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Abstract: We first define the G-CUSUM process and investigate its theoretical aspects including
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1. Introduction

Consider a second-order stationary sequence of stochastic processes Yi = (Yi(t), t ∈
[0, 1]), i ∈ N, defined on a probability space (Ω,F , P), having zero mean and covariance
function γ = {γ(s, t), s, t ∈ [0, 1]}. For a given functional sample X1(t), . . . , Xn(t), t ∈ [0, 1],
consider the model:

Xk(t) = g(k/n, t) + Yk(t), t ∈ [0, 1], k = 1, . . . , n, (1)

where the function g : [0, 1]× [0, 1]→ R is deterministic, but unobserved. Our main aim is
in testing the hypothesis:

H0 : g = 0 versus H1 : g 6= 0

with emphasis on a case of change-point detection, which corresponds to a piecewise-
constant function g with respect to the first argument.

This model covers a broad range of real-world problems such as climate change
detection, image analysis, analysis of medical treatments, especially magnetic resonance
images of brain activities, and speech recognition, to name a few. Besides, the change-point
detection model (1) can be used for knot selection in spline smoothing as well for trend
changes in functional time series analysis.

There is a huge list of references on testing for change-points or structural changes for
a sequence of independent random variables/vectors. We refer to Csörgő and Horváth [1],
Brodsky and Darkhovsky [2], Basseville and Nikiforov [3], and Chen and Gupta [4] for
accounts of various techniques.

Within the functional data analysis literature, change-point detection has largely fo-
cused on one change-point problem. In Berkes et al. [5], a cumulative sum (CUSUM) test
was proposed for independent functional data by using projections of the sample onto
some principal components of covariance γ. Later, the problem was studied in Aue et al. [6],
where its asymptotic properties were developed. This test was extended to weakly depen-
dent functional data and epidemic changes by Aston and Kirch [7]. Aue et al. [8] proposed
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a fully functional method for finding a change in the mean without losing information
due to dimension reduction, T. Harris, Bo Li, and J. D. Tucker [9] propose the multiple
change-point isolation method for detecting multiple changes in the mean and covariance
of a functional process.

The methodology we propose is based on some measures of variation of the process:

Wn(s) =
bnsc

∑
k=1

(Xk − Xn) + (ns− bnsc)(Xbnsc+1 − Xn), s ∈ [0, 1],

where Xn = n−1(X1 + · · ·+ Xn).
Since this process is infinite-dimensional, we used the projections technique to reduce

the dimension. To this aim, we assumed that Yi is mean-squared continuous and jointly
measurable and that γ has finite trace: tr(γ) =

∫ 1
0 γ(t, t)dt < ∞. In this case, Yi is also an

L2(0, 1)-valued random element, where L2 := L2(0, 1) is a Hilbert space of Lebesgue square
integrable functions on [0, 1] endowed with the inner product 〈 f , g〉 =

∫ 1
0 f (t)g(t)dt and

the norm ‖ f ‖ :=
√
〈 f , f 〉.

In the case where the number of change-points is known to be no bigger than m,
our test statistics are constructed from (m, p)-variation (see the definition below) of the
processes (〈Wn(s), ψ〉, s ∈ [0, 1]), where ψ ∈ Ψ ⊂ L2(0, 1) runs through a finite set Ψ of
possibly random directions in L2(0, 1). In particular, Ψ consists of estimated principal
components. If the number of change-points is unknown, we consider the p-variation of the
processes (〈Wn(s), ψ〉, s ∈ [0, 1]), ψ ∈ Ψ and estimate the possible number of change-points.

The paper is organized as follows. In Section 2, G-sum and G-CUSUM processes are
defined and their asymptotic behavior is considered in a framework of the `∞(G) space.
The results presented in this section are used to derive the asymptotic distributions of
the test statistics presented in Section 3. Section 4 is devoted to simulation studies of the
proposed test algorithms. Section 5 contains a case study. Finally, Section 6 is devoted to
the proofs of our main theoretical results.

2. G-Sum Process and Its Asymptotic

Let Q be the set of all probability measures on ([0, 1],B[0,1]). For any Q ∈ Q and Q-

integrable function f , Q f :=
∫ 1

0 f dQ. As usual, L2([0, 1], Q) is a set of measurable functions
on [0, 1], which are square-integrable for the measure Q, and L2([0, 1], Q) is an associated
Hilbert space endowed with the inner product:

〈 f , g〉Q =
∫ 1

0
f (t)g(t)Q(dt), f , g ∈ L2([0, 1], Q)

and corresponding distance ρQ( f , g), f , g ∈ L2([0, 1], Q). We abbreviate L2([0, 1], λ) to
L2 and 〈·, ·〉λ to 〈·, ·〉 for Lebesgue measure λ. We use the norm ‖ f ‖ :=

√
〈 f , f 〉 and the

distance ρ( f , g) = ‖ f − g‖ for the elements f , g ∈ L2. On the set L2 × L2, we use the
inner product:

〈( f , g), ( f ′, g′)〉2 = 〈 f , f ′〉+ 〈g, g′〉

and the corresponding distance:

ρ2(( f , g), ( f ′, g′)) =
(
‖ f − f ′‖2 + ‖g− g′‖2

)1/2
, f , f ′, g, g′ ∈ L2.

For two given sets F , Ψ ⊂ L2, we consider the F ×Ψ-sum process:

νn =
( n

∑
k=1

νnk( f , ψ), f ∈ F , ψ ∈ Ψ
)

,
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where νnk( f , ψ) = 〈Xk, ψ〉λnk( f ), λnk is a uniform probability on the interval [(k− 1)/n, k/n]
and λnk( f ) =

∫ 1
0 f (t)dλnk(t). A natural framework for stochastic process νn is the space

`∞(G), where G = F ×Ψ. Recall for a class G that `∞(G) is a Banach space of all uniformly
bounded real-valued functions µ on G endowed with the uniform norm:

‖µ‖G := sup{|µ(g)| : g ∈ G}.

Given a pseudometric d on G, UC(G, d) is a set of all µ ∈ `∞(G), which are uniformly
d-continuous. The set UC(G, d) is a separable subspace of `∞(G) if and only if (G, d) is
totally bounded. The pseudometric space (G, d) is totally bounded if N(ε,G, d) is finite for
every ε > 0, where N(ε,G, d) is the minimal number of open balls of d-radius ε, which are
necessary to cover G.

It is worth noting that the process νn is continuous when F ×Ψ is endowed with the
metric ρ2. Indeed,

|νnk( f , ψ)− νnk( f ′, ψ′)| ≤ |〈Yk, ψ〉λnk( f )− 〈Yk, ψ′〉λnk( f ′)|
≤ |λnk( f )|〈Yk, ψ− ψ′〉+ 〈Yk, ψ′〉λnk( f − f ′)|
≤ ‖Yk‖[

√
n‖ f ‖ · ‖ψ− ψ′‖+ ‖ψ′‖ · ‖ f − f ′‖]

≤
√

2‖Yk‖max{
√

n‖ f ‖, ‖ψ‖}ρ2(( f , ψ), ( f ′, ψ′)),

since |λnk( f )| ≤
√

n‖ f ‖ for every f ∈ L2. If both sets F and Ψ are totally bounded, then
the process νn is uniformly continuous so that νn takes values in the subspace UC(G).

Next, we specify the set F ⊂ L2. To this aim, we recall some definitions. For a function
f : [0, 1]→ R, a positive number 0 < p < ∞, and an integer m ∈ N, the (m, p)-variation of
f on the interval [0, t] is

vm,p( f ; [0, t]) := sup
{ m

∑
j=1
| f (tj)− f (tj−1)|p

}
,

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tm = t, of the interval
[0, t]. We abbreviate vm,p( f ) := vm,p( f ; [0, 1]). If vp( f ) := supm≥1 vm,p( f ) < ∞, then we
say that f has finite p-variation andWp[0, 1] is the set of all such functions. The setWp[0, 1],
p ≥ 1, is a (non-separable) Banach space with the norm:

|| f ||[p] := sup
0≤t≤1

| f (t)|+ v1/p
p ( f ).

