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Abstract
We study the distribution of a general class of asymptotically linear statistics which
are symmetric functions of N independent observations. The distribution functions
of these statistics are approximated by an Edgeworth expansion with a remainder
of order o(N−1). The Edgeworth expansion is based on Hoeffding’s decomposition
which provides a stochastic expansion into a linear part, a quadratic part as well as
smaller higher order parts. The validity of this Edgeworth expansion is proved under
Cramér’s condition on the linear part, moment assumptions for all parts of the statistic
and an optimal dimensionality requirement for the non linear part.
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1 Introduction and results

1.1 Introduction

Let X , X1, X2, . . . , X N be independent and identically distributed random variables
taking values in a measurable space (X ,B). Let PX denotes the distribution of X
on (X ,B). We assume that T(X1, . . . , X N ) is a symmetric function of its arguments
(symmetric statistic, for short). Furthermore, we assume that the moments ET and
σ 2

T
:= VarT are finite. A function of observations X1, . . . , X N is called linear statis-

tic if it can be represented by a sum of functions depending on a single observation
only. Many important statistics are non linear, but can be approximated by a linear
statistic. We call these statistics asymptotically linear. The central limit theorem and
the normal approximation with rate O(N−1/2) extend to the class of asymptotically
linear statistics as well. Our approach in studying the distribution of this class of
statistics in the statistically relevant case of asymptotic normal T is based on Hoeffd-
ing’s decomposition of T, see Hoeffding [31], Efron and Stein [21] and van Zwet
[37]. Hoeffding’s decomposition expands T into the series of centered and mutually
uncorrelated U -statistics of increasing order

T = ET + 1

N 1/2

∑

1≤i≤N

g(Xi ) + 1

N 3/2

∑

1≤i< j≤N

ψ(Xi , X j )

+ 1

N 5/2

∑

1≤i< j<k≤N

χ(Xi , X j , Xk) + . . . .

Let L, Q and K denote the first, the second and the third sum.We call L the linear part,
Q the quadratic part and K the cubic part of the decomposition. We shall consider a
general situation where the kernel T = T

(N ), the space (X ,B) = (X (N ),B(N )) and
the distribution PX = P(N )

X all depend on N as N → ∞. In order to keep the notation
simple we drop the subscript N in what follows. An improvement over the normal
approximation is obtained by using Edgeworth expansions for the distribution function
F(x) = P{T − ET ≤ σTx}. For this purpose we write Hoeffding’s decomposition in
the form

T − ET = L + Q + K + R, (1)

where R denotes the remainder. For a number of important examples of asymptotically
linear statistics we have R/σT = oP (N−1) (in probability) as N → ∞. Therefore, the
U -statistic σ−1

T
(L + Q + K ) can be viewed as a stochastic expansion of (T−ET)/σT

up to the order oP (N−1).
Furthermore, a so-called Edgeworth expansion of σ−1

T
(L + Q + K ) can be used

to approximate F(x) by a smooth distribution function G(x) as defined in (2) below
depending on N and moments of T. A two term Edgeworth expansion of the distribu-
tion function of σ−1

T
(L + Q + K ) is given by
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Symmetric statistics 1155

G(x) = �(x) − 1√
N

κ3

6
(x2 − 1)�′(x)

− 1

N

(κ2
3

72
(x5 − 10x3 + 15x)�′(x) + κ4

24
(x3 − 3x)�′(x)

)
. (2)

Here� respectively�′ denote the standard normal distribution function and its deriva-
tive. Furthermore, we introduce σ 2 = Eg2(X1) and

κ3 = σ−3
(
Eg3(X1) + 3Eg(X1)g(X2)ψ(X1, X2)

)
,

κ4 = σ−4
(
Eg4(X1) − 3σ 4 + 12Eg2(X1)g(X2)ψ(X1, X2)

+ 12Eg(X1)g(X2)ψ(X1, X3)ψ(X2, X3)

+ 4Eg(X1)g(X2)g(X3)χ(X1, X2, X3)
)
.

Ourmain result, Theorem 1 below, establishes a bound o(N−1) for the Kolmogorov
distance between F(x) and G(x):

� = sup
x∈R

|F(x) − G(x)| = o(N−1). (3)

Valid expansions of this type were shown by Cramér [19] for sums of independent
random variables X j and later on for the Student statistic (which is of type (1)) by Kai-
Lai Chung [18]. A new impetus for studying higher order approximations in statistic
was given by the fundamental paper ofHodges andLehmann on deficiency [30], where
they compared the power of two tests based on N and N ′ observations respectively
and where N ′ − N = o(N ) as N → ∞. They suggested a program of comparisons
of the power of tests, estimators and confidence regions based on classical parametric
and non parametric symmetric statistics e.g. using ranks and ordered samples. They
noted that this would require going beyond Gaussian limit theorems to asymptotic
expansions to order N−1. For more details on the statistical relevance and the related
development of asymptotic methods we refer to the review paper inmemory ofWillem
van Zwet [12].

Nowwe discuss the principal contribution of this paper: theminimal smootness and
structural conditions under which approximation (3) holds. Let us emphasize that any
F satisfying (3) cannot have fluctuations/increments of order �(N−1) in the intervals
of size o(N−1) because G is a differentiable function with all derivatives bounded.
We focus on the conditions that guarrantee the necessary level of smoothness of the
distribution of T. In the case of linear statistic T = ET + L the necessary smoothness
of F is ensured by the classical Cramer condition

lim sup
|t |→∞

|E exp{i tg(X1)}| < 1. (C)

This condition excludes, in particular, lattice distributions, for which approximation
(3) obviously fails. We note that condition (C) can be weakened to cover some special
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1156 M. Bloznelis, F. Götze

classes of discrete distribution which are sufficiently non-lattice distributed, see e.g.
Bickel and Robinson [13], Angst and Poly [1] or Bobkov [14] for almost sure choices
of such non-lattice discrete distributions.

Since the class of symmetric statistic should include the case of linear statistics we
require a Cramér type condition but on the linear part of the statistic only, see (7). Inter-
estingly, this condition together with appropriate moment conditions on various parts
of the decomposition (1) guarantees already an approximation error � = O(N−1)

for general symmetric statistics (see [4]). But (7) is not sufficient for the desired error
bound o(N−1) even for U statistics of degree two, see Example 1 below. The reason
why (7) alone is not sufficient for the approximation accuracy � = o(N−1) is due
to the potential occurrence of a very special relation between the linear and quadratic
parts L and Q that fosters an approximate lattice structure as shown in Example 1.
Namely, the quadratic part of the U statistic in Example 1 has a factorizable kernel ψ
of the formψh(X1, X2) = h(X1)g(X2)+g(X1)h(X2), h−measurable. The following
structural condition (4) (introduced in the unpublished manuscript by Götze and van
Zwet [25]) avoids such counterexamples by separating (in L2 distance) the random
variable ψ(X1, X2) from any random variable of the form ψh(X1, X2). Note that the
L2 distance E(ψ(X1, X2) − ψh(X1, X2))

2 is minimized by h(x) = b(x), where

b(x) = σ−2E
(
ψ(X1, X2)g(X2)

∣∣X1 = x
) − (κ/2σ 4)g(x).

Here κ = Eψ(X1, X2)g(X1)g(X2). Therefore, wewill assume that, for some absolute
constant δ∗ > 0, we have

E
(
ψ(X1, X2) − (

b(X1)g(X2) + b(X2)g(X1)
))2 ≥ δ2∗σ 2

T
. (4)

The main contribution of the present paper consist of a proof that condition (4) will
indeed ensure the desired bound � = o(N−1). The proof is based on a careful inves-
tigation of the size distribution for |t | > N 1−ν of the absolute values of conditional
Fourier transforms of symmetric statistics that is the landscape of its maxima when
imposing Cramer’s condition (7) and the structural condition (4). Here new methods
are used for studying this landscape in the frequency t as well in the random func-
tion representing the conditioning. For the latter variable a combinatorial argument
of Kleitman on symmetric partitions for the Littlewood–Offord problem in Banach
spaces (see [15]) is used.

A short outline of the approach is given at the beginning of Sect. 2, where we focus
on the use of condition (4).

1.2 Results

Let us state our main result Theorem 1.
Moment conditions Wewill assume that, for some absolute constants 0 < A∗ < 1 and
M∗ > 0 and numbers r > 4 and s > 2, we have
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Eg2(X1) > A∗σ 2
T
, E|g(X1)|r < M∗σ r

T
,

E|ψ(X1, X2)|r < M∗σ r
T
, E|χ(X1, X2, X3)|s < M∗σ s

T
. (5)

These moment conditions refer to the linear, quadratic and cubic part of T. In order
to control the remainder R of the approximation (1) we use moments of differences
introduced in Bentkus, Götze and van Zwet [4], see also van Zwet [37]. Define, for
1 ≤ i ≤ N ,

Di T = T − Ei T, Ei T := E(T|X1, . . . , Xi−1, Xi+1, . . . , X N ).

A subsequent application of difference operations Di , D j , . . . , (the indices i, j , . . . ,
are all distinct) produce higher order differences, like

Di D j T := Di (D j T) = T − Ei T − E j T + EiE j T.

For m = 1, 2, 3, 4 write �2
m = E|N m−1/2D1D2 · · · DmT|2.

We will assume that for some absolute constant D∗ > 0 and number ν1 ∈ (0, 1/2)
we have

�2
4/σ

2
T

≤ N 1−2ν1 D∗ (6)

For a number of important examples of asymptotically linear statistics the moments
�2

m are evaluated or estimated in [4]. Typically we have �2
m/σ 2

T
= O(1) for some m.

Therefore, assuming that (6) holds uniformly in N as N → ∞, we obtain from the
inequality ER2 ≤ N−3�2

4, see (167) (see “Appendix”), that R/σT = OP (N−1−ν1).
Furthermore, assuming that (5), (6) hold uniformly in N as N → ∞, we obtain from
(167), (166), see “Appendix”, that σ 2/σ 2

T
= (1 − O(N−1)).

Cramér type smoothness condition We introduce the function

ρ(a, b) = 1 − sup{|E exp{i tg(X1)/σ }| : a ≤ |t | ≤ b}

and assume that, for some δ > 0 and ν2 > 0, we have

ρ(β−1
3 , N ν2+1/2) ≥ δ. (7)

Here β3 = σ−3E|g(X1)|3. Define ν = 600−1 min{ν1, ν2, s − 2, r − 4}.
Theorem 1 Assume that for some absolute constants A∗, M∗, D∗ > 0 and numbers
r > 4, s > 2, ν1, ν2 > 0 and δ, δ∗ > 0, the conditions (5), (6), (7), (4) hold. Then
there exists a constant C∗ > 0 depending only on A∗, M∗, D∗, r , s, ν1, ν2, δ, δ∗ such
that

� ≤ C∗N−1−ν
(
1 + δ−1∗ N−ν

)
.

Remark 1 The value of ν = 600−1 min{ν1, ν2, s −2, r −4} is far from being optimal.
Furthermore, themoment conditions (5) and (6) are not theweakest possible thatwould
ensure the approximation of order o(N−1). The condition (5) can likely be reduced
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to the moment conditions that are necessary to define Edgeworth expansion terms κ3
and κ4, similarly, (6) can be reduced to �2

4/σ
2
T

= o(N−1). No effort was made to
obtain the result under the optimal conditions. This would increase the complexity of
the proof which is already rather involved.

Remark 2 Condition (4) can be relaxed. Assume that for some absolute constant G∗
we have

E
(
ψ(X1, X2) − (

b(X1)g(X2) + b(X2)g(X1)
))2 ≥ N−2νG∗σ 2

T
. (8)

The bound of Theorem 1 holds if we replace (4) by this weaker condition. In this
case we have � ≤ C∗N−1−ν , where the constant C∗ depends on A∗, D∗, G∗,
M∗, r , s, ν1, ν2, δ.

In the particular case of U statistics of degree three (the case where R ≡ 0 in (1))
the proof of Theorem 1 has been outlined in the unpublished manuscript by Götze and
van Zwet [25]. We provide a complete and more readable version of the arguments
sketched in that preprint and extend them to a general class of symmetric statistics. In
the same paper [25], see as well [4], it was shown that moment conditions (like (5), (6))
together with Cramér’s condition (like (7)) do not suffice for the bound � = o(N−1).
For convenience we state this result in Example 1 below.

Example 1 Let X1, X2, . . . be independent random variables uniformly distributed
on the interval (−1/2, 1/2). Define TN = (WN + N−1/2VN )(1 − N−1/2VN ), where
VN = N−1/2 ∑{N 1/2X j } and WN = N−1 ∑[N 1/2X j ]. Here [x] denotes the nearest
integer to x and {x} = x − [x].
Assume that N = m2, where m is odd. We have, by the local limit theorem,

P{WN = 1} ≥ cN−1 and P{|VN | < δ} > cδ, 0 < δ < 1,

where c > 0 is an absolute constant. From these inequalities it follows by the inde-
pendence of WN and VN , that P{1 − δ2N−1 ≤ TN ≤ 1} ≥ c2δN−1.

The example defines a sequence of U -statistics TN whose distribution functions
FN have O(N−1) sized increments in a particular interval of length o(N−1). These
fluctuations of magnitude O(N−1) appear as a result of a nearly lattice structure
induced by the interplay between the (smooth) linear part and the quadratic part.

1.3 Earlier work

There is a rich literature devoted to normal approximation and Edgeworth expansions
for various classes of asymptotically linear statistics (see e.g. Babu and Bai [2], Bai
and Rao [3], Bentkus, Götze and van Zwet [4], Bhattacharya and Ghosh [8, 9], Bhat-
tacharya and Rao [7], Bickel [10], Bickel, Götze and van Zwet [11], Callaert, Janssen
and Veraverbeke [16], Chibisov [17], Hall [28], Helmers [29], Petrov [33], Pfanzagl
[34], Serfling [35], etc.
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Awide class of statistics can be represented as functions of sample means of vector
variables. Edgeworth expansions of such statistics can be obtained by applying the
multivariate expansion to corresponding functions, see Bhattacharya and Ghosh [8,
9]. In their work the crucial Cramér condition (C) is assumed on the joint distribution
of all the components of a vector which may be too restrictive in cases where some
components have a negligible influence on the statistic. More often only one or a few
of the components satisfy a conditional version of condition (C). Bai and Rao [3],
Babu and Bai [2] established Edgeworth expansions for functions of sample means
under such a conditional Cramér condition. This approach exploits the smoothness
of the distribution of a random vector as well as the smoothness of the function
defining the statistic. In particular this approach needs a class of statistics which
are smooth functions of observations or can be approximated by such functions via
Taylor’s expansion, see also Chibisov [17]. The respective condition (6) of the present
paper is expressed in terms ofmoments of iterated differences�m and does not assume
Taylor’s expansion.

Let us note that generally the smoothness of the distribution function of T may
have little to do with the smoothness of the function T(X1, . . . , X N ) of observations
X1, . . . , X N . Just take Gini’s mean difference

∑
i< j |Xi − X j | with absolutely con-

tinuous Xi for example. Another interesting example is about Studentization, when
it enchances the smoothness of the distribution function of a sum of lattice random
variables dramatically, see [26]. Our Theorem 1 shows, in particular, that structural
condition (4) together with (7) guarantee the smoothness of the distribution of T nec-
essary for the bound � = o(N−1).

In order to compare Theorem 1 with earlier results of similar nature let us consider
the case of U -statistics of degree two

U =
√

N

2

(
N

2

)−1 ∑

1≤i< j≤N

h(Xi , X j ), (9)

where h(·, ·) denotes a (fixed) symmetric kernel. Assume for simplicity of notation and
without loss of generality thatEh(X1, X2) = 0.Write h1(x) = E(h(X1, X2)|X1 = x)

and assume thatσ 2
h > 0,whereσ 2

h = Eh2
1(X1). In this caseHoeffding’s decomposition

(1) reduces toU = L+Q, where, by the assumptionσ 2
h > 0,we haveVarL > 0. Since

the cubic part vanishes we remove the moment Eg(X1)g(X2)g(X3)χ(X1, X2, X3)

from the expression for κ4. In this way we obtain the two term Edgeworth expansion
(2) for the distribution function FU (x) = P{U ≤ σUx} with σ 2

U
:= VarU.

We call h reducible if for some measurable functions u, v : X → R we have
h(x, y) = v(x)u(y) + v(y)u(x) for PX × PX almost sure (x, y) ∈ X ×X . A simple
calculation shows that for a sequence of U -statistics (9) with a fixed non-reducible
kernel condition (4) is satisfied, for some δ∗ > 0, uniformly in N . A straightforward
consequence of Theorem 1 is the following corollary. Write ν̃ = 600−1 min{ν2, r −
4, 1}.
Corollary 1 Assume that Eh(X1, X2) = 0 and for some r > 4

E|h(X1, X2)|r < ∞. (10)
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1160 M. Bloznelis, F. Götze

Assume that σ 2
h > 0 and the kernel h is non-reducible and that for some δ > 0

sup{|Eeitσ−1
h h1(X1)| : |t | ≥ β−1

3 } ≤ 1 − δ. (11)

Then there exist a constant C∗ > 0 such that

sup
x∈R

|FU (x) − G(x)| ≤ C∗N−1−ν̃ .

For U -statistics with a fixed kernel the validity of the Edgeworth expansion (2) up
to the order o(N−1) was established by Callaert, Janssen and Veraverbeke [16] and
Bickel, Götze and van Zwet [11]. In addition to the moment conditions (like (10))
and Cramér’s condition (like (11)) Callaert, Janssen and Veraverbeke [16] imposed
the following rather implicit condition. They assumed that for some 0 < c < 1 and
0 < α < 1/8 the event

∣∣∣E
(
exp{i tσ−1

U

N∑

j=m+1

h(X1, X j )}
∣∣Xm+1, . . . , X N

)∣∣∣ ≤ c (12)

has probability 1− o(1/N log N ) uniformly for all t ∈ [N 3/4/ log N , N log N ]. Here
m ≈ Nα , for a small positive α. Bickel, Götze and van Zwet [11] more explicitly
required that the linear operator, f (·) → Eψ(X , ·) f (X)definedbyψ has a sufficiently
large number of non-zero eigenvalues (the number depending on the existingmoments,
but always larger than 4). Correspondingly the eigenvalue condition is stronger than
the non-reducibility condition of Corollary 1 since for a reducible kernel h the linear
operator f (·) → Eψ(X , ·) f (X) has at most two eigenvalues. On the other hand, it
is difficult to compare the structural non-reducibility condition with condition (12)
whose technical nature is discussed in the outline of the proof at the beginning of
Sect. 2.

The remaining parts of the paper (Sects. 2–5) contain the proof of Theorem 1.
Auxiliary results are placed in the “Appendix”.

2 Proof of Theorem 1

2.1 Proof highlights

After the seminal paper of Esseen [22] a standard proof of the validity of the nor-
mal approximation and its refinements proceeds in two steps. In the first step, with
the aid of a smoothing inequality, the Kolmogorov distance between the distribution
function and its approximation G is upper bounded by a (weighted) average differ-
ence of the respective Fourier transforms, see (25). In the second step one performs a
careful analysis of the Fourier transforms: for frequencies t = O(

√
N ) one shows the

closeness between the respective Fourier transforms, while for the remaining range
�(

√
N ) ≤ |t | ≤ O(T ) one establishes their exponential decay. The cut-of T is defined

123



Symmetric statistics 1161

by the desired approximation accuracy level O(T −1) (in our case T = N 1+ν)). The
approach, initially developed for sums of independent random variables [22, 33], was
later applied to non-degenerate U -statistics [11, 16] and general asymptotically linear
symmetric statistics [4, 37].

One particular problem related to the implementation of the proof strategy outlined
above is about establishing exponential decay of the (absolute value of the) Fourier
transform in the range of large frequencies. For a linear statistic this problem is ele-
gantly resolved by introducing Cramér’s condition. Indeed, in view of the multiplicity
property of the Fourier transform, the Cramér condition implies the desired exponen-
tial decay. Consequently, Cramér’s condition together with moment conditions ensure
the validity of an Edgeworth expansion of an arbitrary order. But the multiplicity prop-
erty can not be used any more (at least directly) when we turn to general symmetric
statistics because various parts (linear, quadratic etc.) are mutually dependent. This
fact leads to considerable difficulties in estimating the respective Fourier transforms in
the range of large frequencies t � N and requires new conditions to control the above
mentioned dependencies. The present paper suggests a novel approach to estimation
of the Fourier transform of a symmetric statistic for large frequencies.

As our general setup of symmetric statistics covers linear ones, we keep assuming
the Cramér condition, but on the linear part of the statistic only, see (7). In view
of Example 1, condition (7) is not enough. We introduce the additional structural
condition (4), which together with (7) guarantees the desired O(N−1−ν) upper bound
on the weighted average of the Fourier transform over the frequency range N 1−ν ≤
|t | ≤ N 1+ν , see (26) below. Condition (4) is optimal and natural in the sense that it
matches the counterexample. It has first appeared in the unpublished manuscript [25]
by Götze and van Zwet in the case of U statistics.

Let us compare (4) with alternative conditions introduced in earlier papers by
Callaert, Janssen and Veraverbeke [16] and Bickel, Götze and van Zwet [11] in the
case of U statistics of degree two. The conditional Cramér condition (12) of [16]
forces the multiplicity property of the Fourier transform in a formal way thus circum-
venting the problem of establishing relation between the structure of the kernel (of U
statistic) and the smoothness of the distribution. Therefore (4) and (12) are not com-
parable. This is not the case with the eigenvalue condition of [11], which is stronger
than (4). In their proof Bickel, Götze and van Zwet [11] have used for the frequencies
t ∈ [N (r−1)/r/ log N , N log N ] a symmetrization technique of [23] which essentially
estimates the absolute value of the Fourier transform of U by that of a bilinear version
of Q thus neglecting L and its smoothess properties implied by Cramér’s condition
(7). The approach of the present paper instead makes use of the smoothness of L and
Q simultaneously.

Themain contribution of this paper is in showing that condition (4) suggested by the
counterexample (Example 1) is sufficient to prove the bound of Theorem 1. This con-
dition is used in constructing estimates of weighted averages of the Fourier transform
(26) that we briefly comment below. In fact, after initial “linearization” step we turn to
slightly modified statistic T̃(X1, . . . , X N ), where the nonlinear terms in X1, . . . , Xm

are removed (see (19)), and then switch to T ′ = T̃(X1, . . . , Xm, Ym+1, . . . , YN ),
where Ym+1, . . . , YN are truncated versions of Xm+1, . . . , X N , see (42). Let EY

denote the conditional expectation given Y = (Ym+1, . . . , YN ). The conditional

123



1162 M. Bloznelis, F. Götze

Fourier transformEY exp{i tT ′} = E
(
exp{i tT ′}∣∣Ym+1, . . . , YN

)
contains amultiplica-

tive component αm
t , where

αt = EY exp

{
i t N−1/2g(X1) + i t N−3/2

N∑

l=m+1

ψ(X1, Yl)

}
. (13)

For t satisfying |αt |2 ≤ 1 − m−1 ln2 N the bound |EY exp{i tT ′}| ≤ exp{−0.5 ln2 N }
follows immediately. We then look carefully at the set of remaining t . We show
that this set is a union of non-intersecting intervals (depending on Y) each of size
O(

√
N/m ln N ). While estimating the weighted averages of the Fourier transform

over these intervals we split the frequency domain N 1−ν ≤ |T | ≤ N 1+ν into a deter-
ministic sequence Jp, p = 1, 2, . . . , of consecutive intervals of size �(N 1−ν) so
that each ‘singular’ set {t ∈ Jp : |αt |2 > 1 − m−1 ln2 N } is either empty or an
interval [aN , aN + b−1

N ] of size b−1
N = O

(√
N/m ln N

)
, (see (51) and (56) based

on Lemma 12). At the very last step, using Kleitman’s concentration inequalities for
sums of random variables with values in a function space, we upper bound the proba-
bility of the event that each particular singular set is non-empty, that is, the event that
supt∈Jp

|αt |2 > 1 − m−1 ln2 N thus obtaining an extra factor N−kν , k ≥ 5 to arrive

to the error bound o(N−1).
More precisely, the non-zero projection to the g orthogonal part of

∑N
l=m+1 ψ(·, Yl)

which is non zero by condition (4) is used in the crucial Lemma 2.Via conditioning and
randomization we represent it as a sum Sα := ∑n

j=1 α j f j of independent α j = 0, 1
variables with vectors f j with || f j || > ε and estimate the combinatorial probability
for those α = (α1, . . . , αn) that a value larger than 1 − m−1ln2N of the conditional
Fourier transform, say φ̃t (α), of f + Sα occurs at some ’singular’ frequency t ∈ Jp.
This is achieved by Kleitman’s partition of the 2n α’s into at most

( n
n/2

)
disjoint sets,

say Cd , 1 ≤ d ≤ ( n
n/2

)
, such that for different α, α′ ∈ Cd , Sα and Sα′ are separated

by a distance of at least ε. This separation implies by Lemma 2 that the event that
t is singular somewhere in the interval Jp can be witnessed by at most one α ∈ Cd

for each Cd .Hence the singular event among the α′s has combinatorial probability at
most

( n
n/2

)
2−n = O(n−1/2).

