingsniy — variacinis Monte Carlo metodas atsitiktinai atrenka bazinius vekto-
rius i§ konfiguraciju erdvés ir jvertina sistemos vidutine energija [193]. Gauta
energija minimizuojama atnaujinant neuroninio tinklo koeficientus pasitelkiant
optimizavimo metodus [180]. Mokymosi protokolas gali buti susumuotas kaip
keliy zingsniy seka:

1. Apribota Boltzmann masina inicijuojama su atsitiktinais mazais svorini-
ais koeficientais o ir pasirenkama atsitiktiné sistemos konfiguracija .

2. Atlieckami Npc Monte Carlo algoritmo zingsniai atrenkantys kon-
figuracijy rinkinj ir jvertinama sistemos energija esant pradiniams tinklo

svoriniams koeficientams.

3. Tinklo koeficientai atnaujinami pasitelkiant Adam/AdaMax metoda
[180], kuris minimizuoja energija.

4. Procesas kartojamas nuo 2 punkto baigtinj Nypdate atnaujinimy skaiciy
arba kol pasiekiamas norimas stebimo dydzio tikslumas.

Apmokytas neuroninis tinklas gali jvertinti bet kokio operatoriaus A tikétini-

ausia verte (fl) = <%>7 imant statistinj vidurkj per Monte Carlo metodu

sugeneruotas v konfiguracijas [193].

Plok¢iy energijos juosty gardeliy savybiy tyrimas taikant
apribota Boltzmann masing

Gardelés su ploksciomis energijos juostomis pasizymi jdomiais daleliy saveikos
nulemtais reiskiniais — trupmeniniu kvantiniu Hall efektu [100,181,182], super-
laidininky buseny koreliavimu [183, 184], ploks¢iy juosty magnetizmu sukin-
inése sistemose [185] ir kitais, ziuréti [71]. Mes nagrinésime zemiausios en-
ergijos busenas, kurios gali buti iSreikstos per kompaktiskas lokalias tikrines
busenas [186, 187], susietas su gardelés Zemiausia plokscia energijos juosta.
Sios biisenos yra Bloch bangy superpozicijos ir lokalizuojasi ant keleto gardelés
mazgy atskirty nuo kity lokalizuoty sriciy per tuscius mazgus, kuriuose néra
daleliy dél destruktyvios kvantinés interferencijos. Daleliy tankio skirstiniai
susiformave i kompaktisky lokalizuoty buseny sudaro pakankamai sudétingas
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struktiiras, tinkamas tirti neuroninio tinklo gebéjima iSmokti su jomis susijusias
savybes. Siame skyrelyje taikysime apribotg Boltzmann masing kvazivienmatés
trikampés ir dvimatés kagome geometrijos gardeléms su ploksciomis zemiau-
sios energijos juostomis tyrimui ir jvertinsime kiek tiksliai neuroninis tinklas
nustato sistemos parametrus.

0
kd kd

8 pav. (a) Kvazivienmaté trikampé gardelé su L+1 = 17 mazgais, atskirtais per
gardelés konstantg d. Suolio parametrai J ir J' pazyméti atitinkamai juodomis
ir pilkomis linijomis. Bruksninés linijos apsupa antraja tankio sala, kurloje
lokalizuota viena dalelé su zaliai pazymétais daleliy tankiais s = n; = Z
ir ng = % atitinkamuose mazguose. (b) Energijos dispersijos sarysis, kai
J'/|J'| > 0, Siuo atveju suzadinta energijos juosta yra plokséia ir srauto ker-
tancio elementary gardelés narvelj néra (& = 0). (c) Energijos dispersijos
sarysis, kai J'/|J'| < 0 — Zemiausia energijos juosta yra plokscia ir dél neigiamo
Suolio parametro atsiranda elementary gardelés narvelj kertantis srautas ® # 0.

