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Abstract: The aim of this article is to choose the most appropriate method for identifying and man-
aging land cover changes over time. These processes intensify due to human activities such as agri-
culture, urbanisation and deforestation. The study is based in the remote sensing field. The authors 
used four different methods of satellite image segmentation with different data: Synthetic Aperture 
Radar (SAR) Sentinel-1 data, Multispectral Imagery (MSI) Sentinel-2 images and a fusion of these 
data. The images were preprocessed under segmentation by special algorithms and the European 
Space Agency Sentinel Application Platform (ESA SNAP) toolbox. The analysis was performed in 
the western part of Lithuania, which is characterised by diverse land use. The techniques applied 
during the study were: the coherence of two SAR images; the method when SAR and MSI images 
are segmented separately and the results of segmentation are fused; the method when SAR and MSI 
data are fused before land cover segmentation; and an upgraded method of SAR and MSI data fu-
sion by adding additional formulas and index images. The 2018 and 2019 results obtained for SAR 
image segmentation differ from the MSI segmentation results. Urban areas are poorly identified 
because of the similarity of spectre signatures, where urban areas overlap with classes such as non-
vegetation and/or sandy territories. Therefore, it is necessary to include the field surveys in the cal-
culations in order to improve the reliability and accuracy of the results. The authors are of the opin-
ion that the calculation of the additional indexes may help to enhance the visibility of vegetation 
and urban area classes. These indexes, calculated based on two or more different bands of multi-
spectral images, would help to improve the accuracy of the segmentation results. 
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1. Introduction 
Land and soil are limited nonrenewable resources that disappear over time. This pro-

cess is particularly accelerated by the intensity of various human activities that have trans-
formed and fragmented ecosystems of the land, as well as the functionality and perfor-
mance of shared land resources. The anthropogenic influences on climate are the emission 
of greenhouse gases and changes in land use, such as urbanization and agriculture. Of 
course, soil erosion, soil organic matter decline, soil contamination and compaction and 
surface temperature also contribute to this decline, but human activities, such as land de-
velopment, intensive land use and land abandonment, only accelerate these processes [1–
3]. The scientist excreted three highest-emitting regions (Latin America, Southeast Asia 
and sub-Saharan Africa) that dominated global emissions growth from 1961 to 2017, 
driven by the rapid and extensive growth of agricultural production and related land-use 
change. From the point of view of environmental protection, landscape morphology and 
functioning, economically and socially, land cover is considered to be a very important 
object of research [4]. Firstly, stabilizing the local surface temperature level and achieving 
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a balance between anthropogenic emissions by sources and removals by sinks of green-
house gases is very important, now and in the future globally [5]. 

The term ‘land cover’ itself is similarly described by various authors and interna-
tional organisations: it is the physical (bio) cover of the Earth’s surface, including mead-
ows, forests, artificial surfaces, waters, etc. [6–8]. Land cover is constantly changing and 
is affected by economic, political, cultural and other societal factors [9–20]. Long-term land 
cover observations can be used to assess the factors that affect the landscape to assess their 
extent, to predict trends in landscape change, to identify patterns of development, to pre-
vent destructive processes [21] and to assess natural or man-made damage to the land-
scape. Monitoring land cover change is a relevant topic but, at the same time, a challenge 
to conduct with as few resources as possible and to obtain the most efficient process. From 
a historical–temporal point of view, it is easy to see that changes in land cover have been 
largely influenced by human activity. It is often important to know how land cover 
changes over time, and to assess what changes we can expect in the near future, as well 
as the impact this will have on people’s lives. Today, the observation of changes at the 
Earth’s surface is becoming easier with the advent of remote sensing and, more specifi-
cally, with various satellite images. Data from various remote sensing applications, such 
as panchromatic, multispectral instruments (MSI) and hyperspectral, synthetic aperture 
radar (SAR) images, covering different parts of the electromagnetic spectrum, are ob-
tained from different artificial Earth observation satellites. These data can be processed 
and used for a variety of tasks but, in many cases, the use of only one type of image may 
be insufficient for land cover observations. The fusion of different types of data becomes 
an excellent solution for observing and analysing the surface of the Earth to obtain more 
information about an object. Information collected from different image sensors and 
properly processed by synthesising satellite images allows data gaps to be filled and more 
accurate results to be obtained [22]. Various studies on the fusion of different data can be 
found in the scientific literature [23–33]. Such works began in the 1980s, but some of the 
processes have not been automated. 