The crucial arguments in Lemma 2 rest upon the observation on harmonics (see
(118)) that two singular values φ̃t (α), φ̃s(α

′) ≥ 1 − m−1 ln2 N imply a similar high
value of E exp{i(t( f + Sα) − s( f + Sα′))}. If here t and s are close, say |t − s| ≤ δ2,
such a high value is excluded by the separation of Sα and Sα which dominate (t − s) f
(see step 4.2.1 in Lemma 2), whereas for δ2 < |t − s| < N ν−1/2, Cramér’s condition
for (t − s) f applies which together with size bounds on t Sα and sSα′ again prevents
a high value (see step 4.2.2 in Lemma 2).

Note that this method of width bounds and separation of singular sets of Fourier
transforms has been successfully employed for optimal approximation results for U -
statistics with non-Gaussian limits by Bentkus, Götze and Zaitsev, see [5] and [27]
and is strongly related to results on the distribution of quadratic forms on lattices by
Bentkus and Götze, see [6] and [24], the latter providing a solution of the Davenport-
Lewis conjecture for positive definite forms.
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Finally, we mention that in the case of U statistics of degree three (T = ET +
L + Q + K ) the proof is outlined in the unpublished manuscript of Götze and van
Zwet [25]. We extend these arguments to general symmetric statistics using stochastic
expansions by means of Hoeffding’s decomposition and bounds for various parts of
the decomposition.

2.2 Outline of the proof

Firstly, using the linear structure induced by Hoeffding’s decomposition we replace
T/σT by the statistic T̃ which is conditionally linear given Xm+1, . . . , X N . Secondly,
invoking a smoothing inequality we pass from distribution functions to Fourier trans-

forms. In the remaining steps we bound the difference δ(t) = EeitT̃ − Ĝ(t), for
|t | ≤ N 1+ν . For "small frequencies" |t | ≤ C N 1/2, we expand the characteristic

function EeitT̃ in order to show that δ(t) = o(N−1). Here we combine various tech-
niques developed in earlier papers [4, 11, 16]. For remaining range of frequencies,

that is C N 1/2 ≤ |t | ≤ N 1+ν , we bound the summands EeitT̃ and Ĝ(t) separately.
The cases of "large frequencies" N 1−ν ≤ |t | ≤ N 1+ν and "medium frequencies"
C

√
N ≤ |t | ≤ N 1−ν are treated in a different manner. For medium frequencies the

Cramér type condition (7) ensures an exponential decay of |EeitT̃|. For large frequen-
cies we combine conditions (7) and (4).

2.3 Hoeffding’s decomposition

Before starting the proof we introduce some notation. By c∗ we shall denote a positive
constant which may depend only on A∗, D∗, M∗, r , s, ν1, ν2, δ, but it does not depend
on N . In different places the values of c∗ may be different.

It is convenient to write the decomposition in the form

T = ET +
∑

1≤k≤N

Uk, Uk =
∑

1≤i1<···<ik≤N

gk(Xi1 , . . . , Xik ), (14)

where, for every k, the symmetric kernel gk is centered, i.e., Egk(X1, . . . , Xk) = 0,
and satisfies, see, e.g., [4],

E
(
gk(X1, . . . , Xk)

∣∣X2, . . . , Xk) = 0 almost surely. (15)

Here we write g1 := N−1/2g, g2 := N−3/2ψ and g3 := N−5/2χ . Furthermore, for
an integer k > 0 we write �k := {1, . . . , k}. Given a subset A = {i1, . . . , ik} ⊂ �N

we write, for short, TA := gk(Xi1 , . . . , Xik ). Put T∅ := ET. Now the decomposition
(14) can be written as follows

T = ET +
∑

1≤k≤N

Uk =
∑

A⊂�N

TA, Uk =
∑

|A|=k, A⊂�N

TA.
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1164 M. Bloznelis, F. Götze

2.4 Proof of Theorem 1

Throughout the proof we assume without loss of generality that

4 < r ≤ 5, 2 < s ≤ 3 and ET = 0, σ 2
T

= 1. (16)

Denote, for t > 0,

βt = σ−tE|g(X1)|t , γt = E|ψ(X1, X2)|t , ζt = E|χ(X1, X2, X3)|t .

Linearization. Choose number ν > 0 and integer m such that

ν = 600−1 min{ν1, ν2, s − 2, r − 4}, m ≈ N 100ν. (17)

Split
T = T[m] + W, T[m] =

∑

A: A∩�m �=∅
TA, W =

∑

A: A∩�m=∅
TA. (18)

Furthermore, write

T[m] = U
∗
1 + U

∗
2 + �, � = �1 + �2 + �3 + �4 + �5,

U
∗
1 =

m∑

i=1

T{i}, U
∗
2 =

m∑

i=1

N∑

j=m+1

T{i, j},

�1 =
∑

1≤i< j≤m

T{i, j}, �2 =
∑

|A|≥3,|A∩�m |=2

TA,

�3 =
∑

A: |A∩�m |≥3

TA, �4 =
∑

|A|=3, |A∩�m |=1

TA,

�5 =
m∑

i=1

ηi , ηi =
∑

|A|≥4, A∩�m={i}
TA.

Before applying a smoothing inequality we replace F(x) by

F̃(x) := P{T̃ ≤ x}, where T̃ = U
∗
1 + U

∗
2 + W = T − �. (19)

In order to show that � can be neglected we apply a simple Slutzky type argument.
Given ε > 0, we have

� ≤ sup
x∈R

|F̃(x) − G(x)| + ε sup
x∈R

|G ′(x)| + P{|�| > ε}. (20)
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From Lemma 5 we obtain via Chebyshev’s inequality, for ε = N−1−ν ,

P{|�| > ε} ≤
5∑

i=1

P
{
|�i | >

ε

5

}

≤
(
5

ε

)3

E|�1|3 +
(
5

ε

)2

(E�2
2 + E�2

3 + E�2
5) +

(
5

ε

)s

E|�4|s

≤ c∗N−1−ν .

In the last step we used conditions (5), (6) and the inequality (168). Furthermore, using
(5) and (6) one can show that

sup
x∈R

|G ′(x)| ≤ c∗. (21)

Therefore, (20) implies

� ≤ �̃ + c∗N−1−ν, where �̃ := sup
x∈R

|F̃(x) − G(x)|.

It remains to show that �̃ ≤ c∗N−1−ν .
A smoothing inequality. Given a > 0 and even integer k ≥ 2 consider the proba-

bility density function, see (10.7) in Bhattacharya and Rao [7],

x → ga,k(x) = a c(k)(ax)−k sink(ax), (22)

where c(k) is the normalizing constant. Its characteristic function

ĝa,k(t) =
∫ +∞

−∞
eitx ga,k(x)dx = 2π a c(k)u∗k[−a,a](t)

vanishes outside the interval |t | ≤ ka. Here u∗k[−a,a](t) denotes the probability density
function of the sum of k independent random variables each uniformly distributed in
[−a, a]. It is easy to show that the function t → ĝa,k(t) is unimodal and symmetric
around t = 0.

Let μ be the probability distribution with the density ga,2, where a is chosen to
satisfy μ([−1, 1]) = 3/4. Given T > 1 define μT (A) = μ(TA), for a Borel set
A ⊂ R. Let μ̂T denote the characteristic function corresponding to μT .

WeapplyLemma12.1of [7]. It follows from(21) and the identityμT ([−T −1, T −1])
= 3/4 that

�̃ ≤ 2 sup
x∈R

∣∣(F̃ − G) ∗ μT (−∞, x]∣∣ + c∗T −1. (23)

Here F̃ and G denote the probability distribution of T̃ and the signed measure with
density functionG ′(x) respectively. Furthermore, ∗ denotes the convolution operation.
Proceeding as in the proof of Lemma 12.2 ibidem we obtain

(F̃ − G) ∗ μT (−∞, x] = 1

2π

∫ +∞

−∞
e−i t x

(
EeitT̃ − Ĝ(t)

) μ̂T (t)

−i t
dt, (24)
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1166 M. Bloznelis, F. Götze

where Ĝ denotes the Fourier transform of G(x). Note that μ̂T (t) vanishes outside the
interval |t | ≤ 2aT . Finally, we obtain from (23) and (24) that

�̃ ≤ 1

π
sup
x∈R

|I (x)| + c∗
2a

T
, I (x) :=

∫ T

−T
e−i t x(EeitT̃ − Ĝ(t)

) μ̂T ′(t)

−i t
dt, (25)

where T ′ = T /2a. Here we use the fact that μ̂T ′(t) = 0 for |t | > T . Denote
KN (t) = μ̂T ′(t) and observe that |KN (t)| ≤ 1 (since μT ′ is a probability measure).
Let

T = N 1+ν .

We have

|I (x)| ≤ I1 + I2 + |I3| + |I4|,
I1 =

∫

|t |≤t1

∣∣EeitT̃ − Ĝ(t)
∣∣dt

|t | , I2 =
∫

t1<|t |<T
|Ĝ(t)|dt

|t | ,

I3 =
∫

t1<|t |<t2
e−i t xEeitT̃ KN (t)

−i t
dt, I4 =

∫

t2<|t |<T
e−i t xEeitT̃ KN (t)

−i t
dt .

Here we denote t1 = N 1/210−3/β3 and t2 = N 1−ν . In view of (25) the bound
�̃ ≤ c∗N−1−ν follows from the bounds

|Ik | ≤ c∗N−1−ν, k = 1, 2, 3, and |I4| ≤ c∗N−1−ν(1 + δ−1∗ N−ν). (26)

The bound I2 ≤ c∗N−1−ν is a consequence of the exponential decay of |Ĝ(t)| as
|t | → ∞. In Sect. 3 we show (26) for k = 3, 4. The proof of (26), for k = 1, is based
on careful expansions and is given Sect. 5.

3 Large frequencies

Herewe prove inequalities (26) for I3 and I4. The proof of |I3| ≤ c∗N−1−ν is relatively
simple and is deferred to the end of the section.

Let us upper bound |I4|. We will show that

∣∣∣
∫

N1−ν<|t |<N1+ν

e−i t xEeitT̃ KN (t)

t
dt

∣∣∣ ≤ c∗
1 + δ−1∗
N 1+2ν . (27)

In what follows we assume that N is sufficiently large, say N > C∗, where C∗
depends only on A∗, D∗, M∗, r , s, ν1, ν2, δ. We use this inequality in several places
below, where the constant C∗ can be easily specified. Note that for small N such that
N ≤ C∗ the inequality (27) becomes trivial.

123



Symmetric statistics 1167

3.1 Notation

Let us first introduce some notation. Introduce the number

α = 3/(r + 2) (28)

and note that for r ∈ (4, 5] and ν defined by (17) we have

2/r < α < 1/2 and 80ν < min{rα − 2, 1 − 2α}.

Given N introduce the integers

n ≈ N 50ν, M = �(N − m)/n�. (29)

We have N −m = M n+s, where the integer 0 ≤ s < n. Observe, that the inequalities
ν < 600−1 and m < N 1/2, see (17), imply M > n. Therefore s < M . Split the index
set

{m + 1, . . . , N } = O1 ∪ O2 ∪ · · · ∪ On,

Oi = { j : m + (i − 1)M < j ≤ m + i M}, 1 ≤ i ≤ n − 1,

On = { j : m + (n − 1)M < j ≤ N }. (30)

Clearly, O1, . . . , On−1 are of equal size (=M) and |On| = M + s < 2M .
We shall assume that the random variable X : � → X is defined on the probability

space (�, P) and PX is the probability distribution on X induced by X . Given p ≥ 1
let L p = L p(X ,PX ) denote the space of real functions f : X → RwithE| f (X)|p <

∞. Denote ‖ f ‖p = (E| f (X)|p)1/p. With a random variable f (X) we associate an
element (vector) f = f (·) of L p, p ≤ r . Let pg : L2 → L2 denote the projection
onto the subspace orthogonal to the vector g(·) in L2. Given h ∈ L2, decompose

h = ah g + h∗, where ah = 〈h, g〉 ‖g‖−2
2 and h∗ = pg(h). (31)

Here 〈h, g〉 = ∫
h(x)g(x)PX (dx). For h ∈ Lr we have

‖h‖r ≥ ‖h‖2 ≥ ‖h∗‖2. (32)

Furthermore, for r−1 + v−1 = 1 (here r ≥ 2 ≥ v > 1) we have, by Hölder’s
inequality,

| 〈h, g〉 | ≤ ‖h‖r‖g‖v ≤ ‖h‖r‖g‖2.

In particular,
|ah | ≤ ‖h‖r/‖g‖2. (33)
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1168 M. Bloznelis, F. Götze

Denote

cg := 1 + ‖g‖r/‖g‖2, c∗
g := 1 + M1/r∗ A−1/2∗

and observe that cg ≤ c∗
g . It follows from the decomposition (31) and (33) that

‖h∗‖r ≤ ‖h‖r + |ah | ‖g‖r ≤ ‖h‖r (1 + ‖g‖r/‖g‖2) = cg‖h‖r . (34)

Introduce the numbers

a1 = 1

4
min

{
1

12c∗
g
,

(cr A∗/2r M∗)1/(r−2)

1 + 4A−1/2∗

}
, cr = 7

24

1

2r−1 . (35)

It follows from (7) that there exist δ′, δ′′ > 0 depending on A∗, M∗, δ such that
(uniformly in N ) Cramér’s characteristic ρ satisfies the inequalities

ρ(a1, 2N−ν+1/2) ≥ δ′, ρ((2β3)
−1, N ν2+1/2) ≥ δ′′. (36)

We shall prove the first inequality only. In view of (7) it suffices to prove that
ρ(a1, β

−1
3 ) ≥ δ′. Expanding the exponent in powers of i tg(X1)/σ we show the

inequality

|Eeitσ−1g(X1)| ≤ 1 − 2−1t2(1 − 3−1|t |β3).

For |t | ≤ β−1
3 this inequality implies

|Eeitσ−1g(X1)| ≤ 1 − t2/3.

Therefore, ρ(a1, β
−1
3 ) ≥ a2

1/3 and we can choose δ′ = min{δ, a2
1/3} in (36).

Introduce the constant (depending only on A∗, M∗, δ)

δ1 = δ′/(10c∗
g). (37)

Note that 0 < δ1 < 1/10. Given f ∈ Lr and T0 ∈ R such that

N−ν+1/2 ≤ |T0| ≤ N ν+1/2, (38)

denote

I (T0) = [T0, T0 + δ1N−ν+1/2],
ut ( f ) =

∫
exp

{
i t

(
g(x) + N−1/2 f (x)

)}
PX (dx),

v( f ) = sup
t∈I (T0)

|ut ( f )|, τ ( f ) = 1 − v2( f ). (39)
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Given a random variable η with values in Lr and number 0 < s < 1, define

ds(η, I (T0)) = I{v2(η)>1−s2}I{‖η‖r ≤N ν }, δs(η, I (T0)) = Eds(η, I (T0)). (40)

Introduce the function

ψ∗∗(x, y) = ψ(x, y) − b(x)g(y) − b(y)g(x) (41)

and the number

δ23 = E|ψ∗∗(X1, X2)|2.

It follows from (4) and our assumption σ 2
T

= 1, see (16), that δ23 ≥ δ2∗ .

3.2 Proof of (27)

WewriteEY exp{i tT ′} in the formEY exp{i tT ′} = αm
t exp{i tW ′}, where αt is defined

in (13) and where the random variable W ′ is defined in the same way as W in (18), but
with TA = gk(Xi1 , . . . , Xik ) replaced by gk(Yi1 , . . . , Yik ) for each A = {i1, . . . , ik}.
A standard way to upper bound a quantity like |EYeitT ′ | is to show an exponential
decay (in m) of the product |αm

t | using a Cramér type condition. This task can be
accomplished for medium frequencies. Indeed, for |t | = o(N ) the quadratic part
i t N−3/2 ∑N

j=m+1 ψ(X1, Y j ) can be neglected and Cramér’s condition implies |αt | ≤
1 − v′ for some v′ > 0. This leads to an exponential bound |αm

t | ≤ e−mv′
. For large

frequencies |t | ≈ N , the contribution of the quadratic part becomes significant. To
upper bound |αm

t | we use condition (4). We show that, for a large set of values t ∈ Jp,
see (51), Cramér’s condition (7) yields the desired decay of |αm

t |, while the measure
of the set of remaining t is small with high probability.

Step 1. Truncation. Recall that the random variable X : � → X is defined on the
probability space (�, P). Let X ′ be an independent copy so that (X , X ′) is defined on
(�×�′, P × P), where �′ = �. It follows from E|ψ(X , X ′)|r < ∞, by Fubini, that
for P almost all ω′ ∈ �′ the function ψ(·, X ′(ω′)) = {x → ψ(x, X ′(ω′)), x ∈ X }
is an element of Lr . Furthermore, one can define an Lr -valued random variable
Z ′ : �′ → Lr such that Z ′(ω′) = ψ(·, X ′(ω′)), for P almost all ω′. Consider
the event �̃ = {‖Z ′‖r ≤ Nα} ⊂ �′ and denote qN = P(�̃). Here ‖Z ′‖r =
(
∫ |ψ(x, X ′(w′))|r PX (dx))1/r denotes the Lr norm of the random vector Z ′ and α is
defined in (28). Let Y : �̃ → X denote the random variable X ′ conditioned on the
event �̃. Therefore Y is defined on the probability space (�̃, P̃), where P̃ denotes
the restriction of q−1

N P to the set �̃ and, for every ω′ ∈ �̃, we have Y (ω′) = X ′(ω′).
Let Z denote the Lr− valued random element {x → ψ(x, Y (ω′))} defined on the
probability space (�̃, P̃).

We can assume that X := (X1, . . . , X N ) is a sequence of independent copies of X
defined on the probability space (�N , P N ). Let ω = (ω1, . . . , ωN ) denote an element
of�N . Every X j defines random vector Z ′

j = ψ(·, X j ) taking values in Lr . Introduce
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events A j := {‖Z ′
j‖r ≤ Nα} ⊂ �N and let X

′ = (X1, . . . , Xm, Ym+1, . . . , YN )

denote the sequence X conditioned on the event �∗ = ∩N
j=m+1A j = �m × �̃N−m .

Clearly, X′(ω) = X(ω) for every ω ∈ �∗ and X
′ is defined on the space �m × �̃N−m

equippedwith the probabilitymeasure Pm× P̃ N−m . In particular, the randomvariables
X1, . . . , Xm, Ym+1, . . . , YN are independent and Y j , form+1 ≤ j ≤ N , has the same
distribution as Y . Let Z j denote the Lr− valued random element {x → ψ(x, Y j ), x ∈
X }, for m + 1 ≤ j ≤ N . Let

T ′ := T̃(X1, . . . , Xm, Ym+1, . . . , YN ). (42)

We are going to replace EeitT̃ by EeitT ′
. For s > 0 we have almost surely

1 − IA j ≤ N−α s‖Z ′
j‖s

r , ‖Z ′
j‖r

r = E
(|ψ(X , X j )|r

∣∣ X j
)
. (43)

From (43) with s = r we obtain, by Chebyshev’s inequality, that

0 ≤ 1 − qN ≤ N−rαE|ψ(X , X j )|r ≤ N−rα M∗ ≤ c∗N−2−3ν . (44)

Consequently, for k ≤ N we have

q−k
N ≤ (1 − N−r α M∗)−k ≤ (1 − N−2M∗)−N ≤ c∗,

q−k
N − 1 ≤ kq−k

N (1 − qN ) ≤ c∗k N−2−3ν ≤ c∗N−1−3ν. (45)

Using the identity, which holds for a measurable function f : XN → R,

E f (X1, . . . , Xm, Ym+1, . . . , YN ) = E f (X1, . . . , X N )
IAm+1 . . . IAN

q(N−m)
N

(46)

we obtain from (45) and (46) for f ≥ 0 that

E f (X1, . . . , Xm, Ym+1, . . . , YN ) ≤ c∗E f (X1, . . . , X N ). (47)

Furthermore, (45) and (46) imply

|Eeit(T ′−x) − Eeit(T̃−x)| ≤ (
q−(N−m)

N − 1
) + (

1 − P{Am+1 ∩ · · · ∩ AN })

= (q−(N−m)
N − 1) + (1 − q N−m

N ) ≤ c∗N−1−3ν . (48)

Now we can replace the integral in (27) by the integral

I :=
∫

N1−ν≤|t |≤N1+ν

Eeit T̂ vN (t)dt, where vN (t) = t−1KN (t), T̂ = T ′−x .

(49)
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In view of (48) and the simple inequality |KN (t)| ≤ 1 the error of this replacement is
c∗N−1−2ν . Hence in order to prove (27) it remains to show that

|I | ≤ c∗
1 + δ−1

3

N 1+2ν . (50)

Step 2. Here we prove (50). We split the integral

I =
∑

p

Ip, Ip = E
∫

t∈Jp

eit T̂ vN (t)dt, (51)

where {Jp, p = 1, 2, . . . } is a sequence of consecutive intervals of length ≈ δ1N 1−ν

each and ∪p Jp = [N 1−ν, N 1+ν]. Recall that δ1 is defined in (37). To prove (50) we
show that for every p

|Ip| ≤ c∗N−2 + c∗N−1−4ν(1 + δ−1
3

)
. (52)

We fix p and prove (52). Firstly, we replace Ip by EJ∗, where

J∗ =
∫

I{t∈I∗}vN (t)EYeit T̂ dt

and where I∗ = I∗(Ym+1, . . . , YN ) ⊂ Jp is a random subset:

I∗ = {t ∈ Jp : |αt |2 > 1 − ε2m}, ε2m = m−1 ln2 N . (53)

Note that for t ∈ Jp \ I∗, we have

|EYeitT ′ | ≤ |αt |m ≤ (1 − ε2m)m/2 ≤ c∗N−3.

These inequalities imply the bound

|Ip − EJ∗| ≤ c∗N−2. (54)

Secondly, we show that with a high probability the set I∗ ⊂ Jp is an interval. This
fact and the fact that vN (t) is monotone will be used latter to bound the integral J∗.
Introduce the Lr− valued random element

S = N−1/2(Zm+1 + · · · + Z N ) = N−1/2
N∑

j=m+1

ψ(·, Y j ). (55)

We apply Lemma 12 (see below) to the set N−1/2 I∗ conditionally given the event
S = {‖S‖r < N ν/10}. This lemma shows that N−1/2 I∗ is an interval of size at most
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c∗εm . Hence we can write I∗ = (aN , aN + b−1
N ) and

IS J∗ = ISEY J̃∗, J̃∗ =
∫ aN +b−1

N

aN

vN (t)eit T̂ dt, (56)

where the random variables aN , bN (functions of Ym+1, . . . , YN ) satisfy

aN ∈ Jp and b−1
N ≤ c∗εm

√
N = c∗

√
Nm−1/2 ln N .

Furthermore, by Lemma 13 below we have P{S} ≥ 1 − c∗N−3. Therefore,

|EJ∗ − EIS J∗| ≤ c∗N−2. (57)

Next, we observe that I∗ �= ∅ if and only if α̃2 > 1 − ε2m , where

α̃ = sup{|αt | : t ∈ Jp}.