Viena i§ paprascéiausiy gardeliy, turinéiy plokséia energijos juosta yra
kvazivienmate trikampé gardelé (8 pav. (a)). Toks gardelés modelis gali buti
igyvendinamas tiek fotoniniuose kristaluose [190], tiek Saltyju atomy siste-
mose [191]. Mes pasirinksime parametry rezima, kuriame tokioje gardeléje
zemiausios energijos busenoje matoma tankio banga sudaryta i kompaktisky
lokalizuoty buseny. Laikant, kad kvazivienmaté gardelé aprasoma stipraus

rysio artinio hamiltonianu

L L/2 U L
2 o AT A 7 AT A ) N N~
H= —J;_l ayap— —J ]Ezl ah;a2j—o +h.c. | + ) E_O fe(fe — 1),  (14)

tarsim, jog sistemg sudaro L + 1 = 17 mazgas ir 4 dalelés, saveikaujancios
U/|J'| = 0.1 stiprio saveika iSreikSta Suolio parametro vienetais. Gardelés
krastines salygas laikysime atviromis. Jei Suolio parametrai tarp artimiausiy
kaimyny tenkina sarysj J = v/2|J'| ir J'/|J’| = —1, tuomet turésime plokscia
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energijos juosta su maziausia energija (8 pav. (c)). Esminés Zemiausios en-
ergijos busenos savybés pavaizduotos 8 pav. (a). Daleliy tankiai iSsidésto }
tankio banga pavaizduota zaliai. Viena dalelé pasiskirsto per tris mazgus, taip
vadinamg tankio sala, pazyméta punktyriniu staciakampiu, atskirta nuo kity
saly per tuséia mazga. Kiekvienos salos centrinio mazgo uzpilda yra %, 0 gre-
timy mazgy — %. Sie tankiai yra viena i§ pagrindiniy sistemos savybiy, kuria
neuroninis tinklas stengsis iSmokti atpazinti.

Skaic¢iavimams su apribota Boltzmann masina atlikti taikysime Netket
grupés neuroninio tinklo koda [193]. Fizikinei sistemai apibudinti naudosime
parametrus iS praeito paragrafo. Laikysime, kad dirbtinio neuroninio tinklo
paslépty mazgu skaidius yra M = |a(L+1)], kai paslépty mazgy tankis
a = 2.5 ir || — funkcija grazinanti didziausia sveika skaiciy, kuris yra ly-
gus arba mazesnis uz jvesti. Atliksime Nypgate = 15000 neuroninio tinklo
svoriy @ optimizavimo operacijy pasitelkiant AdaMax algoritma [180]. Pries
kiekviena svoriy atnaujinima padaroma Nyc = 5000 Monte Carlo Zingsniy,
kurie iSvaiksto konfiguracijuy erdve surinkdami buseny sarasa is kurio gaunama
suvidurkinta energija. Butent toks gardelé dydzio ir paslépty mazgy skaici-
aus pasirinkimas yra motyvuotas tuo, kad Siuo atveju gardelés konfiguracijy
skaicius virsija tinklo svoriniy koeficienty skai¢iy. Tai reiskia, kad jei neu-
roninis tinklas iSmoks bangine busena, ji bus efektyviai uzkoduota redukuota
reprezentacija.
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9 pav. Absoliucios paklaidos e konvergavimas skirtingiems dydziams,