Some authors used optical images with different resolution (10–30 m). Data fusion 
results were images with 31 spectral bands, and a 30 m spatial resolution was performed 
and used to identify soil information. The modelling process produced an increase of ap-
proximately 10% in prediction accuracy compared to that obtained from single-sensor im-
ages [26]. The data fusion technics apply when scientists have optic image limitations be-
cause of cloudy times. The authors identify the process of combining data from multiple 
sources to produce more accurate, consistent and concise information than that provided 
by any individual data source [27]. The literature review by Jayme Garcia and Arnal 
Barbedo highlights the fusion techniques and accuracy. The Convolutional Neural Net-
works (CNN), Backpropagation Neural Network (BPNN), Random Forest (RF), Partial 
Least Squares Regression (PLSR), Dempster–Shafer and the Kalman filter and least 
squares support vectors machine gave the best mean precision of the result [28]. The au-
thors explain that in the case of agriculture, image data fusion has been particularly effec-
tive at the orbital level, both for artificially increasing the spatial resolution of sources with 
revisit frequencies and for compensating cloud cover using the information present in 
SAR images. In these cases, the improvement can exceed 50%. There is a study by N. Kus-
sul and coauthors [29] in which vegetation was classified using fusion of satellite images 
EO-1 and RADARSAT-2. In their study, they distinguished four classes: corn, soybeans, 
sunflower, and winter/spring wheat. They show that the result obtained with the data 
fusion is 2.5% more accurate compared to the result where only SAR images were used 
and 6.6% more accurate than with optical images only. Nicola Clerici and coauthors [30] 
used Sentinel-1 and Sentinel-2 in their study. The aim of the study was to investigate the 
precision of land cover classification using different algorithms, classifying SAR and MSI 
images separately and their fusion. Their result shows that regardless of the algorithm 
used, image fusion gives a more accurate result. They obtained a 58% more accurate result 
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using the random forest algorithm than using SAR images alone for land cover classifica-
tion, and it was 16% more accurate than using only optical images. The same Sentinel data 
were used by other authors, such as Julien Denize et al. [31], who show that SAR and MSI 
data fusion is 21% more accurate than SAR-only images and 7% more accurate than MSI-
only images. Audrey Mercier and coauthors [32] also performed better in image fusion, 
which is 20% more accurate than using SAR data alone and 5% more accurate than the 
results obtained using optical images alone. A very similar result was obtained by 
Armugha Khan, Himanshu Govil, Gaurav Kumar and Rucha Dave [33], who distin-
guished five land cover classes using S-1 and S-2 satellite imagery—waters, urban areas, 
ravines, barren land and crops. Their result is 25% more accurate with image fusion than 
SAR data alone and 5% more accurate with optical images alone. 

There is no consensus on the most appropriate method for monitoring and assessing 
land cover change, so this study focuses on these processes and their improvement. The 
different MSI and SAR data fusion techniques have been used for the segmentation of 
land cover in this study. The purpose of this article is to choose the most appropriate data 
fusion technique for identifying and managing land cover changes over time. 

2. Study Area 
An area of 2000 km2 in western Lithuania was selected for the study (Figure 1). This 

territory was chosen due to the diversity of land cover, which includes one of Lithuania’s 
largest cities (Klaipėda), less urbanised areas (Palanga, Kretinga, Kretingalė, Gargždai, 
etc.), main roads, side roads, wooded areas, cultivated fields, meadows, sandy areas, 
coastal dunes, open waters (Baltic Sea), lagoons (Curonian Lagoon), closed waters (lakes 
and ponds), rivers and swamps. 

 
Figure 1. Location map of the study area. 

Six classes of land cover (hydrography, forests, vegetation areas, sand dunes, built-
up areas and nonvegetation) were selected for the study because they were recommended 
by other authors for land cover/land use classification [7, 34–43]. 

In the study area, the hydrography class includes the sea, lagoon, water bodies and 
rivers. Areas belonging to the forest class are covered with forests (including young 
stands). The class of vegetation areas are those covered with green vegetation. Sand dunes 
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include the coastal zone, quarries and other similar areas. The class of built-up areas in-
cludes settlements, artificial surfaces and industrial zones, while no vegetation areas in-
clude felled areas, bare soil and areas where vegetation does not grow. The methods for 
preparing fusion of the data from the different satellite images described in this article 
were used to monitor and visualise changes in the Earth’s surface. 