Therefore we can write (56) in the form

IS J∗ = IB J∗ = IBEY J̃∗, where B = {α̃2 > 1 − ε2m} ∩ S.

This identity together with (54) and (57) imply

|Ip| ≤ |EIBEY J̃∗| + c∗N−2. (58)

Using the integration by parts formula we shall show below that

|EIBEY J̃∗| ≤ c

N 1−ν

(
P{B} +

∫ 1

bN

P{Bε}
ε2

dε
)
, where Bε := B ∩ {|T̂ | ≤ ε}.

(59)

Moreover, we shall show that

∫ 1

bN

P{Bε}
ε2

dε ≤ c∗
1 + δ−1

3

N 5ν
and P{B} ≤ c∗

1 + δ−1
3

N 5ν
. (60)

The latter inequalities in combination with (58) and (59) yield (52). We prove (60) in
Sect. 3.3.

Let us prove (59). Firstly, we show that

| J̃∗| ≤ c(|T̂ | + bN )−1a−1
N . (61)

From the integration by parts formula we obtain the identity

i T̂ J̃∗ = vN (t)eit T̂
∣∣aN +b−1

N
aN

−
∫ aN +b−1

N

aN

v′
N (t)eit T̂ dt =: a′ − a′′. (62)
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Byour choice of the smoothing kernel the functionvN (t) ismonotone on Jp . Therefore

|a′′| ≤
∫ aN +b−1

N

aN

∣∣v′
N (t)

∣∣ dt =
∣∣∣∣∣

∫ aN +b−1
N

aN

v′
N (t)dt

∣∣∣∣∣ =
∣∣∣vN (aN ) − vN (aN + b−1

N )

∣∣∣ .

Invoking the simple inequality |a′| ≤ |vN (aN )|+|vN (aN +b−1
N )| and using |vN (t)| ≤

|t |−1 we obtain from (62) that

|T̂ J̃∗| ≤ c
(
a−1

N + (aN + b−1
N )−1) ≤ c a−1

N .

For |T̂ | > bN , this inequality implies (61). For |T̂ | ≤ bN the inequality (61) follows
from the inequalities

| J̃∗| ≤
∫ aN +b−1

N

aN

|vN (t)|dt ≤
∫ aN +b−1

N

aN

c

|t |dt ≤ c a−1
N b−1

N .

The proof of (61) is complete. Now from (61) and the inequality aN ≥ N 1−ν we
obtain that

| J̃∗| ≤ c(|T̂ | + bN )−1N−1+ν .

Finally, using the inequality (which holds for arbitrary real number v)

1

|v| + bN
≤ 2 + 2

∫ 1

bN

dε

ε2
I{|v|≤ε}

we show that

| J̃∗| ≤ c∗
N 1−ν

(
1 +

∫ 1

bN

dε

ε2
I{|T̂ |≤ε}

)
.

The latter inequality implies (59).

3.3 Proof of (60)

The first and second inequality of (60) are proved in steps A and B.
Step A. Proof of the first inequality of (60). Recall W from (18). We split

W = W1 + W2 + W3, W1 = 1

N 1/2

N∑

j=m+1

g(X j ),

W2 = 1

N 3/2

∑

m<i< j≤N

ψ(Xi , X j ), W3 =
∑

|A|≥3:A∩�m=∅
TA.
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1174 M. Bloznelis, F. Götze

Define W ′
1, W ′

2, W ′
3 as W1, W2, W3 above, but with X j replaced by Y j , for m + 1 ≤

j ≤ N . We have W ′ = W ′
1 + W ′

2 + W ′
3. Now we write T̂ (see (49)) in the form

T̂ = L + � + W ′
3, where

L = 1√
N

m∑

j=1

g(X j ) + 1√
N

N∑

j=m+1

g(Y j ) − x,

� = 1

N 3/2

m∑

j=1

N∑

l=m+1

ψ(X j , Yl) + 1

N 3/2

∑

m+1≤ j<l≤N

ψ(Y j , Yl). (63)

The inequalities |T̂ | ≤ ε and |L| ≥ 2ε imply |� + W ′
3| > ε. Therefore,

P{Bε} ≤ P{B ∩ {|L| ≤ 2ε} } + P{|T̂ | ≤ ε, |� + W ′
3| ≥ ε} =: I1(ε) + I2(ε).

To prove the first inequality of (60) we show that

∫ 1

bN

dε

ε2
I1(ε) ≤ c∗N−5ν(1 + δ−1

3 ),

∫ 1

bN

dε

ε2
I2(ε) ≤ c∗N−5ν. (64)

Step A.1. Proof of the second inequality of (64). We have

I2(ε) ≤ P{|W ′
3| ≥ ε/2} + I3(ε), where I3(ε) := P{|L + �| < 3ε/2, |�| > ε/2}.

(65)

It follows from (47), by Chebyshev’s inequality, that P{|W ′
3| > ε/2} ≤ c∗ε−2EW 2

3 .
Furthermore, invoking the inequalities, see (167), (168) below,

EW 2
3 =

∑

|A|≥3:A∩�m=∅
ET 2

A ≤
∑

|A|≥3

ET 2
A ≤ N−2�2

3 ≤ c∗N−2

we obtain from (65) that I2(ε) ≤ I3(ε) + c∗ε−2N−2. Since

∫ 1

bN

dε

ε2

( 1

ε2N 2

)
≤ c∗b−3

N N−2 ≤ c∗N−5ν,

it suffices to show inequality (64) for I3(ε) (instead of I2(ε)). Recall the notation
�1 = N−3/2 ∑

1≤i< j≤m ψ(Xi , X j ) and put U = �1 + �. We have

I3(ε) ≤ P{|�1| > ε/4} + I4(ε), where I4(ε) := P{|L + U | < 2ε, |U | > ε/4}.

Invoking the inequality, which follows by Chebyshev’s inequality,

P{|�1| > ε/4} ≤ 16ε−2E�2
1 ≤ c∗ε−2m2N−3
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we upper bound the integral

∫ 1

bN

dε

ε2
P{|�1| > ε/4} ≤

∫ 1

bN

dε

ε2

( m2

ε2N 3

)
≤ c∗b−3

N m2N−3 ≤ c∗N−5ν .

Hence, it remains to show the second inequality of (64) for I4(ε).
Let I ′

4(ε) be the same probability as I4(ε) butwith Xi replaced byYi , for 1 ≤ i ≤ m.
That is,

I ′
4(ε) = P{|L ′ + U ′| < 2ε, |U ′| > ε/4},

L ′ = 1

N 1/2

∑

1≤i≤N

g(Yi ) − x, U ′ = 1

N 3/2

∑

1≤i< j≤N

ψ(Yi , Y j ).

By the same reasoning as in (48) we obtain that |I4(ε) − I ′
4(ε)| ≤ c∗N−1−3ν . Now,

in view of the bound

∫ 1

bN

dε

ε2
N−1−3ν ≤ c∗b−1

N N−1−3ν ≤ c∗N−5ν

we conclude that it suffices to show (the second) inequality (64) for I ′
4(ε).

Let us show the second inequality of (64) for I ′
4(ε). We split the sample

Y := {Y1, . . . , YN } = Y1 ∪ Y2 ∪ Y3,

into three groups of nearly equal size. Next, we split U ′ = ∑
i≤ j U ′

i j so that the sum
U ′

i j depends on the observations from the groups Yi and Y j only. We have

I ′
4(ε) ≤

∑

i≤ j

P{|L ′ + U ′| ≤ 2ε, |U ′
i j | ≥ ε/24}. (66)

Now we show that the second inequality of (64) holds for every summand in the right
of (66). Let Ũ denote a summand U ′

i j , say, not depending on Y3. Let

Ĩ (ε) := P{|L ′ + U ′| ≤ 2ε, |Ũ | ≥ ε/24}, U = {|Ũ | ≥ ε/24},
V = {|L ′ + U ′| ≤ 2ε}, S(x) := N−1/2

∑

Yi ∈Y\Y3

ψ(x, Yi ), x ∈ X .

We observe that
Ĩ (ε) = EIU IV (67)

and note that the random function x → S(x) is a sum of iid random variables with
values in Lr such that, for every i , we have ‖ψ(·, Yi )‖r ≤ Nα for almost all values of
Yi . By Lemma 13,

P{‖S‖r > N ν} ≤ N−3.
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1176 M. Bloznelis, F. Götze

Therefore in (67) we can replace the event V by V1 = V ∩ {‖S‖r ≤ N ν}. Fur-
thermore, since Ũ does not depend on Y3, we have EIU IV1 = EIU p′, where
p′ := E

(
IV1 |Y1, Y2

)
. The concentration bound for the conditional probability p′,

which is shown below,
p′ ≤ c∗(ε + N−1/2) (68)

implies
Ĩ (ε) ≤ c∗(ε + N−1/2)P{U} ≤ c∗(ε + N−1/2)ε−r N−r/2. (69)

In the last step we applied Markov’s inequality

P{U} ≤ (24/ε)r N−r/2E|N 1/2Ũ |r

and the bound E|N 1/2Ũ |r ≤ c∗E|N 1/2Ui j |r ≤ c∗. Here Ui j denotes the random
variable obtained from Ũ after we replace Y j by X j for every j . The second last
inequality follows from (47). The last inequality follows from the well knownmoment
inequalities for U -statistics [20].

It follows from (69) and the simple inequality ε ≥ bN ≥ c∗N−1/2 that

∫ 1

bN

dε

ε2
Ĩ (ε) ≤ c∗

Nr/2

∫ 1

bN

dε

ε1+r
≤ c∗

Nr/2br
N

= c∗m−r/2 lnr N ≤ c∗N−5ν,

provided that mr/2 ≥ N 6ν . The latter inequality is ensured by (17). Thus we have
shown (64) for Ĩ (ε).

It remains to prove (68). We write L ′ + U ′ in the form L∗ + U∗ + b − x , where

L∗ = 1

N 1/2

∑

Y j ∈Y3

(
g(Y j ) + N−1/2S(Y j )

)
and U∗ = 1

N 3/2

∑

{Y j ,Yk }⊂Y3

ψ(Y j , Yk),

and where b is a function of {Yi ∈ Y \ Y3}. Introduce the random variables L and
U which are obtained from L∗ and U∗ after we replace every Y j ∈ Y3 by the corre-
sponding observation X j . We have

p′ ≤ sup
v∈R

E
(
I{L∗+U∗∈[v,v+2ε]}

∣∣Y1, Y2
)
I{‖S‖r ≤N ν }

≤ c∗ sup
v∈R

E
(
I{L+U∈[v,v+2ε]}

∣∣Y1, Y2
)
I{‖S‖r ≤N ν }.

In the last step we applied (47). Now an application of the Berry–Esseen bound due
to van Zwet [37] shows (68). The proof of the second inequality of (64) is complete.
Step A.2. Proof of the first inequality of (64). We introduce events

A = {α̃2 > 1 − ε2m}, V = {‖S‖r ≤ N ν}, L = {|L| < 2ε}
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(recall that εm is defined in (53)) and write I1(ε) in the form I1(ε) = E IAISIL. We
have

I1(ε) = E IAISIL ≤ E IAIVIL.

Toupper bound I1(ε)weuse the following strategy.Wecanupper bound theprobability
P{L} using the Berry–Esseen inequality,

P{L} ≤ c∗(ε + N−1/2). (70)

Furthemore, one can show that the probability P{A} = O(N−6ν). We are going to
make use of both of these bounds. However, since the events A and L refer to the
same set of random variables Ym+1, . . . , YN , we cannot argue directly that EIAIL ≈
P{A}P{L}. Nevertheless, invoking a complex conditioning argument we are able to
show that

I1(ε) ≤ c∗R(ε + N−1/2) + c∗N−2, R := N−6ν(1 + δ−1
3 ). (71)

The latter inequality together with the inequalities ε ≥ bN > N−1/2 imply the first
part of (64). Let us prove (71). As the proof is rather involved we start by providing an
outline. Let the integers n and M be defined by (29). Split {1, . . . , N } = O0 ∪ O1 ∪
· · · ∪ On , where O0 = {1, . . . , m} and where the sets Oi , for 1 ≤ i ≤ n, are defined
in (30). Split L , see (63),

L =
n∑

k=0

Lk − x, where Lk = N−1/2
∑

j∈Ok

g(Y j ), for k = 1, . . . , n, (72)

andwhere L0 = N−1/2 ∑
j∈O0

g(X j ).Observe, that IL is a functionof L0, L1, . . . , Ln .
The random variables IA and IV are functions of Ym+1, . . . , YN and do not depend on
X1, . . . , Xm . Therefore, denoting

m(l1, . . . , ln) = E(IAIV|L1 = l1, . . . , Ln = ln) and M = ess supm(l1, . . . , ln)

we obtain from (70)

E IAIVIL = E ILm(L1, . . . , Ln) ≤ c∗(ε + N−1/2)M. (73)

Clearly, the bound M ≤ c∗R would imply (71). Unfortunately, we are not able
to establish such a bound directly. In what follows we prove (71) using a delicate
conditioning which allows us to estimate quantities like M.
Step A.2.1. Firstly we replace Lk , 1 ≤ k ≤ n, by smooth random variables

gk = 1

N

ξk

n1/2 + Lk, (74)

123



1178 M. Bloznelis, F. Götze

where ξ1, . . . , ξn are symmetric i.i.d. random variables with the density function
defined by (22) with k = 6 and a = 1/6 so that the characteristic function
t → E exp{i tξ1} vanishes outside the unit interval {t : |t | < 1}. Note that Eξ41 < ∞.
We assume that the sequences ξ1, ξ2, . . . and X1, . . . , Xm, Ym+1, . . . , YN are inde-
pendent. In particular, ξk and Lk are independent.

Introduce the event

L̃ =
{∣∣∣∣∣L0 +

n∑

k=1

gk − x

∣∣∣∣∣ < 3ε

}
.

Note that

IL ≤ I
L̃

+ I{|ξ |≥εN }, where ξ = 1

n1/2

n∑

k=1

ξk .

Using Markov’s inequality and the inequality Eξ4 ≤ c we estimate the probability

P{|ξ | ≥ εN } ≤ Eξ4

ε4N 4 ≤ c

ε4N 4 ≤ c∗
N 2 ,

where in the last step we used ε2N ≥ b2N N ≥ c′∗. Hence we have

EIAIVIL ≤ EIAIVI
L̃

+ c∗N−2. (75)

In the subsequent steps of the proof we replace the conditioning on L1, . . . , Ln (in
(73)) by the conditioning on the random variables g1, . . . , gn . Since the latter random
variables have densities (their densities are analysed in Lemma 7 below) the corre-
sponding conditional distributions are much easier to handle. Moreover, we restrict
the conditioning on the event where these densities are positive.

Step A.2.2. Given w > 0, consider the events {|gk | ≤ n−1/2w} and their indicator
functions Ik = I{|gk |≤n−1/2w}. Using the simple inequality nEg2

k ≤ c∗ (where c∗
depends on M∗ and r ) we obtain from Chebyshev’s inequality that

P{Ik = 1} = 1 − P{|gk | > n−1/2w} ≥ 1 − w−2nE|gk |2 > 7/8, (76)

where the last inequality holds for a sufficiently large constantw (depending on M∗, r ).
Fixw such that (76) holds and introduce the eventB∗ = {∑n

k=1 Ik > n/4}.Hoeffding’s
inequality shows P{B∗} ≥ 1 − exp{−n/8}. Therefore,

EIAIVI
L̃

≤ EIAIVI
L̃
IB∗ + c∗N−2. (77)

Given a binary vector θ = (θ1, . . . , θn) (with θk ∈ {0; 1}) write |θ | = ∑
k θk .

Introduce the event Bθ = {Ik = θk, 1 ≤ k ≤ n} and the conditional expectation

mθ (z1, . . . , zn) = E(IAIVIBθ
| g1 = z1, . . . , gn = zn), (z1, . . . , zn) ∈ R

n .
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Note that IBθ
, the indicator of the event Bθ , is a function of g1, . . . , gn . It follows from

the identities

B
∗ = ∪|θ |>n/4Bθ and IB∗ =

∑

|θ |>n/4

IBθ

(here Bθ ∩ Bθ ′ = ∅, for θ �= θ ′) that

EIAIVI
L̃
IB∗ =

∑

|θ |>n/4

EIAIVI
L̃
IBθ

=
∑

|θ |>n/4

EIBθ
I
L̃

mθ (g1, . . . , gn).

We shall show below that uniformly in θ , satisfying |θ | > n/4, we have

Mθ ≤ c∗R, where Mθ := ess sup mθ (z1, . . . , zn). (78)

This bound in combination with (70), which extends to L̃ as well, implies

EIAIVI
L̃
IB∗ ≤ c∗R

∑

|θ |>n/4

EIBθ
I
L̃

= c∗REIB∗I
L̃

≤ c∗RP{L̃} ≤ c∗R(ε + N−1/2).

Combining the latter inequalities with (75) and (77) we obtain (71).
Step A.2.3. Here we show (78). Fix θ = (θ1, . . . , θn) satisfying |θ | > n/4. Denote,
for brevity, h = |θ | and assume without loss of generality that θi = 1, for 1 ≤ i ≤ h,
and θ j = 0, for h + 1 ≤ j ≤ n. Consider the h−dimensional random vector g[θ] =
(g1, . . . , gh). Note that the random vector g[θ] and the sequences of random variables

Yθ = {
Y j : m + hM < j ≤ N

}
, ξθ = {ξ j : h < j ≤ n}

are independent. Recall S from (55) and note that the terms Sθ and S′
θ of the decom-

position

S = Sθ + S′
θ , Sθ (·) = 1√

N

∑

1≤k≤h

∑

j∈Ok

ψ(·, Y j )

are independent as well.
For z[θ] = (z1, . . . , zh) ∈ R

h we have mθ (z1, . . . , zn) ≤ m̃θ (z[θ]), where

m̃θ (z[θ]) = ess supθE
(
IAIVIBθ

∣∣ g[θ] = z[θ], Yθ , ξθ

)

denotes the "ess sup" taken with respect to almost all values of Yθ and ξθ . To prove
(78) we show that

m̃θ (z[θ]) ≤ c∗R. (79)
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Let us prove (79). Given Yθ , denote fθ = S′
θ (note that S′

θ is a function of Yθ ). Using
the notation (40), we have for the interval J ′

p = N−1/2 Jp,

E
(
IAIVIBθ

∣∣ g[θ] = z[θ], Yθ , ξθ

) = IBθ
E

(
dεm ( fθ + Sθ , J ′

p)
∣∣ g[θ] = z[θ], Yθ , ξθ

)
.

(80)
Note that the factor IBθ

in the right side is non zero whenever z[θ] = (z1, . . . , zh)

satisfies |zi | ≤ w/
√

n, for i = 1, . . . , h. Introduce Lr valued random variables

Ui = N−1/2
∑

j∈Oi

ψ(·, Y j ), i = 1, . . . , h,

and the regular conditional probability

P(z[θ];A) = E
(
I{(U1,...,Uh)∈A}

∣∣ g[θ] = z[θ]
)
.

Here A denotes a Borel subset of Lr × · · · × Lr (h-times). By independence, there
exist regular conditional probabilities

Pi (zi ; Ai ) = E(IUi ∈Ai

∣∣ gi = zi ), i = 1, . . . , h, (81)

such that for Borel subsets Ai of Lr we have

P(z[θ];A1 × · · · × Ah) =
∏

1≤i≤h

Pi (zi ;Ai ).

In particular, for every z[θ], the regular conditional probability P(z[θ]; ·) is the (measure
theoretical) extension of the product of the regular conditional probabilities (81).
Therefore, denoting byψi a randomvariablewith values in Lr andwith the distribution

P{ψi ∈ B} = Pi (zi ;B), B ⊂ Lr − Borel set, (82)

we obtain that the distribution of the sum

ζ = ψ1 + · · · + ψh (83)

of independent random variables ψ1, . . . , ψh is the regular conditional distribution of
Sθ , given g[θ] = z[θ]. In particular, the expectation in the right side of (80) equals
δεm ( fθ + ζ ), where

δs( fθ + ζ ) := Eζ ds( fθ + ζ, J ′
p), s > 0, (84)

and where Eζ denotes the conditional expectation given all the random variables, but
ζ . Recall εm defined by (53) and note that for any ε∗ satisfying the inequality

εm ≤ ε∗ (85)
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we have
δεm ( fθ + ζ ) ≤ δε∗( fθ + ζ ). (86)

We put ε∗ = μ∗|T0|N−1/2/20 and apply Lemma 1 to upper bound δε∗( fθ + ζ ) (the
quantity μ∗ is defined in (97) below). We will use the inequalities c∗δ23/n ≤ μ2∗ ≤
c′∗δ23/n that follow from (217) below. Note that for T0 satisfying (38), integers m, n as
in (17), (29), and the quantity δ3 (see (41)) satisfying

δ23 ≥ N−8ν, (87)

the inequality (85) holds, provided that N is sufficiently large (N > C∗). Moreover,
we have

ε2∗ ≤ c∗δ23 N−48ν. (88)

Now Lemma 1 (together with the moment inequalities of Lemma 10) implies the
inequality

δε∗( fθ + ζ ) ≤ c∗κ1/2∗ ε
(r−2)/(2r)∗ + c∗N−2, (89)

where the number κ∗, defined in (97), satisfies κ∗ ≤ c∗δ−r/(r−2)
3 , by (218).

Denote r̃ = r−1 + (r − 2)−1. It follows from (89), (88) and (86), for r > 4, that

δεm ( fθ + ζ ) ≤ c∗δ−r̃
3 N−6ν + c∗N−2 ≤ c∗(1 + δ−r̃

3 )N−6ν ≤ c∗R. (90)

In the last step we used the simple bound δ23 ≤ c∗, see (200), and the inequality

1 + δ−r̃
3 ≤ 2 + δ−1

3 , which holds for r̃ < 1. Note that (90) and (80), (84) imply (79).
The proof the proof of the first inequality of (60) is complete.
Step B.Here we prove the second bound of (60). It is convenient to write the Lr -valued
random variable (55) in the form

S = U1+· · ·+Un−1+Un =: S′+Un, where Ui = N−1/2
∑

j∈Oi

ψ(·, Y j ). (91)

Observe that U1, . . . , Un−1 are independent and identically distributed. We are going
to apply Lemma 1 conditionally, given Un , to the probability

P{B} = E p̃(Un), where p̃( f ) = E
(
dεm (S′ + f , N−1/2 Jp)

∣∣Un = f
)
.

To upper bound p̃( f ) we proceed similarly as in the proof of (90). Lemma 9 shows
that U1, . . . , Un−1 satisfy the moment conditions of Lemma 1. Note that in this case
the quantity μ∗ satisfies c∗δ23/n ≤ μ2∗ ≤ c′∗/n (these inequalities follow from (201)).
The right inequality implies the bound ε∗ ≤ c∗N−48ν instead of (88) above. As a
result we obtain a different power of δ3 in the upper bound below. Proceeding as in
proof of (90), see (86), (88), (89), we obtain

p̃( f ) ≤ c∗(1 + δ
−r/2(r−2)
3 )N−6ν ≤ c∗R.
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In the last step we used the inequality 1+ δ
−r/2(r−2)
3 ≤ 2 + δ−1

3 , which follows from
r/2(r − 2) < 1 (recall that r > 4). Therefore, we have P{B} ≤ E p̃(Un) ≤ c∗R,
whereR is defined in (71). This completes the proof of the second inequality in (60).

3.4 Proof of (26) for k = 3

Here we prove the bound |I3| ≤ c∗N−1−ν , see (26). It follows from (48) and the
identity EY exp{i tT ′} = αm

t exp{i tW ′}, see (13), that

|I3| ≤
∫

t1<|t |<t2

E|αm
t |

|t | dt + c∗N−1−ν . (92)

Recall the event S = {‖S‖r < N ν/10}, where S defined in (55). We have

E|αm
t | ≤ EIS|αm

t | + E(1 − IS). (93)

Using Lemma 13 we upper bound the second term on the right: P{‖S‖r ≥ N ν/10} ≤
c∗N−3. Furthermore, the one-term expansion of the exponent in (13) in powers of
i t N−3/2 ∑N

j=m+1 ψ(X1, Y j ) shows the inequality

IS|αt | ≤ |E exp{i t N−1/2g(X1)}| + IS|t |N−1‖S‖1.

