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Abstract. We investigate the dynamical behavior of a mathematical model of HIV and
recombinant rabies virus (RV), designed to infect only the lymphocytes previously infected
by HIV. This model is described by five ordinary differential equations with two discrete
delays. The effect of two time delays on stability of the equilibria of the system has been
studied. Stability switches and Hopf bifurcations when time delays cross through some
critical values are found. Numerical simulations are performed to illustrate the theoretical
results.
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1 Problem formulation

According to Word Health Organization, “there were approximately 35 million people
living with HIV at the end of 2013” and it “continues to be a major global public health
issue, having claimed more than 39 million lives so far” [10]. While antiretroviral
therapy is progressing every year, there is still a need to improve life expectancy and
quality of HIV infected patients. Lately the concept of a recombinant rabies virus
(RV), which would be genetically modified to infect only the lymphocytes previously
infected by HIV and thus could prevent further HIV production, was introduced [4].
Here we examine a delay differential equations (DDE) model with two discrete delays,
representing HIV and RV dynamics in vivo.

The basic HIV model contains three ordinary differential equations (ODE) rep-
resenting the dynamics of healthy and infected CD4+T lymphocytes and HIV load.
The model and motivation behind its analysis are briefly yet informatively reviewed
in [5]. The paper also covers the process of introducing the antiretroviral drugs into
the system. Revilla and Garćıa-Ramos [6] suggested another way of expanding the
basic model by adding the recombinant virus and double (HIV and RV) infected
CD4+T lymphocytes. In the article the basic reproduction numbers for HIV and RV
were given as well as numerical simulations of various cases. The local and global
asymptotic stability of the expanded system’s equilibria was analyzed in [2]. Tian et
al. [9] incorporate in the system a single delay τ , which represents the time needed
for virus to infect a healthy lymphocyte, and the exponential probability that the
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lymphocyte will still be infected after the delay period:

ẋ(t) = λ− dx(t) − βx(t)v(t),

ẏ(t) = βe−aτx(t − τ)v(t − τ)− ay(t)− αw(t)y(t),

ż(t) = αw(t)y(t) − bz(t),

v̇(t) = ky(t)− pv(t),

ẇ(t) = cz(t)− qw(t), (1)

here x(t), y(t) and z(t) are healthy, infected and double (by both HIV and RV)
infected CD4+T lymphocytes, respectively, v(t) and w(t) are the HIV and RV load.
Parameters λ and d are healthy lymphocytes reproduction and clearance rates, k and p

are HIV production and clearance rates, c and q are RV production and clearance
rates. β and α are the HIV and RV infection rates, while a and b are the clearance
rates of single and double infected lymphocytes, respectively. The nonnegativeness of
the solution and the local and global stability of equilibria are proven in [9]. Also the
Hopf bifurcation conditions and the critical delay value at which it occurs are given.

As mentioned, here we investigate five DDE model with two discrete delays:

ẋ(t) = λ− dx(t) − βx(t)v(t),

ẏ(t) = βx(t − τ1)v(t− τ1)− ay(t)− αw(t)y(t),

ż(t) = αw(t)y(t) − bz(t),

v̇(t) = ky(t− τ2)− pv(t),

ẇ(t) = cz(t)− qw(t), (2)

τ1 correspond to delay τ in (1) and τ2 is the time period in which virus is produced
and released from the infected lymphocyte. The model is biologically meaningful:
the nonnegativeness and boundedness of the solution can be easily proven using basic
DDE theory and Theorem 2.1 in [7]. The main purpose of this paper is to study the
influence of the time delay τ2 on the dynamics of (2).

2 Stability investigation

Calculating the equilibria points we get the same expressions as given in [2, 6]: E0 – the
situation when no virus is present in the system, E1 – the case when only HIV survives
and E2 – when both HIV and RV survive. Following [1], we calculated the single HIV
infection reproduction number R1 := βkλ

adp
, which also agrees with the expression

obtained in [2, 6]. It is easy to see that E1 is biologically meaningful (nonnegative)
⇔ R1 > 1. Similarly it can be shown that E2 is biologically meaningful ⇔ double
HIV and RV infection reproduction number R2 := αcdp

bqβk
(R1 − 1) > 1 ⇔ R1 > R∗,

where R∗ := 1 + bqβk
αcdp

.
Procedure of finding local and global asymptotic stability intervals of equilibria

E0, E1 and local asymptotic stability interval of E2 is given in [2, 9]. However, be-
cause of the second delay, linearization about the equilibria points and corresponding
characteristic equations have additional members and the stability proofs have to be
expanded accordingly.

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 30–35.
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Fig. 1. Stability changing lines. For every τk
i

there are infinitely many combinations of delays
τ1, τ2.

We are going to analyze only the periodic nature of changes between local asymp-
totic stability of the equilibrium E2 of system (2) and occurring Hopf bifurcation
when variating the two delays. Linearizing the system (2) about the point E2 =
(x2, y2, z2, v2, w2), we get

ẋ(t) = −(βv2 + d)x(t) − βx2v(t),

ẏ(t) = β
(

v2x(t − τ1) + x2v(t− τ1)
)

− α
(

w2y(t) + y2w(t)
)

− ay,

ż(t) = α
(

w2y(t) + y2w(t)
)

− bz(t), (3)

v̇(t) = ky(t− τ2)− pv(t),

ẇ(t) = cz(t)− qw(t).

