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Abstract: In the paper, the simultaneous approximation of a tuple of analytic functions in the strip
{s = σ + it ∈ C : 1/2 < σ < 1} by shifts (ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ))) of the Riemann zeta-
function ζ(s) with a certain class of continuously differentiable increasing functions ϕ1, . . . , ϕr is
considered. This class of functions ϕ1, . . . , ϕr is characterized by the growth of their derivatives. It is
proved that the set of mentioned shifts in the interval [T, T + H] with H = o(T) has a positive lower
density. The precise expression for H is described by the functions (ϕj(τ))

1/3(log ϕj(τ))
26/15 and

derivatives ϕ′j(τ). The density problem is also discussed. An example of the approximation by a
composition F(ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ))) with a certain continuous operator F in the space of
analytic functions is given.

Keywords: joint universality; Mergelyan theorem; Riemann zeta-function; weak convergence

MSC: 11M06

1. Introduction

As usual, let ζ(s), s = σ + it denote the Riemann zeta-function. Recall that, in the
half-plane σ > 1, the function ζ(s) is defined by the Dirichlet series or infinite product over
prime numbers

ζ(s) =
∞

∑
m=1

1
ms = ∏

p−prime

(
1− 1

ps

)−1
,

and has analytic continuation to the whole complex plane, except for the point s = 1,
a simple pole with residue 1. The function ζ(s) is not only the main object of analytic
number theory but also has applications in other regions of mathematics and even physics.
Therefore, it is not surprising that much attention is devoted to investigating the function
ζ(s). One of the most interesting properties of the Riemann zeta-function is its universality
discovered by S.M. Voronin in [1]; see also [2]. He observed that a wide class of analytic
functions can be approximated to the desired accuracy by shifts ζ(s + iτ), τ ∈ R. More
precisely, Voronin proved that, for every continuous non-vanishing in the disc |s| 6 r,
0 < r < 1/4, and analytic in |s| < r function f (s), and every ε > 0, there exists τ = τ(ε) ∈ R
such that

max
|s|6r

∣∣∣∣ζ(s +
3
4
+ iτ

)
− f (s)

∣∣∣∣ < ε.

Voronin himself applied the universality property of ζ(s) to investigate the denseness
of the set of its values, and also used it for the proof of its functional independence [3].
Physicists obtained [4] estimates for integrals over analytic curves used in quantum me-
chanics. Other applications of the universality of zeta-functions and some related problems
can be found in a survey paper [5].

Attention to the universality of zeta-functions has not stopped for almost half a century.
Currently, the Voronin universality theorem has a more general form. Let D = {s ∈ C :
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1/2 < σ < 1},K be the class of compact subsets of the strip D with connected complements,
and H0(K) with K ∈ K be the class of continuous non-vanishing functions on K that are
analytic in the interior of K. Denote by measA the Lebesgue measure of a measurable set
A ⊂ R. Then, the following assertion is valid; see [6,7].

Theorem 1. Suppose that K ∈ K and f (s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

In place of shifts ζ(s + iτ), generalized shifts ζ(s + iϕ(τ)) with a certain function ϕ(τ)
can be used. For example, in [8], the function ϕ(τ) = τα logβ τ with some α, β ∈ R was ap-
plied. In [9], the increasing differentiable function ϕ(τ), such that ϕ(2τ)maxτ6u62τ(ϕ′(τ))−1

� τ, τ → ∞, was used. Here, and in sequel, the classical Landau notation, a � b, b > 0,
means that there exists a constant C > 0 such that |a| 6 Cb. More generally, a�θ b means
that the constant C depends on θ, a and b can depend or not on θ. For example, the famous
Lindelöf hypothesis asserts that, for every ε > 0,

ζ

(
1
2
+ it

)
�ε tε, t > t0 > 0.

More general joint universality theorems on the simultaneous approximation of a
tuple of analytic functions by shifts of zeta or L-functions are also known. The first theorem
of this kind was obtained in [2] for Dirichlet L-functions L(s, χ1), . . . , L(s, χr) with pairwise
non-equivalent Dirichlet characters χ1, . . . , χr. The modern version of this theorem is given
in [10]. Joint universality theorems for more general functions can be found in [11–13].
In addition, some works on joint approximation of a tuple of analytic functions by shifts
(ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ))) with some functions ϕ1(τ), . . . , ϕr(τ) are known. In the
joint case, the shifts ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ)) must be independent in a certain sense.
Thus, the functions ϕ1(τ), . . . , ϕr(τ) must satisfy some requirements. For example, in [8],
the functions ταj logβ j τ, j = 1, . . . , r, with reals αj 6= αk of β j 6= βk for j 6= k were used.
In [14], a joint universality theorem on approximation by shifts (ζ(s+ ia1τ), . . . , ζ(s+ iarτ))
was obtained, where a1, . . . , ar are real algebraic numbers, linearly independent over the
field of rational numbers Q.