3. Materials and Methods 
3.1. Data Acquisition and Pre-processing 

The Sentinel-1 SAR and Sentinel-2 MSI satellite images distributed by the European 
Space Agency (ESA) are available for free download from the Copernicus Open Access 
Hub website. These images were selected based on their resolution, spectral bands, re-
cording frequency and coverage area [44]. The SAR and MSI data provided by the ESA 
have different characteristics, both in terms of their physical properties and the principle 
of obtaining the images themselves; therefore, pre-processing of the data is required for 
data preparation and fusion (Figure 2). 

 
Figure 2. SAR and MSI images pre-processing. 

Sections 3.1.1. and 3.1.2. provide detailed information on the pre-processing of data 
for the study. 

3.1.1. Pre-processing of Sentinel-1 SAR Satellite Data 
Sentinel-1 is the first satellite of the Copernicus Global Monitoring Program for En-

vironmental Monitoring. The satellite was developed to observe the subsystems of the 
Earth, the atmosphere, the oceans and the continents [45, 46]. For this study, 13 S1A im-
ages from the Sentinel-1 satellite were chosen. It was Interferometric Wide swath (IW), 
Single Look Complex (SLC) products with dual VV+VH polarisation. The processing of 
images was performed using Graph Builder from the ESA SNAP toolbox. 

In the first pre-processing step, the satellite position and velocity information was 
refined (Apply Orbit File). High-accuracy image positioning is important in the process 
of fusion of different data. The exact position of the satellite is not known when the SAR 
image is taken in real time,, so only abstract information is captured in the product 
metadata. The ESA SNAP toolbox uses the Apply Orbit File to update the satellite position 
and speed information. This uses orbital files that are available a few days or weeks after 
the image is captured. In ESA SNAP, these files are automatically downloaded [45]. The 
data are then calibrated and the satellite images acquire the true values of the reflected 
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rays (sigma, beta and gamma); the bursts and subswaths in the original image were 
merged into a single image, and the image was converted to form uniformly sized grids. 
In addition, a Speckle Filter was applied, which reduced speckles in the image, making it 
difficult to interpret. For this study, a Lee Sigma filter was chosen, which uses a standard 
deviation to reduce speckles in the image. Pixel contrast is important in identifying differ-
ent ground cover objects, so the polarisation bands of images need to be transformed to a 
logarithmic scale to highlight them. This feature shifts bright values towards the middle, 
and dark values are stretched over a wider range of colours, resulting in greater contrast 
between some of the different land objects. Original SAR images are often distorted and 
their position appears mirrored due to the orbit of the satellite; therefore, after the initial 
processing of the SAR images, a geographic orientation was performed as the last step to 
ensure that the images are geographically correct. The SRTM 1 sec HGT terrain model, 10 
m pixel size, and WGS84/UTM zone 34N coordinate system were used for this operation. 
An example of an image processed and prepared for analysis is shown in Figure 3. 

 
Figure 3. SAR image processed and prepared for analysis—VV, VH, VV/VH polarisation. 

3.1.2. Pre-processing of Sentinel-2 MSI Satellite Data 
Mission Sentinel-2 is dedicated to monitoring variability in surface conditions and 

changes in vegetation during the growing season. These satellites systematically capture 
13 different multispectral channels. The study used MSI level-2A (L2A)-type satellite im-
ages, which were selected according to an important criterion-cloud percentage. Images 
in June, July and August of 2018 and 2019, with cloud cover levels below 15%, were used. 
The L2A MSI images provided by ESA were already partially processed, i.e., the data were 
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corrected due to atmospheric and terrain errors. Therefore, the downloaded data were 
immediately suitable for data fusion and did not require any additional processing by 
software. However, to avoid data redundancy and speed up further processing, image 
cropping was performed, which is a subset of data selection. Solar position, azimuth, or 
quality indicators are not required for data fusion, so only MSI image bands were selected, 
eliminating aerosol and cloud-sensitive tapes (B1, B9 and B10 tapes). Subset tools of the 
ESA SNAP toolbox software were used. The final data product consisted of bands B2, B3, 
B4, B5, B6, B7, B8, B8a, B11 and B12. An example of an image prepared for analysis is 
shown in Figure 4. 

 
Figure 4. MSI image processed and prepared for analysis. 

