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Abstract
In this paper, we investigate the properties of a generalized Green’s function
describing the minimum norm least squares solution for a second order discrete
problem with two nonlocal conditions. The properties obtained of a generalized
Green’s function resemble analogous properties of an ordinary Green’s function that
describes the unique exact solution if it exists. Several features are illustrated by
examples.
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1 Introduction
The concept of a Green’s function originated in the th century while studying the clas-
sical problems of mathematical physics [, ] and is fundamental in the theory of differ-
ential equations []. Indeed, physics, mechanics, and other natural sciences have been
developed greatly during the last  years, and today they investigate such processes and
phenomena that those mathematical models do not fit into the frames of the classical dif-
ferential problem. For instance, we have the thermostat problems [], heat conduction []
and bioreaction engineering [] problems, and problems arising in electrochemistry [],
microelectronics [], biology [], and other fields.

Nowadays the methods of a Green’s function are generalized for nonclassical solutions
to classical differential problems as well as nonlocal problems [–]. In , the Special
Issue for Nonlocal Boundary Conditions ( articles) was published in the journal Bound-
ary Value Problems []. We mention work of Cabada [], of Štikonas [], and of Webb
and Infante [].

Merely for the second order stationary differential equation, there is often formulated a
nonclassical problem:

Lu := a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f (x), x ∈ [, ], ()

〈Lj, u〉 = gj, j = , , ()
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where Lj, j = , , can be any possible functionals that describe two additional conditions.
Indeed, Lj, j = , , vary from local differential operators, i.e. given at a single point of the
interval [, ], to any other possible operators as

〈L, u〉 := u() – γu′(ξ ), 〈L, u〉 := u() – γ

∫ 


α(x)u(x) dx,

where ξ ∈ [, ], γ,γ ∈R, and α ∈ L(, ). If γ = γ = , the conditions become classical.
Otherwise, conditions () are called nonlocal conditions and the differential problem ()-
() the nonlocal problem.

In general, an explicit solution or some optimization solution of the nonlocal problem
()-() cannot always be found analytically. Since computer-programming science nowa-
days is widely developed, various numerical methods have been investigated and applied
to differential problems [, ]. Then the nonlocal problem ()-() is replaced by some
discrete problem that merely is described by the linear system of equations

Au = f
(
A ∈C

m×n, x ∈ C
n×, f ∈C

m×). ()

Since every linear transformation from one finite-dimensional vector space to another
can be represented by a matrix (uniquely described by the linear transformation and the
fixed bases for the vector spaces), there is a one to one correspondence between the m × n
complex matrices Cm×n and L(Cn,Cm), the space of linear transformations mapping C

n

into C
m. Hence, we use the same symbol A to denote both the linear transformation

A ∈ L(Cn,Cm) and its matrix representation A ∈ C
m×n. Then the discrete representation

() of the differential problem ()-() is equivalent to the statement that the linear trans-
formation A maps x into y.

Both the differential problem ()-() [] and its discrete analog () [, ] were in-
vestigated by Roman. These results constitute the part of her doctoral dissertation [].
She formulated the necessary and sufficient existence condition of a Green’s function that
describes the unique exact solution of the differential problem as well as the discrete
problem. For the discrete problem (), this condition is also equivalent to the inequal-
ity det A �= . On the other hand, if a matrix A is singular, then the unique solution does
not exist and the Green’s function cannot be constructed using the ordinary inverse A–

[].
However, in  Penrose [] showed that, for every finite matrix A ∈ C

k×m, there
always exists a unique matrix X ∈ C

m×k satisfying all four Penrose equations,

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA, ()

where A∗ denotes the adjoint matrix of A. This matrix X is often called the Moore-Penrose
inverse and is denoted by A†.

Thus, there always exists a generalized Green’s function defined by the Moore-Penrose
inverse A† in an analogous way to an ordinary Green’s function, which is defined using
the ordinary inverse A–. Such a generalized Green’s function for the problem () with
two discrete nonlocal conditions () was investigated in [, ]. In this paper, we analyze
the properties of a generalized Green’s function considering the very analogous properties
of an ordinary Green’s function [].
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The structure of the paper is as follows. First, we define some notation. Then, accord-
ing to [], a definition and properties of the ordinary Green’s function are given. Later,
we formulate the definition of a generalized Green’s function. Finally, the properties of a
generalized Green’s function are investigated. Several examples are also presented.