aprasantiems gardele Zemiausioje energijos busenoje: zemiausios busenos en-
ergijos Eg paklaida (juodi bruksniai), vidutiné uzpildos paklaida 4 (raudona
kreive), 5 (7alia) ir 6 (mélyna) mazge, nuokrypis nuo suminio tankio ¥ antroje V
formos saloje (zydra) ir tikslios bei suskai¢iuotos zemiausios energijos busenos
persiklojimo f nuokrypis nuo vieneto (violetiné).
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Pagrindiniai parametrai, kuriuos stebime mokymosi procese yra zZemiausia
sistemos energija Eys, persiklojimas f tarp tikslios ir neuroninio tinklo numato-
mos zemiausios energijos busenos, daleliy tankis trijuose skirtinguose gardelés
mazguose: mazge besiribojan¢iame su tankio sala ir turiné¢iame tikslia tankio
verte my = 0, krastiniame tankio salos mazge su tankiu 5 = i ir centriniame
salos mazge su i$ analitiniy skaiCiavimy gauta tankio verte mg = % Taip pat
ziurésime kiek suminis pasirinktos antrosios tankio salos tankis yra nutoles nuo
tikslios vertés i =ns5 + ng +n7 = 1. Visy Siy dydziy absoliuc¢iy paklaidy nuo
tiksliy verc¢iy desimtainis logaritmas yra pavaizduotas 9 pav. po kiekvieno tin-
klo svoriy atnaujinimo. Energija, zymima juodais bruksneliais, sukonvergavus
duoda tiksliausia rezultaty i$ stebimy dydziy, su nuokrypiu tarp 107° ir 1074
nuo tikslios vertés. Sis tikslumas yra palyginamas su rezultatais gautais na-
grinéjant kitus kvantinius modelius pasitelkiant neuroninius tinklus [57,60,63].
Spartus konvergavimas ir gautos energijos tikslumas nestebina, nes pats moky-
mosi procesas yra paremtas energijos minimizavimu. Jdomiau paziuréti kaip
elgiasi tankio struktura. Galima isskirti dvi tankio strukturos charakteristikas
— globalia ir lokalia. Globalia struktura apibrézia neuzimti gardelés mazgai,
kurie atskiria tankio salas viena nuo kitos. Vieno i$ Siy mazgy daleliy tankio
nuokrypis nuo nulio pavaizduotas raudong kreive, pazyméta mazgo numeriu
»,4¢° 9 pav. ir matyti, kad Sio jvercio tikslumas prilygsta energijos tikslumui.
Kity nulinio tankio mazgy rezultatai yra panasus. Tai reiskia, jog neuroni-
nis tinklas sugeba atpazinti tankio banga sudaryta is saly labai tiksliai. Tuo
tarpu lokali struktura nusako tankio pasiskirstyma individualioje saloje. Jeigu
paimsime du konkrecius antrosios salos mazgus, pazymétus numeriais ,5“ ir
,6%, atitinkancius uzpilda krastiniame ir centriniame salos mazge, pamatysime,
kad jy nuokrypiai nuo tiksliy verciy, neuroninio tinklo mokymo pabaigoje, yra
apytiksliai eile didesni negu nustatytos globalios strukturos ir pasizymi san-
tykiniai didelémis fliuktuacijomis aplink nuokrypj. Tai parodo, jog neuroniniui
tinklui yra sunku teisingai paskirstyti daleliy tankius vidinéje salos sandaroje.
Vienos salos uzpilda .3 ir tikslios bei rastos zemiausios energijos buseny per-
siklojimas ,.f* patvirtina anksc¢iau padarytas iSvadas. Persiklojimas konver-
guoja panasiu tikslumu kaip lokalig struktura nulemiantys dydziai, nes pagrin-
diniai nuokrypiai atsiranda dél netikslaus tankio pasiskirstymo individualiose
salose. Vienos salos uzpilda konverguoja tiksliau, nei lokali struktura — tai par-
odo, jog tinklas pakankamai gerai atpazjsta, jog vienai salai tenka viena dalelé,
bet vargsta su tankio paskirstymu per tris salos mazgus.

Norint patikrinti kokia jtaka daleliy tankio parametry konvergavimo spartai
ir tikslumui daro sistemos dydis, neuroninis tinklas yra apmokomas ketvircio
uzpildos skirtingo dydzio kvazivienmaciy gardeliy zemiausiai energijos biise-
nai nustatyti. Tankio strukturos kitimas po kiekvienos iteracijos pavaizduotas
10 pav., kai sistema sudaro L +1 =21 (a), L+ 1 =61 (b) ir L+ 1 = 101
(c) mazgai. Matome, kad nepriklausomai nuo sistemos dydzio, konvergavi-
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10 pav. Daleliy tankio evoliucija, kai gardeliy dydis L+ 1 =21 (a), L+1 = 61
(b) ir L+ 1 =101 (c) su parametrais o = 2.5, Nyyc = 5000 bei % 0.1.

mas link tankio bangos strukturos prasideda po vidutiniskai vienodo skaici-
aus neuroninio tinklo koeficienty atnaujinimy. Esminis pozymis atsirandantis
didesnése sistemose yra tankio defektai matomi (c¢) dalyje, kurie sutrikdo tankio
bangos struktiira. Juos paaiskinti galima tuo, kad tankio banga pradeda for-
muotis skirtingose gardelés dalyse, todél lokaliy formavimosi regiony saly pe-
riodiskumas gali nesutapti. Jei tai jvyksta, regiony sandaroje susidaro matomi
defektai, kuriy pasalinimui reikéty globalaus tankio strukturos pertvarkymo
suvienodinanéio periodiskuma. Sis pertvarkymas atitikty sistemos konfigiiraci-
jos pabégima iS lokalaus energijos minimumo, taciau optimizatoriui tai yra
sudétinga problema [194], kuri néra unikali neuroninio tinklo sprendziamam
uzdaviniui. Norint gauti tiksly rezultata tenka reinicializuoti neuroniniy tinkly
imtj su naujais atsitiktiniais parametrais.
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Konvergavimo sparta taip pat priklauso nuo neuroninio tinklo ir gardelés
parametry. Didinant paslépty tinklo mazguy tankj «, stebimy dydziy konver-
gavimo sparta ir tikslumas didéja, taciau jie pageréja optimizavimui skirto laiko
saskaita. Taip pat konvergavimas priklauso nuo tarpo tarp zemiausios energi-
jos juostos ir pirmos suzadintos energijos juostos — esant didesniam tarpui to
pacio tikslumo rezultatui pasiekti uztenka mazesnio skaiCiaus iteracijy [A2].

