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Abstract

We study the distribution of a general class of asymptotically linear statistics which
are symmetric functions of N independent observations. The distribution functions
of these statistics are approximated by an Edgeworth expansion with a remainder
of order o(N~1). The Edgeworth expansion is based on Hoeffding’s decomposition
which provides a stochastic expansion into a linear part, a quadratic part as well as
smaller higher order parts. The validity of this Edgeworth expansion is proved under
Cramér’s condition on the linear part, moment assumptions for all parts of the statistic
and an optimal dimensionality requirement for the non linear part.
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1 Introduction and results
1.1 Introduction

Let X, X1, X5, ..., Xy be independent and identically distributed random variables
taking values in a measurable space (X, ). Let Px denotes the distribution of X
on (X, B). We assume that T(X1, ..., Xy) is a symmetric function of its arguments
(symmetric statistic, for short). Furthermore, we assume that the moments ET and
a% := VarT are finite. A function of observations X1, ..., Xy is called linear statis-
tic if it can be represented by a sum of functions depending on a single observation
only. Many important statistics are non linear, but can be approximated by a linear
statistic. We call these statistics asymptotically linear. The central limit theorem and
the normal approximation with rate O (N ~'/2) extend to the class of asymptotically
linear statistics as well. Our approach in studying the distribution of this class of
statistics in the statistically relevant case of asymptotic normal T is based on Hoeffd-
ing’s decomposition of T, see Hoeffding [31], Efron and Stein [21] and van Zwet
[37]. Hoeffding’s decomposition expands T into the series of centered and mutually
uncorrelated U -statistics of increasing order

1 1
T:ET+W Z g(Xi)‘FW Z I/f(xi,Xj)

l<i<N l<icj<N
1
+ N3/2 Z xXi, Xj, Xi)+ ...
1<i<j<k<N

Let L, O and K denote the first, the second and the third sum. We call L the linear part,
Q the quadratic part and K the cubic part of the decomposition. We shall consider a
general situation where the kernel T = T™), the space (X, B) = (XY™N), BN)) and
the distribution Py = P)((N) all depend on N as N — oo. In order to keep the notation
simple we drop the subscript N in what follows. An improvement over the normal
approximation is obtained by using Edgeworth expansions for the distribution function
F(x) = P{T — ET < orx}. For this purpose we write Hoeffding’s decomposition in
the form

T-ET=L+Q+K+R, (1)

where R denotes the remainder. For a number of important examples of asymptotically
linear statistics we have R /o1 = op (N ') (in probability) as N — o0o. Therefore, the
U -statistic o ! (L + Q+ K) can be viewed as a stochastic expansion of (T —ET) /o
up to the order op (N ~1).

Furthermore, a so-called Edgeworth expansion of o YL + Q + K) can be used
to approximate [F(x) by a smooth distribution function G (x) as defined in (2) below
depending on N and moments of T. A two term Edgeworth expansion of the distribu-
tion function of o "L+ 0 + K) is given by
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Here @ respectively @’ denote the standard normal distribution function and its deriva-
tive. Furthermore, we introduce o2 = Egz(X 1) and

=0 (Bg (X)) + 3B (XD (XY (X1, X)),

ke =04 (Eg* (X)) = 30 + 12Eg(X)g(X2)¥ (X1, X2)
+ 12Eg(X1)g(X2)¥ (X1, X3)¥ (X2, X3)
+4Eg(X)g(X2)g(X3)x (X1, X2, X))

Our main result, Theorem 1 below, establishes a bound o (N -1 ) for the Kolmogorov
distance between [F(x) and G (x):

A = sup [F(x) — G(x)| = o(N"). A3)

xeR

Valid expansions of this type were shown by Cramér [19] for sums of independent
random variables X ; and later on for the Student statistic (which is of type (1)) by Kai-
Lai Chung [18]. A new impetus for studying higher order approximations in statistic
was given by the fundamental paper of Hodges and Lehmann on deficiency [30], where
they compared the power of two tests based on N and N’ observations respectively
and where N/ — N = o(N) as N — oo. They suggested a program of comparisons
of the power of tests, estimators and confidence regions based on classical parametric
and non parametric symmetric statistics e.g. using ranks and ordered samples. They
noted that this would require going beyond Gaussian limit theorems to asymptotic
expansions to order N ~!. For more details on the statistical relevance and the related
development of asymptotic methods we refer to the review paper in memory of Willem
van Zwet [12].

Now we discuss the principal contribution of this paper: the minimal smootness and
structural conditions under which approximation (3) holds. Let us emphasize that any
IF satisfying (3) cannot have fluctuations/increments of order @ (N ~!) in the intervals
of size o(N~1) because G is a differentiable function with all derivatives bounded.
We focus on the conditions that guarrantee the necessary level of smoothness of the
distribution of T. In the case of linear statistic T = ET + L the necessary smoothness
of IF is ensured by the classical Cramer condition

lim sup |[Eexp{itg(X1)}| < 1. )

|t| =00

This condition excludes, in particular, lattice distributions, for which approximation
(3) obviously fails. We note that condition (C) can be weakened to cover some special

@ Springer



1156 M. Bloznelis, F. Gotze

classes of discrete distribution which are sufficiently non-lattice distributed, see e.g.
Bickel and Robinson [13], Angst and Poly [1] or Bobkov [14] for almost sure choices
of such non-lattice discrete distributions.

Since the class of symmetric statistic should include the case of linear statistics we
require a Cramér type condition but on the linear part of the statistic only, see (7). Inter-
estingly, this condition together with appropriate moment conditions on various parts
of the decomposition (1) guarantees already an approximation error A = O(N~!)
for general symmetric statistics (see [4]). But (7) is not sufficient for the desired error
bound o(N _1) even for U statistics of degree two, see Example 1 below. The reason
why (7) alone is not sufficient for the approximation accuracy A = o(N~!) is due
to the potential occurrence of a very special relation between the linear and quadratic
parts L and Q that fosters an approximate lattice structure as shown in Example 1.
Namely, the quadratic part of the U statistic in Example 1 has a factorizable kernel
of the form vy, (X1, X2) = h(X1)g(X2)+g(X1)h(X2), h—measurable. The following
structural condition (4) (introduced in the unpublished manuscript by Gétze and van
Zwet [25]) avoids such counterexamples by separating (in L? distance) the random
variable (X1, X») from any random variable of the form ¥, (X1, X2). Note that the
L? distance E(y (X1, X») — ¥4 (X1, X2))? is minimized by A (x) = b(x), where

b(x) = o ZE(¥ (X1, X2)g(X2)|X1 = x) — (k/20)g(x).