2 Notation
Let F(Xn) := {u | u : Xn → C} denote the space of complex linear functions with the basis
{δi : δi(j) = δi

j }, where Xn := {, , , . . . , n}, n ≥ , and δi
j is the Kronecker delta. So, F(Xn) ∼=

C
n+. Then, for every u ∈ F(Xn), there exists a unique vector u = (u, u, . . . , un)T ∈C

(n+)×

such that u =
∑n

i= uiδ
i. Further we consider the space F∗(Xn) of complex linear functionals

in the space F(Xn) and use the notation 〈f , u〉 for the functional f value at the function u.
In analogous way, spaces F(Xn ×Xm) and F∗(Xn ×Xm) are defined []. We note that their

elements are uniquely described by matrices of the corresponding dimensions C(n+)×(m+)

and C
(m+)×(n+), respectively. We also remark that a discrete function u and its matrix

representation u are always equivalent notations for the same function. Thus, the identity
function I = id ∈ F(Xn × Xn) is equivalent to the identity matrix I = In+ of order n + . We
use the notation δij for the Kronecker delta as well.

3 Ordinary discrete Green’s function
Let us investigate a second order linear discrete problem

(Lu)i := a
i ui+ + a

i ui+ + a
i ui = fi, i ∈ Xn–, ()

〈Lk , u〉 :=
n∑

j=

Lj
kuj = gk , k = , , ()

where a
i , a

i �= , fi ∈ C, i ∈ Xn–. Here L : F(Xn) → C
(n–)× is a second order discrete

linear operator and L, L ∈ F∗(Xn) are discrete linear functionals that describe nonlocal
conditions. According to [, ], the problem ()-() has a unique exact solution if and
only if the condition

D(L)[u] :=

∣∣∣∣∣
〈L, u〉 〈L, u〉
〈L, u〉 〈L, u〉

∣∣∣∣∣ �=  ()

is valid for every fundamental system u = (u, u) of the homogeneous equation (). Here
we denoted L = (L, L). Moreover, the unique exact solution for the problem ()-() can
be given by

ui =
n–∑
j=

Gijfj + gv
i + gv

i , i ∈ Xn, ()

where G ∈ F(Xn ×Xn–) is called an ordinary discrete Green’s function and v, v ∈ F(Xn) are
the biorthogonal fundamental system of the problem ()-() [, ]. Further we also call
an ordinary discrete Green’s function simply an ordinary Green’s function. Let us note []
that the inequality () describes the existence condition of an ordinary Green’s function
as well as the unique solution ().
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On the other hand, the problem ()-() is also equivalent to the linear system of equa-
tions

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
 a

 a
  . . .   

 a
 a

 a
 . . .   

. . .
    . . . a

n– a
n– a

n–

L
 L

 L
 L

 . . . Ln–
 Ln–

 Ln


L
 L

 L
 L

 . . . Ln–
 Ln–

 Ln


⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

u
...

un–

un–

un–

un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f

f
...

fn–

fn–

g

g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first n –  rows of this matrix describe the discrete operator L, given by ().
Thus, we sometimes use the equivalent notation L = (Lij) for operator L if we want to em-
phasize its matrix structure. Moreover, the last two rows Lk , k = , , of previous matrix
represent discrete functionals (). Thus, the notation 〈Lk , u〉 can be used for a multiplica-
tion of vectors Lku. The current matrix representation of the discrete problem ()-() can
also be given in the unexpanded form

Au = f̃ , A =

⎛
⎜⎝

L
L

L

⎞
⎟⎠ . ()

Therefore, the existence condition () of the unique solution () is equivalent to the
inequality det A �=  because the unique exact solution of linear system () is given by u =
A–̃f . Considering the special form of f̃ = (f, f, . . . , fn–, g, g)T for every f = (f, f, . . . , fn–)T

and g, g, this unique vector solution can be written in the extended form

u = Gf + gv + gv. ()

Since () and () describe the same solution [], the ordinary Green’s function and a
biorthogonal fundamental system can also be calculated using the ordinary inverse B =
A– as follows:

Gij = Bij, i ∈ Xn, j ∈ Xn–, ()

v
i = Bi,n–, i ∈ Xn, ()

v
i = Bin, i ∈ Xn. ()

4 Properties of ordinary Green’s functions
Roman investigated ordinary Green’s functions and their properties in []. First of all, an
ordinary Green’s function G is the unique exact solution of the discrete problem

Li·G·j = δij, i ∈ Xn,

〈Lk , G·j〉 = , k = , ,
()
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for every fixed j ∈ Xn–. On the other hand, unique solutions v and v of the discrete
problems

Lv = ,〈
L, v〉 = ,

〈
L, v〉 = ,

Lv = ,〈
L, v〉 = ,

〈
L, v〉 = ,

()

form the fundamental system (null space) of the operator L. This system is biorthogonal
with respect to the functionals Lk , k = , . According to [], if the condition () is satisfied,
then the biorthogonal fundamental system exists and is given by

v
i :=

D(δi, L)[u]
D(L)[u]

, v
i :=

D(L, δi)[u]
D(L)[u]

, i ∈ Xn. ()

Moreover, Roman [] presented the way to calculate the ordinary Green’s function as
well.