In the present paper, we will prove a joint universality theorem in short intervals for
the Riemann zeta-function on the approximation of analytic functions by generalized shifts
with certain differentiable functions ϕj(τ). We say that (ϕ1, . . . , ϕr) ∈ Ur if the following
hypotheses are satisfied:

1◦ ϕ1(τ), . . . , ϕr(τ) are increasing to +∞ functions in [T0, ∞], T0 > 0;
2◦ ϕ1(τ), . . . , ϕr(τ) have continuous derivatives such that

ϕ′j(τ) = ϕ̂j(τ)(1 + o(1)), τ → ∞, j = 1, . . . , r,

where ϕ̂j(τ) are monotonic functions compared with respect to their growth. Without loss
of generality, we require that, for τ → ∞,

ϕ̂j(τ) = o(ϕ̂j+1(τ)), j = 1, . . . , r− 1.

3◦ the estimates
ϕ̂j(2τ)

ϕ̂j(τ)
� 1 if ϕ̂j(τ) is increasing,

ϕ̂j(τ)

ϕ̂j(2τ)
� 1 if ϕ̂j(τ) is decreasing, j = 1, . . . , r,
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are valid.
For (ϕ1, . . . , ϕr) ∈ Ur, define

ψj(τ) = (ϕj(τ))
1/3(log ϕj(τ))

26/15,

Ĥj(τ) =


ψj(τ)

ϕ̂j(2τ)
if ϕ̂j(τ) is increasing,

ψj(τ)

ϕ̂j(τ)
if ϕ̂j(τ) is decreasing, j = 1, . . . , r,

̂̂H j(τ) =


ϕj(τ)

2ϕ̂j(2τ)
if ϕ̂j(τ) is increasing,

ϕj(τ)

2ϕ̂j(τ)
if ϕ̂j(τ) is decreasing, j = 1, . . . , r,

and Ĥ(τ) = max16j6r Ĥj(τ) and ̂̂H(τ) = min16j6r
̂̂H j(τ).Then, the following statement

is valid.

Theorem 2. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. For j = 1, . . . , r, let
Kj ∈ K and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

16j6r
sup
s∈Kj

|ζ(s + iϕj(τ))− f j(s)| < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Theorem 2 is an example of a universality theorem in short intervals because the

length of the interval [T, T + H] is o(T) as T → ∞ for ̂̂H(T)� T. This type of universality
theorem is one of the ways of their effectivization. In short intervals, it is easier to detect a
shift with the approximation property. The first one-dimensional universality theorem was
obtained in [15] for shifts ζ(s + iτ), and in [16] for generalized shifts.

Approximation of analytic functions is also possible by some compositions of gen-
eralized shifts. Denote by H(D) the space of analytic on D functions endowed with the
topology of uniform convergence on compacta,

Hr(D) = H(D)× · · · × H(D)︸ ︷︷ ︸
r

,

and S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}, Sr = S× · · · × S︸ ︷︷ ︸
r

. Then, it is possible to

approximate the functions defined on H(D) by shifts F(ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ)))
for some classes of operators F : Hr(D) → H(D). For results of this type, see, for
example, [17,18]. We will give only one example of such compositions, and other results
will be given in a subsequent paper. Let H(K) with K ∈ K be the class of functions
continuous on K that are analytic in the interior of K. Thus, H0(K) ⊂ H(K).

Theorem 3. Suppose that (ϕ1, . . . , ϕr) ∈ Ur, Ĥ(T) 6 H 6 ̂̂H(T) 6 T, and F : Hr(D) →
H(D) is a continuous operator such that, for every polynomial p = p(s), the set (F−1{p}) ∩ Sr is
non-empty. Let K ∈ K and f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

s∈K
|F(ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ)))− f (s)| < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

For example, the tuples of functions (τ log τ, . . . , τr log τ) and (τ + 1, τ2 + τ + 1, . . . ,
τr + τr−1 + · · ·+ 1) satisfy the hypotheses for the class Ur.
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Unfortunately, it is not easy to present an example of the operator F satisfying the
conditions of Theorem 3. In [15], it was observed that a continuous operator F : Hr(D)→
H(D) such that the set F(Sr) being dense in H(D) satisfies the hypotheses of Theorem 3.

For V > 0, let DV = {s ∈ C : 1/2 < σ < 1, |t| < V}. In place of H(D), the
space H(DV) of analytic in H(DV) functions can be studied. Then, S is replaced by
SV = {g ∈ H(DV) : g(s) 6= 0, or g(s) ≡ 0}. Suppose that V is such that K ⊂ DV ,
and F : Hr(DV) → H(DV) is a continuous operator such that, for every polynomial p,
the set (F−1{p}) ∩ Sr

V 6= ∅. Then, the assertion of Theorem 3 remains valid. Since the
non-vanishing of a polynomial in a bounded region can be controlled by its constant term,
for example, the operator F(g1, . . . , gr) = g′1 + · · ·+ g′r, gj ∈ H(DV), j = 1, . . . , r, satisfies
the condition (F−1{p}) ∩ Sr

V 6= ∅.
Note that a polynomial appears in the above hypothesis because of the application

of the Mergelyan theorem on approximation of analytic functions by polynomials, see
Lemma 6.