3.2. Segmentation and Land Cover Classification 
In the study, we used four methods of image processing and fusion: 

 The coherence of two SAR images; 
 The method when SAR and MSI images are segmented separately and the results of 

segmentation are fused; 
 The method when SAR and MSI data are fused before land cover segmentation; 
 The upgraded method of SAR and MSI data fusion by adding additional formulas and 

index images. 

3.2.1. The Coherence of Two SAR Images 
In the study, we estimated land cover classification using only SAR images and MSI 

images as a support to fill in the gaps. The methodology of Magdalena Fitrzyk (2019) was 
used when the change in the land cover was identified using the coherence of electromag-
netic waves, and the result is presented in RGB composition [47]. 
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Two images of SAR with equal territorial coverage in early June 2018 and early 2019 
were selected to test this method. The following SNAP tools were used for pre-processing 
both images: Apply Orbit File, back geocoding, enhanced spectral diversity, coherence 
estimation, debursting and terrain correction. The back geocoding operator co-registers 
two S-1 SLC split products (master and slave) of the same subswath, using the orbits of 
the two products and a Digital Elevation Model (DEM). This created one image, for which 
we could estimate coherence. After coherence estimation for the same raw SAR images, 
the second pre-processing has to be carried out. The scheme of the second pre-processing 
is given in Section 3.1.1. These two preprocessing stages result in three images for the 
fusion: one coherence SAR image and two preprocessed SAR images (Sigma0_vv_2018 
and Sigma0_vv_2019). For the fusion, the SNAP Stack tool was used. After fusion, the 
images were converted to the logarithmic scale, creating two new bands: average 
(averange_sigma) and difference (diff_sigma). 

𝑑𝑖𝑓𝑓_𝑠𝑖𝑔𝑚𝑎 = 𝑆𝑖𝑔𝑚𝑎0_𝑣𝑣_2018 − 𝑆𝑖𝑔𝑚𝑎0_𝑣𝑣_2019 (1)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑖𝑔𝑚𝑎 =
𝑆𝑖𝑔𝑚𝑎0_𝑣𝑣_2018 + 𝑆𝑖𝑔𝑚𝑎0_𝑣𝑣_2019

2
 (2)

All three bands (coherence, diff_sigma and average_sigma) were then used for the RGB 
composite and further analysed. The coherence band was used to open this RGB image 
correctly for the Red band; for the Green band: average_sigma; and for the Blue band: 
diff_sigma. The processing schema of the coherence method is presented in Figure 5. The 
results are presented in Section 4.1. 

 
Figure 5. Processing schema of coherence method. 

3.2.2. Separate SAR and MSI Segmentation Method 
Land cover segmentation was performed separately for the summer SAR and MSI 

images of 2018, using the supervised segmentation method and the regression-type Ran-
dom Forest (RF) algorithm. The pixel and coordinate results were then combined into an 
overall segmentation result. The data pre-processing is described in Sections 3.1.1 and 
3.1.2. Land cover classification was performed separately for SAR and MSI images, ac-
cording to Section 3.3. The processing scheme of the separate SAR and MSI segmentation 
method is shown in Figure 6. 
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The analysis of the obtained results is presented in Section 4.1. 

 
Figure 6. Processing schema of separate SAR and MSI segmentation methods. 

3.2.3. SAR and MSI Fusion Technique 
In the study, the SAR and MSI images were combined into a common image after 

pre-processing. The merging of the images was performed using the ESA SNAP software, 
using the Collocate tool. The SAR image was the Master image. This means that all other 
image views are resampled according to their geographical position and grid size. The 
SAR image was selected as the primary one because the images are extremely accurate 
after applying the orbit file during image preprocessing. Resampling by bilinear interpo-
lation was used for data aggregation. Bilinear interpolation (bilinear filtering) is a tech-
nique for calculating values of a grid location based on nearby grid cells. The key differ-
ence is that it uses the average digital number (DN) of the cell centers closest to the four 
pixels (Figure 7) [48]. 

 
Figure 7. Resampled image cell size with 4 nearest neighbours (Reprinted with permission from 
Ref. [48]. 