The embeddingWp[0, 1] ↪→Wq[0, 1] is continuous and

v1/q
q ( f ) ≤ v1/p

p ( f ), for 1 ≤ p < q.

For more information on the spaceWp[0, 1], we refer to [10].
The limiting zero mean Gaussian process νγ = (ν( f , ψ), f ∈ F , ψ ∈ Ψ) is defined via

covariance:

Eνγ( f , ψ)νγ( f ′, ψ′) = Kγ(( f , ψ), ( f ′, ψ, )) := 〈Γψ, ψ′〉〈 f , f ′〉, ψ, ψ′, f , f ′ ∈ L2, (2)

where Γ : L2 → L2 is the covariance operator corresponding to the kernel γ. The function
Kγ : G × G → R is positive definite:

m

∑
k,j=1

cjckKγ(( f j, ψj), ( fk, ψk)) ≥ 0, (3)

for all c1, . . . , cm ∈ R, ( f1, ψ1), . . . , ( fm, ψm) ∈ G, and m ≥ 1. Indeed, if we denote by
W = (W( f ), f ∈ L2) the isonormal Gaussian process on the Hilbert space L2, we see that
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Kγ(( f j, ψj), ( fk, ψk)) = E〈Y, ψj〉〈Y, ψk〉EW( f j)W( fk);

hence,
m

∑
k,j=1

cjckKγ(( f j, ψj), ( fk, ψk)) = E
( m

∑
k=1

ck〈Y, ψk〉W( fk)
)2

and (3) follows. This justifies the existence of the process νγ.
Throughout, we shall exploit the following.

Assumption 1. Random processes Y, Y1, Y2, . . . are i.i.d. mean square continuous, jointly measur-
able, with mean zero and covariance γ such that

∫ 1
0 γ(t, t)dt < ∞.

For the model (1), we consider null hypothesis H0 : g = 0 and two possible alternatives:

HA : g = gn = unqn, where un → u in W2[0, 1],
√

nqn → q in L2,

and
H′A : g = gn = unqn, where un → u in W2[0, 1],

√
n sup

ψ∈Ψ
|〈qn, ψ〉| → ∞.

In both alternatives, the function un is responsible for the configuration of a drift within the sample,
whereas the function qn estimates a magnitude of the drift.

Our main theoretical results are Theorems 1 and 3, which are proven in Section 6.

Theorem 1. Let the random processes (Xk) be defined by (1), where Y, Y1, Y2, . . . satisfy
Assumption 1. Assume that, for some 1 ≤ q < 2, the set F ⊂ Wq[0, 1] is bounded and the
set Ψ ⊂ L2 satisfies ∫ 1

0

√
log N(ε, Ψ, ρ)dε < ∞. (4)

Then, there exists a version of a Gaussian process νγ on L2 × L2 such that its restriction on F ×Ψ,
(νγ( f , ψ), f ∈ F , ψ ∈ Ψ) is continuous and the following hold:

(1a) Under H0:

n−1/2νn
D−−−→

n→∞
νγ in `∞(F ×Ψ). (5)

(1b) Under HA,

n−1/2νn
D−−−→

n→∞
νγ + ∆, in `∞(F ×Ψ), (6)

where
∆( f , ψ) = 〈u, f 〉〈q, ψ〉.

If u(s) = 1, s ∈ [0, 1], then the alternative HA corresponds to the presence of a signal
in a noise. In this case, ∆( f , ψ) = λ( f )〈q, ψ〉. Therefore, the use of this theorem for testing a
signal in a noise is meaningful provided 〈q, ψ〉 6= 0.

As a corollary, Theorem 1 combined with the continuous mapping theorem gives the
following result.

Theorem 2. Assume that conditions of Theorem 1 are satisfied. Then, the following hold:

(2a) Under H0

sup
ψ∈Ψ, f∈F

|n−1/2νn( f , ψ)| D−−−→
n→∞

sup
ψ∈Ψ, f∈F

|νγ( f , ψ)|.

(2b) Under HA,

sup
ψ∈Ψ, f∈F

|n−1/2νn( f , ψ)| D−−−→
n→∞

sup
ψ∈Ψ, f∈F

|νγ( f , ψ) + 〈u, f 〉〈q, ψ〉|.
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(2c) Under H′A,

sup
ψ∈Ψ, f∈F

|n−1/2νn( f , ψ)| P−−−→
n→∞

∞. (7)

Proof. Since both (2a) and (2b) are by-products of Theorem 1 and continuous mappings,
we need to prove only (2c). First, we observe that

sup
ψ∈Ψ, f∈F

|νn( f , ψ)| ≥ sup
ψ∈Ψ, f∈F

∣∣∣ n

∑
k=1

(
〈Yk, ψ〉+ 〈qn, ψ〉un(k/n)

)
λnk( f )

∣∣∣
≥ sup

ψ∈Ψ, f∈F

∣∣∣ n

∑
k=1

un(k/n)λnk( f )
∣∣∣ · |〈qn, ψ〉| −OP(

√
n),

by (2a). Consider

In( f ) :=
∣∣∣ n

∑
k=1

un(k/n)λnk( f )
∣∣∣.

We have

In( f ) = n
∣∣∣ n

∑
k=1

un(k/n)
∫ k/n

(k−1)/n
f (t)dt

∣∣∣
≥ n

∣∣∣ n

∑
k=1

∫ k/n

(k−1)/n
un(t) f (t)dt

∣∣∣− n
∣∣∣ n

∑
k=1

∫ k/n

(k−1)/n
(un(t)− un(k/n)) f (t)dt

∣∣∣
:= I′n( f )− I′′n ( f ).

By the Hölder inequality,

I′′n ( f ) ≤ n
n

∑
k=1

( ∫ k/n

(k−1)/n
(un(t)− un(k/n))2 dt

)1/2( ∫ k/n

(k−1)/n
f 2(t)dt

)1/2

≤ n
( n

∑
k=1

∫ k/n

(k−1)/n
(un(t)− un(k/n))2 dt

)1/2( n

∑
k=1

∫ k/n

(k−1)/n
f 2(t)dt

)1/2

≤ n
(

n−1
n

∑
k=1

v2(un, [(k− 1)/n, k/n])
)1/2
‖ f ‖ ≤

√
nv1/2

2 (un)‖ f ‖.

Since I′n( f ) = n|〈un, f 〉|, we deduce

In(ψ, f ) ≥ n|〈un, f 〉| −
√

nv1/2
2 (un)‖ f ‖.

Hence,
n−1/2 sup

ψ∈Ψ, f∈F
|νn( f , ψ)| ≥

√
n sup

ψ∈Ψ, f∈F
|〈un, f 〉| · |〈qn, ψ〉| −OP(1)

and this completes the proof of (2c).

Next, we consider G-sum process µn = (µn( f , ψ), f ∈ F , ψ ∈ Ψ) defined by

µn( f , ψ) =
n

∑
k=1
〈Xk − Xn, ψ〉λnk( f ),

where Xn = n−1(X1 + · · ·+ Xn). Its limiting zero mean Gaussian process µγ is defined via
covariance:

Eµγ( f , ψ)µγ( f ′, ψ′) = 〈Γψ, ψ′〉[〈 f , f ′〉 − λ( f )λ( f ′)], ψ, ψ′, f , f ′ ∈ L2. (8)
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The existence of Gaussian process µγ can be justified as that of νγ above. Just notice that

〈 f , f ′〉 − λ( f )λ( f ′)− E(W( f )− λ( f )W(1))(W( f ′)− λ( f ′)W(1)),

where 1(t) = 1, t ∈ [0, 1].