Theorems 2 and 3 are derived from weak convergence of some probability measures
in the space of analytic functions.

2. Estimate for the Second Moment

It is well known that estimates for the second moments play an important role in the
proof of the universality of the Dirichlet series. We need the estimate for

I(T, H, σ, t)
de f
=
∫ T+H

T
|ζ(σ + iϕ(τ) + it)|2 dτ

for fixed 1/2 < σ < 1, t ∈ R and ϕ(τ) satisfying the hypotheses 1◦ and 2◦ of the class Ur.

Lemma 1. Suppose that Ĥ(T) and ̂̂H(T) correspond ϕ(τ) and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. Then,

I(T, H, σ, t)�σ H(1 + |t|).

Proof. It is well known that, for fixed 1/2 < σ < 1, uniformly in H, T1/3(log T)26/15 6
H 6 T, ∫ T+H

T−H
|ζ(σ + it)|2 dt�σ H. (1)

This is implied by an analogous estimate of Theorem 7.1 from [19] for T(κ+λ+1)/2(κ+1)

× (log T)(2+κ)/(κ+1) 6 H 6 T and 1 + λ− κ > 2σ with application of the exponential pair
(κ, λ) = (4/11, 6/11).

From
1

1 + a
= 1− a

1 + a
, a 6= −1,

it follows that
1

1 + o(1)
= 1 + o(1). (2)

Suppose that the function ϕ̂(τ) corresponding ϕ(τ) is increasing. Then, in virtue of
the mean value theorem,
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∫ T+H
T |ζ(σ + iϕ(τ) + it)2 dτ =

∫ T+H
T

1
ϕ′(τ) |ζ(σ + iϕ(τ) + it)2 dϕ(τ)

=
∫ T+H

T
1

ϕ̂(τ)
(1 + o(1))|ζ(σ + iϕ(τ) + it)2 dϕ(τ)

�
∫ T+H

T
1

ϕ̂(τ)
d
(∫ ϕ(τ)+t

T |ζ(σ + iu)|2 du
)

= 1
ϕ̂(T)

∫ ξ
T d

(∫ ϕ(τ)+t
T |ζ(σ + iu)|2

)
= 1

ϕ̂(T)

∫ ϕ(ξ)+t
ϕ(τ)+t |ζ(σ + iu)|2 du

6 1
ϕ̂(T)

∫ ϕ(T+H)+|t|
ϕ(T)−|t| |ζ(σ + iu)|2 du

= 1
ϕ̂(T)

∫ ϕ(T)+Hϕ′(ξ)+|t|
ϕ(T)−|t| |ζ(σ + iu)|2 du

6 1
ϕ̂(T)

∫ ϕ(T)+2H ϕ̂(2T)+|t|
ϕ(T)−2H ϕ̂(2T)−|t| |ζ(σ + iu)|2 du,

(3)

where T 6 ξ 6 T + H. The definitions of H and Ur show that

2H ϕ̂(2T) + |t| > 2ψ(T)
ϕ̂(2T)
ϕ̂(T)

+ |t| > (ϕ(T))1/3(log ϕ(T))26/15.

Thus, we can apply (1), and, for 2H ϕ̂(2T) + |t| 6 ϕ(T), we find, in view of (3),

I(T, H, σ, t)�σ
H ϕ̂(2T) + |t|

ϕ̂(T)
�σ H +

|t|
ϕ̂(T)

�σ H
(

1 +
|t|

H ϕ̂(T)

)
�σ H

(
1 +

|t|ϕ̂(2T)
ψ(T)ϕ̂(T)

)
�σ H

(
1 +

|t|
ψ(T)

)
�σ H(1 + |t|).

If 2H ϕ̂(2T) + |t| > ϕ(T), then ϕ(T) + 2H ϕ̂(2T) + |t| < 4(H ϕ̂(2T) + |t|) and ϕ(T)−
2H ϕ̂(2T)− |t| > −4(H ϕ̂(2T) + |t|). Therefore, the classical estimate∫ T

−T
|ζ(σ + it)|2 dt�σ T (4)

and (3) imply

I(T, H, σ, t)� 1
ϕ̂(T)

∫ 4(H ϕ̂(2T)+|t|)

−4(H ϕ̂(2T)+|t|)
|ζ(σ + iu)|2 du�σ

H ϕ̂(2T) + |t|
ϕ̂(T)

�σ H(1 + |t|).

Let ϕ̂(T) be decreasing. Then, similarly as above, we have

I(T, H, σ, t) � 1
ϕ̂(T+H)

∫ T+H
ξ d

(∫ ϕ(τ)+t
T |ζ(σ + iu)|2 du

)
� 1

ϕ̂(2T)

∫ ϕ(T+H)+t
ϕ(ξ)+t |ζ(σ + iu)|2 du

� 1
ϕ̂(2T)

∫ ϕ(T)+2H ϕ̂(T)+|t|
ϕ(T)−2H ϕ̂(T)−|t| |ζ(σ + iu)|2 du.