The four nearest-neighbour image pixel centre coordinates 𝑓(𝑛 , 𝑛 ), 𝑓(𝑛 , 𝑛 ), 
𝑓(𝑛 , 𝑛 ) and  𝑓(𝑛 , 𝑛 ) geometrically transformed the image g(n1, n2), as computed 
by [49]: 
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𝑔(𝑛 , 𝑛 ) = 𝐴 + 𝐴 𝑛 + 𝐴 𝑛 + 𝐴 𝑛 𝑛  (3)

where 𝐴 , 𝐴  and 𝐴  (the bilinear weights) were found by solving the matrix: 

𝐴
𝐴
𝐴
𝐴

=

1 𝑛 𝑛 𝑛 𝑛
1 𝑛 𝑛 𝑛 𝑛
1 𝑛 𝑛 𝑛 𝑛
1 𝑛 𝑛 𝑛 𝑛

𝑓(𝑛 , 𝑛 )

𝑓(𝑛 , 𝑛 )
𝑓(𝑛 , 𝑛 )

𝑓(𝑛 , 𝑛 )

 (4)

where 𝑔(𝑛 , 𝑛 ) is defined as a linear combination of the grey levels of its four nearest 
neighbours. The linear combination defined by Equation (4) is, in fact, the value assigned 
to 𝑔(𝑛 , 𝑛 ) when the best (least squares) planar fit is made to these four neighbours. This 
process of optimal averaging produces a visually smoother result. 

Regardless of the interpolation approach that is used, it is possible that the mapping 
coordinates 𝐴 (𝑛 , 𝑛 ), 𝐴 (𝑛 , 𝑛 ) do not fall within the pixel ranges. 

We obtained one GEOTIFF format image after SAR and MSI data fusion and the data 
used in the segmentation process are described in Section 3.3. The processing schema of 
SAR and MSI data fusion are given in Figure 8. 

 
Figure 8. Processing schema of SAR and MSI data fusion. 

The results are given in Section 4.1. 

3.2.4. Image Fusion Technique with Additional Indexes 
In this study, we decided to update the fusion technique of the images (Section 3.2.3.) 

with derivative images, i.e., indexes. The accuracy of the identification of all land cover 
classes can be improved by using derivative products of the images. Different land cover 
objects reflect multispectral waves differently so, in order to obtain more accurate land 
cover segmentation results, indices that are typically calculated from two or more differ-
ent bands of the multispectral image can also be used. 

After the segmentation process (Section 3.3.) of the least-identified and overlapping 
urbanised, nonvegetation and sandy areas, three additional indices were chosen to high-
light the vegetation class: Normalised Vegetation Difference Index (NDVI), Sentinel-2 Red 
Edge Position Index Sentinel-2 Red-Edge Position Index (S2REP), Green Normalised Dif-
ference Vegetation Index (GNDVI) and one to highlight the urban class—Normalised Dif-
ference Built-Up Index (NDBI). 
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NDVI is the most commonly used index in the remote sensing analysis of vegetation, 
which is also widely used in land cover mapping [30]. 

Clerici et al., (2017) argued that it may also be useful to include information from the 
red-edge bands of the electromagnetic spectrum for land use classification. The Sentinel-
2 S2REP index is based on linear interpolation using Sentinel-2 bands B5 and B6, both of 
which are for red edge and suitable vegetation identification [30]. 

GNDVI was calculated using data from the visible green spectrum instead of the vis-
ible red spectrum (as in the NDVI index) and the near-infrared spectrum. It is useful for 
measuring the intensity of photosynthesis and monitoring plant stress; due to the peculi-
arities of the spectral bands used in the indicator, it is more sensitive compared with 
NDVI. This index not only helps to identify vegetation but also highlights differences be-
tween hydrographic and vegetation classes (hydrographic objects acquire negative val-
ues) [50]. 

All three of these indices are designed to better identify vegetation in satellite im-
agery. Analysing the intermediate results of land cover classification, it was observed that 
urban areas are difficult to distinguish and mix with other classes, so it was decided to 
use an index that would highlight urban areas. One of these is the Normalised Difference 
Built-Up Index (NDBI). This index highlights urbanised areas with higher shortwave re-
flections in the infrared spectrum [51,52]. 