Norint istirti neuroninio tinklo gebéjima iSmokti Zemiausios energijos
busenos tankio struktura aukstesnése dimensijose, analogiskus skaic¢iavimus
galima atlikti ir dvimatei kagome gardelei. Kagome gardelés pavadinimas
kiles i$ japonu kalbos (,kago“ — krepsys, ,me*“ — akis), dél triheksagoninés
geometrijos primenancios tradiciniy Japonijoje pinamy bambukiniy krepsiy
rastus (11 pav. (a)). Si gardelé taip pat turi parametry rezima, palaikantj
Zemiausia plokscia energijos juosta [192,195]. Jei gardelés uzpilda yra mazesné
%, susidaro charakteringos tankio salos. Sios tankio salos (heksagoniniai
ziedai) yra paryskintos zaliai 11 pav. (a). Kiekvienoje heksagoningje saloje yra

po viena dalele, t.y. kiekvieno ziedo mazgo daleliy tankis atitinka n = %.

(a) (b),

uz

2 MK

N &)

r M K r

11 pav. (a) Kagome gardelés segmentas. Suolio parametras .J jungiantis
gardelés mazgus pazymeétas juodomis linijomis. Kiekviena zalia ziedo formos
sala zZymi vienos lokalizuotos dalelés tankio pasiskirstyma, like mazgai tusti.
(b) Gardelés energijos dispersija ties Brillouin zonos aukstos simetrijos lini-
jomis, kai J < 0. Maza jklija vaizduoja Brillouin zona (pilkas heksagonas)
su aukstos simetrijos taskais I', M, K ir paryskintus kvazijudesio kiekio takus
isilgai kuriy yra atvaizduojama dispersija.

Apribotos Boltzmann masinos veikima tikrinsime dviems gardeliy dydzi-
ams — 30 gardelés mazgy su 3 dalelémis sistemoje ir 41 mazgas su 4 dalelémis.
Siy gardeliy geometrija pavaizduota 12 pav. (a) ir (b) iklijose. Laikysime, kad
Suolio parametras yra J < 0 ir daleliy tarpusavio stuma begaliné % = o0.
Naudosime tokj patj neuroninio tinklo paslépty mazgy tankj o = 2,5 ir Monte
Carlo zingsniy skaic¢iy Ny = 5000, kaip ir kvazivienmatei trikampei gardelei.
MazZesnei gardelei su trimis tankio salomis 12 pav. (a) matome, kad neuroninis
tinklas be problemy nustato energija (juodi bruksneliai) su tikslumu prilygi-
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12 pav. (a) 30 mazguy, 3 daleliy ir (b) 41 mazgy, 4 daleliy kagome gardelés
stebimy dydziy logaritminio nuokrypio konvergavimas: Zemiausiai energijai
(juodi bruksniai), suminiam tankiui heksagoniniame ziede (zydra kreive) ir
daleliy tankiui pasirinktuose mazguose (raudona ir mélyna kreivés). Ikli-
jos desiniuosiuose virsutiniuose kampuose parodo juodas lokalizuotas tankio
salas, o paryskintas juodas ziedas zymi sala, kurios suminis tankis yra ste-
bimas. Raudonas kvadratas ir mélynas skritulys parodo tankio matavimams
pasirinkty mazgy pozicija. Maza jklija (b) vaizduoja tarpine tankio struktura,
susidarancia mokymosi metu, kai paklaidos nemazéja.