(5)

Since, by the definition of H,

2H ϕ̂(T) + |t| > (ϕ(T))1/3(log ϕ(T))26/15,

this and (1) show that, for 2H ϕ̂(T) + |t| 6 ϕ(T),

I(T, H, σ, t)�σ
1

ϕ̂(2T)
(H ϕ̂(T) + |t|)�σ H(1 + |t|).

If 2H ϕ̂(T) + |t| > ϕ(T), then, in view of (5) and (4),

I(T, H, σ, t)� 1
ϕ̂(2T)

∫ 4(H ϕ̂(T)+|t|)

−4(H ϕ̂(T)+|t|)
|ζ(σ + iu)|2 du�σ

H ϕ̂(T) + |t|
ϕ̂(2T)

�σ H(1 + |t|).
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3. Absolutely Convergent Series

In this section, we will show that there exists a collection of absolutely convergent
Dirichlet series that approximates in the mean the collection (ζ(s + iϕ1(τ)), . . . , ζ(s +
iϕr(τ))) with (ϕ1, . . . , ϕr) ∈ Ur.

Let θ > 0 be a fixed number,

vn(m) = exp
{
−
(m

n

)θ
}

, m, n ∈ N,

where exp{a} = ea. Define the series

ζn(s) =
∞

∑
m=1

vn(m)

ms .

Since the coefficients of the latter series decrease exponentially, this series is absolutely
convergent in the half-plane σ > σ0 with an arbitrary finite σ0.

Recall the metric in Hr(D). There exists a sequence of embedded compact subsets
{Kl : l ∈ N} ⊂ D such that

D =
∞⋃

l=1

Kl ,

and every compact set K ⊂ D lies in some Kl . For g1, g2 ∈ H(D), define

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
.

Then, ρ is a metric in H(D) inducing its topology of uniform convergence on com-
pacta. Putting

ρ(g
1
, g

2
) = max

16j6r
ρ(g1j, g2j), g

k
= (gk1, . . . , gkr ) ∈ Hr(D), k = 1, 2,

gives a metric in Hr(D) inducing the product topology.
Define

ζ(s + iϕ(τ)) = (ζ(s + iϕ1(τ)), . . . , ζ(s + iϕr(τ)))

and
ζn(s + iϕ(τ)) = (ζn(s + iϕ1(τ)), . . . , ζn(s + iϕr(τ))).

We will prove the approximation in the mean of ζ(s + iϕ(τ)) by ζn(s + iϕ(τ))

Lemma 2. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. Then, the equality

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
ρ
(

ζ(s + iϕ(τ)), ζn(s + iϕ(τ))
)

dτ = 0

holds.

Proof. In view of the definition of metrics ρ and ρ, it suffices to show that, for every

compact set K ⊂ D, Ĥj(T) 6 H 6 ̂̂H j(T) 6 T and all j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1
H

∫ T+H

T
sup
s∈K

∣∣ζ(s + iϕj(τ))− ζn(s + iϕj(τ))
∣∣dτ = 0. (6)
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Let ϕ(τ) be one of the functions ϕ1(τ), . . . , ϕr(τ). We will prove (6) for the function
ϕ(τ). We will use the representation, see, for example, [6]

ζn(s) =
1

2πi

∫ θ̂+i∞

θ̂−i∞
ζ(s + z)

ln(z)
z

dz, (7)

where θ̂ > 1/2 is a fixed number,

ln(s) =
s
θ

Γ
( s

θ

)
ns,

θ is from definition of vn(m), and Γ(s) denotes the Euler gamma-function. Let K ⊂ D be
an arbitrary compact set. Fix ε > 0 such that 1/2 + 2ε 6 σ 6 1− ε for s = σ + it ∈ K. For

such σ, we have θ1
de f
= 1/2 + ε− σ < 0. Let θ̂ = 1/2 + ε > 1/2. Then, (7) and the residue

theorem imply, for s ∈ K,

ζn(s)− ζ(s) =
1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s + z)

ln(z)
z

dz +
ln(1− s)

1− s
.

Thus, for s ∈ K,

ζn(s + iϕ(τ))− ζ(s + iϕ(τ))

=
1

2πi

∫ ∞

−∞
ζ

(
1
2
+ ε + it + iϕ(τ) + iv

)
ln(1/2 + ε− σ + iv)

1/2 + ε− σ + iv
dv +

ln(1− s− iϕ(τ))
1− s− iϕ(τ)

� 1
2πi

∫ ∞

−∞

∣∣∣∣ζ(1
2
+ ε + iϕ(τ) + iv

)∣∣∣∣ sup
s∈K

∣∣∣∣ ln(1/2 + ε− s + iv)
1/2 + ε− s + iv

∣∣∣∣dv

+ sup
s∈K

∣∣∣∣ ln(1− s− iϕ(τ))
1− s− iϕ(τ)

∣∣∣∣
after a shift t + v→ v. Hence,

1
H
∫ T+H

T sups∈K|ζ(s + iϕ(τ))− ζn(s + iϕ(τ))|dτ

�
∫ ∞
−∞

(
1
H
∫ T+H

T

∣∣∣ζ( 1
2 + ε + iϕ(τ) + iv

)∣∣∣dτ
)

sups∈K

∣∣∣ ln(1/2+ε−s+iv)
1/2+ε−s+iv

∣∣∣dv

+ 1
H
∫ T+H

T sups∈K

∣∣∣ ln(1−s−iϕ(τ))
1−s−iϕ(τ)

∣∣∣=de f J1 + J2.