Theorem 3. Assume that the conditions of Theorem 1 are satisfied. Then, there exists a version of
the Gaussian process µγ on L2(0, 1)× L2(0, 1) such that its restriction on F ×Ψ, (ν( f , ψ), f ∈
F , ψ ∈ Ψ) is continuous and the following hold:

(3a) Under H0,

n−1/2µn
D−−−→

n→∞
µγ in `∞(F ×Ψ); (9)

(3b) Under alternative HA,

n−1/2µn
D−−−→

n→∞
µγ + ∆̃ in `∞(F ×Ψ), (10)

where
∆̃( f , ψ) = [〈u, f 〉 − λ(u)λ( f )]〈q, ψ〉.

We see that the limit distribution of the G-sum process separates the null and al-
ternative hypothesis provided [〈u, f 〉 − λ(u)λ( f )]〈q, ψ〉 6= 0. As a corollary, Theorem 3
combined with the continuous mapping theorem gives the following results.

Theorem 4. Assume that the conditions of Theorem 1 are satisfied. Then, the following hold:

(4a) Under H0,

sup
ψ∈Ψ, f∈F

|n−1/2µn( f , ψ)| D−−−→
n→∞

sup
ψ∈Ψ, f∈F

|µγ( f , ψ)|. (11)

(4b) Under HA,

sup
ψ∈Ψ, f∈F

|n−1/2µn( f , ψ)| D−−−→
n→∞

sup
ψ∈Ψ, f∈F

|µγ( f , ψ) + ∆̃( f , ψ)|. (12)

(4c) Under H′A,

sup
ψ∈Ψ, f∈F

|n−1/2µn( f , ψ)| P−−−→
n→∞

∞. (13)

Proof. Both (4a) and (4b) are by-products of Theorem 3 and continuous mappings, whereas
the proof of (4c) follows the lines of the proof of Theorem 2 (2c).

3. Test Statistics

Several useful test statistics can be obtained from the G-sum process µn = (µn( f , ψ),
( f , ψ) ∈ G = F ×Ψ), by considering concrete examples of sets Ψ and F .

Throughout this section, we assume that the sample X1, X2, . . . , Xn follows the model (1)
and Y, Y1, Y2, . . . satisfies Assumption 1.

By Γ, we denote the covariance operator of Y: Γ = E(Y⊗Y). Recall

Γx(t) =
∫ 1

0
γ(t, s)x(s)ds, x ∈ [0, 1].

According to Mercer’s theorem, the covariance γ has then the following singular-value
decomposition:

γ(s, t) =
m

∑
r=1

λrψr(s)ψr(t), t, s ∈ [0, 1], (14)
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where λ1, . . . , λm are all the decreasingly ordered positive eigenvalues of Γ and ψ1, . . . , ψm
are the associated eigenfunctions of Γ such that∫ 1

0
ψ2

r (t)dt = 1,
∫ 1

0
ψr(t)ψ`(t)dt = 0, r 6= `,

and m is the smallest integer such that, when r > m, λr = 0. If m = ∞, then all the
eigenvalues are positive, and in this case, ∑r λr < ∞. Note that λr = E〈Y, ψr〉2. Besides, we
shall assume the following.

Assumption 2. The eigenvalues λr satisfy, for some d > 0,

λ1 > λ2 > · · · > λd > λd+1.

In statistical analysis, the eigenvalues and eigenfunctions of Γ are replaced by their estimated
versions. Noting that, for each k,

E[(Xk − E(Xk))⊗ (Xk − E(Xk))] = Γ,

one estimates Γ by

Γ̂n :=
1
n

n

∑
i=1

[(Xi − Xn)⊗ (Xi − Xn)],

where Xn(s) = n−1(X1(s) + · · ·+ Xn(s). We denote the eigenvalues and eigenfunctions of Γ̂
by λ̂nr and ψ̂nr, r = 1, . . . , n− 1, respectively. In order to ensure that ψ̂nr may be viewed as an
estimator of ψr rather than of −ψr, we will in the following assume that the signs are such that
〈ψ̂nr, ψr〉 ≥ 0. Note that

Γ̂ψ̂nr = λ̂nrψ̂nr, r = 1, . . . , n− 1, (15)

and

λ̂nr =
1

n− 1

n

∑
i=1
〈Xi − Xn, ψ̂nr〉2, r = 1, . . . , n. (16)

The use of the estimated eigenfunctions and eigenvalues in the test statistics is justified by the
following result. For a Hilbert–Schmidt operator T on L2, we denote by ‖T‖HS its Hilbert–Schmidt
norm.

Lemma 1. Assume that Assumption 1 holds. Then, under HA,

‖Γ̂n − Γ‖HS → 0 as n→ ∞.

Proof. First, we observe that

Γ̂n = Γ̃n + Tn1 + Tn2 + Tn3,

where

Γ̃n =
1
n

n

∑
k=1

(Yk −Yn)⊗ (Yk −Yn),

Tn1 =
1
n

n

∑
k=1

[
un(k/n)− 1

n

n

∑
j=1

un(j/n)
]
(Yk −Yn)⊗ qn,

Tn2 =
1
n

n

∑
k=1

[
un(k/n)− 1

n

n

∑
j=1

un(j/n)
]
qn ⊗ (Yk −Yn),

Tn3 =
1
n

n

∑
k=1

[
un(k/n)− 1

n

n

∑
j=1

un(j/n)
]2

qn ⊗ qn.
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It is well known that ‖Γ̃n − Γ‖HS
a.s.−−−→

n→∞
0 as n→ ∞. By the moment inequality for sums of

independent random variables, we deduce

E‖Tni‖2
HS ≤ cn−2

n

∑
k=1

[
un(k/n)− 1

n

n

∑
j=1

un(j/n)
]2

E‖Y‖2‖qn‖2,

for both i = 1, 2. This yields Tni
P−−−→

n→∞
0. Next, we have

‖Tn3‖HS =
1
n

n

∑
k=1

[
un(k/n)− 1

n

n

∑
j=1

un(j/n)
]2
‖qn‖2 ≤ 1

n

n

∑
k=1

u2
n(k/n)‖qn‖2 → 0

as n→ ∞ due to assumption HA. This completes the proof.

Lemma 2. Assume that Assumptions 1 and 2 for some finite d hold and E(‖Y‖4) < ∞. Then,
under H0, as well as under HA:

n1/2|λ̂nj − λj| = OP(1), and n1/2‖ĉjψ̂nj − ψj‖ = OP(1)

for each 1 ≤ j ≤ d, where ĉnj = 〈ψ̂nj, ψj〉.

Proof. If the null hypothesis is satisfied, then Γ̂n = Γ̃n and the asymptotic results for the
eigenvalues and eigenfunctions of T̃n are well known (see, e.g., [11]). Under alternative HA,
the results follow from Lemma 1 and Lemmas 2.2 and 2.3 in [11].

Next, we consider separately the test statistics for at most one, at most m, and for an
unknown number of change-points.

3.1. Testing at Most One Change-Point

Define for d > 0,

Tn,1(d) := max
1≤j≤d

1√
λj

max
1≤k≤n

∣∣∣ k

∑
i=1
〈Xi − Xn, ψj〉

∣∣∣. (17)

This statistic is designed for at most one change-point alternative. Its limiting distribu-
tion is established in the following theorem.

Theorem 5. Let random functional sample (Xk) be defined by (1) where Y, Y1, Y2, . . . satisfies
Assumptions 1 and 2. Then,

(a) Under H0, it holds that

n−1/2Tn,1(d)
D−−−→

n→∞
max

1≤k≤d
max

0≤t≤1
|Bk(t)|,

where B1, . . . , Bd are independent standard Brownian bridge processes;
(b) Under HA, it holds that

n−1/2Tn,1(d)
D−−−→

n→∞
max

1≤k≤d
max

0≤t≤1
|Bk(t) + ∆(t)〈q, ψk/

√
λk〉|,

where

∆(t) =
∫ t

0
u(s)ds− t

∫ 1

0
u(s)ds, t ∈ [0, 1]. (18)

(c) Under H′A, it holds that

n−1/2Tn,1(d)
P−−−→

n→∞
∞.
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Proof. Consider the sets

Ψd,γ :=
{ ψ1√

λ1
, . . . ,

ψd√
λd

}
, and F1 = {1[0,t], t ∈ [0, 1]}. (19)

Observing that
Tn,1(d) = sup

ψ∈Ψd,γ , f∈F1

|µn( f , ψ)|

and F1 is a bounded set inWq, we complete the proof by applying Theorem 3.