namu kvazivienmatés trikampés gardelés atvejui. Sekant atsitiktinai parinkty
dviejy tusc¢iy mazgy tankio nuokrypj, jsitikiname, kad globali tankio struk-
tiira nustatoma itin tiksliai. Sie taskai pazymeéti raudonu kvadratu ir me-
lynu skrituliu jklijoje bei atitinka raudona ir mélyna evoliucijos kreives. Zy-
dra linija Zymi tankio nuokrypj nuo tikslios vertés jklijoje paryskintame tankio
ziede ir ji leidzia jsitikinti, kad ziede tiksliai lokalizuota viena dalelé. Panasus
rezultatai stebimi ir didesnéje sistemoje 12 pav. (b). Pagrindinis skirtumas yra
atsirandanti atnaujinimy sritis, kurioje tam tikra skaiciy iteracijuy nuokrypiai
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praktiskai nekinta. Sioje srityje tinklas patenka j lokaly energijos minimuma,
kuriame susidaro struktiira, pavaizduota 12 pav. (b) apatinéje iklijoje. Sioje
tarpinéje strukturoje, dél banginiy buseny destruktyvios interferencijos, cen-
trinis mazgas nenori buti uzpildytas, todél optimizatorius uztrunka siek tiek
ilgiau atlikdamas vietinj pertvarkyma j viendaleling heksagonine tankio sala.

Pasitelkiant apribotos Boltzmann architekturos dirbtinius neuroninius tin-
klus, iSanalizavome Zemiausios energijos busenos kodavimo tikslumag kvazivien-
matéms trikampéms ir dvimatéms kagome gardeléms su plokséiomis energi-
jos juostomis. Tinklas vedamas energijos minimizavimo sugebéjo sékmingai at-
pazinti globaly sistemy tankio pasiskirstyma. Tusti gardeliy mazgai atskiriantys
kompaktiskas lokalizuotas viendaleles bangines busenas randami itin dideliu
tikslumu, prilyginamu sukonvergavusios energijos tikslumui. Lokalaus tankio
pasiskirstymo tikslumas, apskaiciuotas kiekvienos kvazivienmatés trikampés
gardelés tankio salos viduje, yra eile mazesnis. Pastebéta, kad mazgy skaiciaus
didinimas sistemose neturi jtakos konvergavimo spartai ir tikslumui, taciau
didéja tikimybé, kad tinklo parametrai dazniau uzstrigs i taska atitinkantj
lokaly energijos minimuma. Tai lemia lokaliy tankio defekty susidaryma, kurie
sulétina konvergavimg arba is vis neleidzia neuroniniui tinklui pasiekti zemiau-
sios energijos busenos. Norint apeiti Sia problemsa tenka tinkla reinicializuoti
arba ieskoti optimizavimo metody patobulinimy.

Zemiausios energijos busenos jvercio patikslinimas taikant
autoenkoderj

Kvantiné busena yra aprasoma Hilbert erdvés vektoriumi. Sistemai sudarytai
i§ N sukiniy su m laisvés laipsniy reikia m® koeficienty biisenai nusakyti. Ko-
eficienty skaiCius auga eksponentiskai didinant sukiniy skaiciy ir greitai tampa
skaitmeniskai neapdorojamu net ir nedideléms N ~ 10* daleliy sistemoms tiri-
amoms Saltyjy atomy eksperimentuose. Hilberto erdvé yra milziniska [196,197].
Laimei, dazniausiai yra jdomios Zemiausios energijos busenos. Tai leidzia skai-
tiniams metodams koncentruotis ties mazu Hilbert erdvés poerdviu, kuriame
tos biisenos gyvena. Siai daugdarai pasiekti naudojamos jvairios strategi-
jos — daugiadalelinés kvantinés problemos kompleksiskumo redukavimas, pa-
sitelkiant projekcijos operatoriy metodus [198], Zemiausios energijos busenos
skai¢iavimas naudojant menamo laiko evoliucija [199,200], variacinius metodus
efektyviai atvaizduojancius bangine busena kaip tenzorinj tinkla [54,55] arba
dirbtinius neuroninius tinklus [57,60,63]. Galiausiai, Siy metody iSvestis duoda
Zemiausios energijos biisenos jvertj.

Siame skyrelyje nagrinésime dirbtinj neuroninj tinkla vadinama tiesioginio
sklidimo autoenkoderiu [201]. Jis bus taikomas antrinei triukSmingy buseny
analizei, pavyzdziui sugeneruoty aukséiau paminéty apytiksliy metody budu.
Darant prielaida, kad skaitmeniniai metodai sugeneruoja busena su paklaidom
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atsirandanc¢iom dél paciy metody taikomy aproksimacijy arba atrankos ir op-
timizavimo algoritmy atsitiktinumy, mes galime panaudoti Siy buseny imtj
autoenkoderio apmokymui. Autoenkoderis sumazina duomeny dimensiskuma
uzkoduodamas juos j zemesnés dimensijos poerdvi. Uzkoduotos ir dekoduo-
tos autoenkoderio strukturos analizé leis nustatyti zemiausiy energijos buseny
atskiriamuma ir potencialiai iSrinkti rezultata, kuris yra tikslesnis uz bangines
funkcijas naudotas autoenkoderio apmokymui.