(8)

Lemma 1 implies the estimate

1
H
∫ T+H

T

∣∣∣ζ( 1
2 + ε + iϕ(τ) + iv

)∣∣∣dτ 6
(

1
H
∫ T+H

T

∣∣∣ζ( 1
2 + ε + iϕ(τ) + iv

)∣∣∣2 dτ

)1/2

�ε (1 + |v|)1/2.
(9)

It is well known that, with a certain c > 0

Γ(σ + it)� exp{−c|t|} (10)

uniformly in every interval σ1 6 σ 6 σ2, σ1 < σ2. Therefore, for all s ∈ K,

ln(1/2 + ε− s + iv)
1/2 + ε− s + iv

�θ n1/2+ε−σ exp
{
− c

θ
|v− σ|

}
�θ,K n−ε exp{−c1|v|}, c1 > 0.

Thus, in view of (9),

J1 �ε,θ,K n−ε
∫ ∞

−∞
(1 + |v|)1/2 exp{−c1|v|}dv�ε,θ,K n−ε. (11)
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Applying the estimate (10) once more, we obtain that, for all s ∈ K,

ln(1− s− iϕ(τ))
1− s− iϕ(τ)

�θ n1−σ exp
{
− c

θ
|t + ϕ(τ)|

}
�θ,K n1/2−2ε exp{−c2 ϕ(τ)}, c2 > 0.

Thus,

J2 �θ,K n1/2−2ε 1
H

∫ T+H

T
exp{−c2 ϕ(τ)}dτ �θ,K n1/2−2ε exp{−c2 ϕ(T)}.

This and (11) show that the left-hand side of (8) is estimated as

�ε,θ,K n−ε + n1/2−2ε exp{−c2 ϕ(T)}.

Since ϕ(T)→ ∞ as T → ∞, this proves (6) for the function ϕ(τ).

4. Limit Theorems

Denote by B(X) the Borel σ-field of the space X. In this section, we will consider the
weak convergence for

PT,H(A)
de f
=

1
H

meas
{

τ ∈ [T, T + H] : ζ(s + iϕ(τ)) ∈ A
}

, A ∈ B(Hr(D))

as T → ∞. We divide the study of PT,H into lemmas. Let P the set of all prime numbers.
Define the set

Ω = ∏
p∈P

γp,

where γp = γ for all p ∈ P. The infinite-dimensional torus Ω with the product topology
and pointwise multiplication is a compact topological Abelian group. Let

Ωr = Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, again, Ωr is a compact topological Abelian group.
Thus, on (Ωr,B(Ωr)), the probability Haar measure mH exists, and we have the probability
space (Ωr,B(Ωr), mH).

For A ∈ B(Ωr), define

QT,H(A) =
1
H

meas
{

τ ∈ [T, T + H] :
((

p−iϕ1(τ) : p ∈ P
)

, . . . ,
(

p−iϕr(τ) : p ∈ P
))
∈ A

}
.

Lemma 3. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. Then, QT,H converges
weakly to the Haar measure mH as T → ∞.

Proof. By ωj(p), denote the pth component, p ∈ P, of an element ωj ∈ Ωj, j = 1, . . . , r.
Then, the Fourier transform gQT,H (k1, . . . , kr), kj = (k jp : k jp ∈ Z, p ∈ P), j = 1, . . . , r, is
given by

gQT,H (k1, . . . , kr) =
∫

Ωr

(
r

∏
j=1

∏∗

p∈P
ω

kjp
j (p)

)
dQT,H ,

where the star “∗” shows that only a finite number of integers k jp are distinct from zero.
Thus, by definition of QT,H ,

gQT,H (k1, . . . , kr) = 1
H
∫ T+H

T

(
∏r

j=1 ∏∗p∈P p−ikjp ϕj(τ)
)

dτ

= 1
H
∫ T+H

T exp
{
−i ∑r

j=1 ϕj(τ)∑∗p∈P k jp log p
}

dτ.
(12)
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Obviously,
gQT,H (0, . . . , 0) = 1. (13)

For brevity, let
aj = ∑∗

p∈P
k jp log p, j = 1, . . . , r.

Now suppose that (k1, . . . , kr) 6= (0, . . . , 0). Hence, for at least one, j ∈ {1, . . . , r},
kj 6= 0. Since the logarithms of prime numbers are linearly independent over Q, aj = 0 if
and only if kj = 0. Hence, by the properties of the class Ur, as τ → ∞,(

r

∑
j=1

aj ϕj(τ)

)′
=

r

∑
j=1

aj ϕ
′
j(τ) =

r

∑
j=1

aj ϕ̂j(τ)(1 + o(1)) = aj0 ϕ̂j0(τ)(1 + o(1)),

where j0 = max(j : aj 6= 0). This together with (2) implies, for τ → ∞,

((
r

∑
j=1

aj ϕj(τ)

)′)−1

=
1

aj0 ϕ̂j0(τ)(1 + o(1))
=

1
aj0 ϕ̂j0(τ)

(1 + o(1)). (14)

Put

b(τ) =
r

∑
j=1

aj ϕj(τ).