Based on this result, we construct the testing procedure in a classical way. Choose for
a given α ∈ (0, 1), Cα > 0 such that

P( max
1≤k≤d

max
0≤t≤1

|Bk(t)| > Cα) = α.

According to Theorem 5, the test:

Tn,1(d) ≥
√

nCα (20)

will have asymptotic level α. Under the alternative HA, we have

lim
n→∞

P(n−1/2Tn,1(d) ≥ Cα) ≥ P
(

max
1≤k≤d

max
0≤t≤1

|Bk(t)| ≤ max
1≤k≤d

max
0≤t≤1

|∆(t)〈q, ψk/λk〉 − Cα

)
≥ 1− α

when
max

1≤k≤d
max

0≤t≤1
|∆(t)〈q, ψk/λk〉| ≥ 2Cα. (21)

Hence, if g(s, t) = gn(s, t) = un(s)qn(t) and
√

n max
1≤k≤d

max
0≤t≤1

|〈gn(t, ·), ψk/
√

λk〉| → ∞

as n→ ∞, then the test (20) is asymptotically consistent.
Let us note that, due to the independence of Brownian bridges Bk, k = 1, . . . , d, we have

1− α = P( max
1≤k≤d

max
0≤t≤1

|Bk(t)| ≤ Cα) = Pd( max
0≤t≤1

|B1(t)| ≤ Cα).

This yields
P( max

0≤t≤1
|B1(t)| ≤ Cα) = (1− α)1/d.

Hence, Cα is the (1− α)1/d-quantile of the distribution of sup0≤t≤1 |B1(t)|. This observation
simplifies the calculations of critical values Cα.

In particular, if there is s∗ ∈ (0, 1) such that u(s) = 1[0,s∗ ](s), s ∈ [0, 1], then we have
one change-point model:

Xk(t) = 1[0,s∗ ](k/n)qn(t) + Yk(t), t ∈ [0, 1].

In this case, ∆(t) = ∆∗(t) := min{t, s∗} − ts∗, t ∈ [0, 1].
Figure 1 below shows generated density functions of max1≤k≤d max0≤t≤1 |Bk(t)| and

max1≤k≤d max0≤t≤1 |Bk(t) + ∆∗(t)〈q, ψk/
√

λk〉| for d = [1, 10, 30], s∗ ∈ {1/4, 1/2, 3/4}
where q = aψk

√
λk for a fixed k.
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Figure 1. Density functions.

Let us observe that test statistic Tn,1(d) tends to infinity when d → ∞. On the other
hand, with larger d, the approximation of Xj by series ∑d

k=1〈X, ψj〉ψj is better and leads to
better testing power. The following result establishes the asymptotic distribution of Tn,1(d)
as d→ ∞.

Theorem 6. Let random functional sample (Xk) be defined by (1) where Y, Y1, Y2, . . . satisfies
Assumption 1. Then, under H0,

lim
d→∞

lim
n→∞

P
(

n−1/2Tn,1(d) ≤
x
ad

+ bd

)
= exp{−e−x}, x ≥ 0, (22)

where
ad = (8 ln d)1/2, bd =

1
4

ad +
ln ln d

ad
. (23)

Proof. By Theorem 5, the proof reduces to

lim
d→∞

P( max
1≤j≤d

‖Bj‖∞ ≤ x/ad + bd) = exp{−e−x}, x ≥ 0. (24)

It is known that
P(‖Bj‖∞ > u) = 2e−2u2

u2(1 + o(1)), u→ ∞.

Since Brownian bridges Bj, 1 ≤ j ≤ d are independent, we have

P( max
1≤j≤d

‖Bj‖∞ ≤ x/ad + bd) = Pd(‖B1‖0 ≤ x/ad + bd)

=
(

1− P(‖B1‖0 ≥ x/ad + bd)
)d

and
lim

d→∞
dP(‖B1‖∞ ≥ x/ad + bd) = e−x.

This proves (24).

When d is large, the test (20) becomes

Tn,1 ≥
√

n
[ 1

ad
ln
( 1

ln(1/α)

)
+ bd

]
(25)
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and has asymptotic level α as n and d tend to infinity.
The dependence on d of critical values of the tests (20) and (25) is shown in Figure 2. A

comparison was made for asymptotic level α = 0.05. From Figure 2, we see that the critical
values in (25) are smaller than those in (20). This means that the error of the first kind is
more likely with the test (25), rather than with (36). This is confirmed by simulations.
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Figure 2. Comparison of the critical values in (20) and (25) with α = 0.05 and the density function of
Tn,1(d).

If the eigenfunctions (ψk) are unknown, we use the statistics:

T̂n,1(d) := max
1≤j≤d

1√
λ̂j

max
1≤k≤n

∣∣∣ k

∑
i=1
〈Xi − Xn, ψ̂j〉

∣∣∣. (26)

Theorem 7. Let random functional sample (Xk) be defined by (1), where Y, Y1, Y2, . . . satisfies
Assumptions 1 and 2. Then:

(a) Under H0,

n−1/2T̂n,1(d)
D−−−→

n→∞
max

1≤k≤d
max

0≤t≤1
|Bk(t)|,

where B1, . . . , Bd are independent standard Brownian bridge processes;
(b) Under HA, if E‖Y‖4 < ∞, it holds that

n−1/2T̂n,1(d)
D−−−→

n→∞
max

1≤k≤d
max

0≤t≤1
|Bk(t) + ∆(t)〈q, ψk/

√
λk〉|,

where ∆(t) =
∫ t

0 u(s)ds− t
∫ 1

0 u(s)ds, t ∈ [0, 1].
(c) Under H′A, if E‖Y‖4 < ∞, it holds that

n−1/2T̂n,1(d)
P−−−→

n→∞
∞.

Proof. The result follows from Theorem 5 if we show that

Dn := n−1/2|Tn,1(d)− T̂n,1(d)|
P−−−→

n→∞
0. (27)
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On the set max1≤j≤d |λj − λ̂nj|+ max1≤j≤d ‖ψj − ĉjψ̂nj‖ ≤ An−1/2 and for n ≥ N0 such
that An−1/2 < λd/2, simple algebra gives Dn ≤ Dn1 + Dn2, where

Dn1 = max
1≤j≤d

∣∣∣ 1
λj
− 1

λ̂nj

∣∣∣ max
1≤k≤1

∣∣∣ k

∑
i=1
〈Xi − Xn, ψj〉

∣∣∣
≤ 2

λd
max

1≤j≤n
|λ̂nj − λj|n−1/2Tn,1(d)→ 0 as n→ ∞,

and

Dn2 ≤ n−1/2 2
ε

max
1≤k≤n

∥∥∥ k

∑
i=1

[Xi − Xn]
∥∥∥ max

1≤j≤d
‖ψ̂nj − ψj‖

≤ 2A
ε

n−1 max
1≤k≤n

∥∥∥ k

∑
i=1

[Xi − Xn]
∥∥∥→ 0 as n→ ∞

by the law of large numbers. Lemma 2 concludes the proof.

Test (20) now becomes
T̂n,1(d) ≥

√
nCα (28)

and has asymptotic level α by Theorem 7.