Lemma  (Roman []) If the condition () is satisfied, then the ordinary Green’s function
for the problem ()-() is given by

Gij = Gc
ij – v

i
〈
L, Gc

·j
〉
– v

i
〈
L, Gc

·j
〉
, i ∈ Xn, j ∈ Xn–.

Here Gc
ij, i ∈ Xn, j ∈ Xn–, is an ordinary Green’s function of the operator L with initial

conditions u = , u = .

A discrete problem that is described by the operator L and initial conditions u = , u =
 is called the initial discrete problem. The ordinary Green’s function Gc

ij, i ∈ Xn, j ∈ Xn–,
of the initial second order discrete problem always exists []. For example, the Green’s
function of the discrete operator

Lu := –ui+ + ui+ – ui, i ∈ Xn,

with initial conditions u = , u =  is of the form

Gc
ij = Hi–j(j – i + ), i ∈ Xn, j ∈ Xn–, ()

where

Hi :=

{
, i > ,
, i ≤ ,

is the discrete Heaviside function.
Roman showed [] that the unique solutions of two relative discrete problems

Lu = f ,
〈lk , u〉 = g̃k , k = , ,

Lv = f ,
〈Lk , v〉 = gk , k = , ,

()

where the functionals lk and Lk may be different, are related as well. Precisely, if conditions
D(l)[u] �=  and D(L)[u] �=  are valid, then the biorthogonal fundamental system () exists
and solutions of the problems () are related as follows.
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Corollary  (Roman []) For unique solutions of the problems (), the following equality
is always satisfied:

v = u +
(
g – 〈L, u〉)v +

(
g – 〈L, u〉)v.

Moreover, ordinary Green’s functions of these problems are related as well.

Theorem  (Roman []) Ordinary Green’s functions Gu and Gv of problems (), respec-
tively, are linked with the equality

Gv
ij = Gu

ij – v
i
〈
L, Gu

·j
〉
– v

i
〈
L, Gu

·j
〉
, i ∈ Xn, j ∈ Xn–.

Roman applied this theorem to the problem ()-() with nonlocal boundary conditions,

〈Lk , u〉 := 〈κk , u〉 – γk〈κk , u〉 = gk , k = , , ()

where D(L)[u] �= . Precisely, if an ordinary Green’s function Gcl
ij , i ∈ Xn, j ∈ Xn–, exists for

the classical problem (with γ = γ = ), then the ordinary Green’s function for problem
with nonlocal boundary conditions () is of the form

Gij = Gcl
ij + γv

i
〈
κ, Gcl

·j
〉
+ γv

i
〈
κ, Gcl

·j
〉
, i ∈ Xn, j ∈ Xn–.

5 Generalized Green’s function
If the condition () or equivalent condition det A =  is satisfied, then the discrete problem
() does not have the unique solution []. In this case, the problem () has a singular
matrix A, the unique exact solution, and an ordinary Green’s function cannot be calculated
using the ordinary inverse, because ()-() and u = A–̃f are not valid.

However, according to Penrose [], a matrix A of the discrete problem always has the
Moore-Penrose inverse A†, which satisfies all four Penrose equations () and also has the
following properties.

Lemma  (Penrose [], Moore and Barnard [], Ben-Israel and Greville []) For every
finite matrix A ∈C

k×m, the following conditions are valid:
() A† = A– if det A �= ;
() (A†)† = A;
() (A∗)† = (A†)∗;
() rank A = rank A† = rank A∗;
() N(A†) = N(A∗);
() R(A†) = R(A∗).

Here N(A) and R(A) denote the null space and range of matrix A, respectively.