Then, in view of (14),∫ T+H

T
cos b(τ)dτ =

∫ T+H

T

1
b′(τ)

d sin b(τ)

=
1

aj0

∫ T+H

T

1
ϕ̂j0(τ)

d sin b(τ) +
∫ T+H

T

o(1)
ϕ̂j0(τ)

d sin b(τ).

Since ϕ̂j0(τ) is monotonic, the first integral on the right-hand side of the latter equality
has the estimate

�
{

ϕ̂−1
j0
(T) if ϕ̂j0(τ) is increasing,

ϕ̂−1
j0
(T + H) if ϕ̂j0(τ) is decreasing.

For the second integral, by (14) again, we have∫ T+H

T

o(1)(1 + o(1))
b′(τ)

d sin b(τ) =
∫ T+H

T
o(1) cos b(τ)dτ = o(H).

The same estimates remain valid for the integral of the function sin b(τ). Therefore,
returning to (12), we find that, in the case (k1, . . . , kr) 6= (0, . . . , 0),

gQT,H (k1, . . . , kr)�


ϕ̂j0 (2T)

ϕ̂j0 (T)ψj0 (T)
if ϕ̂j0(τ) is increasing,

ϕ̂j0 (T)
ϕ̂j0 (2T)ψj0 (T)

if ϕ̂j0(τ) is decreasing
+ o(1)� 1

ψ(T)
+ o(1) = o(1)

as T → ∞. This and (13) show that

lim
T→∞

gQT,H (k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) 6= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar
measure mH , the lemma is proved.
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Extend the functions ωj(p) to the set N by the formula

ωj(m) = ∏
pl |m

pl+1-m

ωl
j(p), m ∈ N,

and define
ζn(s, ω) = (ζn(s, ω1), . . . , ζn(s, ωr)),

where ω = (ω1, . . . , ωr) and

ζn(s, ωj) =
∞

∑
m=1

vn(m)ωj(m)

ms , j = 1, . . . , r. (15)

The series (15), as ζn(s), are absolutely convergent for σ > σ0 with arbitrary finite
σ0. Define the mapping un : Ωr → Hr(D) by un(ω) = ζn(s, ω). In virtue of the absolute
convergence of the series (15), the mapping un is continuous.

For A ∈ B(Hr(D)), define

PT,H,n(A) =
1
H

meas
{

τ ∈ [T, T + H] : ζn(s + iϕ(τ)) ∈ A
}

and Vn = mHu−1
n , where Vn(A) = mHu−1

n (A) = mH(u−1
n A).

Lemma 4. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. Then, QT,H,n
converges weakly to Vn as T → ∞.

Proof. We have

un

((
p−iϕ1(τ) : p ∈ P

)
, . . . ,

(
p−iϕr(τ) : p ∈ P

))
= ζn(s + iϕ(τ)).

Therefore, for A ∈ B(Hr(D)),

PT,H,n(A)

=
1
H

meas
{

τ ∈ [T, T + H] :
((

p−iϕ1(τ) : p ∈ P
)

, . . . ,
(

p−iϕr(τ) : p ∈ P
))
∈ u−1

n A
}

= QT,H(u−1
n A) = QT,Hu−1

n (A),

where QT,H is the measure from Lemma 3. Thus, the lemma is a consequence of the preser-
vation of weak convergence under continuous mappings, see, for example, Theorem 5.1
of [20], continuity of un, Lemma 3 and definition of Vn.

The measure Vn plays an important role in the study of PT,H . The measure Vn depends
only on the tuple ζn(s), and appears in all joint limit theorems for the function ζ(s). It is
proved that the limit measures for the joint distribution of ζ(s) and Vn coincide. We will
use the paper [14]. On the probability space (Ωr,B(Ωr), mH), define the Hr(D)-valued
random element ζ(s, ω) by

ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)),

where

ζ(s, ωj) = ∏
p∈P

(
1−

ωj(p)
ps

)−1

, j = 1, . . . , r.

Denote by Pζ the distribution of ζ(s, ω), i. e.,

Pζ(A) = mH

{
ω ∈ Ωr : ζ(s, ω) ∈ A

}
, A ∈ B(Hr(D)).
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In [14], see proofs of Lemma 10 and Theorem 3, and the following assertion was ob-
tained.

Lemma 5. Vn converges weakly to Pζ as n→ ∞. Moreover, the support of Pζ is the set Sr.

Now, we are ready to prove a limit theorem for PT,H .

Theorem 4. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T. Then, PT,H
converges weakly to Pζ as T → ∞.