3.2. Testing at Most m Change-Points

For m > 1, letNm be a set of all partitions κ = (ki, i = 0, 1, . . . , m) of the set {0, 1, . . . , n}
such that 0 = k0 < k1 < · · · < km−1 < km = n. Next, consider for fixed integers d,
1 ≤ m < n and real p > 2,

Tn,m(d, p) := max
1≤j≤d

1√
λj

max
κ∈Nm

{ m

∑
k=1

∣∣∣ ki

∑
ki−1+1

〈Xk − Xn, ψj〉
∣∣∣p}1/p

. (29)

The statistics Tn,m(d, p) are designed for testing at most m change-points in a sample.

Theorem 8. Let the random sample (Xi, i = 1, . . . , n) be as in Theorem 1. Then:

(a) Under H0,

n−1/2Tn,m(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
m,p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.
(b) Under HA,

n−1/2Tn,m(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
m,p (Bj + ∆〈q, ψj/

√
λj〉),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 2.
(c) Under H′A,

n−1/2Tn,m(d, p) P−−−→
n→∞

∞.

Proof. For 1 ≤ m ≤ n and q = p/(p− 1), set

Fm,q :=
{ m

∑
j=1

bj1(tj−1,tj ]
:

m

∑
j=1
|bj|q ≤ 1, 0 = t0 < t1 < · · · < tm = 1

}
. (30)

It is easy to check that Fm,q ⊂ Wq[0, 1]. Since

sup
{∣∣∣ m

∑
k=1

akbk

∣∣∣ :
m

∑
k=1
|bk|q ≤ 1

}
=
( m

∑
k=1
|ak|p

)1/p
,
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we have
Tn,m(d) = max

ψ∈Ψd,γ
max

f∈Fm,q
|µn(ψ, f )|,

and the results follow from Theorem 2.

In particular, if there is s∗1 , s∗2 ∈ (0, 1) such that u(s) = 1[s∗1 ,s∗2 ]
(s), s ∈ [0, 1], then (1)

corresponds to the so-called changed segment model. In this case, we have ∆(t) = ∆∗2(t) :=
max{0, min{t, s∗2} − s∗1} − t(s∗2 − s∗1), t ∈ [0, 1]. Figure 3) shows the generated density

functions of max1≤k≤d v1/p
4,p (Bk) and max1≤k≤d v1/p

4,p (Bk + ak∆∗2) for different values of d ≥ 1,
0 < s∗1 < s2 < 1, and p > 2. The numbers a1, . . . , ad were sampled from the uniform
distribution on [0, 15].
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Figure 3. Functions ∆∗2 and density functions.

With the estimated eigenvalues and eigenfunctions, we define

T̂n,m(d, p) := max
1≤j≤d

1√
λ̂nj

max
κ∈Nm

{ m

∑
k=1

∣∣∣ ki

∑
ki−1+1

〈Xk − Xn, ψ̂nj〉
∣∣∣p}1/p

. (31)

Theorem 9. Let the functional sample (Xk, k = 1, . . . , n) be defined by (1) where Y, Y1, Y2, . . .
satisfies Assumptions 1 and 2. Then:

(a) Under H0,

n−1/2T̂n,m(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
m,p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.
(b) Under HA,

n−1/2T̂n,m(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
m,p (Bj + ∆〈q, ψj/

√
λj〉),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 2.
(c) Under H′A,

n−1/2T̂n,m(d, p) P−−−→
n→∞

∞.

Proof. This goes along the lines of the proof of Theorem 7.

According to Theorems 8 and 9, the tests:

Tn,m(d, p) ≥
√

nCα(m, d, p) and T̂n,m(d, p) ≥
√

nCα(m, d, p) (32)
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respectively, will have asymptotic level α, if Cα(m, d, p) is such that

P(v1/p
m,p (B) ≤ Cα(m, d, p)) = (1− α)1/d.

3.3. Testing Unknown Number of Change-Points

Next, consider for fixed integers d as above and real p > 2,

Tn(d, p) := max
1≤j≤d

1√
λj

max
1≤m≤n

max
κ∈Nm

{ m

∑
k=1

∣∣∣ ki

∑
ki−1+1

〈Xk − Xn, ψj〉
∣∣∣p}1/p

. (33)

The statistics Tn(d, p) are designed for testing an unknown number of change-points in
a sample.

Theorem 10. Let random sample (Xi, i = 1, . . . , n) be as in Theorem 1. Then:

(a) Under H0,

n−1/2Tn(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.
(b) Under HA,

n−1/2Tn(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆〈q, ψj/

√
λj〉),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 1.
(c) Under H′A,

n−1/2Tn(d, p) P−−−→
n→∞

∞.

Proof. For q = p/(p− 1), set

Fq :=
{ m

∑
j=1

bj1(tj−1,tj ]
:

∞

∑
j=1
|bj|q ≤ 1, 0 = t0 < t1 < · · · < tm = 1, m ≥ 1

}
. (34)

It is easy to check that Fq ⊂ Wq[0, 1]. Since

sup
{∣∣∣ ∞

∑
k=1

akbk

∣∣∣ :
∞

∑
k=1
|bk|q ≤ 1

}
=
( ∞

∑
k=1
|ak|p

)1/p
,

we have
Tn(d) = max

ψ∈Ψd,γ
max

f∈Fm,q
|µn(ψ, f )|,

and both statements (a) and (b) follow from Theorem 1.

With the estimated eigenvalues and eigenfunctions, we define:

T̂n(d, p) := max
1≤j≤d

1√
λ̂nj

max
1≤m≤n

max
κ∈Nm

{ m

∑
k=1

∣∣∣ ki

∑
ki−1+1

〈Xk − Xn, ψ̂nj〉
∣∣∣p}1/p

. (35)

Theorem 11. Let random sample (Xi) be as in Theorem 1. Then:

(a) Under H0,

n−1/2T̂n(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj),

where B1, . . . , Bd are independent standard Brownian bridges.



Mathematics 2022, 10, 2294 15 of 27

(b) Under HA,

n−1/2T̂n(d, p) D−−−→
n→∞

max
1≤j≤d

v1/p
p (Bj + ∆〈q, ψj/

√
λj〉),

where ∆(t), t ∈ [0, 1] is as defined in Theorem 1.
(c) Under H′A,

n−1/2T̂n(d, p) P−−−→
n→∞

∞.

Proof. This goes along the lines of the proof of Theorem 7.

According to Theorems 10 and 11, the tests:

Tn(d, p) ≥
√

nCα(d, p) and T̂n(d, p) ≥
√

nCα(d, p) (36)

respectively, will have asymptotic level α, if Cα(d, p) is such that

P(v1/p
p (B) ≤ Cα(d, p)) = (1− α)1/d.

The quantiles of distribution function of v1/p
p (B) were estimated in [12].

4. Simulation Results

We examined the above-defined test statistics in a Monte Carlo simulation study. In the
first subsection, we describe the simulated data under consideration. The statistical power
analysis of the tests (36) and (32) is presented in Section 4.2.

4.1. Data

We used the following three scenarios:

(S1) Let (ξ jk) be i.i.d. symmetrized Pareto random variables with index p (we used p = 5).
Set

Yj(t) =
d

∑
k=1

ξ jk

√
2 cos(kπt)

kσ
, t ∈ [0, 1], j ≥ 1, (37)

where σ2 = Eξ2
11. Under the null hypothesis, we take Xk = Yk, k = 1, 2, . . . , n.

Under the alternative, we consider

Xj(t) = un(j/n)
d

∑
k=1

ank cos(kπt) + Yj, t ∈ [0, 1], j = 1, . . . , n,

where the function un defines the change-points’ configuration and the coefficients
(ank) are subject to choice.

(S2) We start with discrete observations (xij, j = 0, 1, . . . , M), i = 1, . . . , n, by taking xij =
Xi(τj), where the random sample (Xj, j = 1, . . . , n) is generated as in scenario (S1).
Discrete observations are converted to the functional data (Xj, j = 1, . . . , n) by using
B-spline bases.