Moreover, the general least squares solution ug for the problem () that minimizes the
Euclidean norm of the residual vector,

∥∥Aug – f̃
∥∥ ≤ ‖Au – f̃‖, ∀u ∈ C

(n+)×,
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always exists and can be described by the Moore-Penrose inverse [, , ] as follows:

ug = A†̃f + PN(A)c, ∀c ∈C
(n+)×, ()

where PN(A) denotes the orthogonal projector onto N(A). Among all least squares solu-
tions (), there always exists the one solution of minimum norm. According to [, ],
such a minimum norm least squares solution uo is characterized by the following two in-
equalities:

∥∥Auo – f̃
∥∥ ≤ ‖Au – f̃‖, ∀u ∈ C

n+, ()
∥∥uo∥∥ <

∥∥ug∥∥, ∀ug �= uo, ()

and it is of the form

uo = A†̃f . ()

We apply this formula to (), which is equivalent to the discrete problem ()-(). Con-
sidering the form of f̃ = (f, f, . . . , fn–, g, g)T for every f = (f, f, . . . , fn–)T , and g, g, this
minimum norm least squares solution can be written in the extended form

uo = Ggf + gvg, + gvg,, ()

where matrix Gg and vectors vg,, vg, are described by the Moore-Penrose inverse B = A†

as follows:

Gg
ij = Bij, i ∈ Xn, j ∈ Xn–, ()

vg,
i = Bi,n–, i ∈ Xn, ()

vg,
i = Bin, i ∈ Xn. ()

Further we call the generalized Green’s function of the discrete problem ()-() simply
a generalized Green’s function and denote it by Gg . For functions vg, and vg,, we do this
as well.

Corollary  A generalized Green’s function Gg , functions vg, and vg, always exist and are
unique.

Proof This statement is valid since ()-() are described by the Moore-Penrose inverse,
which always exists and is unique. �

The minimum norm least squares solution () can also be written in the discrete form

uo
i =

n–∑
j=

Gg
ijfj + gvg,

i + gvg,
i , i ∈ Xn. ()

According to ()-(), we call the discrete function Gg a generalized discrete Green’s
function and the system of functions vg,, vg, a generalized fundamental system for the
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problem ()-(). Obviously, if A– = A†, then the unique exact solution () and the mini-
mum norm least squares solution () are coincident. In this case, ordinary and general-
ized Green’s functions are coincident (see () and ()), and the biorthogonal fundamen-
tal system and the generalized fundamental system, defined by ()-() and ()-(),
respectively, are coincident as well.

6 Properties of a generalized Green’s functions
In this section we investigate properties of a generalized Green’s function that are similar
to corresponding properties of ordinary Green’s function given in Section .

Lemma  A generalized Green’s function Gg is the minimum norm least squares solution
of the following discrete problem:

Li·G
g
·j = δij, i ∈ Xn,

〈
Lk , Gg

·j
〉

= , k = , ,
()

for every fixed j ∈ Xn–.

Proof The minimum norm least squares solution of the problem ()-() is described by
(). Let us choose j ∈ Xn– and values of the right side f = (δj, δj, . . . , δn–,j)T , and g =
g = . Then for a fixed j ∈ Xn–, the form of the minimum norm least squares solution
() simplifies as follows:

uo
i =

n–∑
l=

Gg
ilfl =

n–∑
l=

Gg
ilδlj = Gg

ij, i ∈ Xn.

So, for each fixed j ∈ Xn– generalized Green’s function Gg
·j is the minimum norm least

squares solution of the problem (). �

Lemma  Discrete functions vg, and vg, are minimum norm least squares solutions of
corresponding discrete problems

Lvg, = ,〈
L, vg,〉 = ,

〈
L, vg,〉 = ,

Lvg, = ,〈
L, vg,〉 = ,

〈
L, vg,〉 = .

()

Proof The minimum norm least squares solution of the problem ()-() is described by
formula (). For this problem, let us choose f =  and g = , g = . Then from () follows
that vg, is the minimum norm least squares solution of the first problem (). Afterwards
choosing f =  and g = , g = , we obtain similarly that vg, is the minimum norm least
squares solution of the other problem (). �

Let us now investigate two discrete problems (), where D(l)[u] �=  and the other deter-
minant D(L)[u] can obtain any value. Thus, for the first problem (), there exist a unique
solution u and the ordinary Green’s function G.
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Theorem  If the first discrete problem () has the unique exact solution u, then the min-
imum norm least squares solution of the other problem () is given by

v = u – PN(A)u + vg,(g – 〈L, u〉) + vg,(g – 〈L, u〉).

Proof Let u be the unique exact solution of the first problem (). On the other hand, the
second discrete problem () always has the minimum norm least squares solution v. Since
u is the exact solution, the difference w = v – u satisfies equalities

Lw = Lv – Lu = Lv – f ,

〈Lk , w〉 = 〈Lk , v〉 – 〈Lk , u〉, k = , .