Proof. On the probability space (Ω̂,A, µ), define the random variable ξT,H uniformly
distributed on [T, T + H]. Thus, ξT,H has the density

pT,H(τ) =


0 if τ < T,
1
H if T 6 τ 6 T + H,
0 if τ > T + H.

Denote by Xn the Hr(D)-valued random element with the distribution Vn, and define
the Hr(D)-valued random elements

XT,H,n = XT,H,n(s) = ζn(s + iϕ(ξT,H))

and
YT,H = YT,H(s) = ζ(s + iϕ(ξT,H)).

Denote D−→ as the convergence in distribution. Then, by Lemma 4,

XT,H,n
D−−−→

T→∞
Xn, (16)

while Lemma 5 gives

Xn
D−−−→

n→∞
Pζ . (17)

The definitions of XT,H,n and YT,H together with Lemma 2 show that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ(YT,H , XT,H,n) > ε
}

6 lim
n→∞

lim sup
T→∞

1
εH

∫ T+H

T
ρ
(

ζ(s + iϕ(τ)), ζn(s + iϕ(τ))
)
= 0.

Thus, by (16) and (17), we have that all hypotheses of Theorem 4.2 of [20] are satisfied
by the random elements Xn, XT,H,n and YT,H , and we obtain that

YT,H
D−−−→

T→∞
Pζ .

The latter relation is equivalent to the assertion of the theorem.

Corollary 1. Suppose that (ϕ1, . . . , ϕr) ∈ Ur and Ĥ(T) 6 H 6 ̂̂H(T) 6 T and F : Hr(D) →
H(D) is a continuous operator. Then,

PT,H,F(A)
de f
=

1
H

meas
{

τ ∈ [T, T + H] : F
(

ζ(s + iϕ(τ))
)
∈ A

}
, A ∈ B(H(D)),

converges weakly to Pζ F−1 as T → ∞.

Proof. The corollary follows from Theorem 4, continuity of F and Theorem 5.1 of [20].
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5. Proof of Universality

We recall the Mergelyan theorem [21] on the approximation of analytic functions by
polynomials.

Lemma 6. Suppose that K ⊂ C is a compact set with a connected complement, and g(s) is a
continuous function on K and analytic in the interior of K. Then, for every ε > 0, there exists a
polynomial p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

In addition, we will use two equivalents of weak convergence of probability measures;
see, for example, [20], Theorem 2.1.

Lemma 7. Let P and Pn, n ∈ N, be probability measures on (X,B(X)). Then, the following
statements are equivalent:

1◦ Pn converges weakly to P as n→ ∞;
2◦ For every open set G of X,

lim inf
n→∞

Pn(G) > P(G);

3◦ For every continuity set A of P, i. e., P(∂A) = 0, ∂A is the boundary of A,

lim
n→∞

Pn(A) = P(A).

Proof of Theorem 2. The case of lower density. Lemma 6 implies the existence of polyno-
mials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

∣∣∣ f j(s)− epj(s)
∣∣∣ < ε

2
. (18)

By Lemma 5, (ep1(s), . . . , epr(s)) is an element of the support of the measure Pζ . There-
fore, putting

Gε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈K

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
,

we have
Pζ(Gε) > 0. (19)

Define one more set

Ĝε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

16j6r
sup
s∈K

∣∣gj(s)− f j(s)
∣∣ < ε

}
.

The inequality (18) shows that Gε ⊂ Ĝε. Thus, Pζ(Ĝε) > 0 by (19). Hence, in view of
Theorem 4 and 2◦ of Lemma 7,

lim inf
T→∞

PT,H(Ĝε) > Pζ(Ĝε) > 0,

and the definitions of PT,H and Ĝε, prove the assertion of the theorem.
For the case of density, the boundary of the set Ĝε lies in the set{

(g1, . . . , gr) ∈ Hr(D) : sup
16j6r

sup
s∈K

∣∣gj(s)− f j(s)
∣∣ = ε

}
.
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Therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for different positive ε1 and ε2. Hence, Pζ(∂Ĝε) = 0 for all

but at most countably many ε > 0, i. e., the set Ĝε is a continuity set of Pζ for all but at most
countably many ε > 0. Thus, Theorem 4 and 3◦ of Lemma 7 prove the theorem.

Lemma 8. Let F satisfy the hypotheses of Theorem 3. Then, the support of the measure Pζ F−1 is
the whole of H(D).

Proof. First, we observe that the hypothesis (F−1{p}) ∩ Sr 6= ∅ for any polynomial
p = p(s) implies that (F−1G) ∩ Sr 6= ∅ for any open set G ⊂ H(D). Let ε > 0 be
such that

∑
l>l0

2−l <
ε

2
, (20)

and {Kl} ⊂ D be a sequence of compact sets with connected complements from the defini-
tion of the metric ρ. We take an arbitrary element g ∈ H(D) and its open neighborhood G.
Since the sets Kl are embedded, by Lemma 6, there exists a polynomial p(s) such that

sup
s∈Kl

|g(s)− p(s)| < ε

2
, l = 1, . . . , l0.