(S3) Discrete observations (i/M, yij), i = 0, 1, . . . , M, j = 1, . . . , n, are generated by taking

yij = M−1/2
i

∑
k=1

ξkj,

so that yij can be interpreted as the observation of a standard Wiener process at i/M.
From (yij, i = 1, . . . , M), the function Yj is obtained using the B-spline smoothing
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technique. During the simulation, we used M = 1000 and D = 50 B-spline functions,
thus obtaining n = 500 functions Y1, . . . , Yn. Then, we define for j = 1, . . . , n,

Xj =

{
Yj, under null
un(j/n)qn + Yj, under alternative

and consider different configurations un of change-points and qn(t) = an
√

Mt,
t ∈ [0, 1].

We mainly concentrated on two possible change-point alternatives. The first is ob-
tained with un(t) = 1[0,θ](t) and corresponds to one change-point alternative. Another is
for the epidemic-type alternative, for which we take un(t) = 1[θ1,θ2]

(t).
Scenario (S1) is used as an optimal case situation where the actual eigenvalues and

eigenfunctions are known. In this case, we are not required to approximate discrete func-
tions, thus avoiding any data loss or measurement errors. The second scenario continues
with the same random functional sample, but goes through extra steps such us taking
function values at discrete data points and reconstructing the random functional sample
on a different set of basis functions. The aim of this exercise is to measure the impact
when some information could be lost due to measurements taken at discrete points and
smoothing. The simulation results show that, even after the reconstruction of the random
functional sample, the performance of the test does not suffer too much.

Our simulation starts with the generation process of the random functional sample Yj
as described in the first scenario with d = 30.

First of all, we can compare the true eigenfunctions of covariance operator Γ =
E[Yj ⊗Yj] with the eigenfunctions of estimated operator Γ̂n (see Figure 4).
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Figure 4. True basis functions (red) and “reconstructed” basis functions (black) using fPCA method.

We see that the estimated harmonics has almost the same shape; only every second,
the estimated eigenfunctions are phase shifted.

Next, for both scenarios (S1) and (S2), the density functions of the test statistic Tn,1(d)
(17) were estimated using Monte Carlo with 10,000 repetitions (see Figure 5). It shows four
density plots: the red density functions of Tn,1(d) are calculated using the true eigenfunc-
tions and eigenvalues, while the black curves show the density of T̂n,1(d) (26) using the
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estimated eigenfunctions and eigenvalues. The left side density plots were estimated from
the samples under the null hypothesis, while the plots on the right side show the density of
Tn,1(d) and T̂n,1(d) with the sample:

Xj(t) =
d

∑
k=1

(ξ jk + 1(τ>j)a)
√

2 cos(kπt)
kσ

, t ∈ [0, 1], τ = 250, j = 1 . . . 500 (38)

with added drift a = 0.2.
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Figure 5. Density plots of the test statistic Tn,1(d) and T̂n,1(d).

Since functional Principal Component Analysis (fPCA) represents a functional data
sample in the most parsimonious way, we can see that the density of the test statistics in
scenario (S2) is more on the left side and more concise. Critical values cd(α) with α = 0.05
of the statistics Tn,1(d) and T̂n,1(d) were also calculated and are shown in Figure 5.

4.2. Statistical Power Analysis

First, we compared the statistical power of the test (20) with statistic Tn,1(d) of the
scenario (S1) and scenario (S2) with statistic T̂n,1(d). To this aim, we used sample (Xj, j =
1, . . . , n) defined in (38), where τ = 250, which is in the middle of the sample. We started
with the no drift a = 0 (corresponding to the null hypothesis) and increasing the drift
amount a by 0.03 up to the point when a > 0.3. At each a value, we repeated the simulation
1000 times. This gives a good indication of the statistical power with the amount of the
added drift. The statistical power is illustrated in Figure 6. Based on the simulation
results, we can see that, even if the random functional sample is approximated from the
discrete data points, it still holds the same statistical power and the performance does not
suffer from the information loss due to smoothing and fPCA. These are important results,
because, normally, in observed real-world data, the true functions are unknown and have
to be approximated, which almost always introduces measurement errors.
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Figure 6. The comparison of the statistical power of scenario (S1) and (S2).



Mathematics 2022, 10, 2294 18 of 27

Next, we focus on the power tests (36) and (32) used directly on the functional data
sets simulated in scenario (S3). Figures 7 and 8 present the clear opposites of the functional
data sets with respect to the change-point. The changes can be easily observed. However,
especially working with functional data sets, the changes may not be that obvious. As an
example, Figure 9 illustrates another functional data set with the change-point, where the
presence of the change-point is not visible, but Monte Carlo experiments show that, with
the same magnitude of change, for almost 80% of the cases, H0 was correctly rejected.

The density of the limiting distribution and asymptotic critical values were estimated
using the Monte Carlo technique by simulating a Brownian bridge with 1000 points and
running 100,000 replications.

(a) 3D plot (b) Heat map plot

Figure 7. Functional data set (Yj).

(a) 3D plot (b) Heat map plot

Figure 8. Functional sample (Xj) with one change-point.
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(a) 3D plot of sample with change (b) Heat map plot of sample with change

Figure 9. Sample with introduced drift of magnitude a = 0.004 after the change-point.

In the power studies, we tested two variants of the random functional samples, one
with a single change-point in the middle of the functional sample and the second with
the two change-points forming epidemic change. In the first case, the functional sample
X1, . . . , Xn is constructed from n = 1000 random functions where 500 curves are changed in
order to violate the null hypothesis. The model that violates the null hypothesis is defined
as Xk(t) = ∆(t)1{i > n/2}+ Yi(t), ∆(t) = a

√
Mt, t ∈ [0, 1], M = 1000, and the parameter

a is used to control the magnitude of the drift after the change-point. In the second case,
during each iteration, n = 1500 random functions are generated, where 500 curves in
the middle were modified by taking Xk(t) = ∆(t)1{2n/3 > i > n/3}+ Yi(t), t ∈ [0, 1].
During each repetition, twostatistics are calculated: T̂n(d, p) (35) and T̂n,1(d) (26) in the
single change-point simulation. For the epidemic change simulation T̂n,m(d, p) (31), m = 2
statistic is calculated. We set the p-variation p parameter to 3. We also tested with different
p-values, but this did not have any impact on the overall performance.

Figure 10 presents the results of the statistical power simulation. From the results,
we can see that epidemic change has weaker statistical power. On the other hand, when
restricting the partition count, we observed one benefit, that the locations of the partitions
in many cases match or are very close to the actual locations of the change-point.
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Figure 10. Power curves.
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5. Application to Brain Activity Data

The findings of real data analysis to show the performance of the proposed test
are demonstrated in this section. The data were collected during a long-term study on
voluntary alcohol- consuming rats following chronic alcohol experience. The data consist
of two sets: neurophysiological activity from the two brain centers (the dorsal and ventral
striatum) and data from the lickometer device. The lickometer devices were used to monitor
the drinking bouts. During the single trial, two locations of the brain were monitored for
each rat. Rats were given two drinking bouts, one with alcohol and the other with water.
Any time, they were able to freely choose what to drink. Electrodes were attached to the
brains, and neurophysiological data were sampled at 1kHz intervals. It was not the goal of
this study to confirm nor reject the findings, but to show the advantages of the functional
approach for change-point detection. For this reason, the data are well suited to illustrate
the behavior of the test in real-world settings.

In our analysis, we took the first alcohol drinking event, which lasted around 27 s. We
also included 10 s before the drinking event and 10 s after the event. The total time was 47
s long. The time series was broken down into processes of 100 ms. Each process had 100
data points.

A470,100 =


a1,1 a1,2 · · · a1,100
a2,1 a2,2 · · · a2,100

...
...

. . .
...

a470,1 a470,2 · · · a470,100


All the processes were smoothed to the functions using 50 B-spline basis functions.

The overall functional sample contained 470 functions F̂ = [ f1, f2, . . . , f470]. The functional
sample was separated into sub-samples F̂i = [ f1, f 2, . . . , f20+i], i = 0, 1, . . . , 450. For each
sub-sample F̂i, two statistics were calculated (T̂n(d, p) (35) and T̂n,m(d, p) (31), m = 2).

