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Abstract. We consider the finite difference approximation of the second order Sturm–
Liouville equation with nonlocal boundary conditions (NBC). We investigate the condition
when the discrete Sturm–Liouville problem can be transformed to an algebraic eigenvalue
problem and denote this condition as solvability condition. The examples of the solvability
for the most popular NBCs are provided.
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Introduction

As a result of technological progress during the last couple decades, there has been
an interest investigating problems with rather complicated nonclassical conditions
modeling natural, physical, chemical and other processes [4]. In connection with this
fact it is natural to investigate whether the problem is well-posed. To understand
the behaviour of real processes it is natural to investigate solvability condition on
the stationary problems. The solvability results for various type differential problems
with nonlocal conditions can be found in [1].

In the present paper, we investigate the solvability of the discrete Sturm–Liouville
problem with two nonlocal boundary conditions (NBC) of the general form. We inves-
tigate the condition when the discrete Sturm–Liouville problem can be transformed
to an algebraic eigenvalue problem. We also provide the examples of the solvability
conditions for the most popular nonlocal boundary conditions.

1 Sturm–Liuoville problem with two NBC

In this article in the interval [0, L] we consider grids:

ωh := {xi : xi = ih, i = 0, N}, h = L/N ; ωh := {x1, . . . , xN−1}.
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We use notation [·, ·] and (·, ·) for the inner products in the Hilbert spaces H := H(ωh)
and H := H(ωh) accordingly.

We consider discrete Sturm–Liouville operator

LU := −δ(PδU) +QU = λU, xi ∈ ωh, (1)

where P , Q are real functions and

(

δ(PδU)
)

i
:=

Pi+1/2(Ui+1 − Ui)− Pi−1/2(Ui − Ui−1)

h2
,

with two nonlocal boundary conditions of general form

[k0, U ] = γ0[n0, U ], [k1, U ] = γ1[n1, U ], (2)

where [ki, U ] is the classical part and [ni, U ] is a nonlocal part of boundary conditions,
i = 0, 1.

Now we investigate the condition when problem (1)–(2) can be transformed to the
algebraic eigenvalue problem. The algebraic problem is degenerate if its determinant
equals to zero. We rewrite boundary conditions (2) in the following form

[

k0 − γ0n0, δ
0
]

U0 +
[

k0 − γ0n0, δ
N
]

U1 = (γ0n0 − k0, U), (3)
[

k1 − γ1n1, δ
0
]

U0 +
[

k1 − γ1n1, δ
N
]

U1 = (γ1n1 − k1, U), (4)

where δs := δss is the Kronecker delta

δsi =

{

0 if s 6= i,

1 if s = i.

Equations (3)–(4) form a system of linear equations respect to boundary values of the
function U

(

[k0 − γ0n0, δ
0] [k0 − γ0n0, δ

N ]

[k1 − γ1n1, δ
0] [k1 − γ1n1, δ

N ]

)(

U0

UN

)

=

(

(γ0n0 − k0, U)

(γ1n1 − k1, U)

)

. (5)

System (5) is degenerate if

∣

∣

∣

∣

[k0 − γ0n0, δ
0] [k0 − γ0n0, δ

N ]

[k1 − γ1n1, δ
0] [k1 − γ1n1, δ

N ]

∣

∣

∣

∣

= 0,

or in the expanded form

γ0γ1D(n0, n1) + γ0D(n0, k1) + γ1D(n1, k0) + D(k0, k1) = 0, (6)

where

D(n0, n1) =

∣

∣

∣

∣

[n0, δ
0] [n0, δ

N ]

[n1, δ
0] [n1, δ

N ]

∣

∣

∣

∣

, D(k1, n0) =

∣

∣

∣

∣

[k1, δ
0] [k1, δ

N ]

[n0, δ
0] [n0, δ

N ]

∣

∣

∣

∣

,

D(n1, k0) =

∣

∣

∣

∣

[n1, δ
0] [n1, δ

N ]

[k0, δ
0] [k0, δ

N ]

∣

∣

∣

∣

, D(k0, k1) =

∣

∣

∣

∣

[k0, δ
0] [k0, δ

N ]

[k1, δ
0] [k1, δ

N ]

∣

∣

∣

∣

. (7)
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Table 1. Classification of the Degeneration Curves.