Herex = Evyr (X1, X2)g(X1)g(X>). Therefore, we will assume that, for some absolute
constant 8y > 0, we have

2
E(v(X1, X2) = (b(XDg(X2) + b(X2)g (X)) = 8202, )

The main contribution of the present paper consist of a proof that condition (4) will
indeed ensure the desired bound A = o(N~!). The proof is based on a careful inves-
tigation of the size distribution for |f| > N~V of the absolute values of conditional
Fourier transforms of symmetric statistics that is the landscape of its maxima when
imposing Cramer’s condition (7) and the structural condition (4). Here new methods
are used for studying this landscape in the frequency ¢ as well in the random func-
tion representing the conditioning. For the latter variable a combinatorial argument
of Kleitman on symmetric partitions for the Littlewood—Offord problem in Banach
spaces (see [15]) is used.

A short outline of the approach is given at the beginning of Sect. 2, where we focus
on the use of condition (4).

1.2 Results
Let us state our main result Theorem 1.

Moment conditions We will assume that, for some absolute constants 0 < A, < 1 and
M, > 0 and numbers r > 4 and s > 2, we have
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Eg’ (X)) > Ao?, Elg(X))|" < MyoF,
E[Y (X1, X2)|" < My, Elx(X1, X2, X3)|* < Myod. )

These moment conditions refer to the linear, quadratic and cubic part of T. In order
to control the remainder R of the approximation (1) we use moments of differences
introduced in Bentkus, Gotze and van Zwet [4], see also van Zwet [37]. Define, for
1<i<N,

D,’TZ T—E,’T, EiT = E(T|X1,...,X,‘_1,Xi+1,...,XN).

A subsequent application of difference operations D;, Dj, ..., (the indices i, j, ...,
are all distinct) produce higher order differences, like

D,'Dj']r = D,'(DQ/T) =T-ET- E,-’JI‘ +EiEJ'T.

Form = 1,2, 3,4 write A2 = E|N"~'2DD, ... D,,T|.
We will assume that for some absolute constant D, > 0 and number v; € (0, 1/2)
we have
AX/o} < N'=1D, (©6)

For a number of important examples of asymptotically linear statistics the moments
A,zn are evaluated or estimated in [4]. Typically we have A,zn / 012- = O(1) for some m.
Therefore, assuming that (6) holds uniformly in N as N — oo, we obtain from the
inequality ER? < N3 A7, see (167) (see “Appendix”), that R/op = Op(N~'7"1).
Furthermore, assuming that (5), (6) hold uniformly in N as N — oo, we obtain from
(167), (166), see “Appendix”, that 02 /o2 = (1 — O(N~1)).

Cramér type smoothness condition We introduce the function

pla,b) =1—sup{|Eexplitg(X1)/o}|: a < |t| < b}

and assume that, for some § > 0 and v, > 0, we have

p(By ! N2y > 5. )
Here 3 = 0 E|g(X1)|>. Define v = 600~ min{vy, vo, s — 2, r — 4.
Theorem 1 Assume that for some absolute constants Ay, My, Dy > 0 and numbers
r>4,5s > 2, v, > 0and 8,8, > 0, the conditions (5), (6), (7), (4) hold. Then
there exists a constant Cy > 0 depending only on Ay, My, Dy, 1, s, v1, V2, 8, 84 such
that

A< CNTV(1487INTY).

Remark 1 The value of v = 600! min{vy, v2, s — 2, r — 4} is far from being optimal.

Furthermore, the moment conditions (5) and (6) are not the weakest possible that would
ensure the approximation of order o(N —1). The condition (5) can likely be reduced
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to the moment conditions that are necessary to define Edgeworth expansion terms «3
and x4, similarly, (6) can be reduced to Aﬁ /cr% = o(N~1). No effort was made to
obtain the result under the optimal conditions. This would increase the complexity of
the proof which is already rather involved.

Remark 2 Condition (4) can be relaxed. Assume that for some absolute constant G ,
we have

2
E( (X1, X2) = (b(X)g(X2) + b(X2)g(X1)) 2 N 2Good. )

The bound of Theorem 1 holds if we replace (4) by this weaker condition. In this
case we have A < CyN —1=v_ Wwhere the constant C, depends on Ay, Dy, Gy,
M*7r7S1 vls ‘)278'

In the particular case of U statistics of degree three (the case where R = 0 in (1))
the proof of Theorem 1 has been outlined in the unpublished manuscript by Gotze and
van Zwet [25]. We provide a complete and more readable version of the arguments
sketched in that preprint and extend them to a general class of symmetric statistics. In
the same paper [25], see as well [4], it was shown that moment conditions (like (5), (6))
together with Cramér’s condition (like (7)) do not suffice for the bound A = o(N -y,
For convenience we state this result in Example 1 below.

Example 1 Let X, X5, ... be independent random variables uniformly distributed
on the interval (—1/2, 1/2). Define Ty = (Wxy + N~12Vy)(1 — N~1/2Vy), where
Vy = N~1/2 Z{Nl/sz} and Wy = N1 Z[Nl/sz]. Here [x] denotes the nearest
integer to x and {x} = x — [x].

Assume that N = m?2, where m is odd. We have, by the local limit theorem,
P(Wy=1}>cN™' and P{Vy| <8 >c5, 0<8<I,

where ¢ > 0 is an absolute constant. From these inequalities it follows by the inde-
pendence of Wy and Vy, that P{1 — §>N~! < Ty < 1} > 2SN,

The example defines a sequence of U-statistics Ty whose distribution functions
Fy have O(N~!) sized increments in a particular interval of length o(N~'). These
fluctuations of magnitude O(N~') appear as a result of a nearly lattice structure
induced by the interplay between the (smooth) linear part and the quadratic part.