We will show that w is a least squares solution of the following discrete problem:

Lw = , 〈Lk , w〉 = gk – 〈Lk , u〉, k = , .

This problem can also be written in the unexpanded matrix form Aw = g̃ with the right
side g̃ = (, , . . . , , g –Lu, g –Lu)T . Since v is the minimum norm least squares solution
of the linear system () with f̃ = (f, f, . . . , fn–, g, g)T , the inequality () is always valid,
i.e.

‖Av – f̃‖ ≤ ‖Ax – f̃‖ ()

for every x ∈C
(n+)×. Now we rewrite the Euclidean norm as follows:

‖Ax – f̃‖ = ‖Lx – f‖ + |Lx – g| + |Lx – g|

= ‖Lx – Lu‖ +
∑

j=

|Ljx – Lju + Lju – gj|

=
∥∥L(x – u)

∥∥ +
∑

j=

∣∣Lj(x – u) – (gj – Lju)
∣∣

=
∥∥A(x – u) – g̃

∥∥,

which becomes ‖Av – f̃‖ = ‖Aw – g̃‖ for the vector v, since w = v – u. Then the inequality
() can be rewritten as

‖Aw – g̃‖ ≤ ∥∥A(x – u) – g̃
∥∥, ∀x ∈C

(n+)×.

Denoting y = x – u, the last inequality becomes

‖Aw – g̃‖ ≤ ‖Ay – g̃‖, ∀y ∈C
(n+)×.

So, w is a least squares solution of the problem Aw = g̃ and has a particular form ().
Precisely, there exists such co ∈ C

(n+)× that

w = A†g̃ + PN(A)co = (g – Lu)vg, + (g – Lu)vg, + PN(A)co.



Paukštaitė and Štikonas Boundary Value Problems  (2015) 2015:207 Page 10 of 18

Now we recall the equality w = v – u and obtain

v = u + (g – Lu)vg, + (g – Lu)vg, + PN(A)co. ()

Moreover, from Lemma  and the properties of every finite matrix [] it follows that
() PN(A)co ∈ N(A),
() (g – Lu)vg, + (g – Lu)vg, = A†̃g ∈ R(A†) = R(A∗) = N(A)⊥,
() v = Ggf = A†̃f ∈ R(A†) = N(A)⊥ for f̃ = (f, f, . . . , fn–, , )T .

Furthermore, for every u ∈C
(n+)× the notation

u = (I – PN(A))u + PN(A)u = PN(A)⊥u + PN(A)u

is valid. Then () becomes

v = PN(A)⊥u + (g – Lu)vg, + (g – Lu)vg, + PN(A)
(
co + u

)
,

where only the last component PN(A)(co + u) ∈ N(A), but all the other components and the
vector v belong to N(A)⊥, the orthogonal complement of N(A). Since the left side of the
last equality belongs to the orthogonal complement N(A)⊥, the right side also belongs to
N(A)⊥ because of the equality. Thus, it follows that the component PN(A)(co + u) = , and
the statement of this theorem is valid. �

The Green’s functions of these problems are also related.

Theorem  If there exists an ordinary Green’s function G for the first problem (), then
the generalized Green’s function Gg of the second problem is given by

Gg
ij = Gij – (PN(A))i·G·j – vg,

i 〈L, G·j〉 – vg,
i 〈L, G·j〉, i ∈ Xn, j ∈ Xn–.

Proof For every fixed j ∈ Xn–, let us investigate the discrete problems () and (). Their
solutions are u = G·j and v = Gg

·j, respectively. Then according to Theorem , they are re-
lated by

Gg
·j = G·j – (PN(A))G·j – vg,〈L, G·j〉 – vg,〈L, G·j〉v, j ∈ Xn–. �

Corollary  A generalized Green’s function for the problem ()-() is given by

Gg
ij = Gc

ij – (PN(A))i·Gc
·j – vg,

i
〈
L, Gc

·j
〉
– vg,

i
〈
L, Gc

·j
〉
, ()

where i ∈ Xn, j ∈ Xn–, and Gc is an ordinary Green’s function of the corresponding initial
problem ()-().

Proof Since every second order discrete initial problem ()-() has an ordinary Green’s
function [], the statement of this corollary follows from Theorem  with G = Gc. �

Let us investigate the discrete problem () with nonlocal boundary conditions (). Re-
call that this problem becomes a classical problem if parameters γ,γ = .
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Corollary  If there exists an ordinary Green’s function Gcl of the classical problem (), ()
(γ,γ = ), then the generalized Green’s function of the problem with nonlocal boundary
conditions (), () is given by

Gg
ij = Gcl

ij – (PN(A))i·Gcl
·j + γvg,

i
〈
κ, Gcl

·j
〉
+ γvg,

i
〈
κ, Gcl

·j
〉
, ()

where i ∈ Xn, j ∈ Xn–.