Tiesioginio sklidimo autoenkoderis yra sudarytas is trijy daliy. Pirma dalis
uzkoduoja jvesties duomenis j neuroninio tinklo sluoksnius, kuriy dydis su
kiekvienu sluoksniu mazéja. Antra dalis yra tinklo sluoksnis su maziausiu
mazgy skaic¢iumi, vadinamas kodo arba latentiniu sluoksniu. Jis saugo labi-
ausiai suspausta informacija apie sistema. Galiausiai, trecia dalis susideda i
palaipsniui didéjanciy sluoksniy iki tol, kol pasiekiamas sluoksnis lygus jvesties
sluoksnio dydziui. Si dalis dekoduoja suspausta informacija. Autoenkode-
rio, susidedancio is penkiy sluoksniy, pavyzdys pateiktas 13 pav. bei isskirtos
uzkodavimo (encoder), kodo (code) ir dekodavimo (decoder) dalys. Mazgai
pazyméti apskritimais su koeficientais n;i), su superskriptu nurodanciu sluok-
snio numerj, subskriptu — mazgo numerj. Koeficienty matricos W, siejancios
mazgus, atitinka mazgus jungiancias linijas tarp ¢ ir ¢ + 1 sluoksnio.

== -~~~ -{engoder]- - -, [0} -~~~ - ~[decoder}- -~ = .
W 1

}v/ @
PecIe: i) (s 14
. K NP N
IR TN

13 pav. Schematinis penkiy sluoksniy autoenkoderio vaizdavimas.

1)

00

Gaves jvesties vektoriy 7)) = (n} ), autoenkoderis suskai¢iuoja
iSvesties vektoriy taikydamas tiesioginio sklidimo modelio procedura. Tai yra
procedura, kuri priémusi pirmo sluoksnio koeficientus sugeneruoja visy likusiy

sluoksniy koeficientus iteratyviai:
7D = (WO 4 p), (15)

Cia 5@ yra sluoksniy pataisy koeficientas ir ¢ — aktyvacijos funkcija. Neu-
roninis tinklas apmokomas minimizuojant vidutinj kvadratinj nuokrypj tarp
jvesties ir iSvesties mazgy koeficienty. Svoriai W ir () atnaujinami atgalinio
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propagavimo metodu [202,203]. Tolimesniems skai¢iavimams naudojamas au-
toenkoderis implementuotas naudojant Keras biblioteka [204]. Laikysime, kad
sluoksniai sudaryti is L-100-50-25-2-25-50-100-L mazgy sekos, kai L — jvesties
mazgy skaicius. Aktyvacijos funkcija o yra hiperbolinis tangentas tanh(-), nes
i jos sugeneruota iSvestj patenka visos jmanomos normalizuoto vektoriaus ko-
eficienty vertés. Tinklo apmokymo imtis susideda i$ 1000 vektoriy, o tinklo
koeficientai viso mokymosi metu atnaujinami 3000 karty.

Kiekviena jvesties busena, naudojama autoenkoderio apmokymui, yra
superpozicija i§ N fizikinés sistemos zemiausios energijos tikriniy buseny.
Laikysime, kad kiekvienos tikrinés busenos indélis (tikimybés amplitudes
kvadratas) yra sugeneruotas pagal vienetinio intervalo padalinimo principa
[205], kai i laipsnio p polinominio tikimybinio skirstinio atsitiktinai iSrenkami
N — 1 taskai padalinantys vienetine atkarpa j N atkarpy. Siy atkarpy ilgiai
priskiriami tikriniy buseny svoriams taip, kad vidutiniskai visose imties vek-
toriuose didziausia indélj turéty zemiausia energijos busena. Turédami tokia
triukSminga apmokymo imtj bandysime nustatyti tikslia zemiausios busenos
forma i$ autoenkoderio savybiy.