The results are visualized in Figure 11. We can see that tests with statistics T̂n(d, p)
and T̂(n,m)(d, p) strongly rejected the null hypothesis at around 2 s and onward after the
rat started to consume the alcohol, which suggests that the changes in the brain activity
can be observed. However, the changes appear to happen only for the CPu brain region.
Interestingly, the statistic T̂n,m(d, p) has much larger volatility compared to the unrestricted
T̂n(d, p) in the Nacc brain region before the drinking event and lower volatility just after
the drinking event started. However, it is not fully clear if this is the expected behavior or a
Type I error.

Finally, the locations of the restricted (m = 2) p-variation partition points nearly
matched the beginning and the end of the drinking period. In Figure 11, the gray verti-
cal dashed lines indicate the actual beginning and the actual end of the drinking period
measured by the lickometer and the black vertical lines indicate the location of the par-
titions calculated from the functional sample F̂450. The first partition is located at 10.5 s
and the second partition point at 38.4 s, which aligns well with the data collected from
the lickometer.

The test with a restricted partition count showed weaker statistical power, but it did
help determine the location of the change-points.
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Figure 11. Statistics of the first alcohol drinking event, which lasted about 27 s. Ten seconds before
and 10 s after were also included. The red horizontal line indicates the critical value with 0.95. Vertical
gray dashed lines mark the beginning and the end of the drinking time. The black solid vertical lines
mark the locations of the change-points detected using the restricted p-variation method. Blue and
light blue colors represent different brain regions.

6. Proof of Theorems 1 and 3

The following theorem is a version of Theorem 2.11.1 in [13] adapted to the case of
continuous processes.

Theorem 12. Assume that {Zni : 1 ≤ i ≤ mn} are independent continuous stochastic processes
indexed by a totally bounded semi-metric space (G, d) such that

lim
n→∞

mn

∑
i=1

E‖Zni‖2
F1{‖Zni‖F>η} = 0 for every η > 0, (39)

lim
n→∞

sup
d( f ,g)<δn

mn

∑
i=1

E
[
Zni( f )− Zni(g)

]2
= 0 for every δn ↓ 0, (40)

∫ δn

0

√
log N(ε,G, dn) dε

P−−−→
n→∞

0 for every δn ↓ 0, (41)

where

dn( f , g) =
( mn

∑
k=1

[Znk( f )− Znk(g)]2
)1/2

.

Then, the sequence Zn := ∑mn
i=1(Zni − EZni) is asymptotically d-equicontinuous, that is, for every

ε > 0,
lim
δ↓0

lim sup
n→∞

P( sup
d( f ,g)<δ

|Zn( f )− Zn(g)| > ε) = 0.

Furthermore, (Zn) converges in law in `∞(G) provided that covariances converge pointwise on
G × G.
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Proof of Theorem 1 (1a). Without loss of generality, we assumed that ‖ψ‖ ≤ 1 for all
ψ ∈ Ψ and ‖ f ‖sup ≤ 1 for all f ∈ F . To prove (1a), we applied Theorem 12 for G = F ×Ψ,
d = ρ2, and Znk = n−1/2νnk, k = 1, . . . , n, where, under H0, νnk( f , ψ) = 〈Yk, ψ〉λnk( f ). Let
us check first the conditions (39)–(41). We have

n−1/2‖νnk‖G = n−1/2 sup
ψ∈Ψ, f∈F

|〈Yk, ψ〉λnk( f )| ≤ n−1/2‖Yk‖ sup
ψ∈Ψ
‖ψ‖ sup

f∈F
‖ f ‖sup

≤ n−1/2‖Yk‖.

Hence, (39) easily follows from E‖Y‖2 < ∞. Since

νnk( f , ψ)− νnk( f ′, ψ′) = 〈Yk, ψ− ψ′〉λnk( f ) + 〈Yk, ψ′〉λnk( f − f ′)

and Y, Yk are identically distributed, we have

E[νnk( f , ψ)− νnk( f ′, ψ′)]2 ≤ 2E‖Y‖2[λ2
nk( f − f ′)‖ψ′‖2 + λ2

nk( f )‖ψ− ψ′‖].

Summing this estimate and noting that for any g ∈ L2(0, 1),

n−1
n

∑
k=1

λ2
nk(g) ≤ n−1

n

∑
k=1

λnk(g2) = ‖g‖2

by the Hölder inequality, we find

n−1
n

∑
k=1

E[νnk( f , ψ)− νnk( f ′, ψ′)]2 ≤ 2E‖Y‖2[‖ψ‖2‖ f − f ′‖2 + ‖ f ′‖‖ψ− ψ′‖2]

≤ 2E‖Y‖2[‖ψ‖2 + ‖ f ′‖2]δn

≤ 4E‖Y‖2δn

if ρ2(( f , ψ), ( f ′, ψ′)) < δn. This estimate yields (40). To check (41), we have

dn(( f , ψ), ( f ′, ψ′)) =
(

n−1
n

∑
k=1

[〈Yk, ψ〉λnk( f )− 〈Yk, ψ′〉λnk( f ′)]2
)1/2

=
(

n−1
n

∑
k=1

[〈Yk, ψ− ψ′〉λnk( f ) + 〈Yk, ψ′〉λnk( f − f ′)]2
)1/2

≤
(

n−1
n

∑
k=1
〈Yk, ψ− ψ′〉2λ2

nk( f )
)1/2

+
(

n−1
n

∑
k=1
〈Yk, ψ′〉λ2

nk( f − f ′)
)1/2

≤
(

n−1
n

∑
k=1
‖Yk‖2λnk( f 2)

)1/2
ρ2,λ(ψ, ψ′) +

(
n−1

n

∑
k=1
〈Yk, ψ′〉2λnk( f − f ′)2

)1/2

≤ An[ρ2,λ(ψ, ψ′) + ρ2,Q( f , f ′)],

where

An =
(

n−1
n

∑
k=1
‖Yk‖2

)1/2
, and Q = A−2

n n−1
n

∑
k=1
‖Yk‖2λnk

Hence,
N(ε,F ×Ψ, dn) ≤ N(A−1

n ε,F , ρ2,Q)N(A−1
n ε, Ψ, ρ2,λ).

and the condition (41) is satisfied, provided that

I1(δn) :=
∫ δn

0
sup
Q∈Q

√
log N(A−1

n ε,F , ρ2,Q) dε
P−−−→

n→∞
0 for every δn ↓ 0, (42)
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and

I2(δn) :=
∫ δn

0

√
log N(B−1

n ε, Ψ, ρ2,λ) dε
P−−−→

n→∞
0 for every δn ↓ 0, (43)

hold. Set

J1(a) :=
∫ a

0
sup
Q∈Q

√
log N(ε,F , ρ2,Q) dε, J2(a) :=

∫ a

0

√
log N(ε, Ψ, ρ2,λ) dε.

It is known (see, e.g., [14]) that J1(1) < ∞. Hence, J1(a)→ 0 as a→ 0. By the condition (4),
J2(a) → 0 as a → 0. Changing the integration variables gives I1(δn) = An J1(A−1

n δn) and
J2(δn) = An J2(A−1

n δn).

Set σ2 := E‖Y‖2. By the strong law of large numbers, A2
n

P−−−→
n→∞

σ2. Choosing

η < 3σ2/4, we have, for any δ > 0,

P
(

I1(δn) > δ) ≤ P(An J1(A−1
n δn) > δ, |A2

n − σ2| < η
)
+ P(|A2

n − σ2| > η)

≤ P(An J1(A−1
n δn) > δ, A2

n > σ2/4
)
+ P(|A2

n − σ2| > η)

≤ P
(

An J1(ηδn/2) > δ) + P(|A2
n − σ2| > η)→ 0

as n→ ∞. Similarly, we prove I2(δn)
P−−−→

n→∞
0.