Proof Let us say that there exists an ordinary Green’s function Gcl of classical problem
(with γk = , k = , ). Then, according to (), an ordinary Green’s function satisfies homo-
geneous classical boundary conditions 〈κk , Gcl

·j 〉 = , k = , , j ∈ Xn–. Since Lk = κk – γkκk ,
from Theorem  with G = Gcl it follows that

Gg
ij = Gcl

ij – (PN(A))i·Gcl
·j – vg,

i
〈
L, Gcl

·j
〉
– vg,

i
〈
L, Gcl

·j
〉

= Gcl
ij – (PN(A))i·Gcl

·j + γ
〈
κ, Gcl

·j
〉
vg,

i + γ
〈
κ, Gcl

·j
〉
vg,

i . �

Remark  Since the condition () is equivalent to det A �= , the discrete problem () has a
nonsingular matrix and the orthogonal projector PN(A) = O is the zero matrix. So, we note
that all statements, proved in this section for a generalized Green’s function Gg , a gener-
alized system of vectors vg,, vg,, and the minimum norm least squares solution uo, are
coincident with the corresponding statements that are formulated in Section  for an or-
dinary Green’s function G, a biorthogonal fundamental system v, v, and the unique exact
solution u if the condition () is satisfied.

Corollary  Let D(l)[u] �= . Then the biorthogonal fundamental system v, v of the first
problem () and a generalized fundamental system vg,, vg, of the second problem () are
related as follows:

(
〈L, v〉 〈L, v〉
〈L, v〉 〈L, v〉

)(
vg,

i

vg,
i

)
=

(
v

i

v
i

)
–

(
(PN(A)v)i

(PN(A)v)i

)
, i ∈ Xn.

Proof First, let us take values f = , g̃ = g =  and g̃ = g =  for the problems (). Ac-
cording to Theorem , their solutions are v and vg,, respectively, and are linked with the
equality

vg, = v – PN(A)v +
(
 –

〈
L, v〉)vg, –

〈
L, v〉vg,,

which can be rewritten as follows:

〈
L, v〉vg, +

〈
L, v〉vg, = v – PN(A)v.

Afterwards taking f = , g̃ = g = , and g̃ = g =  for the problems (), we obtain other
equality

〈
L, v〉vg, +

〈
L, v〉vg, = v – PN(A)v.

Together they confirm the statement of this corollary. �
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Corollary  Let D(l)[u] �=  and D(L)[u] �=  for the problems (). Then their biorthogonal
fundamental systems v, v and w, w, respectively, are related by the equality

(
〈L, v〉 〈L, v〉
〈L, v〉 〈L, v〉

)(
w

i

w
i

)
=

(
v

i

v
i

)
, i ∈ Xn,

with the nonsingular matrix.

Proof Since v and v are the fundamental system of the operator L, we have D(L)[v] �= 
and the matrix

(
〈L, v〉 〈L, v〉
〈L, v〉 〈L, v〉

)

is nonsingular. As noted in Remark , PN(A) = O and functions vg,, vg, coincide with the
(usual) biorthogonal fundamental system w, w of the second problem (). Applying
Corollary , we conclude the proof. �

Theorem  For a real problem ()-(), the following statements are always valid:
() Gg

i· ∈ N(L∗)⊥ = R(L) for all i ∈ Xn;
() Gg

·j ∈ N(A)⊥ = R(A∗) for all j ∈ Xn–;
() vg,, vg, ∈ N(A)⊥ = R(A∗).

Proof First of all, we have A∗ = (L∗L∗
 L∗

). For every f = (f, f, . . . , fn–)T ∈ N(L∗), we have

 = L∗f +  · L∗
 +  · L∗

 = A∗̃f ,

where f̃ = (f, f, . . . , fn–, , )T . So, f ∈ N(L∗) ⇔ f̃ ∈ N(A∗). According to Lemma ,
N(A∗) = N(A†). Thus, f̃ ∈ N(A†) and  = A†̃f = Ggf or equivalently

n–∑
j=

Gg
ijfj = , ∀i ∈ Xn,

i.e. statement () is valid since N(L∗) � N(L∗).
According to Lemma , the generalized Green’s function Gg