Nagrinéjant modeline sistema aprasoma ortogonaliais vektoriais gautais is
atsitiktinés matricos QR dekompozicijos ir pasvertais ankstesnéje pastraipoje
minimu metodu, stebime kodo sluoksnio désningumus autoenkoderyje apmoky-
tame Siy vektoriy superpozicijomis. Esant vienam dominuojanciam ortogo-
naliam vektoriui, nustatyti jo koeficientus vien i$ pradinés apmokymo imties
tasky skirstinio dvimaciame kodo sluoksnyje yra sudétinga. ISvaiksciojus visg
kodo sluoksnio erdve matome, kad autoenkoderis gali duoti daug tikslesne
ieskomo vektoriaus verte uz turimas triukSmingy bandiniy vertes, tac¢iau norint
ja sugeneruoti, reikia zinoti tikslo funkcija, leidziancia jvertini iSvesties geruma.
Fizikinei sistemai tikslo funkcija gali buti energija, gauta paveikus hamiltoni-
anu j iSvesties busena. Tuomet varijuojant kodo sluoksnio parametrus galime
rasti i$vesties vektoriy, kuris minimizuoja energija. Siuo biidu pabandysime
surasti zemiausios enerijos buseng dvimatei kvadratinei gardelei ir kvazivien-
matei trikampei gardelei.

Tarkim, musy nagrinéjama dvimaté kvadratiné gardelé yra sudaryta is
23 x 23 mazgy ir aprasoma stipraus rysio artinio modeliu su vienetiniais Suolio
parametrais tarp artimiausiy mazgy. Sugenerave triukSmingy buseny rink-
inj, sudaryta iS Sios gardelés zZemiausiy energijos buseny superpozicijy taip,
kad zZemiausios energijos busenos dedamoji buty didziausia, jomis apmokome
autoenkoderj. Pasinaudodami AdaMax optimizatoriumi vaikstome po kodo
sluoksnj tol, kol randamas iSvesties vektorius minimizuojantis energija. Galime
palyginti Siuo metodu gauta busenos tankj (7) 14 pav. (c) su tiksliu (a) bei geri-
ausiu apmokymams naudoto vektoriaus tankiu (b). Matome, kad atsakymas
néra idealus, taciau kokybiskai daug tikslesnis uz geriausio bandinio.

Atliekant analogiskus skaiCiavimus kvazivienmatei gardelei su parame-
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0.01
X2 i . X2 X2
- (n)
0 0 0 0.00
0 X1 22 0 X1 22 0 X1 22

14 pav. (a) Dvimatés kvadratinés gardelés busenos tankio (i) priklausomybeé
nuo erdviniy koordinaciy, kai busena yra: (a) tiksli Zemiausios energijos busena,
(b) apmokymui naudojamas busenos vektorius su didZiausiu persiklojimu su
tikslia busena ir (¢) autoenkoderio pagalba rastas sprendinys.

trais palaikandiais izoliuotas tankio salas (15 pav. juodi kvadratai) Zzemiau-
sioje energijos busenoje, matome, kad minimizavus energija autoenkoderis
gauna busena pasizymindia charakteringa tankio bangos struktura (raudoni
skrituliai), kurios nesimato geriausiame triukSmingame bandinyje (mélyni

0.5}
(Mg 25| /\

—8— exact
—— best sample
--e-- autoencoder

trikampiai).

X1

15 pav. Kvazivienmatés trikampés gardelés daleliy tankio priklausomybé nuo
koordinatés, kai sistema yra Zemiausioje energijos busenoje (juodi kvadratai),
triukSmingoje busenoje turincioje didziausia persiklojima su tikslia busena
(meélyni trikampiai) ir apytiksléje busenoje gautoje pasitelkiant autoenkoderi
(raudoni skrituliai).

Autoenkoderis sekmingai pagerino zemiausios energijos busenos jvertj abiejy
nagrinéty gardeliy atveju, turédamas tik triukSminga superpozicijy aibe su
dominuojanc¢iu zemiausios energijos busenos indéliu. Nors Siy sistemy zemiau-
sios energijos busenos yra labai skirtingos ir turi reikSmingai besiskiriantj koe-
ficienty skaiciy, jy apskaic¢iavimas tos pacios strukturos autoenkoderiu neturi
reikSmingos jtakos rekonstravimo kokybei. Tai pabrézia autoenkoderio univer-

saluma.
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ISvados

Pirmoje disertacijos dalyje mes pasiuléme naujo tipo sistema — laiko-erdvés
kristaling struktura, kuri pasizymi periodiskumu tiek erdvéje, tiek sintetinéje
laiko dimensijoje atsirandancioje dél periodinio gardelés purtymo ties rezo-
nansu. Pateiktas kvantinis Sios sistemos aprasymas gautas pasitelkiant jzvalgas
is klasikinio vaizdinio ir sukonstruotas konkretus kvazivienmatés laiko-erdvés
kristalinés strukturos pavyzdys. Taip pat parodyta, kad tokig sistema galima
generalizuoti iki keturmaciy ir Sesiamaciy struktury.