It follows from (7) that the first summand is bounded from above by 1 − v, for some
v > 0 depending on A∗, M∗, D∗, δ only, see the proof of (36). Furthermore, the second
summand is bounded from above by N−9ν/10 almost surely. Therefore, for sufficiently
large N > C∗ we have IS|αt | ≤ 1− v/2 uniformly in N . Invoking this bound in (93)
we obtain

E|αm
t | ≤ (1 − v/2)m + c∗N−3 ≤ c∗N−3,

for m satisfying (17). The latter inequality implies that the integral in (92) is bounded
from above by c∗N−2 thus completing the proof.

4 Combinatorial concentration bound

We start the section by introducing some notation and collecting auxiliary inequalities.
Then we formulate and prove Lemmas 1 and 2.

Introduce the number

δ2 = min

{
1

12cg
,
(cr‖g‖22/2r‖g‖r

r )
1/(r−2)

1 + 4/‖g‖2

}
, (94)
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where cg = 1 + ‖g‖r/‖g‖2 and cr = (7/24)2−(r−1). Denote

ρ∗ = 1 − sup{|Eeitg(X1)| : 2−1δ2 ≤ |t | ≤ N−ν+1/2}.

It follows from the identity ρ∗ = ρ(2−1σδ2, σ N−ν+1/2) and the simple inequality
a1 ≤ δ2/4, see (35), that ρ∗ ≥ ρ(2σ a1, σ N−ν+1/2). Furthermore, it follows from
(169) and the assumption σ 2

T
= 1 that 1/2 < σ < 2 for sufficiently large N (N > C∗).

Therefore, ρ∗ ≥ ρ(a1, 2N−ν+1/2) ≥ δ′, where the last inequality follows from (36).
We obtain, for N > C∗,

1 − sup{|Eeitg(X1)| : 2−1δ2 ≤ |t | ≤ N−ν+1/2} ≥ δ′, (95)

where the number δ′ depends on A∗, D∗, M∗, ν1, r , s, δ only. In what follows we use
the notation c0 = 10. Let Lr

0 = {y ∈ Lr : ∫
X y(x)PX (dx) = 0} denotes a subspace

of Lr . Observe, that Eg(X1) = 0 implies y∗(= pg(y)) ∈ Lr
0, for every y ∈ Lr

0.

4.1 Lemma 1

Let ψ1, . . . , ψn denote independent random vectors with values in Lr
0. For k =

1, . . . , n, write

ζk = ψ1 + · · · + ψk and ζ = ζn .

Let ψ i denote an independent copy of ψi . Write ψ∗
i = pg(ψi ) and ψ

∗
i = pg(ψ i ), see

(31). Introduce random vectors

ψ̃i = 2−1(ψi − ψ i ), ψ̃∗
i = 2−1(ψ∗

i − ψ
∗
i ), ψ̂i = 2−1(ψi + ψ i ).

We shall assume that, for some cA ≥ cD ≥ cB > 0,

nr/2E‖ψ̃i‖r
r ≤ cr

A, c2B ≤ n E‖ψ̃∗
i ‖22 ≤ c2D, (96)

for every 1 ≤ i ≤ n. Furthermore, denote μ2
i = E‖ψ̃∗

i ‖22 and κ̃r−2
i = 8

3
E‖ψ̃i ‖r

r
μr

i
,

μ∗ = min
1≤i≤n

μi , κ∗ = max
1≤i≤n

κ̃i . (97)

Observe that, by Hölder’s inequality and (32), we have κ̃i > 1, for i = 1, . . . , n.

Lemma 1 Let 4 < r ≤ 5 and 0 < ν < 10−2(r − 4). Assume that n ≥ N 5ν . Suppose
that

κ4∗ ≤ 9

256

n

ln N
. (98)

Assume that (95), (96) as well as (106), (112) (below) hold. There exist a constant
c∗ > 0 which depends on r , s, ν, A∗, D∗, M∗, δ only such that for every T0 satisfying
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1184 M. Bloznelis, F. Götze

(38) we have

δε∗( f + ζ, I (T0)) ≤ c∗(CD/CB)1/2κ
1/2∗ ε∗(r−2)/2r + c∗N−2, (99)

for an arbitrary non-random element f ∈ Lr
0. Here ε∗ = μ∗

2c0
|T0|√

N
. The function

δs(·, I (T0)), is defined in (40).

In Step A.2.3 of Sect. 3 we apply this lemma to random vector ζ = ψ1 + · · · + ψh ,
see (83). In Step B of Sect. 3 we apply this lemma to the random vector S′, see (91).

Proof We shall consider the case where T0 > 0. For T0 < 0 the proof is the same.
We can assume without loss of generality that c0 < N ν . Denote X = ‖ψ̃∗

i ‖2 and
Y = ‖ψ̃i‖r and μ = μi , κ = κ̃i . By (32), we have Y ≥ X .

Step 1. Here we construct the bound (100), see below, for the probability P{Bi }, where

Bi = {X ≥ μ/2, Y < κμ}.

Write

μ2 = EX2 = EX2 IA + EX2 IBi + EX2 ID,

A = {X < μ/2}, D = {X ≥ μ/2, Y ≥ κμ}.

Substitution of the bounds

EX2 IA ≤ μ2

4
,

EX2 IBi ≤ EY 2 IBi ≤ (κμ)2P{Bi },
EX2 ID ≤ EY 2 I{Y≥κμ} ≤ (κμ)2−rEY r

gives

μ2 ≤ 4−1μ2 + κ2μ2P{Bi } + (κμ)2−rEY r .

Finally, invoking the identity κr−2 = (8/3)EY r/μr we obtain

P{Bi } ≥ 3

4κ2 − EY r

(κμ)r
= 3

4κ2

(
1 − 4EY r

3μrκr−2

) = 3

8κ2 ≥ 3

8κ2∗
=: p. (100)

Introduce the (random) set J = {i : Bi occurs} ⊂ {1, . . . , n}. Hoeffding’s inequal-
ity applied to the random variable |J | = IB1 + · · · + IBn shows

P{|J | ≤ ρn} ≤ exp{−np2/2} ≤ N−2, ρ := p/2 = (3/16)κ−2∗ . (101)

In the last step we invoke (98) and use (100).
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Step 2. Here we introduce randomization. Note that for any αi ∈ {−1,+1}, i =
1, . . . , n, the distributions of the random vectors

(ψ1, . . . , ψn) and
(
α1ψ̃1 + ψ̂1, . . . , αnψ̃n + ψ̂n

)

coincide. Therefore, denoting

ζ̃n = α1ψ̃1 + · · · + αnψ̃n, ζ̂n = ψ̂1 + · · · + ψ̂n,

we have for s > 0,

δs( f + ζ, I (T0)) = δs( f + ζ̃n + ζ̂n, I (T0)),

for every choice of α1, . . . , αn . From now on let α1, . . . , αn denote a sequence of
independent identically distributed Bernoulli random variables independent of ψ̃i , ψ̂i ,
1 ≤ i ≤ n, and with probabilities P{α1 = 1} = P{α1 = −1} = 1/2. Denoting by Eα

the expectation with respect to the sequence α1, . . . , αn we obtain

δs( f + ζ, I (T0)) = Eαδs( f + ζ̃n + ζ̂n, I (T0)). (102)

We are going to condition on ψ̃i and ψ̂i , 1 ≤ i ≤ n, while taking expectations with
respect toα1, . . . , αn . It follows from (101), (102) and the fact that the random variable
|J | does not depend on α1, . . . , αn that

δs( f + ζ, I (T0)) ≤ EI{|J |≥ρn}γs(ψ̃i , ψ̂i , 1 ≤ i ≤ n) + N−2, (103)

where

γs(ψ̃i , ψ̂i , 1 ≤ i ≤ n) = EαI{|J |≥ρn}I{v2( f +ζ̃n+ζ̂n)>1−s2}I{‖ f +ζ̃n+ζ̂n‖r ≤N ν }

denotes the conditional expectation given ψ̃i , ψ̂i , 1 ≤ i ≤ n. Note that (99) is a
consequence of (103) and of the bound

γε∗(ψ̃i , ψ̂i , 1 ≤ i ≤ n) ≤ c∗κ1/2∗ ε
(r−2)/(2r)∗ . (104)

Let us prove this bound. Introduce the integers

n0 = l − 1 l = �δ2κ−1ε
−(r−2)/r∗ �, κ = 2c0(CD/CB)κ∗.

Let us show that
n0 ≤ ρn. (105)

It follows from the inequalities

ε−1∗ ≤ 2
c0
cB

N νn1/2, N ν(r−2)/r ≤ N ν ≤ n1/r , δ2 ≤ 3

16

(3
8

)1/(r−2)
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1186 M. Bloznelis, F. Götze

that

l ≤ δ2

CD

1

k∗

(
CB

2c0

)2/r (
N νn1/2

)(r−2)/r ≤ 3

16

1

k∗
C2/r

B

CD
n1/2.

Note that (98) implies k∗ ≤ n1/4. Therefore, the inequality

C2/r
B C−1

D ≤ n1/4 (106)

implies l ≤ (3/16)k−2∗ n = ρn. We obtain (105).
Given ψ̃i , ψ̂i , 1 ≤ i ≤ n, consider the corresponding set J , say J = {i1, . . . , ik}.

Assume that k ≥ ρn. From the inequality ρn ≥ n0, see (105), it follows that we can
choose a subset J ′ ⊂ J of size |J ′| = n0. Split

ζ̃n =
∑

i∈J ′
αi ψ̃i +

∑

i∈J\J ′
αi ψ̃i =: ζ∗ + ζ ′

and denote f + ζ ′ + ζ̂n = f∗. Note that f∗ ∈ Lr
0 almost surely. Let

δ̃ = E′
I{v2( f∗+ζ∗)>1−ε2∗}I{‖ f∗+ζ∗‖r ≤N ν },

where E′ denotes the conditional expectation given all the random variables,
but {αi , i ∈ J ′}. The bound (104) would follow if we show that

δ̃ ≤ c∗κ1/2∗ ε
(r−2)/(2r)∗ . (107)

Step 3. Here we prove (107). Note that for j ∈ J ′ the vectors

x j = T0N−1/2ψ̃ j and x∗
j = pg(x j ) = T0N−1/2ψ̃∗

j

satisfy
‖x∗

j ‖2 ≥ c0ε∗, ‖x j‖r ≤ κε∗, κ = 2c0(CD/CB)κ∗. (108)

Given A ⊂ J ′ denote

xA =
∑

i∈A

xi −
∑

i∈J ′\A

xi , x∗
A = pg(xA).

We are going to apply Kleitman’s theorem on symmetric partitions (see, e.g. the
proof of Theorem 4.2, Bollobas [15]) to the sequence {x∗

j , j ∈ J ′} in L2. Since
for j ∈ J ′ we have ‖x∗

j ‖2 ≥ c0ε∗, it follows from Kleitman’s theorem that the
collection P(J ′) of all subsets of J ′ splits into non-intersecting non-empty classes
P(J ′) = D1 ∪ · · · ∪ Ds , such that the corresponding sets of linear combinations
Vt = {

x∗
A, A ∈ Dt

}
, t = 1, 2, . . . , s, are sparse, i.e., given t , for A, A′ ∈ Dt and

A �= A′ we have
‖x∗

A − x∗
A′ ‖2 ≥ c0ε∗. (109)
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Symmetric statistics 1187

Furthermore, the number of classes s is bounded from above by
( n0�n0/2�

)
.

Next, using Lemma 2 we shall show that given f∗ the classDt may contain at most
one element A ∈ Dt such that

v2( f∗ + x̃ A) > 1 − ε2∗, ‖ f∗ + x̃ A‖r ≤ N ν, x̃ A := N 1/2T −1
0 xA. (110)

This means that there are at most
( n0�n0/2�

)
different subsets A ⊂ J ′ for which (110)

holds. This implies (107)

δ̃ ≤ 2−n0

(
n0

�n0/2�
)

≤ cn−1/2
0 = cδ−1/2

2 κ
1/2ε

r−2
2r∗ .

Finally, (99) follows from (103), (104), (107).
Given f∗ ∈ Lr

0 let us show that there is no pair A, A′ in Dt which satisfy (110).
Fix A, A′ ∈ Dt . We have, by (108) and the choice of n0,

‖xA − xA′ ‖r ≤ 2
∑

i∈J ′
‖xi‖r ≤ 2n0κε∗ < 2δ2ε

2/r∗ .

Denoting SA = f∗ + x̃ A and SA′ = f∗ + x̃ A′ we obtain

‖SA − SA′ ‖r = N 1/2T −1
0 ‖xA − xA′ ‖r ≤ 2δ2ε

2/r∗ N 1/2T −1
0 . (111)

Assume that SA and SA′ satisfy the second inequality of (110), i.e., ‖SA‖r ≤ N ν and
‖SA′ ‖r ≤ N ν . We are going to apply Lemma 2 to the vectors SA and SA′ . In order
to check the conditions of Lemma 2 note that (114) and (115) are verified by (108),
(109) and (111). Furthermore, the inequalities c0 < N ν and

cB ≥ 2N 4ν(n/N )1/2, (112)

imply N 2ν−1/2 ≤ ε∗. Finally, we can assume without loss of generality that ε∗ ≤
c′∗, where c′∗ := min

{
(δ′/4)r/2, (A1/2∗ /6)r/2

}
. Otherwise (99) follows from trivial

inequalities

δε∗ ≤ 1 ≤ (ε∗/c′∗)(r−2)/2r ≤ c∗ε(r−2)/2r∗

and the inequality κ∗ > 1.
Now Lemma 2 implies min{v2(SA), v2(SA′)} ≤ 1− ε2∗ thus completing the proof

of Lemma 1. ��

4.2 Lemma 2

Here we formulate and prove Lemma 2. Let us introduce first some notation. Given
y ∈ Lr (= Lr (X ,PX )) define the symmetrization ys ∈ Lr (X × X ,PX × PX ) by
ys(x, x ′) = y(x) − y(x ′), for x, x ′ ∈ X . In what follows X1, X2 denote independent
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1188 M. Bloznelis, F. Götze

random variables with values in X and with the common distribution PX . By E we
denote the expectation taken with respect to PX . For h ∈ Lr we write

Eh = Eh(X1) =
∫

X
h(x)PX (dx), Eeih = Eeih(X1) =

∫

X
eith(x) PX (dx).

Furthermore, for 2 ≤ p ≤ r , denote

‖ys‖p
p = E|y(X1) − y(X2)|p, ‖y‖p

p = E|y(X1)|p.

Note that for y ∈ Lr
0 we have y∗(= pg(y)) ∈ Lr

0 and, therefore,

E|y∗(X1) − y∗(X2)|2 = 2E|y∗(X1)|2. (113)

Let y1, . . . , yk, f be non-random vectors in Lr . We shall assume that these vectors
belong to the linear subspace Lr

0. Given non random vectors α = {αi }k
i=1 and α′ =

{α′
i }k

i=1, with αi , α
′
i ∈ {−1,+1}, denote

Sα = f +
k∑

i=1

αi yi , Sα′ = f +
k∑

i=1

α′
i yi .

Lemma 2 Let κ > 0. Assume that (95) holds and suppose that

N ν−1/2 ≤ ε ≤ min
{
(δ′/4)r/2, (‖g‖2/6)r/2}.

Given T0, satisfying (38), write T ∗ = N 1/2T −1
0 and assume that

‖y∗
j ‖2 > c0T ∗ε, ‖y j‖r ≤ κ T ∗ε, j = 1, . . . , k. (114)

Suppose that ‖Sα‖r ≤ N ν and ‖Sα′ ‖r ≤ N ν and

‖S∗
α − S∗

α′ ‖2 ≥ c0T ∗ε, ‖Sα − Sα′ ‖r ≤ 2δ2T ∗ε2/r . (115)

Then min{v2(Sα), v2(Sα′ } ≤ 1 − ε2.

Recall that the functionals v(·), τ (·), ut (·) and the interval I = I (T0) used in proof
below are defined in (39).

Proof Note that δ1 < 1/10 and δ2 < 1/12. In particular, we have

9/10 ≤ 1 − δ1 ≤ |s/T0| ≤ 1 + δ1 ≤ 11/10, for |s − T0| < δ1N−ν+1/2. (116)

Step 1. Assume that the inequality min{v2(Sα), v2(Sα′ } ≤ 1−ε2 fails. Then for some
s, t ∈ I we have

1 − |ut (Sα)|2 < ε2, 1 − |us(Sα′)|2 < ε2, (117)
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see (39). Fix these s, t and denote

X̃ = s(g + N−1/2Sα′) − t(g + N−1/2Sα).

We are going to apply the inequality (256),

1 − |Eei(Y+Z)|2 ≥ 2−1(1 − |Eei Z |2) − (1 − |EeiY |2)

to Z = −X̃ and Y = s(g + N−1/2Sα′). It follows from this inequality and (117) that

ε2 > 1 − |ut (Sα)|2 = 1 − |Eei(Y+Z)|2 ≥ 2−1(1 − |Ee−i X̃ |2) − ε2.

In view of the identity |Ee−i X̃ | = |Eei X̃ | we have

1 − |Eei X̃ |2 < 4ε2. (118)

Step 2.Herewe shall show that (118) contradicts the second inequality of (115). Firstly,
we collect some auxiliary inequalities. Write the decomposition (31) for Sα and Sα′ ,

Sα = a g + S∗
α, Sα′ = a′ g + S∗

α′ . (119)

Decompose

X̃ = vg + h,

v = (s − t)(1 + a N−1/2) + (a′ − a)s N−1/2,

h = (s − t)N−1/2S∗
α + s N−1/2(S∗

α′ − S∗
α),

where v ∈ R and where h ∈ Lr is L2-orthogonal to g. An application of (34) to S∗
α

and S∗
α′ − S∗

α gives

‖h‖r ≤ cg N−1/2(|s| ‖Sα′ − Sα‖r + |s − t | ‖Sα‖r
)
. (120)

Furthermore, it follows from the simple inequality

‖x + y‖22 ≥ 2−1‖x‖22 − ‖y‖22
that

‖h‖22 ≥ 2−1s2N−1‖S∗
α′ − S∗

α‖22 − (s − t)2N−1‖S∗
α‖22. (121)

Note that for a and a′ defined in (119) we obtain from (33) and (115) that

|a| ≤ ‖Sα‖r‖g‖−1
2 ≤ N ν‖g‖−1

2 , (122)

|a′ − a| ≤ ‖Sα′ − Sα‖r‖g‖−1
2 ≤ 2δ2ε

2/r N 1/2T −1
0 ‖g‖−1

2 . (123)

123



1190 M. Bloznelis, F. Götze

Step 4.2.1.Consider the case where, |s − t | < δ2. Invoking the inequalities ‖Sα‖r ≤
N ν and (115) we obtain from (120) that

‖h‖r
r ≤ (4cg)

rδr
2

(
N νr−r/2 + ε2|s|r T −r

0

)
.

Furthermore, using (116), (94), and N ν−1/2 ≤ ε, we obtain for 4 ≤ r ≤ 5

‖h‖r
r ≤ 3−r (εr + ε2(11/10)r ) ≤ 31−rε2. (124)

Note that (32) implies ‖S∗
α‖2 ≤ ‖Sα‖r ≤ N ν . This inequality in combination with

(115) and (121) gives

‖h‖22 ≥ 2−1(s/T0)
2c20ε

2 − δ22 N 2ν−1.

Invoking (116) and using c0 > 10, δ2 < 12−1, and N ν−1/2 ≤ ε we obtain

‖h‖22 ≥ (4/10)c20ε
2. (125)

Now we are going to apply Lemma 12 statement a) to X̃ = vg + h. For this
purpose we verify the conditions of this lemma. Firstly, note that (125), (113) imply,
‖hs‖22 ≥ (8/10)c20ε

2. Furthermore, it follows from the simple inequality E|h(X1) −
h(X2)|r ≤ 2rE|h(X1)|r and (124) that ‖hs‖r

r ≤ 3(2/3)rε2. Therefore, we obtain, for
4 ≤ r ≤ 5,

‖hs‖r
r ≤ 6

10
ε2 ≤ c−2

0 ‖hs‖22 ≤ cr‖hs‖22, cr = (7/24)2−(r−1).

Furthermore, the inequalities (122), (123) and (116) imply

|v| ≤ δ2 + δ2‖g‖−1
2 (N ν−1/2 + 2ε2/r (11/10)) ≤ δ2(1 + 4‖g‖−1

2 ),

for N ν−1/2 ≤ ε ≤ 1. Invoking (94) and using the inequality ‖gs‖r
r ≤ 2r‖g‖r

r and the
identity ‖gs‖22 = 2‖g‖22 we obtain

|v|r−2 ≤ cr

2r

‖g‖22
‖g‖r

r
≤ cr

2r

2−1‖gs‖22
2−r‖gs‖r

r
≤ cr

2

‖gs‖22
‖gs‖r

r

as required by Lemma 12 a). This lemma implies

1 − |Eei X̃ |2 ≥ 6−1‖hs‖22 = 3−1‖h‖22.

In the last step we used (113). Now (125), for c0 ≥ 10, contradicts (118).
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Step 4.2.2. Consider the case where δ2 < |s − t | ≤ δ1N−ν+1/2. It follows from
(120), (115) and (116) that

E|h| ≤ ‖h‖r ≤ cg
(
2δ2ε

2/r |s/T0| + δ1
)

≤ cg(δ1 + 3δ2ε
2/r ) ≤ cgδ1 + ε2/r . (126)

In the last stepweused δ2 < 1/3. From(122), (123) and (116),weobtain for δ2 ≤ |s−t |
and N ν−1/2 ≤ ε,

|v| ≥ δ2(1 − N ν−1/2‖g‖−1
2 ) − 2δ2ε

2/r |s/T0|‖g‖−1
2

= δ2(1 − ‖g‖−1
2 (ε + ε2/r (22/10)))

≥ δ2(1 − 3ε2/r‖g‖−1
2 ) ≥ δ2/2,

provided that ε2/r < ‖g‖2/6. Similarly, using in addition, δ1, δ2 < 1/4 and ε < ‖g‖2,
we obtain, for |s − t | ≤ δ1N−ν+1/2,

|v| ≤ |s − t |(1 + N ν−1/2‖g‖−1
2 ) + 2δ2ε

2/r |s/T0|‖g‖−1
2

≤ |s − t |(1 + ε‖g‖−1
2 ) + (22/10)δ2ε

2/r‖g‖−1
2

≤ 2 |s − t | + 1 ≤ N−ν+1/2.

It follows from these inequalities, see (95), that

1 − |Eei X̃ |2 ≥ 1 − |Eei X̃ | ≥ 1 − |Eeivg| − E|h| ≥ δ′ − E|h|.

Finally, invoking (126) and (37), we get

1 − |Eei X̃ |2 ≥ δ′ − cgδ1 − ε2/r ≥ δ′/2 > 4ε2,

Once again we obtain a contradiction to (118), thus completing the proof. ��

5 Expansions

Here we prove the bound

∫

|t |≤t1

∣∣∣EeitT̃ − Ĝ(t)
∣∣∣
dt

|t | ≤ c∗N−1−ν, (127)

where t1 = N 1/2/103β3. For the definition of T̃ and Ĝ see Sect. 2.4. Here and below
c∗ denotes a constant depending on A∗, M∗, D∗, r , s, ν1 only. We prove (127) for
sufficiently large N , that is, we shall assume that N > C∗, where C∗ is a number
depending on A∗, M∗, D∗, r , s, ν1 only. Note that for N < C∗, the bound (127)
becomes trivial, since in this case the integral is bounded by a constant.
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Let us first introduce some notation. Denote �m = {1, . . . , m}. For A ⊂ �N write
U1(A) = ∑

j∈A g1(X j ). Given complex valued functions f , h we write f ≺ R if

∫

|t |≤t1
|t−1 f (t)|dt ≤ c∗N−1−ν

andwrite f ∼ h if f −h ≺ R. In particular, (127) can bewritten in shortEeitT̃ ∼ Ĝ(t).
In order to prove (127) we show that

EeitT̃ ∼ EeitT and EeitT ∼ Ĝ(t). (128)

Inwhat followswe use the notation of Sect. 2.We denoteα(t) = Eeitg(X1).We assume
that (16) holds.