·j is the minimum norm least
squares solution to the problem () for every fixed j ∈ Xn–. Thus, it can be written as (),
i.e. A†̃f for some f̃ . Now by Lemma , Gg

·j = A†̃f ∈ R(A†) = R(A∗) = N(A)⊥ and statement ()
follows. The last statement is proved using Lemma  in an analogous way. �

6.1 Example 1
Let us investigate a second order differential problem with one nonlocal Bitsadze-
Samarskii condition,

–u′′ = f (x), x ∈ (, ),

u() = , u() = γ u(ξ ),  < ξ < ,
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where f is a real function and γ ∈ R. We introduce the mesh ωh = {xi = ih : i ∈ Xn, nh = }
and suppose ξ is coincident with a mesh point, i.e., ξ = sh, s ∈ Xn. Denoting fi = hf (xi+),
i ∈ Xn–, we obtain the discrete problem

Lu := ui+ – ui+ + ui = fi, i ∈ Xn–,

〈L, u〉 := u = , 〈L, u〉 := un – γ us = .

From () follows that this discrete problem has the unique exact solution and an ordinary
Green’s function if and only if γ �= /ξ . Let us take the values of the parameters γ = /ξ , i.e.
γ = , ξ = /, n = , h = /, s = . This problem is described by the linear system Au = f̃ ,
which can be written in the expanded matrix form

⎛
⎜⎜⎜⎜⎜⎜⎝

–  –  
 –  – 
  –  –
    
 –   

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u

u

u

u

u

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f

f

f




⎞
⎟⎟⎟⎟⎟⎟⎠

with the singular matrix A and the nullity dim N(A) =  []. Now we find bases of null
spaces w = (, , , , )T ∈ N(A) and v = (, , , , )T ∈ N(AT ). According to [], we cal-
culate the Moore-Penrose inverse as follows:

A† =
(
A + vwT)– –


‖w‖ · ‖v‖ wvT

=




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –  –
 – –  –

–   – –
–   – –
 – –  

⎞
⎟⎟⎟⎟⎟⎟⎠

.

So, the generalized Green’s function and a generalized fundamental system are

Gg =




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
 – –

–  
–  
 – –

⎞
⎟⎟⎟⎟⎟⎟⎠

,

vg, =




⎛
⎜⎜⎜⎜⎜⎜⎝




–
–


⎞
⎟⎟⎟⎟⎟⎟⎠

, vg, =




⎛
⎜⎜⎜⎜⎜⎜⎝

–
–
–
–


⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Further we calculate the orthogonal projector

PN(A) =




⎛
⎜⎜⎜⎜⎜⎜⎝

    
    
    
    
    

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We know that the ordinary Green’s function Gc of the operator L with initial conditions
u = , u =  exists and is given by (), which can also be written in the extended form

Gc =

⎛
⎜⎜⎜⎜⎜⎜⎝

  
  

–  
– – 
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let us now calculate the generalized Green’s function Gg using Corollary . Precisely,
we apply (), written in matrix form,

Gg = (I – PN(A))Gc – vg,LGc – vg,LGc. ()

First of all, we calculate

(I – PN(A))Gc =




⎛
⎜⎜⎜⎜⎜⎜⎝

    
  – – –
 –  – –
 – –  –
 – – – 

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

  
  

–  
– – 
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

=




⎛
⎜⎜⎜⎜⎜⎜⎝

  
  
  
  

– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Moreover, vg,LGc = vg,Gc
· = vg,(  ) = O is the zero matrix. Further, we have LGc =

Gc
· – Gc

· = Gc
· = (– –  – ). Thus,

vg,LGc =




⎛
⎜⎜⎜⎜⎜⎜⎝

–
–
–
–


⎞
⎟⎟⎟⎟⎟⎟⎠

(– – –) =




⎛
⎜⎜⎜⎜⎜⎜⎝

  
  
  
  

– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Now we put the expressions obtained into the right side of () and again get the gener-
alized Green’s function,

Gg =




⎛
⎜⎜⎜⎜⎜⎜⎝

  
  
  
  

– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

–




⎛
⎜⎜⎜⎜⎜⎜⎝

  
  
  
  

– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

=




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
 – –

–  
–  
 – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, the equality () is valid.

6.2 Example 2
Let now us investigate another differential problem with two nonlocal boundary condi-
tions,

–u′′ = f (x), x ∈ (, ),

u′() = γu′(ξ ), u() = γ

∫ 


( – x)u(x) dx,  < ξ < ,

where γ,γ ∈ R. We suppose ξ is coincident with a mesh point, i.e., ξ = sh. Applying the
trapezoid rule to the integral condition, we consider the discrete problem

Lu := ui+ – ui+ + ui = fi, i ∈ Xn–,

u = u – γ(us+ – us), un = γh

(
u


+

n–∑
j=

( – xj)uj

)
.