This and (20) show that ρ(g, p) < ε. Thus, if ε is sufficiently small, then the polynomial
p(s) lies in the set G and has a preimage ĝ ∈ Sr lying in the open set F−1G. Thus,
(F−1G) ∩ Sr 6= ∅. Since, by Lemma 5, Sr is the support of the measure Pζ , the inequality
Pζ(F−1G) > 0 holds. Hence,

Pζ F−1(G) = Pζ(F−1G) > 0.

Since g and G are arbitrary, this shows that the support of Pζ F−1 is the whole of
H(D).

Proof of Theorem 3. The case of lower density. By Lemma 6, we find a polynomial p(s)
satisfying the inequality

sup
s∈K
| f (s)− p(s)| < ε

2
, (21)

and take the set

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Then, in view of Lemma 8, the set Gε is an open neighborhood of an element p(s) of
the support of the measure Pζ F−1. Thus,

Pζ F−1(Gε) > 0. (22)

This, Corollary 1 and 2◦ of Lemma 7 imply

lim inf
T→∞

PT,H,F(Gε) > Pζ F−1(Gε) > 0,

and it remains to use the definitions of PT,H,F and Gε.
For the case of density, define the set

Ĝε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f (s)| < ε

}
.
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Then, Ĝε is a continuity set of the measure Pζ F−1 for all but at most countably many

ε > 0. By (21), we have the inclusion Gε ⊂ Ĝε. Hence, by (22), Pζ F−1(Ĝε) > 0. Therefore, by
Corollary 1 and 3◦ of Lemma 7,

lim
T→∞

PT,H,F(Ĝε) = Pζ F−1(Ĝε) > 0

for all but at most countably many ε > 0. The theorem is proved.

6. Conclusions

Universality theorems for zeta-functions are not effective in the sense that, for example,
in the case of the function ζ(s), we do not know any specific value τ with shift ζ(s + iτ)
approximating a given function. Clearly, it is impossible to find such a value τ; therefore,
the easier problem of finding the interval [T, T + H] containing τ with approximating shifts
is considered. The first results in this direction were obtained in [22], where the interval
[T, 2T] with explicitly given T was indicated. Denote by f = ( f0, f1, . . . , fn−1), n ∈ N the
vector composed from the Taylor coefficients for f at the point s0, and let, for ε > 0,

A(n, f , ε) = | log | f0||+
(
‖ f ‖

ε

)n2

,

where
‖ f ‖ = ∑

06k<n
| fk(s0)|.

Then, in [22], it was proved that, if σ0 ∈
(

1
2 , 1
)

, s0 = σ0 + it0, the function f (s) is
continuous on the disc |s− s0| 6 r, r > 0, f (s0) 6= 0, and analytic for |s− s0| < r, then, for
any ε ∈ (0, | f (s0)|), there exist real numbers τ ∈ [T, 2T], and δ = δ(ε, f , τ) > 0 defined by

max
|s−s0|=r

|ζ(s + iτ)| δn

1− δ
=

ε

3

(
2− eδr

)
such that

max
|s−s0|6δr

|ζ(s + iτ)− f (s)| < ε,

where T = T( f , ε, σ0) satisfies

T > max
(

r, C(n, σ0) exp exp
{

5A
(

n, f ,
ε

3

)8/(1−σ0)+8/(σ0−1/2)
})

,

C(n, σ0) is a positive effectively computable constant, and δ is effectively computable.
The effectivization problem of universality for ζ(s) consists of the description of the

interval as short as possible containing τ satisfying

sup
s∈K
|ζ(s + iτ)− f (s)| < ε.

This leads to universality in short intervals. The first result in this direction was
obtained in [15]. Suppose that T1/3(log T)26/15 6 H 6 T. Let K ∈ K and f (s) ∈ H0(K).
Then, for every ε > 0,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

s∈K
|ζ(s + iτ)− f (s)| < ε

}
> 0.

In [16], the latter theorem was extended for generalized shifts ζ(s + iϕ(τ)). Suppose
for τ > T0 that the function increases to +∞ and has a monotonic derivative which satisfies
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estimates of type 3◦ of the class Ur. Then, the main result of [16] asserts that, if H1 coincides
with Ĥ1(T) in Theorem 2, H1 6 H 6 T, K ∈ K and f (s) ∈ H0(K); then,

lim inf
T→∞

1
H

meas

{
τ ∈ [T, T + H] : sup

s∈K
|ζ(s + iϕ(τ))− f (s)| < ε

}
> 0.

In the present paper (Theorem 2), a joint version of the above theorem is obtained.
In our opinion, researching universality theorems in short intervals for zeta-functions

has a good future. It stimulates the investigations of mean squares in short intervals and
leads to the effectivization of universality. Therefore, we are planning to continue this
direction and obtain a discrete version of the results of this paper on the approximation by
shifts ζ(s + iϕj(k)), k ∈ [N, N + M] as well as by some compositions of generalized shifts.
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10. Laurinčikas, A. On joint universality of Dirichlet L-functions. Chebyshevskiı̆ Sb. 2011, 12, 124–139.
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