1.3 Earlier work

There is a rich literature devoted to normal approximation and Edgeworth expansions
for various classes of asymptotically linear statistics (see e.g. Babu and Bai [2], Bai
and Rao [3], Bentkus, Gotze and van Zwet [4], Bhattacharya and Ghosh [8, 9], Bhat-
tacharya and Rao [7], Bickel [10], Bickel, Gotze and van Zwet [11], Callaert, Janssen
and Veraverbeke [16], Chibisov [17], Hall [28], Helmers [29], Petrov [33], Pfanzagl
[34], Serfling [35], etc.
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A wide class of statistics can be represented as functions of sample means of vector
variables. Edgeworth expansions of such statistics can be obtained by applying the
multivariate expansion to corresponding functions, see Bhattacharya and Ghosh [8,
9]. In their work the crucial Cramér condition (C) is assumed on the joint distribution
of all the components of a vector which may be too restrictive in cases where some
components have a negligible influence on the statistic. More often only one or a few
of the components satisfy a conditional version of condition (C). Bai and Rao [3],
Babu and Bai [2] established Edgeworth expansions for functions of sample means
under such a conditional Cramér condition. This approach exploits the smoothness
of the distribution of a random vector as well as the smoothness of the function
defining the statistic. In particular this approach needs a class of statistics which
are smooth functions of observations or can be approximated by such functions via
Taylor’s expansion, see also Chibisov [17]. The respective condition (6) of the present
paper is expressed in terms of moments of iterated differences A,, and does not assume
Taylor’s expansion.

Let us note that generally the smoothness of the distribution function of T may
have little to do with the smoothness of the function T(X, ..., Xx) of observations
X1, ..., Xy. Just take Gini’s mean difference ij |X; — X ;| with absolutely con-
tinuous X; for example. Another interesting example is about Studentization, when
it enchances the smoothness of the distribution function of a sum of lattice random
variables dramatically, see [26]. Our Theorem 1 shows, in particular, that structural
condition (4) together with (7) guarantee the smoothness of the distribution of T nec-
essary for the bound A = o(N~1).

In order to compare Theorem 1 with earlier results of similar nature let us consider
the case of U-statistics of degree two

N (N\"!
U:£< ) Z h(X:, X ), ©

2 \2 —
1<i<j<N

where K (-, -) denotes a (fixed) symmetric kernel. Assume for simplicity of notation and
without loss of generality that EA (X, X2) = 0. Write 1 (x) = E(h(X1, X2)| X1 = x)
and assume that a}% > 0, where a,% = Eh%(X 1). Inthis case Hoeffding’s decomposition
(1)reducestoU = L+ Q, where, by the assumption a}% > (0, wehave VarL > 0. Since
the cubic part vanishes we remove the moment Eg(X1)g(X2)g(X3) x (X1, X2, X3)
from the expression for «4. In this way we obtain the two term Edgeworth expansion
(2) for the distribution function Fy (x) = P{U < opx} with O'HZJ := VarU.

We call & reducible if for some measurable functions u,v : X — R we have
h(x,y) =v(x)u(y) + v(y)u(x) for Px x Py almost sure (x, y) € X x X. A simple
calculation shows that for a sequence of U-statistics (9) with a fixed non-reducible
kernel condition (4) is satisfied, for some §, > 0, uniformly in N. A straightforward
consequence of Theorem 1 is the following corollary. Write = 600~ min{vy, r —
4, 1}.

Corollary 1 Assume that Eh(X 1, X») = 0 and for some r > 4

E|h(Xy, X2)|" < o0. (10)
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1160 M. Bloznelis, F. Gotze

Assume that ohz > 0 and the kernel h is non-reducible and that for some § > 0

sup{[Ee/n MOV () = g1y <1 6. (11)
Then there exist a constant Cy > 0 such that

sup |[Fyy (x) — G(x)| < C.N~'77,
xeR

For U -statistics with a fixed kernel the validity of the Edgeworth expansion (2) up
to the order o(N~!) was established by Callaert, Janssen and Veraverbeke [16] and
Bickel, Gotze and van Zwet [11]. In addition to the moment conditions (like (10))
and Cramér’s condition (like (11)) Callaert, Janssen and Veraverbeke [16] imposed
the following rather implicit condition. They assumed that for some 0 < ¢ < 1 and
0 < o < 1/8 the event

N

‘E(exp{imﬁl 3 h(xl,xj)}|xm+1,...,x,v)’5c (12)
j=m+1

has probability 1 —o(1/N log N)) uniformly forall z € [N3/*/log N, N log N]. Here
m ~ N¢, for a small positive . Bickel, Gotze and van Zwet [11] more explicitly
required that the linear operator, f(-) — Ey¥ (X, ) f(X) defined by ¥ has a sufficiently
large number of non-zero eigenvalues (the number depending on the existing moments,
but always larger than 4). Correspondingly the eigenvalue condition is stronger than
the non-reducibility condition of Corollary 1 since for a reducible kernel £ the linear
operator f(-) — Ev (X, -) f(X) has at most two eigenvalues. On the other hand, it
is difficult to compare the structural non-reducibility condition with condition (12)
whose technical nature is discussed in the outline of the proof at the beginning of
Sect. 2.

The remaining parts of the paper (Sects. 2-5) contain the proof of Theorem 1.
Aucxiliary results are placed in the “Appendix”.

2 Proof of Theorem 1
2.1 Proof highlights

After the seminal paper of Esseen [22] a standard proof of the validity of the nor-
mal approximation and its refinements proceeds in two steps. In the first step, with
the aid of a smoothing inequality, the Kolmogorov distance between the distribution
function and its approximation G is upper bounded by a (weighted) average differ-
ence of the respective Fourier transforms, see (25). In the second step one performs a
careful analysis of the Fourier transforms: for frequencies 1 = O (v/N) one shows the
closeness between the respective Fourier transforms, while for the remaining range
Q(+/'N) < |t| < O(T) one establishes their exponential decay. The cut-of T is defined
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by the desired approximation accuracy level O(T~Y) (in our case T = N'*")). The
approach, initially developed for sums of independent random variables [22, 33], was
later applied to non-degenerate U -statistics [11, 16] and general asymptotically linear
symmetric statistics [4, 37].

One particular problem related to the implementation of the proof strategy outlined
above is about establishing exponential decay of the (absolute value of the) Fourier
transform in the range of large frequencies. For a linear statistic this problem is ele-
gantly resolved by introducing Cramér’s condition. Indeed, in view of the multiplicity
property of the Fourier transform, the Cramér condition implies the desired exponen-
tial decay. Consequently, Cramér’s condition together with moment conditions ensure
the validity of an Edgeworth expansion of an arbitrary order. But the multiplicity prop-
erty can not be used any more (at least directly) when we turn to general symmetric
statistics because various parts (linear, quadratic etc.) are mutually dependent. This
fact leads to considerable difficulties in estimating the respective Fourier transforms in
the range of large frequencies r > N and requires new conditions to control the above
mentioned dependencies. The present paper suggests a novel approach to estimation
of the Fourier transform of a symmetric statistic for large frequencies.