5.1 Proof of the first relation of (128)

We have, see (19),

T = T̃ + �̃1 + �̃2, �̃1 = �1 + �4, �̃2 = �2 + �3 + �5,

where the random variables � j are introduced in Sect. 2.4. We shall show that

EeitT̃ ∼ Eeit(T̃+�̃1) and Eeit(T̃+�̃1) ∼ EeitT. (129)

The second relation follows from the moment bounds of Lemma 5 via Taylor expan-
sion. We have

EeitT = Eeit(T̃+�̃1) + R, |R| ≤ |t |E|�̃2|,

By Lyapunov’s inequality,

E|�̃2| ≤ (E�2
2)

1/2 + (E�2
3)

1/2 + (E�2
5)

1/2.

Invoking the moment bounds of Lemma 5 we obtain |t |E|�̃2| ≺ R, thus, proving the
second part of (129).

In order to prove the first part we combine Taylor’s expansion with bounds for
characteristic functions. Expanding the exponent we obtain

Eeit(T̃+�̃1) = EeitT̃ + i tEeitT̃�̃1 + R, |R| ≤ t2E|�̃1|2.

Invoking the identities

E�2
1 =

(
m

2

)
γ2

N 3 , E�2
4 = m

(
N − m

2

)
ζ2

N 5
(130)
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we obtain, for γ2 < c∗ and ζ2 < c∗, see (5), andm ≤ N 1/12, that R ≺ R. We complete
the proof of (129) by showing that

tEeitT̃�̃1 ≺ R. (131)

Let us prove (131). Split W = W1 + W2 + W3 + RW , where

Wk =
∑

A⊂�′, |A|=k

TA, RW =
∑

A⊂�′, |A|≥4

TA.

Here �′ = {m + 1, . . . , N }. Denote R = U
∗
2 + W3 + RW and U1 = ∑N

j=1 g1(X j ).

We have T̃ = U1 + W2 + R. Expanding the exponent in powers of i tR we obtain

tEeitT̃�̃1 = tEeit(U1+W2)�̃1 + t2R, (132)

where

|R| ≤ E|�̃1R| ≤ (r1 + r2)(r3 + r4 + r5),

r21 = E�2
1, r22 = E�2

4, r23 = E(U∗
2)

2, r24 = ER2
W , r25 = EW

2
3.

In the last step we applied the Cauchy–Schwartz inequality. Combining (130) with
the identities

E(U∗
2)

2 = m(N − m)

N 3 γ2, EW
2
3 =

(N−m
3

)

N 5
ζ2

and invoking the simple bound

ER2
W ≤ �2

4

N 3 ≤ D∗
N 2+2ν1

,

we obtain t2(r1 + r2)(r3 + r4 + r5) ≺ R. Therefore, (132) implies

tEeitT̃�̃1 ∼ tEeit(U1+W2)�̃1.

Let us show that tEeit(U1+W2)�̃1 ∼ 0. Expanding the exponent in powers of i tW2
we get

tEeit(U1+W2)�̃1 = f1(t) + f2(t) + f3(t) + f4(t),

f1(t) = tEeitU1�̃1, f2(t) = i t2EeitU1�1W2,

f3(t) = t2EeitU1�4W2θ1, f4(t) = t3EeitU1�1W
2
2θ2/2,

where θ1, θ2 are functions of W2 satisfying |θi | ≤ 1.
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Let us show that fi ≺ R, for i = 1, 2, 3, 4. Split the set �m = {1, . . . , m} in three
(non-intersecting) parts A1 ∪ A2 ∪ A3 = �m of (almost) equal size |Ai | ≈ m/3. The
set of pairs

{{i, j} ⊂ �m
}
splits into six (non-intersecting) parts Bkr , 1 ≤ k ≤ r ≤ 3

(the pair {i, j} belongs to Bkr if i ∈ Ak and j ∈ Ar ). Write

�1 =
∑

1≤k≤r≤3

�1(k, r), �1(k, r) =
∑

{i, j}∈Bkr

g2(Xk, Xl),

�4 =
∑

1≤k≤3

�4(k), �4(k) =
∑

i∈Ak

∑

m+1≤ j<l≤N

g3(Xi , X j , Xl).

Let us prove f4 ≺ R. We shall show that

t3EeitU1�1(k, r)W2
2θ2 ≺ R. (133)

Given a pair (k, r) denote Ai = �m \ (Ak ∪ Ar ) and write ki = |Ai |. Note that
ki ≈ m/3. We shall assume that ki ≥ m/4. Since the random variable U1(Ai ) :=∑

j∈Ai
g1(X j ) and the random variables �1(k, r), W2 are independent, we have

EeitU1�1(k, r)W2
2θ2 = EeitU1(Ai ) E�1(k, r)W2

2θ2.

Therefore,
|EeitU1�1(k, r)W2

2θ2| ≤ |EeitU1(Ai )| E|�1(k, r)W2
2|. (134)

The first factor on the right is bounded from above by exp{−mt2/16N }, for ki ≥ m/4,
see (165) below. The second factor is bounded from above by r , where

r2 = E�2
1(k, r)EW

4
2 ≤ c∗m2N−5.

Here we combined the Cauchy–Schwartz inequality and the bounds

E�2
1(k, r) ≤ c∗m2N−3, EW

4
2 ≤ c∗N−2.

Finally, (133) follows from (134)

∣∣t3EeitU1�1(k, r)W2
2θ2

∣∣ ≤ c∗|t |3e−mt2/16N m N−5/2 ≺ R.

The proof of f3 ≺ R is almost the same as that of f4 ≺ R.
Let us prove f2 ≺ R. Split the set�′ = {m+1, . . . , N } into three (non-intersecting)

parts B1 ∪ B2 ∪ B3 = �′ of (almost) equal sizes |Bi | ≈ (N − m)/3. Split the set
of pairs

{{i, j} : m + 1 ≤ i < j ≤ N
}
into (non-intersecting) groups D(k, r), for

1 ≤ k ≤ r ≤ 3. The pair {i, j} ∈ D(k, r) if i ∈ Bk and j ∈ Br . Write
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W2 =
∑

1≤k≤r≤3

W2(k, r), W2(k, r) =
∑

{i, j}∈D(k,r)

g2(Xi , X j ).

�4 =
∑

1≤k≤r≤3

�4(k, r), �4(k, r) =
∑

1≤s≤m

∑

{i, j}∈D(k,r)

g3(Xs, Xi , X j ),

In order to prove f2 ≺ R we shall show that

t2EeitU1�1W2(k, r) ≺ R. (135)

Write Bi = �′ \ (Bk ∪ Br ) and denote mi = |Bi |. We shall assume that mi ≥ N/4.
Since the random variable U1(Bi ) = ∑

j∈Bi
g1(X j ) and the random variables �1 and

W2(k, r) are independent, we have, cf. (134),

|EeitU1�1W2(k, r)| ≤ |EeitU1(Bi )| E|�1W2(k, r)|. (136)

The first factor in the right is the product |αmi (t)| ≤ e−mi t2/4N , see the argument used
in the proof of (133) above. The second factor is bounded from above by r̃ , where

r̃2 = E�2
1EW

2
2(k, r) ≤ c∗m2N−4.

Finally, we obtain, using the inequality mi ≥ N/4,

|EeitU1 | E|�1W2(k, r)| ≤ c∗
m

N 2 exp{−t2
mi

4N
} ≤ c∗

m

N 2 exp{− t2

16
}.

This in combination with (136) shows (135). We obtain f2 ≺ R.
Let us prove f1 ≺ R. We shall show that f ∗ ≺ R and f � ≺ R, where

f � = tEeitU1�1 and f ∗ = tEeitU1�4

satisfy f ∗ + f � = f1.
Let us show f � ≺ R. Denote U

�
1 = ∑N

j=m+1 g1(X j ). We obtain, by the indepen-
dence of U

�
1 and �1 that

|EeitU1�1| ≤ |EeitU�
1 | E|�1|.

Invoking, for N − m > N/2, the bound |EeitU�
1 | ≤ e−t2/8, see (165) below, and the

bound E|�1| ≤ (E�2
1)

1/2 ≤ c∗m N−3/2 we obtain

| f �(t)| ≤ c∗|t |e−t2/8N−3/2 ≺ R.

Let us prove f ∗ ≺ R. We shall show that, for 1 ≤ k ≤ r ≤ 3,

tEeitU1�4(k, r) ≺ R. (137)
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Proceeding as in the proof of (135) we obtain the chain of inequalities

|EeitU1�4(k, r)| ≤ e−t2/16E|�4(k, r)| ≤ c∗e−t2/16m1/2N−3/2. (138)

In the last step we applied Cauchy–Schwartz and the simple bound E�2
4(k, r) ≤

c∗m N−3. Clearly, (138) implies (137).

5.2 Proof of the second relation of (128)

Here we prove the second relation of (128). Firstly, we shall show that

EeitT ∼ E exp{i t(U1 + U2 + U3)}, (139)

E exp{i t(U1 + U2 + U3)} ∼ E exp{i t(U1 + U2)} +
(

N

3

)
e−t2/2(i t)4w, (140)

where w = Eg3(X1, X2, X3)g1(X1)g1(X2)g1(X3).
Let m(t) be an integer valued function such that

m(t) ≈ C1Nt−2 ln(t2 + 1), C1 ≤ |t | ≤ t1, (141)

and put m(t) ≡ 10, for |t | ≤ C1. Here C1 denotes a large absolute constant (one can
take, e.g., C1 = 200). Assume, in addition, that the numbers m = m(t) are even.

5.2.1 Proof of (139)

Given m write

T = U1 + U2 + U3 + H,

where

H = H1 + H2, H1 =
∑

|A|≥4, A∩�m=∅
TA, H2 =

∑

|A|≥4, A∩�m �=∅
TA.

In order to show (139) we expand the exponent in powers of i tH and i tU3,

E exp{i tT} = E exp{i t(U1 + U2 + U3)} + E exp{i t(U1 + U2)}i tH + R,

where |R| ≤ t2(EH
2 + E|U3H|). Invoking the bounds, see (166), (167), (5), (6),

EH
2 ≤ N−3�2

4 ≤ c∗N−2−2ν1 , EU
2
3 ≤ N−2ζ2 ≤ c∗N−2 (142)

we obtain, by Cauchy–Schwartz, |R| ≤ c∗t2N−2−ν1 ≺ R. We complete the proof of
(139) by showing that

E exp{i t(U1 + U2)}i tH ≺ R. (143)
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Before proving (143) we collect some auxiliary inequalities. For m = 2k write

�m = A1 ∪ A2, where A1 = {1, . . . , k}, A2 = {k + 1, . . . , 2k}. (144)

Furthermore, split the sum

U2 = Z1 + Z2 + Z3 + Z4,

Z1 =
∑

1≤i< j≤m

g2(Xi , X j ), Z2 =
∑

i∈A1

∑

m< j≤N

g2(Xi , X j ),

Z3 =
∑

i∈A2

∑

m< j≤N

g2(Xi , X j ), Z4 =
∑

m<i< j≤N

g2(Xi , X j ). (145)

In what follows we shall use the simple bounds, see (5),

EZ
2
1 ≤ m2

N 3 γ2 ≤ c∗
m2

N 3 , EZ
2
4 ≤ γ2

N
≤ c∗

N
,

EZ
2
i ≤ m

N 2 γ2 ≤ c∗
m

N 2 , EZ
4
i ≤ c

m2

N 4 γ4 ≤ c∗
m2

N 4 , i = 2, 3. (146)

Let us prove (143). Expand the exponent exp{i t(U1 + Z1 + · · · + Z4)} in powers
of i tZ1 to get

E exp{i t(U1 + U2)}i tH = h1(t) + R,

where h1(t) = E exp{i t(U1 + Z2 + · · · + Z4)}i tH and where

|R| ≤ t2E|HZ1| ≤ t2(EH
2)1/2(EZ

2
1)

1/2 ≤ c∗t2m N−(5+2ν1)/2.

For m = m(t) satisfying (141) we have R ≺ R. Therefore, we obtain

E exp{i t(U1 + U2)}i tH ∼ h1.

In order to prove h1 ≺ R we write h1 = h2 + h3 and show that h2, h3 ≺ R , where

h2 = E exp{i t(U1 + Z2 + · · · + Z4)}i tH1,

h3 = E exp{i t(U1 + Z2 + · · · + Z4)}i tH2.

Let us show that h2 ≺ R. Firstly, we prove that

h2 ∼ h2.1 + h2.2 + h2.3, (147)

where h2.1(t) = E exp{i t(U1 + Z4)}i tH1 and, for j = 2, 3,

h2. j (t) = E exp{i t(U1 + Z4)}(i t)2H1Z j .
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Expanding the exponent in powers of i t(Z2 + Z3) we obtain

h2 = h2.1 + h2.2 + h2.3 + R,

where |R| ≤ |t |3E|H1|(Z2 + Z3)
2 is bounded from above by

|t |3(EH
2
1)

1/2(E(Z2 + Z3)
4)1/2 ≤ c∗|t |3m N−3−ν1 ≺ R.

In the last step we used EH
2
1 ≤ EH

2 and applied (142) and (146). Therefore, (147)
follows.

Let us show h2.i ≺ R, for i = 1, 2, 3. The random variable U1(A1) does not
depend on the observations X j , j ∈ � \ A1. Therefore, we can write

h2.3 = E exp{i tU1(A1)}E exp{i t(U1(� \ A1) + Z4)}(i t)2H1Z3.

Furthermore, using (165) we obtain, for |A1| = m/2,

|h2.3| ≤ t2|αm/2(t)|E|H1Z3| ≤ c∗t2 exp{−t2
m

8N
} m1/2

N 2+ν1
. (148)

In the last step we combined the bound EH
2
1 ≤ c∗N−2−2ν1 and (146) to get

E|H1Z3| ≤ (EH
2
1)

1/2(EZ
2
3)

1/2 ≤ c∗m1/2N−2−ν1 .

Note that choosing of C1 in (141) sufficiently large implies, for |t | ≥ C1,

t2m/12N ≈ (C1/12) ln(t
2 + 1) ≥ 10 ln(t2 + 1).

An application of this bound to the argument of the exponent in (148) shows h2.3 ≺ R.
The proof of h2.i ≺ R, for i = 1, 2, is almost the same. Therefore, we obtain h2 ≺ R.

Let us prove h3 ≺ R. Firstly we collect some auxiliary inequalities. Write m = 2k
(recall that the number m is even) and split �m = B ∪ D, where B denotes the set of
odd numbers and D denotes the set of even numbers. Split H2 = HB + HD + HC .
Here, for A ⊂ �N and |A| ≥ 4, we denote by HB the sum of TA such that A ∩ B = ∅
and A ∩ D �= ∅; HD denotes the sum of TA such that A ∩ B �= ∅ and A ∩ D = ∅;
HC denotes the sum of TA such that A ∩ B �= ∅ and A ∩ D �= ∅. It follows from the
inequalities (177) and (6) that

EH
2
C ≤ c∗m2N−4−2ν1, EH

2
B = EH

2
D ≤ c∗m N−3−2ν1 . (149)

Using the notation z = i t exp{i t(U1 + Z2 + Z3 + Z4)} write

h3 = EzH2 = h3.1 + h3.2 + h3.3,

h3.1 = EzHB, h3.2 = EzHD, h3.3 = EzHC .

123



Symmetric statistics 1199

We shall show that h3.i ≺ R, for i = 1, 2, 3. The relation h3.3 ≺ R follows from
(149) and (146), and by Cauchy–Schwartz, |h3.3| ≤ c∗|t | m N−2−ν1 ≺ R.

Let us show that h3.2 ≺ R. Expanding the exponent in powers of i t(Z2 + Z3) we
obtain

h3.2 = h∗
3.2 + R, h∗

3.2 := E exp{i t(U1 + Z4)}i tHD,

where |R| ≤ t2E|HD(Z2 + Z3)|. Combining the bounds (146) and (149) we obtain,
by Cauchy–Schwartz, |R| ≤ c∗t2m N−(5+2ν1)/2 ≺ R. Next we show that h∗

3.2 ≺
R. The random variable U1(D) = ∑

j∈D g1(X j ) and the random variable HD are
independent. Therefore, we can write

|h∗
3.2| ≤ |t | |E exp{i tU1(D)}|E|HD|.

Combining (165) and (149) we obtain using Cauchy–Schwartz,

|h∗
3.2| ≤ c∗|t | e−mt2/8N m1/2N−(3+2ν1)/2 ≺ R.

The proof of h3.1 ≺ R is similar. Therefore, we obtain h3 ≺ R. This together with the
relation h2 ≺ R, proved above, implies h1 ≺ R. Thus we arrive at (143) completing
the proof of (139).

5.2.2 Proof of (140)

We start with some auxiliary moment inequalities. Split

U3 = W + Z , W =
∑

|A|=3, A∩�m �=∅
TA, Z =

∑

|A|=3, A∩�m=∅
TA.

Using the orthogonality and moment bounds forU -statistics, see, e.g., Dharmadhikari
et al. [20], one can show that

EW 2 ≤ m N 2Eg2
3(X1, X2, X3), EZ2 ≤ N 3Eg2

3(X1, X2, X3),

and E|Z |s ≤ cN 3s/2E|g3(X1, X2, X3)|s . Invoking (5) we obtain

EW 2 ≤ c∗m N−3, EZ2 ≤ c∗N−2, E|Z |s ≤ c∗N−s . (150)

For the sets A1, A2 ⊂ �m defined in (144) write

D = {A ⊂ �N : |A| = 3, A ∩ �m �= ∅},
D1 = {A ∈ D : A ∩ A1 = ∅},
D2 = {A ∈ D : A ∩ A2 = ∅},
D3 = {A ∈ D : A ∩ A1 �= ∅, A ∩ A2 �= ∅}.
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We have D = D1 ∪ D2 ∪ D3 and W = ∑
A∈D TA. Therefore, we can write W =

W1 + W2 + W3, where W j = ∑
A∈D j

TA.
A calculation shows that

EW 2
1 = EW 2

2 ≤ k N 2Eg2
3(X1, X2, X3), EW 2

3 ≤ k2NEg2
3(X1, X2, X3).

Therefore, we obtain form (5) that

EW 2
1 = EW 2

2 ≤ c∗m N−3, EW 2
3 ≤ c∗m2N−4. (151)

Let us prove (140). Write U3 = W + Z . Expanding the exponent in powers of i tW
we obtain

E exp{i t(U1 + U2 + U3)} = h4 + h5 + R,

h4 = E exp{i t(U1 + U2 + Z)},
h5 = E exp{i t(U1 + U2 + Z)}i tW ,

where, by (150), |R| ≤ t2EW 2 ≤ c∗t2m N−3 ≺ R. This implies

E exp{i t(U1 + U2 + U3)} ∼ h4 + h5.

In order to prove (140) we shall show that

h5 ∼ E exp{i tU1}i tW , (152)

h4 ∼ E exp{i t(U1 + U2)} + E exp{i tU1}i t Z , (153)

E exp{i tU1}i tU3 ∼
(

N

3

)
e−t2/2(i t)4w. (154)

Let us prove (152). Expanding the exponent (in h5) in powers of i t Z we obtain

h5 = h6 + R, h6 = E exp{i t(U1 + U2)}i tW ,

where, by (150) and Cauchy–Schwartz,

|R| ≤ t2E|W Z | ≤ c∗t2m1/2N−5/2 ≺ R.

We have, h5 ∼ h6.
It remains to show that h6 ∼ E exp{i tU1}i tW . Split

U2 = U
∗
2 + U

�
2, U

∗
2 =

∑

|A|=2, A∩�m �=∅
TA, U

�
2 =

∑

|A|=2, A∩�m=∅
TA. (155)

We have, see (146),

E(U∗
2)

2 ≤ c∗m N−2, E(U�
2)

2 ≤ c∗N−1. (156)
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Expanding the exponent (in h6) in powers of i tU∗
2 we obtain

h6 = h7 + R, where h7 = E exp{i t(U1 + U
�
2)}i tW ,

and where, by (150), (156) and Cauchy–Schwartz,

|R| ≤ t2E|WU
∗
2| ≤ c∗t2m N−5/2 ≺ R.

Therefore, we obtain h6 ∼ h7.
We complete the proof of (152) by showing that h7 ∼ E exp{i tU1}i tW . Use the

decomposition W = W1 + W2 + W3 and write

h7 = h7.1 + h7.2 + h7.3, h7. j = E exp{i t(U1 + U
�
2)}i tW j .

We shall show that

h7. j ∼ E exp{i tU1}i tW j , j = 1, 2, 3. (157)

Expanding in powers of i tU�
2 we obtain

h7. j = E exp{i tU1}i tW j + R j ,

where R j = (i t)2E exp{i tU1}W j U
�
2θ and where θ is a function of U

�
2 satisfying

|θ | ≤ 1. In order to prove (157) we show that R j ≺ R, for j = 1, 2, 3.
Combining (151) and (156) we obtain via Cauchy–Schwartz

|R3| ≤ c∗t2m N−5/2 ≺ R.

Furthermore, using the fact that the random variable U1(A2) and the random variables
U

�
2 and W2 are independent, we can write

|R2| ≤ t2|E exp{i tU1(A2)}|E|W2U
�
2| ≤ c∗t2e−mt2/8N m1/2N−2 ≺ R.

Herewe used (165) and themoment inequalities (151) and (156). The proof of R1 ≺ R
is similar. We arrive at (157) and, thus, complete the proof of (152).

Let us prove (153). We proceed in two steps. Firstly we show

h4 ∼ h8 + h9,

h8 = E exp{i t(U1 + U2)}, h9 = E exp{i t(U1 + U2)}i t Z . (158)

Secondly, we show
h9 ∼ E exp{i tU1}i t Z . (159)

In order to prove (158) we write

h4 = h8 + h9 + R, R = E exp{i t(U1 + U2)}r̃ , r̃ = exp{i t Z} − 1 − i t Z ,

123



1202 M. Bloznelis, F. Götze

and show that R ≺ R. In order to bound the remainder R we write U2 = U
∗
2 +U

�
2, see

(155), and expand the exponent in powers of i tU∗
2. We obtain R = R1 + R2, where

R1 = E exp{i t(U1 + U
�
2)}r̃ and |R2| ≤ E|i tU∗

2r̃ |.

Note that, for 2 < s ≤ 3, we have |r̃ | ≤ c|t Z |s/2. Combining (150) and (156) we
obtain via Cauchy–Schwartz,

|R2| ≤ |t |1+s/2E|Z |s/2|U∗
2| ≤ c∗|t |1+s/2m1/2N−1−s/2 ≺ R.

In order to prove R1 ≺ R we use the fact that the random variable U1(�m) and the
random variables U

�
2 and r̃ are independent. Invoking the inequality |r̃ | ≤ t2Z2 we

obtain from (165) and (150)

|R1| ≤ t2|αm(t)|EZ2 ≤ c∗t2e−mt2/4N N−2 ≺ R.

We thus arrive at (158).
Let us prove (159). Use the decomposition (145) and expand the exponent (in h9)

in powers of i tZ1 to get h9 = h10 + R, where

h10 = E exp{i t(U1 + Z2 + Z3 + Z4)}i t Z , |R| ≤ t2E|ZZ1|.

Combining (146) and (150) we obtain via Cauchy–Schwartz

|R| ≤ c∗t2m N−5/2 ≺ R.

Therefore, we have

h9 ∼ h10.

Now we expand the exponent in h10 in powers of i t(Z2 + Z3) and obtain h10 =
h11 + h12 + R, where

h11 = E exp{i t(U1 + Z4)}i t Z , h12 = E exp{i t(U1 + Z4)}(i t)2Z(Z2 + Z3),

and where |R| ≤ |t |3E|Z | |Z2 + Z3|2. Combining (146) and (150) we obtain via
Cauchy–Schwartz |R| ≤ |t |3m N−3 ≺ R. Therefore, we have

h10 ∼ h11 + h12.