1. Rezonansiniu dazniu purtoma gardelé palaiko parametry rézima, kuriame
susidaro laiko-erdves kristaliné struktura — erdviné gardelé su periodine
laikine struktura kiekviename erdvinés gardelés mazge.

Pasitelkiant papildoma potencialo purtymo moduliavimg yra sukuriamas en-
ergijos iSderinimas, sustabdantis daleliy tuneliavima tarp skirtingy laikinés di-
mensijos gardelés mazgy. Sistema veikiant Raman lazerio pluostais §j tuneli-
avima galima atkurti kartu indukuojant kontroliuojama faze. Suoliy fazés
valdymas leidzia gardeléje sukurti dirbtinius magnetinius srautus reikalingus
topologiniams efektams jgyvendinti. Tai iliustruojama topologiskai apsaugoty
krastiniy buseny atsiradimu sSesiamaciose laiko-erdvés kristalinése strukturose.

2. Laiko-erdvés kristalinés strukturos leidzia tirti SeSiamaciy gardeliy
topologines savybes.

Antroje disertacijos dalyje i$ pradziy nagrinéjome dirbtinio neuroninio tin-
klo su apribotos Boltzmann masinos architektura gebéjima iSmokti zemiau-
sios energijos buisenos bruozus plokséiy energijos juosty gardeliy modeliuose —
kvazivienmatéje trikampéje ir baigtinéje 2D kagome gardelése. Mokymosi pro-
cedura buvo paremta sistemy energijos minimizavimu. Abiejy tirty gardeliy
zemiausiy energijos buseny tikimybés tankis turi globalia tankio bangos for-
mos struktira, kurig neuroninis tinklas seékmingai iSmoksta, tac¢iau lokali tankio

struktura atpazjstama mazesniu tikslumu.

3. Apribotos Boltzmann masinos architekturos neuroniniai tinklai sékmin-
gai koduoja plokséiy energijos juosty gardeliy modeliy globalia banginés
busenos tikimybés tankio struktura, pasitelkdami energijos minimizav-

ima.

Atliekant neuroninio tinklo apmokyma dideléms gardeléms padidéja tikimybeé,
kad stebimi busenos bruozai nepasieks tiksliy verc¢iy, bet uzstrigs konfiguraci-
jose atitinkanciose lokaly sistemos energijos minimuma. Tai jvyksta dél globaliy
tankio struktiiry formavimosi skirtingose lokaliose srityse. Siy sri¢iy sandiroje
susidaro defektas, kuriam pasalinti reikalingas globalus tankio perskirstymas
kainuojantis daug energijos, todél neuroninio tinklo optimizatorius nesugeba
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istrukti iS energijos minimumo. Tokiu atveju tenka reinicializuoti mokymosi
procedura.

4. Dirbtiniai neuroniniai tinklai didelése sistemose yra linke uzstrigti tikimy-
bés tankio konfiguracijose atitinkanciose lokalius energijos minimumus.

Antros dalies pabaigoje, nagrinéjome kitokios dirbtinio neuroninio tinko
architekturos taikyma antrinei duomeny analizei. Tiesioginio sklidimo au-
toenkoderis buvo panaudotas pacios zemiausios energijos busenos iSgrynin-
imui i§ duotos triuks§mingy banginiy funkcijy aibés. Sios aibés elementai yra
zZemiausiy energijos buiseny superpozicija, kurioje didziausig svorj vidutiniskai
turi pacios Zemiausios energijos busena. Apmokytas autoenkoderis uzkoduo-
davo pakankamai informacijos, kad galéty atkurti tikslesnj zemiausios energijos
busenos jvertj, duodantj beveik idealy persiklojima su tiksliu rezultatu.

5. Autoenkoderio taikymas triukSmingy duomeny analizei leidzia patikslinti
zemiausios energijos busenos jvertj, turint aibe apytiksliy banginiy buseny

superpozicijy su dominuojanciu Zemiausios energijos busenos indéliu.
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