As our general setup of symmetric statistics covers linear ones, we keep assuming
the Cramér condition, but on the linear part of the statistic only, see (7). In view
of Example 1, condition (7) is not enough. We introduce the additional structural
condition (4), which together with (7) guarantees the desired O (N ~'~") upper bound
on the weighted average of the Fourier transform over the frequency range N!'=V <
[t < NtV see (26) below. Condition (4) is optimal and natural in the sense that it
matches the counterexample. It has first appeared in the unpublished manuscript [25]
by Gotze and van Zwet in the case of U statistics.

Let us compare (4) with alternative conditions introduced in earlier papers by
Callaert, Janssen and Veraverbeke [16] and Bickel, Gotze and van Zwet [11] in the
case of U statistics of degree two. The conditional Cramér condition (12) of [16]
forces the multiplicity property of the Fourier transform in a formal way thus circum-
venting the problem of establishing relation between the structure of the kernel (of U
statistic) and the smoothness of the distribution. Therefore (4) and (12) are not com-
parable. This is not the case with the eigenvalue condition of [11], which is stronger
than (4). In their proof Bickel, Gotze and van Zwet [11] have used for the frequencies
t € [N"=D/"/1og N, N log N]a symmetrization technique of [23] which essentially
estimates the absolute value of the Fourier transform of U by that of a bilinear version
of Q thus neglecting L and its smoothess properties implied by Cramér’s condition
(7). The approach of the present paper instead makes use of the smoothness of L and
Q simultaneously.

The main contribution of this paper is in showing that condition (4) suggested by the
counterexample (Example 1) is sufficient to prove the bound of Theorem 1. This con-
dition is used in constructing estimates of weighted averages of the Fourier transform
(26) that we briefly comment below. In fact, after initial “linearization” step we turn to

slightly modified statistic ']~I‘(X 1, ..., Xn), where the nonlinear terms in X1, ..., X,
are removed (see (19)), and then switch to 7/ = ']~I‘(X1, s Xy Yoty - YN,
where Y41, ..., Yy are truncated versions of X,,+1,..., Xy, see (42). Let Ey
denote the conditional expectation given Y = (Y;+1,..., Yn). The conditional
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Fourier transform Ey exp{it T’} = E(exp{i tT'} | Yiitl, ..., Y N) contains amultiplica-
tive component o}, where

N

a,:EYexpiitN1/2g(X1)+itN3/2 Z VX1, Y) L. (13)
I=m+1

For ¢ satisfying |;|> < 1 —m ™" In? N the bound |Ey exp{itT’}| < exp{—0.5In> N}
follows immediately. We then look carefully at the set of remaining . We show
that this set is a union of non-intersecting intervals (depending on Y) each of size
O(+/N/mIn N). While estimating the weighted averages of the Fourier transform
over these intervals we split the frequency domain N!=V < |T| < N'*V into a deter-
ministic sequence J,, p = 1,2, ..., of consecutive intervals of size ® (N 1_") SO
that each ‘singular’ set {r € J, : |oc,|2 > 1 —m 'n? N} is either empty or an
interval [ay, ay + b;,l] of size b;ll = O(v/N/mInN), (see (51) and (56) based
on Lemma 12). At the very last step, using Kleitman’s concentration inequalities for
sums of random variables with values in a function space, we upper bound the proba-
bility of the event that each particular singular set is non-empty, that is, the event that
SUpP;ey, la;|?> > 1 —m~"In? N thus obtaining an extra factor N =¥V, k > 5 to arrive

to the error bound o(N~1).

More precisely, the non-zero projection to the g orthogonal part of ZIN:m avGe Y
which is non zero by condition (4) is used in the crucial Lemma 2. Via conditioning and
randomization we represent it as a sum Sy := > _; &; f; of independent &; = 0, 1
variables with vectors f; with || f;|| > € and estimate the combinatorial probability
for those & = (a1, ..., a,) that a value larger than 1 — m~!In*N of the conditional
Fourier transform, say ¢; (), of f + S, occurs at some ’singular’ frequency ¢ € J p-
This is achieved by Kleitman’s partition of the 2" «’s into at most (n%) disjoint sets,

say Cg, 1 <d < (n'}z), such that for different o, &’ € Cy, Sy and S, are separated
by a distance of at least €. This separation implies by Lemma 2 that the event that
t is singular somewhere in the interval J, can be witnessed by at most one o € Cy
for each C4.Hence the singular event among the &’s has combinatorial probability at
most (n'/’z)Z’” = 0m 2.

The crucial arguments in Lemma 2 rest upon the observation on harmonics (see
(118)) that two singular values ¢; (), ¢s (') > 1 —m~"In?> N imply a similar high
value of Eexp{i (¢(f + Sy) — s(f + Su’))}. If here ¢ and s are close, say |t —s| < §2,
such a high value is excluded by the separation of S, and S, which dominate (z —s) f
(see step 4.2.1 in Lemma 2), whereas for 6, < |t — 5| < NV~1/2_ Cramér’s condition
for (+ — s) f applies which together with size bounds on 7S, and s S,/ again prevents
a high value (see step 4.2.2 in Lemma 2).

Note that this method of width bounds and separation of singular sets of Fourier
transforms has been successfully employed for optimal approximation results for U-
statistics with non-Gaussian limits by Bentkus, Go6tze and Zaitsev, see [5] and [27]
and is strongly related to results on the distribution of quadratic forms on lattices by
Bentkus and Gotze, see [6] and [24], the latter providing a solution of the Davenport-
Lewis conjecture for positive definite forms.
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Finally, we mention that in the case of U statistics of degree three (T = ET +
L + Q + K) the proof is outlined in the unpublished manuscript of G6tze and van
Zwet [25]. We extend these arguments to general symmetric statistics using stochastic
expansions by means of Hoeffding’s decomposition and bounds for various parts of
the decomposition.