We complete the proof of (159) by showing that

h11 ∼ E exp{i tU1}i t Z and h12 ≺ R. (160)
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In order to prove the second bound write

h12 = R2 + R3, where R j = E exp{i t(U1 + Z4)}(i t)2ZZ j .

We shall show that R3 ≺ R. Using the fact that the random variable U1(A1) and the
random variables Z , Z3 and Z4 are independent we obtain from (165)

|R3| ≤ t2|αm/2(t)|E|ZZ3| ≤ t2e−mt2/8m1/2N−2 ≺ R.

In the last step we combined (146), (150) and Cauchy–Schwartz. The proof of R1 ≺ R
is similar.

In order to prove the first relation of (160) we expand the exponent in powers of
i tZ4 and obtain h11 = E exp{i tU1}i t Z + R. Furthermore, combining (165), (146)
and (150) we obtain

|R| ≤ t2|αm(t)|E|ZZ4| ≤ c∗t2e−mt2/4N N−3/2 ≺ R.

Hence the first relation of (160). The proof of (153) is complete.
Let us prove (154). By symmetry and the independence,

EeitU1 i tU3 =
(

N

3

)
h13EeitU∗ , h13 = Eeitx1eitx2eitx3 i t z. (161)

Here we denote z = g3(X1, X2, X3) and write,

U1 = x1 + x2 + x3 + U∗, U∗ =
∑

4≤ j≤N

g1(X j ), x j = g1(X j ).

Furthermore, write

r j = eitx j − 1 − i t x j , v j = eitx j − 1.

In what follows we expand the exponents in powers of itx j , j = 1, 2, 3 and use the
fact that E

(
g3(X1, X2, X3)

∣∣X1, X2
) = 0 as well as the obvious symmetry. Thus, we

have

h13 = h14 + R1, h14 = Eeitx2eitx3(i t)2zx1, R1 = Eeitx2eitx3 i t zr1,

h14 = h15 + R2, h15 = Eeitx3(i t)3zx1x2, R2 = Eeitx3(i t)2zx1r2

h15 = h16 + R3, h16 = E(i t)4zx1x2x3, R3 = E(i t)3zx1x2r3.

Furthermore, we have

R1 = Ei t z1r1v2v3, R2 = E(i t)2zx1r2v3.
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Invoking the bounds |r j | ≤ |t x j |2 and |v j | ≤ |t x j | we obtain

h13 = h16 + R, (162)

where |R| ≤ c|t |5E|zx1x2| x23 . The bound, |R| ≤ c∗|t |5N−9/2 (which follows, by
Cauchy–Schwartz) in combination with (161) and (162) implies

EeitU1 i tU3 ∼
(

N

3

)
EeitU∗(i t)4w. (163)

Note that
(N
3

)|w| ≤ c∗N−1. In order to show (154) we replace EeitU∗ by e−t2/2.
Therefore, (154) follows from (163) and the inequalities

(i t)4

N
(EeitU∗ − e−t2σ 2(N−3)/2N ) ≺ R,

(i t)4

N
(e−t2σ 2(N−3)/2N − e−t2/2) ≺ R.

The second inequality is a direct consequence of (169). The proof of the first inequality
is routine and here omitted. Thus the proof of (140) is complete.

5.2.3 Completion of the proof of (128)

Here we show that

E exp{i tU1 + U2)} +
(

N

3

)
e−t2/2(i t)4w ∼ Ĝ(t). (164)

This relation in combination with (139) and (140) implies EeitT ∼ Ĝ(t).
Let GU (t) denote the two term Edgeworth expansion of the U - statistic U1 + U2.

That is, GU (t) is defined by (2), but with κ4 replaced by κ∗
4 , where κ∗

4 is obtained from
κ4 after removing the summand 4Eg(X1)g(X2)g(X3)χ(X1, X2, X3). Furthermore,
let ĜU (t) denote the Fourier transform of GU (t). It easy to show that

Ĝ(t) = ĜU (t) +
(

N

3

)
e−t2/2(i t)4w.

Therefore, in order to prove (164) it suffices to show that ĜU (t) ∼ E exp{i t(U1+U2)}.
The bound

∫

|t |≤t1
|ĜU (t) − E exp{i t(U1 + U2)}|dt

|t | ≤ εN N−1

where εN ↓ 0, was shown by Callaert, Janssen and Veraverbeke [16] and Bickel,
Götze and van Zwet [11]. An inspection of their proofs shows that under the moment
conditions (5) one can replace εn by c∗N−ν . This completes the proof of (127).

For the reader convenience we formulate in Lemma 3 a known result on upper
bounds for characteristic functions.
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Lemma 3 Assume that (16) holds. There exists a constant c∗ depending on D∗, M∗, r ,

s, ν1 only such that, for N > c∗ and |t | ≤ N 1/2/103β3 and B ⊂ �N , we have

|α(t)| ≤ 1 − t2/4N , E exp{i tU1(B)}| ≤ |α(t)||B| ≤ e−|B|t2/4N . (165)

Here α(t) = E exp{i tg1(X1)} and U1(B) = ∑
j∈B g1(X j ).

Proof Let us prove the first inequality of (165). Expanding the exponent, see (188),
we obtain

|α(t)| ≤ ∣∣1 − 2−1t2Eg2
1(X1)

∣∣ + 6−1|t |3E|g1(X1)|3
= ∣∣1 − σ 2t2/2N

∣∣ + β3σ
3|t |3/6N 3/2

Invoking the inequality 1 − 10−3 ≤ σ 2 ≤ 1 which follows from (169) for N > c∗,
where c∗ is sufficiently large, we obtain |α(t)| ≤ 1 − t2/4N , for |t | ≤ N 1/2/103β3.

The second inequality of (165) follows from the first one via the inequality 1+ x ≤
ex , for x ∈ R. ��
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6 Appendix 1

In Lemma 4 belowwe compare themoments�2
m andER2

m , where Rm is the remainder
of expansion (14),

T = ET + U1 + · · · + Um−1 + Rm, Rm := Um + · · · + UN .

For k = 1, . . . , N , write �k = {1, 2, . . . , k} and denote σ 2
k := Eg2

k (X1, . . . , Xk) =
ET 2

�k
. It follows from (14), by the orthogonality property (15), that

σ 2
T

=
N∑

k=1

EU
2
k, ER2

m =
N∑

k=m

EU
2
k, EU

2
k =

(
N

k

)
σ 2

k . (166)

Lemma 4 Assume that ET
2 < ∞. Then

ER2
m ≤ N−(m−1)�2

m, (167)
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�2
m ≤ N 2m−1σ 2

m + N−1�2
m+1, (168)

Assume that (5) and (6) hold, then there exists a constant c∗ < ∞ depending on
D∗, M∗, r , s, ν1 such that

0 ≤ 1 − σ 2σ−2
T

≤ c∗N−1. (169)

Remark. For m = 3, inequality (168) yields �2
3 ≤ ζ2 + N−1�2

4.

Proof Let us prove (167). The identity

D1 · · · DmT =
∑

A:�m⊂A⊂�N

TA =
∑

m≤k≤N

Uk|m,

where Uk|m = ∑
|A|=k, A⊃�m

TA, implies

E(D1 · · · DmT)2 =
∑

m≤k≤N

EU
2
k|m, EU

2
k|m = σ 2

k

(
N − m

k − m

)
. (170)

We have

E(D1D2 · · · DmT)2 =
∑

m≤k≤N

σ 2
k

(
N − m

k − m

)
=

∑

m≤k≤N

σ 2
k

(
N

k

)
bk, (171)

where bk = [k]m/[N ]m satisfies bk ≥ bm ≥ m!N−m . Here we denote [x]m =
x(x − 1) · · · (x − m + 1). A comparison of (166) and (171) shows (167)

ER2
m ≤ N mE(D1 · · · DmT)2 = N−(m−1)�2

m .

Let us prove (168). We have

E(D1 · · · DmT)2 = σ 2
m +

∑

m<k≤N

σ 2
k

(
N − m

k − m

)

= σ 2
m +

∑

m<k≤N

σ 2
k

(
N − m − 1

k − m − 1

)
b̃k,

where b̃k = (N − m)/(k − m) ≤ N . We obtain the inequality

E(D1 · · · DmT)2 ≤ σ 2
m + NE(D1 · · · Dm+1T)2

which implies (168).
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Let us prove (169). From (166), (167) we have, for σ 2 = Nσ 2
1 ,

0 ≤ 1 − σ 2

σ 2
T

≤
(

N

2

)
σ 2
2

σ 2
T

+
(

N

3

)
σ 2
3

σ 2
T

+ 1

N 3

�2
4

σ 2
T

.

Invoking the bounds, which follow from (5),

N 3σ 2
2 = Eψ2(X1, X2) ≤ M2/r∗ σ 2

T
, N 5σ 2

3 = Eχ2(X1, X2, X3) ≤ M2/s∗ σ 2
T

and using (6) we obtain (169). ��
In Lemma 5 below we establish moments bounds for various parts of Hoeffding

decomposition defined in Sect. 2.

Lemma 5 Assume that σ 2
T

= 1. For 3 ≤ m ≤ N and s > 2, we have

E�2
3 ≤ m3

N 5
�2

3, E�2
2 ≤ m2

N 4�2
3, E|�1|3 ≤ c

m3

N 9/2 γ3, (172)

E|�4|s ≤ c(s) ms/2N−3s/2ζs, Eη2i ≤ N−4�2
4, E�2

5 ≤ m N−4�2
4. (173)

Here c denotes an absolute constant and c(s) denotes a constant which depends only
on s.

Proof The inequalities (172) are proved in [4].
Let us prove (173). Split �4 = z1 + · · · + zm , where

zi =
∑

|A|=3, A∩�m=i

TA.

LetE′ denote the conditional expectation given Xm+1, . . . , X N . It follows fromRosen-
thal’s inequality that almost surely

E′|�4|s ≤ c(s)
m∑

i=1

E′|zi |s + c(s)
( m∑

i=1

E′z2i
)s/2

.

Invoking Hölder’s inequality we obtain, by symmetry,

E|�4|s = EE′|�4|s ≤ c(s)ms/2E|z1|s . (174)

Using well known martingale moment inequalities (and their applications to U statis-
tics), see [20], one can show the bound E|z1|s ≤ c(s)N−3s/2ζs . Invoking this bound
in (174) we obtain the first bound of (173).

In order to prove the second bound of (173) write

ηi =
N−m+1∑

k=4

U∗
k , U∗

k =
∑

|A|=k, A∩�m={i}
TA.
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A simple calculation shows E(U∗
k )2 = (N−m

k−1

)
σ 2

k . Therefore, by orthogonality,

Eη2i =
N−m+1∑

k=4

(
N − m

k − 1

)
σ 2

k =
N−m+1∑

k=4

(
N − 4

k − 4

)
bkσ

2
k

≤ N 3E(D1 · · · D4T)2. (175)

In the last step we invoke (170) and use the bound bk ≤ N 3, where bk =(N−m
k−1

)(N−4
k−4

)−1
. Clearly, (175) implies Eη2i ≤ N−4�2

4. Finally, using the fact that
η1, . . . , ηm are uncorrelated we obtain

�2
5 = Eη21 + · · · + Eη2m ≤ m N−4�2

4

thus completing the proof. ��

Before formulating next result we introduce some notation. Given m let D denote
the class of subsets A ⊂ �N satisfying |A| ≥ 4 and �m ∩ A �= ∅. Introduce the
random variable H(m) = ∑

A∈D TA. Denote xi = 2i − 1 and yi = 2i . For even
integer m = 2k ≤ N write

�m = Ak ∪ Bk, Ak = {x1, . . . , xk}, Bk = {y1, . . . , yk}

and put A0 = B0 = ∅. Let A(k) (respectively B(k)) denote the collection of those
A ∈ D which satisfy A ∩ Ak = ∅ (respectively A ∩ Bk = ∅). Furthermore, let C(k)

denote the collection of A ∈ D such that A ∩ Ak �= ∅ and A ∩ Bk �= ∅. Write

HA(k) =
∑

A∈A(k)

TA, HB(k) =
∑

A∈B(k)

TA, HC (k) =
∑

A∈C(k)

TA.

Lemma 6 There exists an absolute constant c such that,

EH
2(m) ≤ c

m

N 4�2
4, for m = 4, 5, . . . , N . (176)

For even integer m = 2k < N we have

EH
2
A(k) = EH

2
B(k) ≤ c

k

N 4�2
4, EH

2
C (k) ≤ c

k2

N 5
�2

4. (177)

Proof Let us prove the first bound of (176). For m = 4 we have

H(4) = H1 + H2 + H3 + H4, Hk =
∑

|A|≥4, |A∩�4|=k

TA.
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A calculation shows that, for k = 1, 2, 3, 4,

EH2
k =

(
4

k

) N∑

j=4

σ 2
j

(
N − 4

j − k

)
=

(
4

k

) N∑

j=4

σ 2
j

(
N − 4

j − 4

)
ak( j),

where the numbers

ak( j) =
(N−4

j−k

)

(N−4
j−4

) ≤ N 4−k .

Invoking (171) we obtain

EH2
k ≤ c N 4−kE(D1 · · · D4T)2 = cN−3−k�2

4. (178)

Finally, we obtain (176) for m = 4

EH
2(4) = EH2

1 + · · · + EH2
4 ≤ cN−4�2

4.

In order to prove (176) for m = 5, 6, . . . we apply a recursive argument. Write

EH
2(m + 1) = EH

2(m) + Ed2
m, (179)

where dm = H(m + 1) − H(m) is the sum of those TA with |A| ≥ 4 satisfying
A ∩ �m = ∅ and A ∩ �m+1 �= ∅. In particular, we have

dm =
∑

|A|≥3, A∩�m+1=∅
TA∪{m+1}.

Therefore,

Ed2
m =

N∑

j=4

σ 2
j

(
N − m − 1

j − 1

)
=

N∑

j=4

σ 2
j

(
N − 4

j − 4

)
c j ,

where the numbers

c j =
(N−m−1

j−1

)

(N−4
j−4

) ≤ N 3.

Invoking (171) we obtain Ed2
m ≤ N−4�2

4. This bound together with (179) implies
(176).

Let us prove (177). Note that form = 2k we haveH(m) = HA(k)+HB(k)+HC (k)

and the summands are uncorrelated. Therefore, the first bound of (177) follows from
(176).
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Let us show the second inequality of (177). For k = 2 we have C(2) ⊂ C, where
C denotes the class of subsets A ⊂ �N such that |A| ≥ 4 and |A ∩ �4| ≥ 2. Write
HC = ∑

A∈C TA. We have

EH
2
C (2) ≤ EH

2
C = EH2

2 + EH2
3 + EH2

4 ≤ cN−5�2
4.

In the last step we applied (178). We obtain (177), for k = 2.
In order to prove the bound (177), for k = 3, 4, . . . , we apply a recursive argument

similar to that used in the proof of (176). Denote

d[k] = HC (k + 1) − HC (k) =
∑

A∈C(k+1)\C(k)

TA.

We shall show that
Ed2[k] ≤ ck N−5�2

4. (180)

This bound in combination with the identity EH
2
C (k + 1) = EH

2
C (k) + Ed2[k] shows

(177) for arbitrary k.
In order to show (180) split the set C(k + 1) \ C(k) into 2k + 1 non-intersecting

parts

C(k + 1) \ C(k) = (∪k
i=1Cx .i

) ∪ (∪k
i=1Cy.i

) ∪ Cx .y,

where we denote

Cx .y = {
A = Ã ∪ {xk+1, yk+1} : Ã ∩ (Bk ∪ Ak) = ∅, | Ã| ≥ 2

}
,

Cx .i = {
A = Ã ∪ {yk+1, xi } : Ã ∩ (Bk ∪ Ai−1) = ∅, | Ã| ≥ 2

}
,

Cy.i = {
A = Ã ∪ {xk+1, yi } : Ã ∩ (Bi−1 ∪ Ak) = ∅, | Ã| ≥ 2

}
.

By the orthogonality property (ETATV = 0 for A �= V ), the random variables

dx .i =
∑

A∈Cx .i

TA, dy.i =
∑

A∈Cy.i

TA, dx .y =
∑

A∈Cx .y

TA

are uncorrelated. Therefore, we have

Ed2[k] = Ed2
x .y +

k∑

i=1

(Ed2
x .i + Ed2

y.i ). (181)

A calculation shows that

Ed2
x .y =

N∑

j=4

σ 2
j

(
N − 2k − 2

j − 2

)
=

N∑

j=4

σ 2
j

(
N − 4

j − 4

)
v j ,
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where the coefficients

v j =
(N−2k−2

j−2

)

(N−4
j−4

) ≤ N 2.

Invoking (171) we obtain Ed2
x .y ≤ N−5�2

4. The same argument shows Ed2
x .i =

Ed2
y.i ≤ N−5�2

4. The latter bound in combination with (181) shows (180). The lemma
is proved. ��

7 Appendix 2

Here we construct bounds for the probability density function (and its derivatives) of
random variables g∗

k = (N/M)1/2gk , for 1 ≤ k ≤ n −1, where gk are defined in (74).
Since these random variables are identically distributed it suffices to consider

g∗
1 = ( N

M

)1/2
g1 = 1√

M

m+M∑

j=m+1

g(Y j ) + ξ1

R
.

Here R = √
n M N . Introduce the random variables

g∗
2 = g∗

1 − M−1/2g(Ym+1), g∗
3 = g∗

1 − M−1/2(g(Ym+1) + g(Ym+2)
)
.

Let pi (·) denote the probability density function of g∗
i , for i = 1, 2, 3. Recall that the

integers n ≈ N 50ν ≤ N ν2/10 and M ≈ N/n ≥ N 9/10 are introduced in (29) and the
number ν > 0 is defined by (17).

Lemma 7 Assume that conditions of Theorem 1 are satisfied. There exist positive
constants C∗, c∗, c′∗ depending only on M∗, D∗, δ, r and ν1, ν such that, for i = 1, 2, 3,
we have uniformly in u ∈ R and N > C∗

|pi (u)| ≤ c∗, |p′
i (u)| ≤ c∗, |p′′

i (u)| ≤ c∗, |p′′′
i (u)| ≤ c∗. (182)

Furthermore, given w > 0 there exists a constant C∗(w) depending on M∗, D∗, δ, r ,
ν1, ν and w such that uniformly in z∗ ∈ [−2w, 2w] and N > C∗(w) we have

pi (z∗) ≥ c′∗, i = 1, 2, 3. (183)

Proof We shall prove (182) and (183) for i = 1. For i = 2, 3, the proof is almost
the same. Before starting the proof we introduce some notation and collect auxiliary
results.

Denote

θ = Eg∗
1 = M1/2θ1, θ1 = Eg(Ym+1),
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s2 = E(g(Ym+1) − θ1)
2, β̃3 = s−3E|g(Ym+1) − θ1|3

and recall that qN = P{A j }, where A j = {‖Z ′
j‖r ≤ Nα}. It follows from

Eg(Xm+1) = 0 that

θ1 = q−1
N Eg(Xm+1)IAm+1 = −q−1

N Eg(Xm+1)(1 − IAm+1).

Therefore, by Chebyshev’s inequality, for α = 3/(r + 2) we have

|θ1| ≤ q−1
N N−α(r−1)E|g(Xm+1)| ‖Z ′

m+1‖r−1
r ≤ c∗N−3/2. (184)

In the last step we invoke the inequalities α(r − 1) ≥ 1+ (r − 1)/(r + 2) ≥ 3/2 and
q−1

N ≤ c∗, see (45), and E|g(Xm+1)| ‖Z ′
m+1‖r−1

r ≤ M∗, where the latter inequality
follows from (5) by Hölder inequality.

Similarly, the identities

s2 = q−1
N Eg2(Xm+1)IAm+1 − θ21 = q−1

N σ 2 − q−1
N Eg2(Xm+1)(1 − IAm+1) − θ21

in combination with (44) and the inequalities

Eg2(Xm+1)(1 − IAm+1) ≤ N−α(r−2)Eg2(Xm+1) ‖Z ′
m+1‖r−2

r ≤ N−α(r−2)M∗

and α(r − 2) = 1 + 2(r − 4)/(r − 2) ≥ 1 yield

|s2 − σ 2| ≤ c∗N−1. (185)

Introduce the random variables

g∗ = S + ξ1

s R
, S = w1 + · · · + wM , w j = g(Ym+ j ) − θ1

M1/2s
.

We have g∗ = s−1(g∗
1 − θ). Let p(·) denote the density function of g∗. Note that

p1(u) = s−1 p
(
s−1(u − θ)

)
. Furthermore, we have, by (184), |θ | ≤ c∗N−1 and, by

(185), (169), |s2 − 1| ≤ c∗N−1. Therefore, it suffices to prove (182) and (183) for
p(·) (the latter inequality we verify for every z∗ ∈ [−3w, 3w]).

In order to prove (182) and (183) we approximate the characteristic function p̂(t) =
Eeitg∗ by e−t2/2 and then apply a Fourier inversion formula. Write

p̂(t) = Eeitg∗ = γ M (t)τ
( t

s R

)
, γ (t) := Eeitw1 , τ (t) := Eeitξ1 .

The fact that τ(t) = 0, for |t | ≥ 1, implies p̂(t) = 0, for |t | > s R. Therefore, we
obtain from the Fourier inversion formula,

p(x) = 1

2π

∫ +∞

−∞
e−i t x p̂(t)dt = 1

2π

∫ s R

−s R
e−i t x p̂(t)dt .
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Write p̂(t) − e−t2/2 = r1(t) + r2(t), where

r1(t) = (γ M (t) − e−t2/2)τ (t/s R), r2(t) = e−t2/2(τ(t/s R) − 1
)
.

We shall show below that

∫

|t |≤s R
|ri (t)|dt ≤ c∗M−1/2, i = 1, 2. (186)

These bounds in combination with the simple inequality

∫

|t |≥s R
e−t2/2dt ≤ c∗M−1/2

show that
|p(x) − ϕ(x)| ≤ c∗M−1/2, x ∈ R. (187)

Here ϕ denotes the standard normal density function

ϕ(x) = 1√
2π

e−x2/2 = 1

2π

∫ +∞

−∞
e−i t x e−t2/2dt .

It follows from (187) that

|p(x)| ≤ c∗, x ∈ R.

Furthermore, given w we have uniformly in |z∗| ≤ 3w

|p(z∗)| ≥ ϕ(3w) − c∗M−1/2 ≥ c′∗ > 0,

for sufficiently large M (for N > C∗(w)).
In order to prove an upper bound for the k−th derivative, |p(k)(x)| ≤ c∗, write

p(k)(t) = 1

2π

∫ +∞

−∞
(−i t)k exp{−i t x} p̂(t)dt, k = 1, 2, 3,

and replace p̂(t) by e−t2/2 as in the proof of (187). We obtain

p(k)(x) = 1

2π

∫ +∞

−∞
(−i t)k exp{−i t x}e−t2/2(t)dt + r , |r | ≤ c∗M−1/2.

This implies |p(k)(x) − ϕ(k)(x)| ≤ c∗M−1/2. We arrive at the desired bound
|p(k)(x)| ≤ c∗, for k = 1, 2, 3.
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1214 M. Bloznelis, F. Götze

In the remaining part of the proof we verify (186). For i = 2 this bound follows
from |τ(t/s R) − 1| ≤ ct2/(s R)2. The latter inequality is a consequence of the short
expansion

∣∣E exp{i tξ1/s R} − 1 − Ei tξ1/s R
∣∣ ≤ E(tξ1)

2/2(s R)2

and Eξ1 = 0 and Eξ21 ≤ c, for some absolute constant c.
Let us prove (186) for i = 1. Introduce the sequence of i.i.d. centered Gaussian

random variables η1, η2, . . . with variances Eη2i = M−1. Denote

f (t) = Eeitη1 = e−t2/(2M) and δ(t) = γ (t) − f (t).