Curve in plane Case Matrix A Curve in plane Case Matrix A

Whole plane 1

(

0 0

0 0

)

Two lines 4a

(

a00 0

0 0

)

Empty set 2

(

0 0

0 a11

)

4b

(

a00 a01

0 0

)

Line 3a

(

0 a01

0 0

)

4c

(

a00 0

a10 0

)

3b

(

0 0

a10 0

)

4d

(

a00 a01

a10 a11

)

, detA = 0

3c

(

0 a01

0 a11

)

Hyperbola 5a

(

a00 a01

a10 a11

)

, detA 6= 0

3d

(

0 0

a10 a11

)

5b

(

a00 0

0 a11

)

3e

(

0 a01

a10 0

)

5c

(

a00 a01

0 a11

)

3f

(

0 a01

a10 a11

)

5d

(

a00 0

a10 a11

)

5e

(

a00 a01

a10 0

)

In general case Eq. (6) describe a second degree algebraic curve on the plane (γ0, γ1).
The classification of the curves of such type is given in [3]. We call a set of points
(γ0, γ1), satisfying Eq. (6), the Degeneration Curve for the problem (1)–(2).

Analogously as in [3] we denote matrix

A =

(

a00 a01
a10 a11

)

=

(

D(n0, n1) D(n0, k1)
D(k0, n1) D(k0, k1)

)

. (8)

Each matrix A corresponds to one of the five types of Degeneration Curves. More
detailed classification is shown in Table 1. We have 16 types of matrices overall and
one type is split into two cases (detA = 0 and detA 6= 0). So, the next lemma is
valid for the Degeneration Curve (as well as for the Characteristic Curve in [3]).

Lemma 1. A Degeneration Curve for problem (1)–(2) in the plane R
2 can be one of

the following five types:

1. If D(n0, n1) = D(k0, k1) = D(n0, k1) = D(k0, n1) = 0 then the curve is whole
plane;

2. If D(n0, n1) = D(n0, k1) = D(k0, n1) = 0, D(k0, k1) 6= 0 then the curve is empty
set;

3. If D(n0, n1) = 0, D(n0, k1) 6= 0 or D(n0, n1) = 0, D(k0, n1) 6= 0 then the curve is
line;

4. If D(n0, n1) 6= 0 and detA = 0 then the curve is union of vertical and horizontal
lines;

5. If D(n0, n1) 6= 0 and detA 6= 0 then the curve is hyperbola.
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Remark 1. We see, that Degeneration Curve in the plane R
2 cannot be algebraic curve

such as ellipse, parabola, point, parallel lines, double line.

Remark 2. If detA 6= 0 then the line (Case 3) is neither vertical nor horizontal (see
Cases 3e, 3f in Table 1), otherwise we have single vertical or single horizontal line (see
Cases 3a–3d in Table 1).

Remark 3. Investigated problem can be easily extended from plane R
2 to the cone T

2

analogously as it was done in [3].

2 Applications

Example 1 [Nonlocal integral boundary conditions]. We consider Dirichlet integral
boundary conditions with weights. We use the following inner products corresponding
to the trapezoid rule and defined as (see e.g. [2]):

[U, V ] :=
U0V0h

2
+

N−1
∑

i=1

UiVih+
UNVNh

2
, U, V ∈ H,

(U, V ) :=
N−1
∑

i=1

UiVih, U, V ∈ H.

The boundary conditions (2) are of the form

[

δ0, U
]

= γ0
[

B0, U
]

,
[

δN , U
]

= γ1
[

B1, U
]

, (9)

where B0 and B1 are the weight functions. In the general case we have the following
nondegeneracy condition:

∣

∣

∣

∣

∣

1− hγ1B
1
N/2 hγ1B

0
N/2

hγ0B
1
0/2 1− hγ0B

0
0/2

∣

∣

∣

∣

∣

6= 0.

The degeneration curve is of the following form

h2

4

∣

∣

∣

∣

∣

B0
0 B0

N

B1
0 B1

N

∣

∣

∣

∣

∣

γ0γ1 −
h

2
B0

0γ0 −
h

2
B1

Nγ1 + 1 = 0.