2.2 Outline of the proof

Firstly, using the linear structure induced by Hoeffding’s decomposition we replace
T /o by the statistic T which is conditionally linear given X, 11, ..., Xn. Secondly,
invoking a smoothing inequality we pass from distribution functions to Fourier trans-
forms. In the remaining steps we bound the difference §(¢) = Ee''T — é(t), for
[tf| < N'tV. For "small frequencies" |t| < CN 172 we expand the characteristic
function Ee!'T in order to show that 8(1) = o(N~1). Here we combine various tech-
niques developed in earlier papers [4, 11, 16]. For remaining range of frequencies,
that is CN'/2 < |t| < N, we bound the summands Ee¢!'T and G(r) separately.
The cases of "large frequencies” N'™" < |f| < N'* and "medium frequencies"
C+/N < [t] < N 1=v are treated in a different manner. For medium frequencies the
Cramér type condition (7) ensures an exponential decay of |Ee!/T|. For large frequen-
cies we combine conditions (7) and (4).

2.3 Hoeffding’s decomposition

Before starting the proof we introduce some notation. By ¢, we shall denote a positive
constant which may depend only on Ay, Dy, M, r, s, v, v2, §, but it does not depend
on N. In different places the values of ¢, may be different.

It is convenient to write the decomposition in the form

T=ET+ ) U, U= Y  &a®Xi...Xy), (14
1<k<N 1<ij<--<iy <N
where, for every k, the symmetric kernel g is centered, i.e., Egx (X1, ..., X3) =0,

and satisfies, see, e.g., [4],
E(gk(Xl,...,Xk)ng, ..., Xx) =0  almost surely. (15)

Here we write g1 := N~ /2g, g» := N73/2¢ and g3 := N—>/?x. Furthermore, for
an integer k > 0 we write Q := {1, ..., k}. Given asubset A = {iy,...,ix} C Qn
we write, for short, Ty := gx(X;,, ..., X;;). Put Ty := ET. Now the decomposition
(14) can be written as follows

’JI‘=E’JI‘+ZUk=ZTA, Uy = Z Ty.

1<k<N ACQN |Al=k, ACQN
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2.4 Proof of Theorem 1
Throughout the proof we assume without loss of generality that
4<r<5 2<s<3 and ET=0, o2=1. (16)
Denote, fort > 0,
B =0 "'ElgX)I". v =ElyX1. X'\ &=E[x(X1. X2 X3)"

Linearization. Choose number v > 0 and integer m such that

v =600""min{v;, va, s —2, r —4}, m~~ N0, a7)
Split
T=Tu+W, Tp= Z Ty, W= Z Ty,  (18)
A AN, W A: AN, =Y

Furthermore, write

Ty =U7+U5+A, A=A+ Ar+ A3+ As+ As,

m m N
U= Ty, Us=> > Tij.

i=1 i=1 j=m+1
Ay = Z Tijy, M= Z Ty,
l<i<j<m |A|23,|ANQ| =2
Az = Z Ty, Agq= Z Ty,
A: AN |23 |A|=3, [ANQ|=1
m
As = ZTH, ni = Z Ty.
im1 |A>4, AN =1i)

Before applying a smoothing inequality we replace F'(x) by
Fx):=P{T<x}, where T=Ui+TUj4+W=T-A. (19)

In order to show that A can be neglected we apply a simple Slutzky type argument.
Given ¢ > 0, we have

A < sup |I~F(x) — Gx)| + e sup |G (x)| +P{|A| > &} (20)

xeR xeR
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From Lemma 5 we obtain via Chebyshev’s inequality, for e = N1~
> €
P(A| > &) < ;P{m > <}
1=

5 3 5 2 5 s
< (;) E|A1|3+(;> (EA%+EA§+EA§>+<;) E|A4)
<c N7V,

In the last step we used conditions (5), (6) and the inequality (168). Furthermore, using
(5) and (6) one can show that
sup |G'(0)] < cs. (21)

xeR

Therefore, (20) implies

A<A+ce, N1, where A := sup [F(x) — G(x)|.
xeR

It remains to show that A < ¢, N~!7V.
A smoothing inequality. Given a > 0 and even integer kK > 2 consider the proba-
bility density function, see (10.7) in Bhattacharya and Rao [7],

X = gak(x) =a c(k)(ax)_k sink(ax), (22)

where c(k) is the normalizing constant. Its characteristic function

+oo
Bak(t) = / " gax(x)dx =21 a c(yuit, ()

—00

vanishes outside the interval || < ka. Here ui"f .l (t) denotes the probability density
function of the sum of k independent random variables each uniformly distributed in
[—a, a]. It is easy to show that the function t — g, (¢) is unimodal and symmetric
around r = 0.

Let p be the probability distribution with the density g, 2, where a is chosen to
satisfy u([—1,1]) = 3/4. Given T > 1 define ur(A) = u(T.A), for a Borel set
A C R. Let i denote the characteristic function corresponding to fi7.

We apply Lemma 12.1 of [7]. It follows from (21) and the identity 7 ([—T !, T~
= 3/4 that ~

A < 2sup|(F — G) * pr(—00, x]| + e T (23)
xeR
Here F and G denote the probability distribution of T and the signed measure with
density function G’ (x) respectively. Furthermore, * denotes the convolution operation.
Proceeding as in the proof of Lemma 12.2 ibidem we obtain

+0o0 . ~
(F = G) % pr(—o0, x] = %/ it (Ee"’T - é(t)) MTF;)dt, (24)
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where G denotes the Fourier transform of G (x). Note that j17(¢) vanishes outside the
interval |f| < 2aT. Finally, we obtain from (23) and (24) that

- 2 r . A o (t
A< —supll0)]+ e um:f i BT~ G0) T Dar, 25)
xeR T =T —ut

where T’ = T /2a. Here we use the fact that jig/(z) = O for |t| > T. Denote
Ky (t) = fi7/(t) and observe that |[Kx (¢)| < 1 (since 7 is a probability measure).
Let

T =N,
We have

)l < I + I+ [I3] + |14|

n:f BT G| % h=/ o1,
lel<n 1]’ 1 <|t|<T 2]

13 :/ 7ZTXE itT KN(I) 14 :/ e*itheiﬂT KN(t)dl‘
n<ltl<t —it h<|t|<T —it

Here we denote 11 = N1/210~ 3/,33 and 7, = N!7V. In view of (25) the bound
A <c, N1V follows from the bounds

) <ceNT'7V0 k=1,2,3, and |I4] <c N"'7VA4+6IN7Y).  (26)

The bound I» < ¢,N~'7" is a consequence of the exponential decay of |G(1)] as
[t] = o0.In Sect. 3 we show (26) for k = 3, 4. The proof of (26), for k = 1, is based
on careful expansions and is given Sect. 5.