We are going to apply the well known inequality

∣∣∣∣e
iv −

(
1 + iv

1! + (iv)2

2! + · · · + (iv)k−1

(k − 1)!
)∣∣∣∣ ≤ |v|k

k! . (188)

It follows from (188) and identities Eηi
1 = Ewi

1, i = 1, 2, that

|δ(t)| ≤ |t |3
3!

(
E|w1|3 + E|η1|3

) ≤ c|t |3E|w1|3. (189)

Here we use the inequality E|η1|3 ≤ cE|w1|3, which follows from Eη21 = Ew2
1.

Combining (189) and the simple identity

γ M (t) − f M (t) = δ(t)
M∑

k=1

γ M−k(t) f k−1(t)

we obtain
|γ M (t) − f M (t)| ≤ c|t |3Z(t) M−1/2β̃3. (190)

Here we denote

Z(t) = max
r+v=M−1

| f r (t)γ v(t)|.

We shall show below that

Z(t) ≤ exp
{
− t2

3

M − 1

M

}
+ exp{−δ′′(M − 1)/2}, 0 ≤ |t | ≤ s R, (191)

where δ′′ > 0 depends on δ, A∗, D∗, M∗, ν1 and it is given in (36). This inequality in
combination with (190) proves (186).

Let us prove (191). Clearly, Z ≤ | f M−1(t)| + |γ M−1(t)|. Furthermore, f M (t) =
e−t2/2. In order to prove (191) we shall show

|γ M (t)| ≤ e−t2/3, 0 ≤ |t | ≤ M1/2/β̃3, (192)
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|γ (t)| ≤ e−δ′′/2, M1/2/β̃3 ≤ |t | ≤ s R. (193)

To show (192) we expand eitw1 using (188),

|γ (t)| = ∣∣Eeitw1
∣∣ ≤ ∣∣1 − t2

2
Ew2

1

∣∣ + |t |3
3! E|w1|3

= ∣∣1 − t2

2M

∣∣ + |t |3
3!

β̃3

M3/2

= 1 − t2

2M

(
1 − |t |

3

β̃3√
M

)

≤ 1 − t2

3M
.

Here we used the identity |1− t2/2M | = 1− t2/2M , which holds for |t | < M1/2/β̃3,
since β̃3 ≥ 1. Finally, an application of the inequality 1− x ≤ e−x to x = t2/3M > 0
completes the proof of (192).

Let us prove (193). For δ′′ defined by (36) we shall show δ′′ ≤ 2δ̃, where

δ̃ = 1 − sup{|γ (t)| : M1/2β̃−1
3 ≤ |t | ≤ s R}

= 1 − sup{|E exp{iuσ−1g(Ym+1)| : σ/s β̃3 ≤ |u| ≤ σ
√

n N }.

We are going to replace g(Ym+1), β̃3, s2 by g(Xm+1), β3, σ 2 respectively. Write

Eeivg(Ym+1) = q−1
N Eeivg(Xm+1)IAm+1 = Eeivg(Xm+1) + r1 + r2,

r1 = q−1
N Eeivg(Xm+1)

(
IAm+1 − 1

)
, r2 = (q−1

N − 1)Eeivg(Xm+1).

It follows from (44), (45) that, for every v ∈ R,

|r1| ≤ q−1
N E|IAm+1 − 1| = q−1

N (1 − P{Am+1}) = q−1
N − 1 ≤ c∗N−2,

|r2| ≤ q−1
N − 1 ≤ c∗N−2.

These bounds imply

|Eeivg(Ym+1) − Eeivg(Xm+1)| ≤ c∗N−2, for every v ∈ R. (194)

One can show that, for sufficiently large N (i.e., for N > C∗), we have

|β̃3/β3 − 1| < 1/5, |s2/σ 2 − 1| < 1/5, |s2 − 1| ≤ 1/5. (195)

Using (194), (195) we get, for N > C∗,

δ̃ ≥ 1 − sup
{|Eeiuσ−1g(Ym+1)| : (2β3)

−1 ≤ |u| ≤ N (1+50ν)/2}
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1216 M. Bloznelis, F. Götze

≥ 1 − sup
{|Eeiuσ−1g(Xm+1)| : (2β3)

−1 ≤ |u| ≤ N (ν2+1)/2} − c∗N−2

≥ δ′′/2.

We obtain |γ (t)| ≤ 1 − δ̃ ≤ 1 − δ′′/2 and, therefore, |γ (t)| ≤ e−δ′′/2. The lemma is
proved. ��

8 Appendix 3

Themain results of this section aremoment inequalities ofLemma9and corresponding
inequalities for conditional moments of Lemma 10. Lemma 8 provides an auxiliary
inequality.

We start with some notation. We call v = v(·), u = u(·) ∈ Lr orthogonal if
〈u, v〉 = 0, where

〈u, v〉 =
∫

X
u(x)v(x)PX (dx) = Eu(X1)v(X1).

Given f ∈ L2(PX ) we have for the kernel ψ∗∗ defined in (41)

Eψ∗∗(X1, X2)
(

f (X1)g(X2) + f (X2)g(X1)
) = 0

and almost surely

E(ψ∗∗(X1, X2)|X1) = 0, (196)

E
(
ψ∗∗(X1, X2)g(X1)|X2

) = 0. (197)

The latter identity says that almost all values of the Lr -valued random variable
ψ∗∗(·, X2) are orthogonal to the vector g(·) ∈ Lr .

Let pg : Lr → Lr denote the projection on the subspace of elements u ∈ Lr which
are orthogonal to g = g(·). For v ∈ Lr , write v∗ = pg(v). It follows from (197) that

ψ∗(·, Y j )
(
= pg

(
ψ(·, Y j )

)) = ψ∗∗(·, Y j ) + g(Y j )b
∗(·), (198)

where b∗(·) = pg(b(·)) = σ−2 pg
(
E(ψ(·, X1)g(X1)

)
. Denote

U∗
k

(= pg(Uk)
) = 1√

N

∑

j∈Ok

ψ∗(·, Y j ), U∗∗
k = N−1/2

∑

j∈Ok

ψ∗∗(·, Y j ),

where the Lr -valued random variables Uk are introduced in (91). For the random
variables gk and Lk introduced in (72) and (74), we have

U∗
k = U∗∗

k + Lk b∗(·) = U∗∗
k + (gk − 1√

n

ξk

N
)b∗(·). (199)
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Denote K = E|ψ(X1, X2)|r and Ks = E|ψ∗∗(X1, X2)|s , s ≤ r .

Lemma 8 Let 4 < r ≤ 5. For s ≤ r , we have

K r/s
s ≤ Kr ≤ c K

(
1 + E|g(X1)|r

σ r

)2
. (200)

Proof The first inequality of (200) is a consequence of Lyapunov’s inequality. Let us
prove the second inequality. The inequality |a + b + c|r ≤ 3r (|a|r + |b|r + |c|r )
implies

Kr = E|ψ∗∗(X1, X2)|r ≤ 3r (K + 2E|b(X1)|rE|g(X2)|r
)
.

Therefore, (200) is a consequence of the inequalities

E|b(X1)|r ≤ 2r

σ r
K + |κ|r

σ 4r
E|g(X1)|r ,

κ2 ≤ σ 4Eψ2(X1, X2) ≤ σ 4K 2/r .

Here κ = Eψ(X1, X2)g(X1)g(X2). To prove the first inequality use |a + b|r ≤
2r (|a|r + |b|r ) to get

E|b(X1)|r ≤ 2r

σ 2r
E

∣∣E
(
ψ(X1, X2)g(X2)

∣∣X1
)∣∣r + κr

σ 4r
E|g(X1)|r .

Furthermore, by Cauchy–Schwartz,

∣∣E
(
ψ(X1, X2)g(X2) | X1

)∣∣ ≤ (
E(ψ2(X1, X2) | X1)

)1/2
σ.

Finally, Lyapunov’s inequality implies

(
E(ψ2(X1, X2) | X1)

)r/2 ≤ E(|ψ(X1, X2)|r | X1).

We obtain E
∣∣E

(
ψ(X1, X2)g(X2) | X1

)∣∣r ≤ Kσ r thus completing the proof. ��

Lemma 9 Let 1 ≤ k ≤ n − 1. For U
∗
k , an independent copy of U∗

k , we have

2δ23 − c∗
Nα(r−4)

≤ N

M
E‖U∗

k − U
∗
k‖22 ≤ 2δ23 + c∗, (201)

E‖Uk − U k‖r
r ≤ c∗

( M

N

)r/2
. (202)

Recall that δ23 = E|ψ∗∗(X1, X2)|2.
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1218 M. Bloznelis, F. Götze

Proof Let us prove (201). By symmetry, we have, for i, j ∈ O1,

E‖U∗
1 − U

∗
1‖22 = 2

M

N
H1 − 2

M

N
H2,

H1 := E‖ψ∗(·, Y j )‖22, H2 := E〈ψ∗(·, Y j ), ψ
∗(·, Yi )〉, i �= j .

The inequality (201) follows from the inequalities

δ23 − c∗N−α(r−4) ≤ H1 ≤ δ23 + c∗, (203)

H2 ≤ c∗N−α(r−2). (204)

Let us prove (203). From (198) we have H1 = V1 + V2 + 2V3, where

V1 = E‖ψ∗∗(·, Y j )‖22, V2 = ‖b∗(·)‖22Eg2(Y j ), V3 = Eg(Y j )〈ψ∗∗(·, Y j ), b∗(·)〉.

Let us show that
δ23 − c∗N−α(r−2) ≤ V1 ≤ δ23 + c∗N−α r . (205)

This inequality follows from (44), (45) and the identity

V1 = q−1
N E|ψ∗∗(X1, X j )|2IA j = q−1

N E|ψ∗∗(X1, X j )|2 − q−1
N V ′

1,

where V ′
1 = E|ψ∗∗(X1, X j )|2(1 − IA j ) satisfies, by (43),

0 ≤ V ′
1 ≤ N−α(r−2)E|ψ∗∗(X1, X j )|2‖Z ′

j‖r−2
r ≤ c∗N−α(r−2). (206)

In the last step we applied Hölder’s inequality and Lemma 8 to get

E|ψ∗∗(X1, X j )|2‖Z ′
j‖r−2

r ≤ K 2/r
r (E‖Z ′

j‖r
r )

(r−2)/r ≤ K 2/r
r K (r−2)/r ≤ c∗.

Let us show that
0 ≤ V2 ≤ c∗. (207)

For b̃(·) := Eψ(·, X1)g(X1) we have, by Cauchy–Schwartz,

‖b̃(·)‖22 = E
(
E(ψ(X , X1)g(X1)

∣∣ X)
)2 ≤ Eψ2(X , X1) σ 2 ≤ c∗σ 2.

Now the identity b∗ = σ−2 pg(b̃) implies

‖b∗‖22 ≤ σ−4‖b̃‖22 ≤ σ−2c∗. (208)

Invoking the bound Eg2(Y j ) ≤ c∗σ 2, see (47), we obtain (207).
Finally, write

V3 = q−1
N EṼ IA j , Ṽ = g(X j )ψ

∗∗(X1, X j )b
∗(X1).

123



Symmetric statistics 1219

Identity (197) implies EṼ = 0. Therefore V3 = q−1
N EṼ (IA j − 1). Invoking (43) and

using q−1
N ≤ c∗, see (45), we obtain

|V3| ≤ c∗N−α(r−4)E|Ṽ |‖Z ′
j‖r−4

r ≤ c∗N−α(r−4). (209)

In the last step we used the bound E|Ṽ |‖Z ′
j‖r−4

r ≤ c∗. In order to prove this bound
we invoke the inequalities

|abc| ≤ (ab)2 + c2 ≤ a4 + b4 + c2

to show that

|Ṽ | ≤ |g(X j )|4 + |ψ∗∗(X1, X j )|4 + |b∗(X1)|2.

Furthermore, by Hölder’s inequality and (200),

E|g(X j )|4‖Z ′
j‖r−4

r ≤ c∗, E|ψ∗∗(X1, X j )|4‖Z ′
j‖r−4

r ≤ c∗.

By the independence and (208),

E|b∗(X1)|2‖Z ′
j‖r−4

r = ‖b∗‖22E‖Z ′
j‖r−2

r ≤ c∗.

Thus we arrive at (209). Combining (205), (207) and (209) we obtain (203).
Let us prove (204). Using (198) write H2 = Q1 + Q2 + 2Q3, where

Q1 = Eψ∗∗(X1, Y j )ψ
∗∗(X1, Yi ), Q2 = ‖b∗‖22Eg(Y j )g(Yi ),

Q3 = Eψ∗∗(X1, Y j )g(Yi )b
∗(X1).

It follows from the identity (196) that

Q1 = q−2
N Eψ∗∗(X1, X j )ψ

∗∗(X1, Xi )(IA j − 1)(IAi − 1).

The simple inequality |ψ∗∗(X1, X j )ψ
∗∗(X1, Xi )| ≤ |ψ∗∗(X1, X j )|2+|ψ∗∗(X1, Xi )|2

yields, by symmetry,

|Q1| ≤ 2q−2
N E|ψ∗∗(X1, X j )|2(1 − IA j ) ≤ c∗N−α(r−2). (210)

In the last step we applied (206) and q−1
N ≤ c∗, see (44).

Furthermore, using the identity Eg(Xi ) = 0 we obtain from (43)

|Eg(Yi )| = q−1
N |Eg(Xi )(IAi − 1)|

≤ q−1
N N−α(r−1)E|g(Xi )|‖Zi‖r−1

r ≤ c∗N−α(r−1). (211)

In the last step we applied Hölder’s inequality to show E|g(Xi )|‖Zi‖r−1
r ≤ c∗.
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The bounds (211), (44) and (208) together imply

|Qk | ≤ c∗N−α(r−1), k = 2, 3. (212)

The bound (204) follows from (210) and (212).
Let us prove (202). For this purpose we shall show that

E
∥∥

∑

j∈Ok

Vj√
M

∥∥r
r ≤ c∗, where Vj = ψ(·, Y j ) − ψ(·, Y j ), (213)

and where Y j denote independent copies of Y j , j ∈ Ok . Using

E‖ψ(·, X j )‖r
r = E|ψ(X1, X j )|r ≤ c∗

we obtain, by symmetry and (47),

E‖Vj‖r
r ≤ 2rE‖ψ(·, Y j )‖r

r ≤ c∗E‖ψ(·, X j )‖r
r ≤ c∗.

Now (213) follows from the well known inequality

‖ξ1 + · · · + ξk‖r
r ≤ c(r)

k∑

i=1

E‖ξi‖r
r + c(r)

(
k∑

i=1

E‖ξi‖2r
)r/2

, k = 1, 2, . . . (214)

which is valid for independent centered random elements ξi with values in Lr . One can
derive this inequality fromHoffmann–Jorgensen’s inequality (see e.g., Proposition 6.8
in Ledoux and Talagrand [32]) using the type 2 property of the Banach space Lr and
the symmetrization lemma (see formula (9.8) and Lemma 6.3 ibidem). The proof of
the lemma is complete. ��

Before formulating and proving Lemma 10 we introduce some more notation. Let
B(Lr ) denote the class of Borel sets of Lr . Consider the regular conditional probability
Pk : R × B(Lr ) → [0, 1], defined, for zk ∈ R and B ∈ B(Lr ),

Pk(zk; B) := P
(
Uk ∈ B

∣∣gk = zk
) = E(IUk∈B |gk = zk).

Recall, see (82), that ψk denotes a Lr valued random variable with the distribution
P{ψk ∈ B} = Pk(zk; B). Note that the Lr valued random variable ψ∗

k = pg(ψk) has
distribution

P{ψ∗
k ∈ B} = P{pg(ψk) ∈ B} = P{ψk ∈ p−1

g (B)}
= P

(
Uk ∈ p−1

g (B)
∣∣gk = zk

) = P
(
U∗

k ∈ B
∣∣ gk = zk

)
. (215)

Furthermore, using (199) we write (215) in the form

P{ψ∗
k ∈ B} = P

(
U∗∗

k +
(

zk − 1

N

ξk

n1/2

)
b∗ ∈ B

∣∣∣ gk = zk

)
.
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Letψk respectivelyψ
∗
k denote an independent copy ofψk respectivelyψ∗

k . Denote

τN = M−(r−4)/2 + N−α(r−2)M .

Lemma 10 Let k = 1, . . . , n − 1. Let |zk | ≤ w n−1/2. There exist positive constants
c(i)∗ , i = 0, 1, 2, 3, which depend on w, r , ν1, ν2, δ, A∗, D∗, M∗ only such that for

τN ≤ c(0)∗ δ23, (216)

we have

c(1)∗ δ23 ≤ nE‖ψ∗
k − ψ

∗
k‖22 ≤ c(2)∗ δ23 (217)

E‖ψk − ψk‖r
r ≤ c(3)∗ n−r/2. (218)

Condition (216) requires N to be large enough. A simple calculation shows τN ≤
N−75ν , for ν satisfying (17). Therefore, (87) implies τN ≤ N−65νδ23. In particular,
under (87) the inequality (216) is satisfied provided that N > c∗, where c∗ does not
depend on δ23.

Proof By c̃∗, c̃′∗ wedenote positive constantswhich depend only onw, r , ν1, ν2, δ, A∗,
D∗, M∗. These constants can be different in different places of the text. Given i, j ∈
Ok , i �= j , introduce random variables

g∗ = η + ζ, η = ξk

R
, ζ = 1√

M

∑

j∈Ok

g(Y j ),

ζi = ζ − g(Yi )√
M

, ζi j = ζ − g(Yi )√
M

− g(Y j )√
M

.

Here R = √
n M N satisfies N/2 ≤ R ≤ N , by the choice of n and M . Let p, p0,

p1, and p2 denote the densities of random variables η, ζ + η, ζi + η, and ζi j + η

respectively.
Note that g∗ = √

N/Mgk . Therefore, the condition gk = zk is equivalent to
g∗ = z∗, where z∗ = √

N/Mzk . Furthermore, |zk | ≤ w n−1/2 ⇔ |z∗| ≤ w∗, where
w∗ = w

√
N/Mn ≤ 2w.

Given a random variable Y , we denote the conditional expectationE(Y |g∗ = z∗) =
E(Y |gk = zk) by E∗Y . For an event A, we have P(A|gk = zk) = P(A|g∗ = z∗).

Proof of (217). For the Lr valued random variable ψ̂∗ = ψ∗
k − zkb∗ we have

P{ψ̂∗ ∈ B} = P
(

U∗∗
k − 1

N

ξk

n1/2 b∗ ∈ B
∣∣∣ g∗ = z∗

)
. (219)

Note that for an independent copyψ
∗
k ofψ

∗
k the distributions ofψ∗

k −ψ
∗
k and ψ̂∗ − ψ̂∗

c

are the same. Here ψ̂∗
c denotes an independent copy of ψ̂∗. Therefore,

E‖ψ∗
k − ψ

∗
k‖22 = E‖ψ̂∗ − ψ̂∗

c ‖22 = 2E‖ψ̂∗‖22 − 2‖Eψ̂∗‖22. (220)
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In order to prove (217) we show that

‖Eψ̂∗‖22 ≤ c̃∗N−1 (221)

and, for τN ≤ c(0)∗ δ23 (i.e., for sufficiently large N ),

c̃∗δ23 ≤ nE‖ψ̂∗‖22 ≤ c̃′∗δ23 . (222)

Since N−1n < τN , we can choose c(0)∗ small enough such that the inequalities (220),
(221) and (222) together imply (217)

Proof of (221). Recall that an element m = m(·) ∈ L2(PX ) is called mean of an
L2(PX ) valued random variable ψ̂∗ = ψ̂∗(·) if for every f = f (·) ∈ L2(PX )

〈 f , m〉 = E
〈

f , ψ̂∗〉 .

We shall show below that E‖ψ̂∗‖22 < ∞. Then, by Fubini,

E
〈

f , ψ̂∗〉 =
∫

f (x)E ψ̂∗(x)PX (dx).

Therefore, m(x) = Eψ̂∗(x), for PX almost all x .
For f ∈ L2(PX ) it follows from (219) that

E
〈

f , ψ̂∗〉 = E∗
〈

f , U∗∗
k − 1

N

ξk

n1/2 b∗
〉

= E∗
〈
f , U∗∗

k

〉 −
√

M√
N

〈
f , b∗〉E∗η. (223)

Fix i ∈ Ok . By symmetry,

E∗
〈
f , U∗∗

k

〉 = M√
N
E∗

〈
f , ψ∗∗(·, Yi )

〉
. (224)

An application of (252) yields

E∗
〈
f , ψ∗∗(·, Yi )

〉 = 1

p0(z∗)
E

〈
f , ψ∗∗(·, Yi )

〉
p1

(
z∗ − g(Yi )√

M

)

= 〈
f , az∗

〉
, (225)

where

az∗(·) = bz∗(·)
p0(z∗)

, bz∗(·) = Eψ∗∗(·, Yi )p1
(
z∗ − g(Yi )√

M

)
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are non-random elements of Lr . It follows from (223), (224), (225) that

m(·) = M√
N

az∗(·) −
√

M√
N

b∗(·)E∗η.

In order to prove (221) we show that, for |z∗| ≤ w∗,

‖bz∗‖2 ≤ c∗M−1, (226)

|E∗η| ≤ c̃∗M−1/2 + c̃∗ R−1/2, (227)

pi (z∗) ≥ c̃∗, i = 0, 1, 2, (228)

and apply (208). Note that, by Lemma 7, there exist positive constants c̃∗, c̃′∗ such that,
for M, N > c̃′∗, the inequality (228) holds.

Let us prove (226). In Lemma 7 we show, for i = 1, 2, that pi and its derivatives
are bounded functions. That is,

|pi | ≤ c∗, |p′
i | ≤ c∗, |p′′

i | ≤ c∗, |p′′′
i | ≤ c∗, i = 1, 2. (229)

Expanding in powers of M−1/2g(Yi ) we obtain

p1
(
z∗ − g(Yi )√

M

) = p1(z∗) − g(Yi )√
M

p′
1(z∗) + g2(Yi )

M

p′′
1(θ)

2
. (230)

It follows from the identities (196) and (197) that for PX almost all x

Eψ∗∗(x, Yi ) = q−1
N Eψ∗∗(x, Xi )IAi

= q−1
N Eψ∗∗(x, Xi )(IAi − 1)

=: q−1
N a0(x),

Eψ∗∗(x, Yi )g(Yi ) = q−1
N Eψ∗∗(x, Xi )g(Xi )IAi

= q−1
N Eψ∗∗(x, Xi )g(Xi )(IAi − 1)

=: q−1
N a1(x).

Using (229) and the inequality q−1
N ≤ c∗, see (44), we obtain from (230)

‖bz∗(·)‖2 ≤ c∗‖a0(·)‖2 + c∗√
M

‖a1(·)‖2 + c∗
M

‖a2(·)‖2,

where we denote a2(·) = Eψ∗∗(·, Yi )g2(Yi ). In order to prove (226) we show that

‖a0(·)‖2 ≤ c∗
Nα(r−1)

, ‖a1(·)‖2 ≤ c∗
Nα(r−2)

, ‖a2(·)‖2 ≤ c∗. (231)
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1224 M. Bloznelis, F. Götze

Let us prove (231). Invoking (43) we obtain, by Hölder’s inequality,

|a0(x)| ≤ E|ψ∗∗(x, Xi )| ‖Z ′
i‖r−1

r

Nα(r−1)
≤ w1/r (x)

K (r−1)/r

Nα(r−1)
, (232)

where we denote w(x) = E|ψ∗∗(x, Xi )|r . Furthermore, by Lyapunov’s inequality,

‖w1/r (·)‖22 = Ew2/r (X) ≤ (
Ew(X)

)2/r = K 2/r
r . (233)

Clearly, the first bound of (231) follows from (232), (233) and (200). A similar argu-
ment shows the second bound of (231). We have

|a1(x)| ≤ E|ψ∗∗(x, Xi )g(Xi )| ‖Z ′
i‖r−2

r

Nα(r−2)
≤ w1/r (x)

V (r−1)/r

Nα(r−2)
, (234)

where we denote V = E
(‖Z ′

i‖r−2
r |g(Xi )|

)r/(r−1). By Hölder’s inequality,

V ≤ (
E|g(Xi )|r

)1/(r−1)(E‖Z ′
i‖r

r

)(r−2)/(r−1) ≤ c∗. (235)

Clearly, (233), (234) and (235) imply the second bound of (231). The last bound of
(231) follows from (47), by Cauchy-Shwartz. Indeed, we have

|a2(x)| ≤ c∗E|ψ∗∗(x, Xi )|g2(Xi ) ≤ c∗
(
E|ψ∗∗(x, Xi )|2Eg4(Xi )

)1/2
.