Let us take the values of parameters as γ = , γ = , ξ = /, n = . So, h = / and s = .
Then the nonlocal conditions simplify to

〈L, u〉 := u – u + u = , 〈L, u〉 := u – u – u – u – u = ,

and the discrete problem is described by the linear system Au = f̃ as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

–  –  
 –  – 
  –  –
 –   

– – – – 

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u

u

u

u

u

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f

f

f




⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the first and fourth rows of matrix A are linearly independent, this linear system
has the singular matrix A. According to [], we find the nullity dim N(A) =  and after-
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wards the bases of null spaces w = (–, , , , )T ∈ N(A) and v = (, , , , )T ∈ N(AT ).
Then we calculate the Moore-Penrose inverse,

A† =
(
A + vwT)– –


‖w‖ · ‖v‖ wvT

=




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –  –
 – – – –
   – –
–    –
– – –  

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and we obtain the generalized Green’s function and the generalized fundamental system,

Gg =




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
 – –
  
–  
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

, vg, =




⎛
⎜⎜⎜⎜⎜⎜⎝


–
–



⎞
⎟⎟⎟⎟⎟⎟⎠

, vg, =




⎛
⎜⎜⎜⎜⎜⎜⎝

–
–
–
–


⎞
⎟⎟⎟⎟⎟⎟⎠

.

The orthogonal projector is given by

PN(A) =


‖w‖ wwT =




⎛
⎜⎜⎜⎜⎜⎜⎝

 – – – –
–    

–    
–    
–    

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let us verify () as regards investigating the discrete problem once more. As in the
previous example we calculate

(I – PN(A))Gc =




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
  
  

–  
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now we have LGc = Gc
· – Gc

· + Gc
· = (–  ) and afterwards obtain

vg,LGc =




⎛
⎜⎜⎜⎜⎜⎜⎝


–
–



⎞
⎟⎟⎟⎟⎟⎟⎠

(–  ) =




⎛
⎜⎜⎜⎜⎜⎜⎝

–  
  
  
–  
–  

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Similarly, we get LGc = Gc
· – Gc

· – Gc
· – Gc

· – Gc
· = ( –  – ). Thus,

vg,LGc =




⎛
⎜⎜⎜⎜⎜⎜⎝

–
–
–
–


⎞
⎟⎟⎟⎟⎟⎟⎠

( – –) =




⎛
⎜⎜⎜⎜⎜⎜⎝

–  
–  
–  
–  
 – –

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now we put the obtained expressions into () and find the generalized Green’s function,

Gg =




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
  
  

–  
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

–




⎛
⎜⎜⎜⎜⎜⎜⎝

–  
  
  
–  
–  

⎞
⎟⎟⎟⎟⎟⎟⎠

–




⎛
⎜⎜⎜⎜⎜⎜⎝

–  
–  
–  
–  
 – –

⎞
⎟⎟⎟⎟⎟⎟⎠

=




⎛
⎜⎜⎜⎜⎜⎜⎝

– – –
 – –
  
–  
– – –

⎞
⎟⎟⎟⎟⎟⎟⎠

again. This identity confirms that () is valid as well.

7 Conclusions
We formulate the basic conclusions of this paper as follows:

• A generalized Green’s function and a generalized fundamental system, defined by the
Moore-Penrose inverse, always exist and are unique.

• A generalized Green’s function is the unique minimum norm least squares solution of
the problem where the unique exact solution is an ordinary Green’s function if it
exists.

• Each function of a generalized fundamental system is the unique minimum norm
least squares solution of the same problem where the unique exact solution is the
corresponding function of the biorthogonal fundamental system if this system exists.

• The minimum norm least squares solution can be described by the unique exact
solution of the other discrete problem.

• A generalized Green’s function can be represented by ordinary Green’s function of the
other discrete problem.

• A generalized Green’s function is described by the generalized fundamental system.
The very analogous properties of a generalized Green’s function and a biorthogonal fun-
damental system can be obtained for mth order discrete boundary value problems with m
nonlocal conditions as well.
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23. Paukštaitė, G, Štikonas, A: Generalized Green’s functions for second-order discrete boundary-value problems with

nonlocal boundary conditions. Liet. Mat. Rink. 53, 96-101 (2012)
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