3 Large frequencies

Here we prove inequalities (26) for I3 and Iy. The proof of | 13| < ¢, N !~V isrelatively
simple and is deferred to the end of the section.
Let us upper bound |/4]. We will show that

—i it Kn (1) 148"
’/ RSN | < o 00 27)
N] V<\t|<NH'" t N

In what follows we assume that N is sufficiently large, say N > C,, where Ci
depends only on Ay, Dy, My, r,s, vy, v2, 5. We use this inequality in several places
below, where the constant C, can be easily specified. Note that for small N such that
N < C, the inequality (27) becomes trivial.
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3.1 Notation
Let us first introduce some notation. Introduce the number
a=3/(r+2) (28)
and note that for r € (4, 5] and v defined by (17) we have
2/r <a<1/2 and 80v < min{ra —2, 1 — 2a}.

Given N introduce the integers

n~N" — M=|(N-m)/n]. (29)
Wehave N —m = M n+s, where the integer 0 < s < n. Observe, that the inequalities

v <6007 andm < N'/2, see (17), imply M > n. Therefore s < M. Split the index
set

m+1,..., N} =0,U0,U---U 0O,,
Oi={j:m+((-1)M<j<m+iM}, 1<i<n-—-1,
Op={j:m+m—-1)M < j <N} (30)

Clearly, Oy, ..., O,_ are of equal size (=M) and |O,| =M + s < 2M.

We shall assume that the random variable X : 2 — &’ is defined on the probability
space (€2, P) and Py is the probability distribution on X induced by X. Given p > 1
let L? = LP(X, Py) denote the space of real functions f : X — RwithE|f(X)|” <
0o. Denote || fl, = (Elf(X)l”)l/”. With a random variable f(X) we associate an
element (vector) f = f(-) of L?, p < r. Let p; : L? — L? denote the projection
onto the subspace orthogonal to the vector g(-) in L. Given h € L?, decompose

h=apg+h*, — where ap=(hg)lgll;> and &*=pg(h). (31)
Here (h, g) = [ h(x)g(x)Px(dx). For h € L" we have

Al = lIAll2

\

1A% 2. (32)

Furthermore, for r~! + v=1 = 1 (here r > 2 > v > 1) we have, by Holder’s
inequality,

[, g) | < lInli-liglle < Al ligll2-

In particular,
lan| < lI211-/1gll2- (33)
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Denote
1r ,—1/2
co =1+ gl /gl <=1+ M 4"
and observe that ¢, < c; It follows from the decomposition (31) and (33) that

1251 < MAlly + lanl gl < MRl-(1+ligll-/ligll2) = cglinllr. (34)

Introduce the numbers

ap = (35)

1 =172 T 2421

1 . 1 (c,Ag/2" M)V =D 7
mi ) Cr
12¢3 1+4A,

It follows from (7) that there exist §’,8” > 0 depending on Ay, My, such that
(uniformly in N) Cramér’s characteristic p satisfies the inequalities

plar, 2N~y = 8" p(2py) ' N2 = 87 (36)

We shall prove the first inequality only. In view of (7) it suffices to prove that
p quality only p
plai, By 1) > §'. Expanding the exponent in powers of irg(X1)/o we show the
inequality
B/ 800 < 127121 =37 ey y).
For [t| < B3 ! this inequality implies
[Eei™ '8 < 1 — 423,

Therefore, p(aj, ,Bgl) > a12/3 and we can choose §' = min{$, a]2/3} in (36).
Introduce the constant (depending only on A, M., §)

81 = 5//(10cZ). (37)
Note that 0 < §; < 1/10. Given f € L" and Tj € R such that
N=H2 < 1) < NV, (38)
denote

1(To) = [To, To+ 8N/,
un(f) = / explir(s(x) + N2 £ ()} Py (d),
o(f) = sup (Pl T(f) =1 —v2(f). (39)

tel(Tp)
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Given a random variable n with values in L” and number 0 < s < 1, define

ds(n, I(To)) = L2y 1-2yLymi,<nvvy, 85, I(To)) = Edg(n, 1(To)).  (40)

Introduce the function
Y y) =Y, y) — b(0)g(y) — b(y)g(x) (41)
and the number
83 = Ely™ (X1, Xo)I”.
It follows from (4) and our assumption o% =1, see (16), that 8% > 85.

3.2 Proof of (27)

We write Ey exp{i¢T'} in the form Ey exp{i#T'} = o/" exp{it W'}, where «; is defined
in (13) and where the random variable W’ is defined in the same way as W in (18), but
with Ty = gk (X;,, ..., X;,) replaced by gi(Y;,, ..., Y;) foreach A = {iy, ..., i}
A standard way to upper bound a quantity like [Eye'’ T,| is to show an exponential
decay (in m) of the product |«}"| using a Cramér type condition. This task can be
accomphshed for medium frequencies. Indeed, for [f| = o(N) the quadratic part
itN—3/2 Z —mt1 ¥ (X1, Y;) can be neglected and Cramér’s condition 1mphes lo| <

1 — v’ for some v/ > 0. This leads to an exponential bound |&]"| < e —mv'For large
frequencies |f| & N, the contribution of the quadratic part becomes significant. To
upper bound e}’ | we use condition (4). We show that, for a large set of values ¢ € J,,,
see (51), Cramér’s condition (7) yields the desired decay of |«}"|, while the measure
of the set of remaining ¢ is small with high probability.

Step 1. Truncation. Recall that the random variable X : Q — X is defined on the
probability space (€2, P). Let X’ be an independent copy so that (X, X’) is defined on
(2 x Q, P x P),where Q' = Q. It follows from E|v/ (X, X')|" < oo, by Fubini, that
for P almost all ' € ' the function ¥ (-, X' (@) = {x — ¥ (x, X' (@), x € X}
is an element of L”. Furthermore, one can define an L’"-valued random variable
Z' . Q — L" such that Z'(0') = (-, X' (")), for P almost all . Consider
the event @ = {||Z'|, < N% C € and denote gy = P(Q). Here | Z'|, =
(f I (x, X (w)|" Px (dx)/" denotes the L" norm of the random vector Z’ and « is
defined in (28). Let Y : Q — X denote the random variable X’ conditioned on the
event Q. Therefore Y is defined on the probability space (Q, P), where P denotes
the restriction of g, P to the set Q and, for every o’ € Q, we have Y (o) = X' (o).
Let Z denote the L"— valued random element {x — ¥ (x, Y('))} defined on the
probability space (2, P).