Therefore, ‖a2(·)‖22 ≤ c∗K2Eg4(Xi ) ≤ c∗, by (200).
Let us prove (227). We have, by (251),

E∗η = p−1
0 (z∗)E(z∗ − ζ )p(z∗ − ζ ).

In order to prove (227) it suffices to show in view of (228) that

|E(z∗ − ζ )p(z∗ − ζ )| ≤ c∗ R−1/2 + c∗M−1/2. (236)

Let p̃ denote the density function of ξk . Then p(u) = R p̃(R u). We have

E(z∗ − ζ )p(z∗ − ζ ) = 6cξE
sin6(R(z∗ − ζ )/6)
(
R (z∗ − ζ )/6

)5 .

Therefore, denoting H(z∗) = 1 + |R (z∗ − ζ )|5, we obtain

E|(z∗ − ζ )p(z∗ − ζ )| ≤ cEH−1(z∗). (237)

On the event |ζ − z∗| ≥ R−1/2 we have H−1(z∗) ≤ R−5/2. Furthermore, a bound for
the probability of the complementary event

P{|ζ − z∗| ≤ R−1/2} ≤ c∗ R−1/2 + c∗M−1/2,
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follows by the Berry–Esseen bound applied to the sum ζ . Therefore, EH−1(z∗) is
bounded by the right side of (236). Now (236) follows from (237).

Proof of (222). Write

U∗∗
k − 1

N

ξk√
n

b∗ =
√

M√
N

(T1 − T2),

T1 := 1√
M

∑

j∈Ok

ψ∗∗(·, Y j ), T2 := ηb∗.

It follows from (219), by the inequality ‖u+v‖22 ≥ ‖u‖22/2−‖v‖22, for u, v ∈ L2(PX ),
that

E‖ψ̂∗‖22 = M

N
E∗‖T1 − T2‖22 ≥ M

2N
E∗‖T1‖22 − M

N
E∗‖T2‖22.

We shall show that

E∗‖T2‖22 ≤ p−1
0 (z∗)

(
c∗ R−1M−1/2 + c∗ R−3/2), (238)

E∗‖T1‖22 ≥ p−1
0 (z∗)

(
p1(z∗)δ23 − c∗τN

)
, (239)

E∗‖T1‖22 ≤ p−1
0 (z∗)

(
p1(z∗)δ23 + c∗τN

)
. (240)

The inequalities (238) and (239) imply the lower bound in (222). Indeed, by (228),
we have, for small c(0)∗ ,

c∗
M1/2R

+ c∗
R3/2 ≤ c∗τN ≤ c∗c(0)∗ δ23 ≤ p1(z∗)δ23/4.

Similarly, the inequalities (238) and (240) imply the upper bound in (222).
Proof of (238). We have, by (251),

E∗η2 = p−1
0 (z∗)W , W := E(z∗ − ζ )2 p(z∗ − ζ ).

Proceeding as in proof of (236), we obtain

W = 36

R
cξE

sin6(R(z∗ − ζ )/6)

(R(z∗ − ζ )/6)4
≤ c

R
EH̃−1(z∗),

where H̃(z∗) = 1 + |R(z∗ − ζ )|4 satisfies

EH̃−1(z∗) ≤ c∗ R−1/2 + c∗M−1/2.

Therefore, W ≤ c∗ R−3/2 + c∗ R−1M−1/2. This inequality in combination with (208)
implies (238).
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Proof of (239). Fix i, j ∈ Ok , i �= j . By symmetry,

E∗‖T1‖22 = E∗T11 + (M − 1)E∗T12,

T11 = ‖ψ∗∗(·, Yi )‖22, T12 = 〈
ψ∗∗(·, Yi ), ψ∗∗(·, Y j )

〉
. (241)

We have, by (252),

E∗T11 = p−1
0 (z∗)H1, E∗T12 = p−1

0 (z∗)H2,

H1 = ET11 p1
(
z∗ − g(Yi )√

M

)
, H2 = ET12 p2

(
z∗ − g(Yi ) + g(Y j )√

M

)
.

The inequality (239) follows from (241) and the bounds

H1 ≥ p1(z∗)δ23 − c∗M−1/2, (242)

|H2| ≤ c∗N−α(r−2) + c∗M−(r−2)/2. (243)

Let us prove (242). It follows from (229), by the mean value theorem, that

H1 = p1(z∗)ET11 + Q, |Q| ≤ c∗ET11
|g(Yi )|√

M
, (244)

where |Q| ≤ c∗M−1/2. Indeed, by (47) and Cauchy–Schwartz,

ET11|g(Yi )| ≤ E‖ψ∗∗(·, Xi )‖22|g(Xi )| ≤ K 1/2
4 σ ≤ c∗.

In the last step we applied (200). Furthermore, the identity

ET11 = q−1
N E|ψ∗∗(X , Xi )|2IAi = E|ψ∗∗(X , Xi )|2 − b1 − b2,

b1 = (1 − q−1
N )E|ψ∗∗(X , Xi )|2, b2 = q−1

N E|ψ∗∗(X , Xi )|2(1 − IAi )

combined with (43), (44) and (45) yields ET11 ≥ δ23 − c∗M−1/2. This bound together
with (244) shows (242).

Let us prove (243). Write yi = g(Yi ) and expand

p2
(
z∗ − yi + y j√

M

) = p2(z∗) − p′
2(z∗)

yi + y j√
M

+ p′′
2(z∗)
2

(yi + y j )
2

M
+ Q̃,

where Q̃ denotes the remainder term. From (229) it follows, for 2 < r − 2 ≤ 3 that

|Q̃| ≤ c∗|yi + y j |r−2/M (r−2)/2.
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Furthermore, denote

h1 = ET12, h2 = ET12g(Yi ),

h3 = ET12g2(Yi ), h4 = ET12g(Yi )g(Y j ).

We obtain, by symmetry,

H2 = p2(z∗)h1 − 2
p′
2(z∗)√

M
h2 + p′′

2(z∗)
M

(h3 + h4) + ET12 Q̃,

E|T12 Q̃| ≤ c∗M−(r−2)/2E|g(Yi )|r−2|T12|. (245)

Denote

T̃12 = q−2
N ψ∗∗(X , Xi )ψ

∗∗(X , X j ).

It follows from (45), by Hölders inequality and (200), that

E|g(Yi )|r−2|T12| ≤ E|g(Xi )|r−2|T̃12| ≤ c∗.

Therefore,
E|T12 Q̃| ≤ c∗M−(r−2)/2. (246)

Furthermore, (196) and (197) imply

h1 = ET̃12(IAi − 1)(IA j − 1), h2 = ET̃12g(Xi )(IAi − 1)(IA j − 1),

h3 = ET̃12g2(Xi )IAi (IA j − 1), h4 = ET̃12g(Xi )g(X j )(IAi − 1)(IA j − 1).

Invoking the inequalities q−2
N ≤ c∗, see (44), and 1 − IAi ≤ V s

i , s > 0, where
Vi := ‖Z ′

i‖r/Nα , see (43), we obtain, by Hölder’s inequality,

|h1| ≤ E|T̃12|(Vi Vj )
(r−2)/2 ≤ c∗N−α(r−2),

|h2| ≤ E|T̃12g(Xi )|V (r−4)/2
i V (r−2)/2

j ≤ c∗N−α(r−3),

|h3| ≤ E|T̃12|g2(Xi )V r−4
j ≤ c∗N−α(r−4),

|h4| ≤ E|T̃12g(Xi )g(X j )|(Vi Vj )
(r−4)/2 ≤ c∗N−α(r−4). (247)

Combining (245), (247), (246) and using the simple inequalities

1

Nα(r−3)M1/2
≤ 1

Ñ
,

1

Nα(r−4)M
≤ 1

Ñ
, Ñ = min{Nα(r−2), M (r−2)/2}

and the inequalities (229), we obtain (243).
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Proof of (240). The inequality follows from (241), (243) and the inequality

H1 ≤ p1(z∗)ET11 + c∗M−1/2 ≤ p1(z∗)δ23 + c∗N−αr + c∗M−1/2

≤ p1(z∗)δ23 + c∗M−1/2,

which is obtained in the same way as (242) above.
Proof of (218). In order to prove (218) we shall show that

E‖ψk‖r
r ≤ c̃∗n−r/2. (248)

Split Ok = B ∪ D, where B ∩ D = ∅ and |B| = [M/2] and write

Uk =
√

M√
N

(UB + UD), UB = 1√
M

∑

j∈B

ψ(·, Y j ),

ζ = ζB + ζD, ζB = 1√
M

∑

j∈B

g(Y j ).

In particular, we have g∗ = η + ζB + ζD .
The inequality

E‖ψk‖r
r = E∗‖Uk‖r

r ≤ 2r
( M

N

)r/2(
E∗‖UB‖r

r + E∗‖UD‖r
r

)

combined with the bounds

E∗‖UB‖r
r ≤ c∗, E∗‖UD‖r

r ≤ c∗ (249)

imply (248). Let us prove the first bound of (249). By (252), we have

E∗‖UB‖r
r = p−1

0 (z∗)E‖UB‖r
r p3(z∗ − ζB),

where p3 denotes the density of η + ζD . Furthermore, invoking the bound
supx∈R |p3(x)| ≤ c∗, (which is obtained using the same argument as in the proof
of Lemma 7) and the inequality (228), we obtain E∗‖UB‖r

r ≤ c̃∗E‖UB‖r
r . Finally,

invoking the bound

E‖UB‖r
r ≤ c∗E‖ 1√

M

∑

j∈B

ψ(·, X j )‖r
r ≤ c∗, (250)

see (47) and (214), we obtain the first bound of (249). The second bound is obtained
in the same way. This completes the proof of the lemma. ��

We collect some facts about conditional moments in a separate lemma.
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Lemma 11 Let η and ζ be independent random variables. Assume that η is real valued
and has a density, say x → p(x).
(i) Assume that ζ is real valued. Then the function

x → Ep(x − ζ ), x ∈ R,

is a density of the distribution Pη+ζ of η+ζ . Let w : R → R be a measurable function
such that E|w(η)| < ∞. For Pη+ζ almost all x ∈ R, we have

E
(
w(η)

∣∣ η + ζ = x
) = Ew(x − ζ )p(x − ζ )

Ep(x − ζ )
. (251)

(ii) Assume that ζ takes values in a measurable space, say Y . Assume that u, v :
Y → R are measurable functions and denote Pη+u(ζ ) the distribution of η + u(ζ ). If
E|v(ζ )| < ∞, then for Pη+u(ζ ) almost all x ∈ R,

E
(
v(ζ )

∣∣ η + u(ζ ) = x
) = Ev(ζ )p

(
x − u(ζ )

)

Ep
(
x − u(ζ )

) . (252)

9 Appendix 4

In the next lemmawe consider independent and identically distributed random vectors
(ξ, η) and (ξ ′, η′)with values inR

2 and the symmetrization (ξs, ηs)where ξs = ξ −ξ ′
and ηs = η − η′. Note that in the main text we apply this lemma to ξ = g(X1) and
η = N−1/2 ∑N

j=m+1 ψ(X1, Y j ).

Lemma 12 Let 0 < ν < 1/2 and r > 2. Assume that E|ξ |r + E|η|r < ∞. The
following statements hold.
(a) For cr = (7/12)2−r the conditions

|t |r−2E|ξs |r ≤ crEξ2s , Eξsηs = 0, E|ηs |r ≤ crEη2s

imply 1 − |E exp{i(tξ + η)}|2 ≥ 6−1(t2Eξ2s + Eη2s ).
(b) Assume that for some c̃1, c̃2 > 0 we have

Eξ2s /12 − N−1Eη2s > c̃21 and crEξ2s /E|ξs |r ≥ c̃r−2
2 . (253)

Let ε > 0 be such that

ε < 1/6c̃3, ε(r−2)/2 < σ 2
z /4A, εr−2 < σ 2

z /4B, (254)

where c̃3 = 2 + (5/c̃1)2σ 2
z and where the numbers A, B are defined in (265). Here

σ 2
z = E(ξs + N−1/2ηs)

2. Assume that for some 0 < δ < c̃2 and δ′ > 10ε2,

sup
δ<|t |<N−ν+1/2

|Eeitξs | ≤ 1 − δ′ and E|ηs | ≤ δ′N ν/2. (255)
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Then for every T ∗, satisfying N 1/2−ν ≤ |T ∗| ≤ N ν+1/2, the set

I ∗ = {
T ∗ ≤ t ≤ T ∗ + N 1/2−ν : |Eeit(ξ+N−1/2η)|2 ≥ 1 − ε2

}

is an interval of size at most 5c̃−1
1 ε.

Proof Proof of (a). Invoking the inequality 1−cos x ≥ x2/2− x2/24−|x |r and using
the simple inequality |a + b|r ≤ 2r−1(|a|r + |b|r ) we obtain

1 − |E exp{i(tξ + η)}|2 = 1 − E cos(tξs + ηs)

≥ 11

24
E(tξs + ηs)

2 − 2r−1(E|tξs |r + E|ηs |r )
≥ 6−1(t2Eξ2s + Eη2s ).

In the last step we use the conditions a).
Proof of (b). Introduce the function t → τ ∗

t = 1 − |Eeit(ξ+N−1/2η)|2. Assume that
the set I ∗ is non-empty and choose s, t ∈ I ∗, i.e., we have τ ∗

t , τ ∗
s ≤ ε2. Firstly we

show that |s − t | ≤ 5c̃−1
1 ε, thus proving the bound for the size of the set I ∗.

The inequality 1 − cos(x + y) ≥ (1 − cos x)/2 − (1 − cos y) implies

1 − |Eei(X+Y )|2 ≥ 2−1(1 − |Eei X |2) − (1 − |EeiY |2), (256)

for arbitrary random variables X , Y . Choosing Ỹ = t(ξ + N−1/2η) and X̃ = (s −
t)(ξ + N−1/2η) shows

τ ∗
s ≥ (1 − |Eei X̃ |2)/2 − τ ∗

t . (257)

Now we show that the inequality |t − s| > 5c̃−1
1 ε implies 1 − |Eei X̃ |2 > 5ε2, thus,

contradicting to our choice τ ∗
s , τ ∗

t < ε2 and (257). In what follows the cases of “large”
and “small” values of |t − s| are treated separately.

For 5c̃−1
1 ε < |t − s| ≤ δ we shall apply (256) to X̃ = X + Y , where X = (s − t)ξ

and Y = (s − t)N−1/2η. Note that the statement a) implies

1 − |Eei X |2 ≥ (t − s)2Eξ2s /6. (258)

Indeed, in view of the second inequality of (253), the conditions of a) are satisfied for
|t − s| ≤ δ ≤ c̃2. Furthermore, we have

0 ≤ 1 − |EeiY |2 = 1 − cos
(
N−1/2(s − t)ηs

) ≤ (s − t)2N−1Eη2s . (259)

Invoking the bounds (258) and (259) in (256) we obtain

1 − |Eei X̃ |2 ≥ (s − t)2Eξ2s /12 − (s − t)2N−1Eη2s ≥ c̃21(s − t)2 ≥ 25ε2.

In the last step we used (253).
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For δ < |t − s| ≤ N−ν+1/2 we expand in powers of a = i(s − t)N−1/2ηs to get

1 − |Eei X̃ |2 = 1 − E exp{i(s − t)ξs + a} ≥ 1 − E exp{i(s − t)ξs} − E|a|
≥ δ′ − E|(t − s)N−1/2ηs | ≥ δ′ − N−νE|ηs |
≥ δ′/2 ≥ 5ε2.

In the last step we applied (255).
Let us prove that I ∗ is indeed an interval. Assume the contrary, i.e. there exist

s < u < t such that s, t ∈ I ∗ and u /∈ I ∗. In particular, τ ∗
t ≤ ε2 < τ ∗

u . Clearly, we can
choose u to be a local maximum (stationary) point of the function t → τ ∗

t . Denote

z = ξs + N−1/2ηs, σ 2
z = Ez2.

An application of (256) to Y ′ = (t − u)(ξ + N−1/2η) and X ′ = u(ξ + N−1/2η) gives

τ ∗
t ≥ τ ∗

u /2 − (
1 − Eei(t−u)z) = τ ∗

u /2 − (
1 − E cos(t − u)z

)
.

Invoking the inequalities τ ∗
t ≤ ε2 and 1 − cos(t − u)z ≤ (t − u)2z2/2 we obtain

τ ∗
u ≤ 2ε2 + (t − u)2σ 2

z ≤ ε2c̃3, c̃3 = 2 + (5/c̃1)
2σ 2

z . (260)

Here we used the bound |t − u| ≤ |t − s| ≤ 5ε/c̃1 proved above.
Denoting y = (t − u)z we have τ ∗

t = 1 − Eeiuzeiy . Invoking the expansion
eiy = 1 + iy + (iy)2/2 + R′, where |R′| ≤ y2/6 + |y|r , we obtain

τ ∗
t = τ ∗

u − iEyeiuz + 2−1Ey2eiuz + R, |R| ≤ Ey2/6 + E|y|r =: R0. (261)

For a stationary point u we have 0 = ∂
∂t τ

∗
t

∣∣
t=u= −iEzeiuz . Therefore, Eyeiuz = 0

and (261) implies

τ ∗
t ≥ τ ∗

u + 2−1(t − u)2Ez2eiuz − R0.

Write the right hand side in the form τ ∗
u + 2−1(t − u)2R1, where

R1 = Ez2eiuz − 3−1σ 2
z − 2E|z|r |t − u|r−2.

Note that the inequality R1 > 0 contradicts to our assumption τ ∗
t < τ ∗

u . We complete
the proof by showing that R1 > 0.

Since the random variable z is symmetric we have Ez2 sin uz = 0. Therefore,

Ez2eiuz = Ez2 cos uz = σ 2
z − Ez2(1 − cos uz). (262)
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Given λ > 0 split

Ez2(1 − cos uz) = Ez2(1 − cos uz)
(
I{z2<λ2} + I{z2≥λ2}

)

≤ λ2E(1 − cos uz) + 2E|z|rλ2−r . (263)

In the last step we used Chebyshev’s inequality. Furthermore, invoking the inequality
E(1−cos uz) = τ ∗

u ≤ c̃3ε2, see (260), we obtain from (262) and (263) for λ2 = ε−1σ 2
z

Ez2eiuz ≥ σ 2
z − εc̃3σ

2
z − ε(r−2)/22E|z|rσ 2−r

z . (264)

Finally, invoking the inequality |t − u| ≤ |t − s| ≤ 5c̃−1
1 ε we obtain from (264)

R1 ≥ σ 2
z (1 − 3−1 − εc̃3) − ε(r−2)/2A − εr−2B,

where for random variable z = ξs + N−1/2ηs we write

A = 2E|z|rσ 2−r
z and B = 2E|z|r (5/c̃1)

r−2. (265)

Thus, for ε satisfying (254) we have R1 > 0. ��

10 Appendix 5

Let Z1, . . . , Z N be independent copies of the Lr valued random element Z = {x →
ψ(x, Y )}. Recall that almost surely ‖Z‖ ≤ Nα . Here ‖ · ‖ denotes the norm of the
Banach space Lr , where r > 4 and 1/2 > α > 0. Write Mp = E|ψ(X1, X2)|p.

Lemma 13 (i) Assume that ‖EZ‖2 ≤ E‖Z‖2/N. Then there exists a constant c(r) >

0 such that for k ≤ N and x > c(r) we have

P{‖Z1 + · · · + Zk‖ > k1/2u x} ≤ exp{−2−5x2(1 + x Nα/k1/2u)−1}. (266)

Here u2 = E‖Z‖2.
(ii) The following inequalities hold

‖EZ‖ ≤ Mr/qN N (r−1)α, (267)

q−1
N (M2 − Mr N−(r−2)α) ≤ E‖Z‖2 ≤ q−1

N (M2/r
r + Mr N−(r−2)α). (268)

Remark. Assume that

M2 ≥ 2Mr N−(r−2)α, M2
r ≤ (qN /2)M2Nκ, where κ = 2(r − 1)α − 1.

Then (267) and (268) imply the inequality ‖EZ‖2 ≤ E‖Z‖2/N . Note that rα > 2
implies κ > 2. Furthermore, by (44), the probability qN > 1 − Mr N−rα .
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Proof We derive (i) from Yurinskii’s [36] inequality. Denote ζk = Z1 + · · · + Zk .
Using the type−2 inequality for an Lr valued random variable ζk − Eζk ,

E‖ζk − Eζk‖2 ≤ kc̃(r)E‖Z1 − EZ1‖2,

and the inequality ‖Z1 − EZ1‖2 ≤ 2‖Z1‖2 + 2‖EZ1‖2, we obtain

E‖ζk − Eζk‖ ≤ (
E‖ζk − Eζk‖2

)1/2 ≤ k1/2c′(r)(u + ‖EZ1‖).

We have

E‖ζk‖ ≤ E‖ζk − Eζk‖ + k‖EZ1‖
≤ c′(r)k1/2u + k(1 + c′(r)k−1/2)‖EZ1‖ =: βk .

It follows from the inequality ‖Z1‖ ≤ Nα that

E‖Z1‖L ≤ 2−1L!u2Nα(L−2), L = 2, 3, . . . .

Write B2
k = ku2. Theorem 2.1 of Yurinskii [36] shows

P{‖ζk‖ ≥ x Bk} ≤ exp{−B}, B = x2

8
(1 + (x Nα/2Bk))

−1, (269)

provided that x = x − βk/Bk > 0.
Since βk/Bk ≤ 1 + c′(r)(1 + k−1/2) we have, for x > c(r) := 4c′(r) + 2,

x > 2βk/Bk and x > x > x/2.

The latter inequality implies

B ≥ B ′ := (x/2)2

8
(1 + (x Nα/Bk))

−1.

Finally, replacing B by B ′ in (269) we obtain (266).
Let us prove (ii). The mean value EZ = {x → Eψ(x, Y )} is an element of Lr . For

PX almost all x ∈ X we have Eψ(x, X) = 0. Therefore,

EZ = q−1
N Eψ(x, X)IA = q−1

N Eψ(x, X)(IA − 1).

Invoking (43) and using Chebyshev and Hölder inequalities, we obtain, for PX almost
all x ,

|EZ | ≤ 1

qN Nα(r−1)
E‖Z ′‖r−1

r |ψ(x, X)| ≤ 1

qN Nα(r−1)
(E‖Z ′‖r

r )
(r−1)/r a(x),
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where a(x) = (E|ψ(x, X)|r )1/r . Note that E‖Z ′‖r
r = Mr and ‖a‖r = Mr . Finally,

‖EZ‖ ≤ ‖a‖M (r−1)/r
r /qN Nα(r−1) = Mr/qN Nα(r−1).

Let us prove (268). Denote bp(x) = (EX1 |ψ(X1, x)|p)1/p. Here EX1 denotes the
conditional expectation given all the random variables, but X1. We have

E‖Z‖2 = q−1
N EIAb2r (X) = q−1

N Eb2r (X) + q−1
N R, R = E(IA − 1)b2r (X). (270)

By Hölder’s inequality br (x) ≥ b2(x), for PX almost all x . Therefore,

M2 = Eb22(X) ≤ Eb2r (X) ≤ M2/r
r . (271)

Combining (271) and (270) and the bound |R| ≤ Mr N−(r−2)α we obtain (268). In
order to bound |R| we use (43), |R| ≤ N−(r−2)αE‖Z ′‖r−2

r b2r (X), and apply Hölder’s
inequality,

E‖Z ′‖r−2
r b2r (X) ≤ (E‖Z ′‖r

r )
(r−2)/r (Ebr

r (X))2/r = Mr .

The lemma is proved. ��
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