Then in order to find a purely imaginary conjugate eigenvalue ξ = ±i̟, ̟ ∈ R, we
define the real (R(̟, θ)) and imaginary (̟I(̟, θ)) parts of characteristic equation
(F (i̟, θ)), corresponding to (3), where

R(̟, θ) = B2̟
2 cos(θ) +

(

B3̟
2 −B1

)

̟ sin(θ)A4̟
4 −A2̟

2 +A0, (4)

I(̟, θ) = B2̟ sin(θ)−
(

B3̟
2 −B1

)

cos(θ) −̟4 +A3̟
2 −A1, (5)

and τ := τ1+τ2, θ := ̟τ , constants Ai, Bj , i = 0, 4, j = 1, 2, 3, depend on system’s (2)
parameters, except the two delays τ1, τ2.

The presence of periodic trigonometric functions in (4), (5) equations is common
for DDE. Due to them, solving R(̟, θ) = 0, I(̟, θ) = 0, we get infinitely many
solutions (θi

k, ̟i), θi
k = θi

0 + 2kπ, i = 1, 2, k ∈ N0, at which the stability changes
between asymptotically stable equilibrium point and Hopf bifurcation resulting in
periodic oscillations. According to our notation, every such solution gives aggregated
delay

τki =
θi

k

̟i

(6)

and, as we can see from Fig. 1, these values of τ can again give infinitely many
combinations of two delays (τ1, τ2). It means that in every stability region we can
have a case that is mathematically invariant, but, due to different delay values, may
be biologically distinct.
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Fig. 2. Periodical stability changes.

Table 1. The first four stability changing points (̟, θ) and the corresponding value of τ .

(i, k) ̟ θ τ

(1,0) 0.6351193033 0.3774323930 0.5942700703
(2,0) 1.030664033 5.661562989 5.493121723
(1,1) 0.6351193033 6.660617701 10.48719141
(2,1) 1.030664033 11.94474830 11.58937143

3 Numerical results

In this chapter numerical simulations are given to illustrate the theoretical results. In
order to compare obtained data, we fix the parameters to the same values as in [9]:
λ = 1, d = 1

180
, β = 1

260
, a = 1

2
, α = 1

260
, b = 2, k = 80, p = 3, c = 1800, q = 3, and

choose delays τ1, τ2 as bifurcation parameters. Then equations (4), (5) are

R(̟, θ) =
365197

39780
̟4 −

58457

2652
̟2 +

259

260
+

212

13
̟2 cos(θ) +

(

720

221
̟2 −

20

221

)

̟ sin(θ),

I(̟, θ) = ̟4 −
244109

9945
̟2 +

164663

13260
−

212

13
̟ sin(θ) +

(

720

221
̟2 −

20

221

)

cos(θ),

and graphically solving R(̟, θ) = 0, I(̟, θ) = 0 we get Fig. 2. The values of the first
few stability changing points are given in Table 1. In [3] the mean intracellular delay
is estimated to be 0.92± 0.43 days, so only the first stability changing point could be
biologically meaningful, while others may be purely mathematically interesting.

We will check Hopf bifurcation conditions (see i.e. [8, 90 p.]) at the first point
(̟1, τ

0
1 ) corresponding with (θ01 , ̟1, ):

• the partial derivative of characteristic equation is not equal to zero:

∂F (ξ, τ)

∂ξ
(i̟1, τ

0
1 ) = −25.86804014− 1.073339566 i 6= 0,
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Fig. 3. Hopf bifurcations resulting in periodic oscillations (blue, solid) and locally asymptotically
stable equilibrium E2 (green, dashed). The two bottom graphs are corresponding phase portraits:

a limit cycle and a stable focus. Dotted red color marks the results when simulating system (2)
without the RV.

• the eigenvalues cross the imaginary axis with nonzero speed:

Re

(

dξ

dτ

)

(i̟1, τ
0
1 ) = −0.04822157632< 0.

So, system (2) undergoes Hopf bifurcation at the critical value of aggregated delay (6)
τ01 = 0.5942700703 (see Fig. 3), which is smaller than the critical Hopf bifurcation
value obtained in [9] for a system with single delay (1).

Apart from Hopf bifurcation, two other cases, obtained with the same values of
delays τ1, τ2, are shown in Fig. 3: locally asymptotically stable equilibrium E2 and
simulation of system (2) without the recombinant virus. When comparing them, it can
be seen that a system without recombinant virus shows smaller numbers of healthy
CD4+T lymphocytes and larger numbers of both infected CD4+T lymphocytes and
HIV.

4 Discussion and conclusions

Even a simplified model with two delays indicates interesting dynamics from both
mathematical and biological standpoint. Periodic stability switches could be further
investigated, comparing the amplitude and period of oscillations, which rise from Hopf
bifurcation. The direction of such bifurcation could also be proved.

Our results suggest that the behavior of the system (2) is defined by the aggregated
delay rather than by delays τ1 and τ2 separately. And a simple numeric example
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comparing the count of healthy and infected lymphocytes and HIV agrees with the
theoretical results given in [2] for a system without delays.
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REZIUMĖ

Imuninės sistemos, priklausančios nuo ŽIV ir rekombinantinio viruso sąveikos,
modeliavimas
U. Jankauskaitė, O. Štikonienė

Šiame darbe analizuojamas žmogaus imunodeficito viruso ir genetiškai modifikuoto rekombinantinio
viruso sąveikos matematinis penkių diferencialinių lygčių su dviem diskrečiaisiais vėlavimais modelis.
Buvo ištirta dviejų laiko vėlavimų įtaka sistemos stabilumui. Nustatytos kritinės Hopfo bifurkacijos
reikšmės. Skaitiniai eksperimentai iliustruoja gautus teorinius rezultatus.

Raktiniai žodžiai: diferencialinės lygtys su vėlavimu, Hopfo bifurkacija, ŽIV modelis, rekombinantinis
virusas, stabilumas.
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