If B0 ≡ 1 and B1 ≡ 1, then the full integral which was investigated in [2]. The
degeneration curve is of the following form

−
h

2
(γ0 + γ1) + 1 = 0.

In the case of classical boundary conditions B0 ≡ 0 and B1 ≡ 0,the degeneration
curve is a whole plane (see Table 1, Case 1).

Example 2 [Bicadze–Samarskii NBC]. We consider boundary conditions of the Bicadze–
Samarskii form

[

δ0, U
]

= γ0[δ
s0 , U ],

[

δN , U
]

= γ1
[

δs1 , U
]

, (10)
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where [·, ·] is the classical inner product

[U, V ] :=
N
∑

i=0

UiVi, U, V ∈ H. (11)

In this case the degeneration curve is of the form
∣

∣

∣

∣

∣

δs00 δs0N

δs10 δs1N

∣

∣

∣

∣

∣

γ0γ1 − δs00 γ0 − δs1N γ1 + 1 = 0. (12)

As one can see from Eq. (12) the classification for the degeneration curves in the case
of Bicadze–Samarskii nonlocal boundary condition is the same as for the integral con-
ditions, except the coefficients. For the investigated case the classifications depends
on whether the nonlocal point is inner or boundary.

Example 3 [Multipoint NBC]. We consider boundary conditions of the following form

U(0) = γ0

N
∑

i=0

α0
iU(ξi), U(1) = γ1

N
∑

i=0

α1
iU(ξi),

where αk =
∑N

j=0
αk
j δ

j , k = 0, 1; 0 ≤ ξ0 < · · · < ξN ≤ 1. Using the inner product (11)
we rewrite NBC in the following form

[

δ0, U
]

= γ0
[

α0, U
]

,
[

δN , U
]

= γ1
[

α1, U
]

. (13)

The method of investigating multipoint case is similar to the method in Example 2.
The form of the degeneration curve is equivalent to the Eq. (12)

∣

∣

∣

∣

∣

αs0
0 δs00 αs0

N δs0N

αs1
0 δs10 αs1

N δs1N

∣

∣

∣

∣

∣

γ0γ1 − αs0
0 δs00 γ0 − αs1

N δs1N γ1 + 1 = 0. (14)

Example 4 [Left and right rectangle rules for integral NBC]. We consider boundary
conditions (13) with the inner products

[U, V ]l :=

N−1
∑

i=0

UiVih, [U, V ]r :=

N
∑

i=1

UiVih

corresponding to the left and right rectangle rules respectively. So the degeneration
curves are of the following forms:

hB0
0γ0 − 1 = 0 for the left rectangle rule,

hB1
Nγ1 − 1 = 0 for the right rectangle rule.

Remark 4. Examples 1–4 describe all the cases mentioned in the table 1, except of an
empty set (Case 2). This situation is valid when the boundary conditions are of the
following form

∫ ξ1

ξ0

β0(x)U(x, t) dx = a0,

∫ ξ3

ξ2

β1(x)U(x, t) dx = a1,

where 0 < ξ0 ≤ ξ1 < 1, 0 < ξ2 ≤ ξ3 < 1, a0, a1 ∈ R, β0 and β1 are weight functions.
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Remark 5. The technique investigated in this article is suitable for defining the solv-
ability conditions for different stationary and non-stationary problems with nonlocal
boundary conditions. As one can see only the boundary conditions are needed to de-
fine the solvability. It is enough to define the operators, corresponding to the classical
and nonlocal parts of the boundary conditions. Obtained solvability condition mostly
depends only on the values of the operators of the nonlocal parts on the boundaries.
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REZIUMĖ

Nelokaliojo skirtuminio Šturmo ir Liuvilio uždavinio ekvivalentiškumas
algebriniam tikrinių reikšmių uždaviniui
Jurij Novickij ir A. Štikonas

Darbe nagrinėjamas skirtuminis Šturmo ir Liuvilio uždavinys su nelokaliosiomis kraštinėmis sąly-
gomis. Gauta uždavinio ekvivalentiškumo algebriniam tikrinių reikšmių uždaviniui sąlyga bei pateikti
pavyzdžiai.

Raktiniai žodžiai: Nelokaliosios sąlygos, išsprendžiamumo sąlyga, Šturmo ir Liuvilio uždavinys.
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