In addition to the above indices for multispectral images, calculations were also per-
formed for the processed SAR images. To reduce band imbalance, the ratio between the 
two polarisations is calculated using the VV and VH bands, according to the formula be-
low: 

𝑆𝑖𝑔𝑚𝑎_𝑟𝑎𝑡𝑖𝑜_𝑑𝑏 = 𝑆𝑖𝑔𝑚𝑎0_𝑉𝑉_𝑑𝑏 − 𝑆𝑖𝑔𝑚𝑎0_𝑉𝐻_𝑑𝑏 (5)

These indices were calculated for each image separately, regardless of how many of 
them are intended to be used in the fusion process. All of the calculated indices in the 
process were used as additional bands, so the final multispectral photo product consisted 
of B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12, NDVI, S2REP, GNDVI and NDBI bands, and 
the SAR product-  𝑆𝑖𝑔𝑚𝑎0_𝑉𝑉_𝑑𝑏 , 𝑆𝑖𝑔𝑚𝑎0_𝑉𝐻_𝑑𝑏  and 𝑆𝑖𝑔𝑚𝑎_𝑟𝑎𝑡𝑖𝑜_𝑑𝑏  bands. The re-
sults and statistical analysis are presented in Sections 4.1. and 4.2. 

3.3. Image Segmentation and Identification of Land Cover Change 
The accuracy of a map of land cover classes depends not only on the data used to 

compile it but also on the method used for segmentation and the algorithm used. Three 
methods are used to segment digital images: supervised, unsupervised and object-based 
segmentation. In this study, the supervised segmentation method was chosen. When clas-
sifying land cover, the set of samples are used to define the classes. The operator collects 
sample areas by studying the maps of the selected territory, as well as aerial photographs 
and orthophotographic maps, checking selected sites using field surveys. The goal is to 
identify a set of areas that accurately reflect the spectral values in each land cover class. 
The classification algorithm or classifier is trained to select classes using a group of spec-
tral features and a training sample. When signatures for each class are identified, each 
pixel in the image is compared to those signatures and marked as belonging to the class 
that it most numerically matches [17, 53]. 

Various authors focusing on land cover classification studies using SAR and MSI im-
ages mainly use two main classification algorithms: Support Vector Machine (SVM) and 
Random Forest (RF) [29–32, 54–56]. RF is one of the most popular and effective supervised 
training algorithms. The basic idea of RF is to form an accurate classifier by combining 
solutions from multiple binary solution trees, grown using different subsets of data from 
the original data set, and randomly selected subsets of features from the feature set. Such 
a set of binary trees is characterised by resilience to learning and, as the number of trees 
grows, the convergence of the common error to a stable value [57]. Each decision tree is 
trained by randomly separating a portion of the data from the training sample, and the 



Land 2022, 11, 1023 11 of 21 
 

remaining data is used for testing. As the number of decision trees increases, the error for 
the test portion of the data decreases. The significance of the characteristics is measured 
using the remaining data. The selected characteristics depend on the number of data in-
cluded in the remaining data, so different amounts of data are taken for the selection of 
the most important characteristics. By eliminating the features in this way, the less im-
portant features are removed, as long as the most important spectral features remain. An-
alysing the work by Kussul, Clerici, Valbuena Calderón and Posada, Haas and Ban, Ger-
rells, Sun, Denize and Mercier, which compares the results obtained using the SVM and 
RF algorithms, shows that the RF algorithm often yields more accurate ground cover clas-
sification results; this algorithm was chosen for this study. 

After land cover segmentation, the raster was converted to GeoTIFF-BigTIFF format, 
so that the image does not lose its geolocation information and is suitable for further anal-
ysis with GIS applications. Often, there are single misclassified grids in the segmentated 
raster that look like noise. In this case, a reclassification of the grids should be performed: 
the value of another class with which it shares four boundaries was transferred to the 
individual grids. 

Rasters processed and prepared for two different periods to identify land cover 
changes were converted to vector data. This step was performed to remove cells that did 
not undergo a change in land cover, leaving only those areas where the change was rec-
orded. 

The change in land cover classes was estimated by intersect (Union tool in GIS app); 
this vector classifies land cover layers for different periods. A new data layer was ob-
tained, from which it is possible to see which two classes were intersected 

The first filtering was performed according to the overlapping grid identifier, which 
means that those grids that have the same land cover class identifier in the images of dif-
ferent periods were removed; in other words, the grids in which the land cover change 
did not occur. Grids in which there was a change between vegetation and uncovered veg-
etation classes were also removed because it is a seasonal change in land use rather than 
a change in land cover. When grids with changes are selected, they are merged according 
to the land cover class identifier, but without creating multipart geometry objects, which 
means that objects of the same class that have a common boundary will be merged. 