We can assume that X := (X1, ..., Xx) is a sequence of independent copies of X
defined on the probability space (QN, PNy, Letw = (wy, . .., wy) denote an element
of @V . Every X ; defines random vector Z » = V¥(, X) taking values in L". Introduce
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events A; = {||Z;.||r <N c QV¥andlet X' = (X1,..., Xm, Yout1s ..., Vi)

denote the sequence X conditioned on the event Q* = ﬂ;v:m LA =" x QN-—m,

Clearly, X' (@) = X(w) for every w € Q* and X' is defined on the space Q" x QN
equipped with the probability measure P” x PN~ In particular, the random variables
X1,..., X, Yuy1, ..., Yy areindependent and Y, form +1 < j < N, has the same
distribution as Y. Let Z; denote the L" — valued random element {x — ¥ (x, Y;), x €
X}, form+1<j <N.Let
T :=TX1, ... Xps Yis1s -5 Y. (42)
We are going to replace Eei'T by Ee’ ' For s > 0 we have almost surely

L=Ta; < NTENZ50, 1Z50 = E(w (X, X )| X;). (43)

From (43) with s = r we obtain, by Chebyshev’s inequality, that
0<1—gy < NEY(X, X" < N7“My < c.N727. (44)

Consequently, for k < N we have

gy < (A=N"*M)* <1 =-NM)N <,
ay* =1 < kay* (1= qn) < ek N2 < e N7 (45)

Using the identity, which holds for a measurable function f : aN - R,

Ia,., ---1a
Ef(X1, o X, Yo Y0) = B (X0, Xy) 22080 (46)
dn
we obtain from (45) and (46) for f > O that
Ef(Xi,.... Xm, Y1, ..., YN) S Ef(Xy, ..., XN). 47)

Furthermore, (45) and (46) imply

|Eeit(T/—x) _ Eei[(ﬁ‘—x” < (q;(N—m) _ 1) + (1 _ P{Am+l N---N AN})

— (q]\_,(N—m) _ 1) + (1 _qg*n’l) S C*N7173v. (48)

Now we can replace the integral in (27) by the integral

1:=/ Ee'Toy(t)dr,  where wn(t) =t'Ky(@), T =T —x.
NI—\:§|1‘5N1+U
(49)
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In view of (48) and the simple inequality | Ky (¢)| < 1 the error of this replacement is
¢« N~172V_ Hence in order to prove (27) it remains to show that

1+55"
Step 2. Here we prove (50). We split the integral
=31, I,= E/ ¢ Toy ), 51)
p tedp

where {J,, p = 1,2, ...} is a sequence of consecutive intervals of length &~ §; N 1-v
eachand U,J, = [N'=v, N1+V]. Recall that 8; is defined in (37). To prove (50) we
show that for every p

)] < N2+ N~ (1467"). (52)

We fix p and prove (52). Firstly, we replace /,, by EJ,, where

Jy = / Tyer, vn (1)Eye' T dt
and where I, = I, (Y;y41. ..., Yy) C J)p is arandom subset:

P>1-¢2), & =m 'In®N. (53)

m —

L={tel,: |
Note that for € J, \ I, we have
Eye'| < Jay|™ < (1 - e2)"* < e,N7°.
These inequalities imply the bound
11, — EJi| < cuN 2. (54)

Secondly, we show that with a high probability the set I, C J), is an interval. This
fact and the fact that vy (¢) is monotone will be used latter to bound the integral J,.
Introduce the L" — valued random element

N
S=N""Zppi+--+Zn) =N Y Y Y. (55)
Jj=m+1

We apply Lemma 12 (see below) to the set N~!/2I, conditionally given the event
S = {|IS|l, < N'/19}. This lemma shows that N~1/21, is an interval of size at most
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c+&m. Hence we can write I, = (ay, ay + b;,l) and

» » aN+b;,1 oA
g =lbed L= [ e ar (56)
an
where the random variables ay, by (functions of Y41, ..., Yy) satisfy

ay € J, and b;,l < c*em«/ﬁ = c*«/ﬁmfl/z InN.
Furthermore, by Lemma 13 below we have P{S} > 1 — ¢, N =3 Therefore,
|EJ, — ElsJ,| < c.N 2. (57)
Next, we observe that I, # @ if and only if @* > 1 — 831, where
a = sup{lay| : t € Jp}.
Therefore we can write (56) in the form
Is/y = IgJs = IgEyJy, where B={&>>1-¢2}NS.
This identity together with (54) and (57) imply
|Ip| < |EIgEyJi| + c,N 7. (58)

Using the integration by parts formula we shall show below that

- I P(B .
|ElzEyJ.| < %(P{B}+/ { 6}d8), where B, :=BnN{|T| <e).

bn &2
(59
Moreover, we shall show that
1 p(B,} 1+5;" 1+6;"
” 2 de < ¢y N5 and P{B} < c, N (60)

The latter inequalities in combination with (58) and (59) yield (52). We prove (60) in
Sect. 3.3.
Let us prove (59). Firstly, we show that

el < (T +bw) " ay". 61)
From the integration by parts formula we obtain the identity

aN+b;]l

A~ . ~1 .
iT T = vy (e [N —/ vye''Tdt =:a' —a”. (62)

an
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By our choice of the smoothing kernel the function vy (¢) is monotone on J,,. Therefore

ay+by! ay+by!
|a”|§‘/' |vx(ﬂ|dt=:‘/ vy (H)dt
a a

= ’UN(aN) —uy(ay + erl) .
N N

Invoking the simple inequality |a’| < vy (an)|+ vy (an —i—b;,l)l and using |vy (¢)| <
|#|~! we obtain from (62) that

1Tl < c(ay' + (an +by")7") <cay'.

For |f"| > by, this inequality implies (61). For |f‘| < by the inequality (61) follows
from the inequalities

_ an+by! an+by' o
[/l < |UN(t)|dt = —dt < capy bN .
an an |[|

The proof of (61) is complete. Now from (61) and the inequality ay > N7V we
obtain that

|Jul < c(IT] + by) ' NI,

Finally, using the inequality (which holds for arbitrary real number v)
: <2+2/18H
| + by — by &2 {lv|<e}

we show that

1
- Cx de
[Jo| < Ni—v (1 + /;N 8—2H{f<8}> .