Next, we have to check the pointwise convergence of the covariances of (Zn). Since Yk
are independent, we have

E
( n

∑
k=1
〈Yk, ψ〉λnk( f )

n

∑
k=1
〈Yk, ψ′〉λnk( f ′)

)
=

n

∑
k=1

E
(
〈Yk, ψ〉〈Yk, ψ′〉

)
λnk( f )λnk( f ′)

)
= (Γψ, ψ′)

n

∑
k=1

λnk( f )λnk( f ′).

We shall prove that

In := n−1
n

∑
k=1

λnk( f )λnk( f ′)→ 〈 f , f ′〉 as n→ ∞.

Set Ĩn := n−1 ∑n
k=1 f (k/n) f ′(k/n). Evidently, limn→∞ Ĩn = 〈 f , f ′〉, and we have to check

lim
n→∞

|In − În| → 0.

We have

∆n := |In − În| ≤ n−1
n

∑
k=1

[λnk( f )λnk( f ′)− f (k/n) f ′(k/n)] ≤ |∆′n|+ |∆′′n |,

where

∆′n := n−1
n

∑
k=1

[λnk( f )(λnk( f ′)− f ′(k/n))], ∆′′n := n−1
n

∑
k=1

[ f ′(k/n)(λnk( f )− λnk( f ′))].
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Observing that

|λnk( f )− f (k/n)| =
∣∣∣ ∫ 1

0
( f (t)− f (k/n))dλnk(t)

∣∣∣ ≤ n
∣∣∣ ∫ k/n

(k−1)/n
( f (t)− f (k/n))dt

∣∣∣
≤
∫ 1

0
sup{| f (t)− f (k/n)| : t ∈ [(k− 1)/n, k/n]}dλnk

≤ sup{| f (t)− f (k/n)| : t ∈ [(k− 1)/n, k/n]

≤ v1/2
2 ( f ; [(k− 1)/n, k/n)]),

we have

|∆n| ≤ n−1λnk( f )v1/2
2 ( f , [(k− 1]/n, k/n])

≤ n−1
( n

∑
k=1

λ2
nk( f )

)1/2( n

∑
k=1

v2( f , [(k− 1)/n, k/n])
)1/2

≤ n−1/2‖ f ‖v1/2
2 ( f ).

This yields
lim

n→∞
E(Zn( f , ψ)Zn( f ′, ψ′)) = 〈Γψ, ψ′〉〈 f , f ′〉.

To complete the proof of (a), note that the existence of the continuous modification of
Gaussian process ν = ν(ψ, f ), (ψ, f ) ∈ G = Ψ × F ) follows by Dudley [15], since the
entropy condition

∫ 1
0

√
log N(ε,G, ρ2) dε < ∞ is satisfied.

Lemma 3. It holds that

lim
n→∞

sup
||g||(2)≤1

∣∣∣n−1
n

∑
k=1

g(k/n)− λ(g)
∣∣∣ = 0.

Proof. We have

In :=
1
n

n

∑
k=1

g(k/n)− λ(g) =
n

∑
k=1

∫ k/n

(k−1)/n
[g(k/n)− g(s)]ds

For every s ∈ [(k− 1)/n, k/n],

|g(k/n)− g(s)| ≤ v1/2
2 (g, [(k− 1)/n, k/n]).

Hence,

|In| ≤
n

∑
k=1

∫ k/n

(k−1)/n
v1/2

2 (g, [(k− 1)/n, k/n])d s

=
1
n

n

∑
k=1

v1/2
2 (g, [(k− 1)/n, k/n]) ≤ 1√

n

( n

∑
k=1

v2(g, (k− 1)/n, k/n])
)1/2

≤ 1√
n
‖g‖(2)

and this completes the proof.

Proof of Theorem 1 (1b). Under HA,

〈Xk, ψ〉λnk( f ) = 〈Yk, ψ〉λnk( f ) + 〈gn(k/n, ·), ψ〉λnk( f )

= 〈Yk, ψ〉λnk( f ) + n−1/2u(k/n)[〈a, ψ〉+ 〈an, ψ〉].
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Hence,
νn( f , ψ) = ν̂n( f , ψ) + ∆n( f , ψ) + rn( f , ψ),

where

µ̂n( f , ψ) =
n

∑
i=1
〈Yi, ψ〉λni( f ),

∆n( f , ψ) = n−1/2
n

∑
k=1

u(i/n)λni( f )〈q, ψ〉

and
rn( f , ψ) = n−1/2 ∑

k=1
u(i/n)]λni( f )〈qn, ψ〉.

We have by (1a)

n−1/2ν̂n
D−−−→

n→∞
νγ in the space `∞(F ×Ψ).

To complete the proof, we have to check

lim
n→∞

sup
f∈F ,ψ∈Ψ

|n−1/2∆n( f , ψ)− ∆( f , ψ)| = 0. (44)

and
lim

n→∞
sup

f∈F ,ψ∈Ψ
|n−1/2rn( f , ψ)| = 0. (45)

To this aim, we involve lemma 3. We have

n−1/2∆n( f , ψ)− ∆( f , ψ) = [In1( f ) + In2( f )]〈q, ψ〉,

where

In1( f ) =
1
n

n

∑
k=1

u(k/n)[λnk( f )− f (k/n)], In2( f ) =
1
n

n

∑
k=1

u(k/n) f (k/n)− 〈u, f 〉.

By Lemma 3 applied to the function u f , we have In2( f ) → 0 uniformly over f ∈ F .
Consider In1. We have, as in the proof of Lemma 3,

|In1( f )| ≤
n

∑
k=1
|u(k/n)|

∫ k/n

(k−1)/n
[ f (s)− f (k/n)|ds ≤ n−1/2‖u‖∞‖ f ‖(2).

Hence, In2( f )→ 0 uniformly over f ∈ F . The convergence (45) follows by observing that

|n−1/2rn( f , ψ)| ≤ ‖u‖∞

∫ 1

0
| f (s)|ds‖ψ‖ · ‖qn‖.

This proves (45) and completes the proof of (1b).

Proof of Theorem 3 (3a). Consider the map T : `∞(F ) → `∞(F ), T(x)( f ) = x( f ) −
x(1)λ( f ). The continuity of T is easy to check. Observing that ν̂n = T(νn), the convergence
(9) is a corollary of Theorem 1 and a continuous mapping theorem.

To prove (3b), observe that, under HA,

〈Xk, ψ〉λnk( f ) = 〈Yk, ψ〉λnk( f ) + 〈gn(k/n, ·), ψ〉λnk( f )

= 〈Yk, ψ〉λnk( f ) + n−1/2u(k/n)[〈v, ψ〉+ 〈vn, ψ〉]

hence
µn( f , ψ) = µ̂n( f , ψ) + ∆̃n( f , ψ) + r̃n( f , ψ),
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where

µ̂n( f , ψ) =
n

∑
i=1
〈Yi −Yn, ψ〉λni( f ),

∆̃n( f , ψ) = n−1/2
n

∑
k=1

[u(i/n)− n−1
n

∑
j=1

u(j/n)]λni( f )〈q, ψ〉

and

r̃n( f , ψ) = n−1/2 ∑
k=1

[u(i/n)− n−1
n

∑
j=1

u(j/n)]λni( f )〈qn, ψ〉.

We have by (a)

n−1/2µ̂n
D−−−→

n→∞
µγ in the space `∞(F ×Ψ).

To complete the proof, we have to check

lim
n→∞

sup
f∈F ,ψ∈Ψ

|n−1/2∆̃n( f , ψ)− ∆̃( f , ψ)| = 0. (46)

and
lim

n→∞
sup

f∈F ,ψ∈Ψ
|n−1/2r̃n( f , ψ)| = 0. (47)

For this, we can use (44) and (45) and observe that n−1 ∑n
k=1 u(k/n)→ λ(u) as n→ ∞.
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