After the merging, a second filtration was performed, during which areas smaller 
than 5 ha were removed. This number was chosen based on the scale of the map being 
created, which in this case is M 1:50 000. On a map of this scale, an area of 5 ha is a rectan-
gle of 4 x 5 mm2, so it is visible on both the digital and printed maps. At the same time, 
small changes are distinguished from significant, larger changes. After filtration, changes 
in land cover over the analysed period were obtained. 

4. Results 
To review the process of all the research presented in the article, a general methodo-

logical scheme for the identification of land cover changes has been developed (Figure 9). 
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Figure 9. Methodological scheme for satellite image processing, data fusion and identification of 
land cover changes. 

The results section is divided into two parts: the results of data segmentation and 
comparisons, in visual terms, and the results of land use change and accuracy assessment 
in 2018 and 2019 in statistical terms. 

4.1. Data Segmentation and Comparison Results 
After the pre-processing and coherence assessment (Section 3.2.1.) of two SAR im-

ages (2018, 2019), three data bands were obtained: SAR images after pre-processing in 
2018; SAR images after pre-processing in 2019; and the coherence band. According to the 
methodology described in Section 3.3., the coherence of the data for 2018 and 2019, and 
their aggregation to assess the changes, was performed. The results are shown in Figure 
10. 
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Figure 10. Land cover changes were identified using SAR image coherence. Yellow—urban areas, 
green—vegetation areas and forests, magenta—no change and blue—changed areas. 

The results obtained from the assessment of land cover changes in 2018 and 2019 
were visually analysed and compared with RGB satellite images from the same period. 
Figure 10 shows that the forests and urban areas were sufficiently clear and precise and 
that the riverbed did not change throughout the year. However, when analysing arable 
land, meadows, pastures, and other vegetation areas, annual differences have been iden-
tified that occupy a considerable area. Comparing these areas with the MSI RGB image 
shows that their actual value has not changed, meaning that if that area was used for ag-
riculture, it was used for the same purpose a year later, but there was a change between 
the stage of vegetation growth. In 2018, it was observed that the vegetation season started 
later than in 2019, or other crops were grown. Coherently prepared SAR data are suitable 
for visual analysis and comparison but are completely unsuitable for mathematical anal-
ysis. It is not possible to calculate the changes between classes. This is because it is possible 
to see which grids belong to which class (at a small scale), but analysing them separately 
shows that they have neither a uniform colour value specific to that class nor an identifier 
to distinguish object classes. Consequently, this method is suitable only for initial inspec-
tion of the site and identification of the most altered site. 

SAR and MSI preprocessed data were segmented separately in the next study 
method. The results of segmentation are shown in Figure 11. 
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(a) (b) 

Figure 11. Segmentation result: (a) SAR (2018); (b) MSI (2018). 

Analyzing the images in Figure 11, it was found that the results obtained from the 
MSI images are much more in line with the real situation in the land cover than the images 
classified by SAR. In the SAR-segmented photograph, forest areas are highlighted, but all 
other object classes show significant discrepancies with the actual situation. Meanwhile, 
the analysis of MSI-classified images shows a fairly well-defined urban area but, in places, 
they overlap with areas of similar colour spectrum, i.e., sandy areas, dry ploughed land, 
clear-cuts, and so on. MSI images also show a very good distinction between smaller and 
larger wooded areas, larger water bodies, and rivers. Smaller water bodies remain uni-
dentified (as would be in SAR images). This methodology highlights the problems of SAR 
and MSI images quite well, i.e., the ability to identify different ground cover classes using 
one or another data source. Classifying SAR and MSI images separately also results in too 
large a difference in the results to be later fused into a single map of the land cover classes. 

In the next study, the prepared SAR and MSI images were fused into one image be-
fore the segmentation process (Section 3.2.3.). The results of June 2018 and 2019 were ob-
tained after calculating the fused image (Figure 12). 



Land 2022, 11, 1023 15 of 21 
 

(a) (b) 

Figure 12. Segmentation result: (a) 2018; (b) 2019. 

Compared with the previously obtained results (Figure 11), this result is better, but a 
closer analysis of the obtained images shows that the urban areas were relatively poorly 
separated. They often overlap with the no vegetated land cover class or with sandy areas. 
To improve accuracy, it was decided to include the indices described in Section 3.2.4. in 
the segmentation process to highlight the vegetation and urban classes. The segmentation 
view, including the indices NDVI, S2REP, GNDVI, NDBI and 𝑆𝑖𝑔𝑚𝑎_𝑟𝑎𝑡𝑖𝑜_𝑑𝑏, is shown 
in Figure 13. 
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(a) (b) 

Figure 13. Segmentation result (a) 2018 (b) 2019. 

The statistical results from this method are presented in Section 4.2. and the recorded 
changes in land cover are presented for the period 2018–2019. 

4.2. Results of Change Assessment 
The survey identified 511 changes in land cover class in the selected area during the 

summer periods of 2018 and 2019. The statistics are given in Figure 14. The abscissa shows 
the change in the area of land cover class, from one class to another. Nonvegetated areas 
turned into forests (0–1), sand dunes (0–2) and urbanised areas (0–3); forests turned into 
uncovered areas (1–0) and vegetation areas (1–4); urban areas became nonvegetated areas 
(3–0), forests (3–1), vegetation areas (3–4) and even hydrography (3–5); and vegetation 
areas turned into forests (4–1), urban areas (4–3) and the hydrography class (4–5). 
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Figure 14. Changes of land cover classes in 2018–2019. 

In the period 2018–2019, most land cover changes were recorded in two class pairs: 
0–1 and 4–1. Nonvegetated and vegetation areas of the land cover changed to forests. The 
least changes were recorded in the sand and hydrography classes. To estimate the actual 
change in all class pairs, 20 random objects (or all if fewer changes were identified) were 
selected and the result was checked against the 2018 and 2019 RGB images. Figure 15 is a 
diagram summarising the results. 

 
Figure 15. Results of qualitative accuracy check. 
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This shows that as many as 5 of the 12 pairs of land cover classes listed have a 100% 
negative result, meaning that no actual change has occurred at those locations and classi-
fication inaccuracies have been identified. This analysis proves, once again, that despite 
the use of SAR data in addition to MSI data, the identification and segregation of vegeta-
tion areas, urban areas and nonvegetated areas still remains difficult. This was also found 
in the work of other authors [30, 58]. 

5. Discussion and Conclusions 
To summarise the findings of this study: 

1. After preprocessing and coherence extraction of the SAR and the two-period images, 
the result is only relevant for the initial inspection of area changes and the detection 
of the most altered areas. 

2. The results from using the second method show that the individual segmentation of 
SAR and MSI images differs drastically, and the field studies and accuracy estimation 
required the evaluation of reliability. 

3. The result of segmentation of the combined SAR and MSI data showed that the clas-
ses of urban areas, nonvegetated areas and sandy areas are poorly separated due to 
a similar spectral signature. Therefore, it was decided to include NDVI, S2REP and 
GNDVI indices to improve accuracy and highlight the class of vegetation areas. NDBI 
was included to highlight the class of urban areas. 

4. Additional indices improved the result of segmentation, but there are still errors in 
identifying urban areas. 

5. Changes that were falsely identified during the qualitative accuracy check of the 
identified changes (92.08% of all changes checked) were False Positive results and no 
False Negative results were observed in the analysis of the images. Although changes 
are incorrectly identified in some identified cases, visual inspection (especially when 
potential locations for potential inaccuracies are known) and manual correction 
would still use less time than not automating all the process. 
In our study, the method that provides the most accurate results for land cover seg-

mentation confirms Clerici’s [30] finding that the inclusion of additional indices enriches 
the image and yields better segmentation results. As many as three indices were used in 
this work to highlight the vegetation class (NDVI, S2REP and GNDVI), but questions arise 
as to whether this is not a surplus. In order to ascertain which vegetation indices are most 
beneficial for the segmentation result, a broader analysis of the literature and, if necessary, 
research is provided. Future work will aim to refine the method so that it is optimal in 
terms of time and quality compared with similar manual work. 

The applied image merging techniques also confirm the conclusions of other authors 
[26–33] that the merging of two different sensors enriches the image information. Moreo-
ver, SAR images may compensate for the low cloud content of MSI images, especially if 
multiple SAR images are used. However, it is interesting that in all the analysed authors, 
the percentage accuracy of the fused and separately segmented images varies quite 
strongly in some cases. This may be influenced by the satellite imagery used, the different 
ground cover classes used and the different classification algorithms used. It is also very 
important to note that in the articles analysed, the research is carried out on different areas 
that are in different latitudes, which may also be the reason why the results obtained by 
different researchers are so different. 

Our plan for future work is to carry out studies and projections of the impact of land 
cover/land use classes on future climate change and expand the study spatially and tem-
porally. 
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