The latter inequality implies (59).

3.3 Proof of (60)
The first and second inequality of (60) are proved in steps A and B.

Step A. Proof of the first inequality of (60). Recall W from (18). We split

N
1
W =W, + W+ W3, W1=W E g(X;),
Jj=m+1

W= —> > ¥(Xi,X), W= Y Tx

m<i<j<N |A|>3:ANQ,, =0
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Define W, W;, W5 as Wy, Wa, W3 above, but with X ; replaced by Y;, form + 1 <
j < N.Wehave W = W[ + W, + W;. Now we write T (see (49)) in the form
T = L + A + Wj, where

1 & -
L=—)gXp)+— > Yi) —x,
N.j:1g( )+ FN, §(¥;) —x

=m+1

1 m N 1
A:WZ Z W(vaYl)‘f‘W Z v (Y, Yi). (63)

j=11=m+1 m+1<j<I<N
The inequalities |f"| <eand |L| > 2¢ imply |A 4+ Wj| > &. Therefore,
P(B.) < P{BN{IL| <2¢}} +P(T| <&, |A+ Wil > &} = [1(e) + La(e).

To prove the first inequality of (60) we show that

1

1
d d
/—jll<s>5c*N*5”<1+a;1), /—fh(e)yﬂv*“. (64)
& by €

by N

Step A.1. Proof of the second inequality of (64). We have

L(e) < P{{W3] > &/2} + I3(¢), where I3(¢) :=P{|L 4+ A| <3¢/2,|A| > ¢/2}.
(65)

It follows from (47), by Chebyshev’s inequality, that P{|W}| > &/2} < c*s_zEW32.
Furthermore, invoking the inequalities, see (167), (168) below,

EW;= Y ET;< ) ET;<N’?Aj<cN’
|A]>3:AN2,, =0 |A]=3

we obtain from (65) that I>(¢) < I3(¢) + cxe 2N 2. Since

1
de( 1 =3 572 —5v
/Z;N8—2<W>SC*bN N SC*N .

it suffices to show inequality (64) for I3(¢) (instead of I(¢)). Recall the notation
A =N i, WX, X)) and put U = Ay + A. We have

() < P{{A1| > ¢/4} + 11(e), where I4(¢) :=P{|L +U| < 2¢, |U| > ¢/4}.
Invoking the inequality, which follows by Chebyshev’s inequality,
P{|A1| > e/4} < 166 2EAT < c,e ?m>N 3
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we upper bound the integral

1 1 2
de de / m -3 23,3 —5v
/b,ve—z"“A">8/4}5/;7N8—2(m)50*”1vmN =N

Hence, it remains to show the second inequality of (64) for 14(¢).
Let I (¢) be the same probability as I4(¢) but with X; replaced by ¥;, for 1 <i < m.
That is,

Le) =P{L + U'| <2¢, |U'| > /4},

1 1
V=sr Do s0n—x  U=—55 3 v(,Y).

1<i<N 1<i<j<N

By the same reasoning as in (48) we obtain that |I4(¢) — I;(e)| < cxN~173V Now,
in view of the bound

g

& _ 11— _
/ _N—1—3v fC*leN 1-3v <N Sv
b

2
N €

we conclude that it suffices to show (the second) inequality (64) for I} ().
Let us show the second inequality of (64) for I;(¢). We split the sample

Y:={Y,...,Yn} =Y UY, U Y3,

into three groups of nearly equal size. Next, we split U’ = Zis iU ;S0 that the sum

U/ j depends on the observations from the groups Y; and Y; only. We have
Iie) < Y P{L +U'| < 2, |Uj;| = /24). (66)
i<j
Now we show that the second inequality of (64) holds for every summand in the right
of (66). Let U denote a summand Ul.’j, say, not depending on Y3. Let
[(e) :=P{L' +U'| <2¢, |U| =¢/24), U={U|=>¢/24)},

V={L'+U|<2)} Sx):=N"* > ykY) xeX
Y, €Y\Y3

We observe that 3
1(e) = Elyly, (67)

and note that the random function x — S(x) is a sum of iid random variables with
values in L" such that, for every i, we have ||y (-, ¥;) ||, < N¢ for almost all values of
Y;. By Lemma 13,

P{|S|, > N"} < N7°.
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Therefore in (67) we can replace the event V by V| = V N {||S|, < N"}. Fur-
thermore, since U does not depend on Y3, we have El/Iy, = Elyp’, where
p = E(]IV1 Y7, Yz). The concentration bound for the conditional probability p’,
which is shown below,

P <cue+ NP (68)

implies _
I(e) < cu(e + N"V2PUY < cu(e + NV " NTT/2, (69)

In the last step we applied Markov’s inequality
P{U} < (24/e) N~"*EIN'Y20|

and the bound E|N'/20|" < C*E|N1/2U,~j|’ < c¢4. Here Uj; denotes the random
variable obtained from U after we replace Y; by X; for every j. The second last
inequality follows from (47). The last inequality follows from the well known moment
inequalities for U-statistics [20].

It follows from (69) and the simple inequality & > by > ¢, N~!/? that

1 1
de ~ Cx de Cx _i _s

—J(e) < < = r/ lnrN < N v,
/bN 2 (e) = N2 /b/v eI+ = NT2b, Gl =G

provided that mj/ 2 > N, The latter inequality is ensured by (17). Thus we have
shown (64) for I (¢g).
It remains to prove (68). We write L' + U’ in the form L, + U, + b — x, where

1 _1/9—= 1
L= > (@) +NT2S(p)  and  Uw=—zm 3 9V Yo,

Y;eYs aalae

and where b is a function of {¥; € Y \ Y3}. Introduce the random variables L and
U which are obtained from L, and U, after we replace every Y; € Y3 by the corre-
sponding observation X ;. We have

p' < sup E(H{L*+U*e[v,v+2s]} |Y1, Y2)]I{||§||,.§NV}

vER

=Cx S:E E(H{Z+ﬁe[u,v+251} |Y1» YZ)H{uEl\rstr
v

In the last step we applied (47). Now an application of the Berry—Esseen bound due
to van Zwet [37] shows (68). The proof of the second inequality of (64) is complete.
Step A.2. Proof of the first inequality of (64). We introduce events

A=1{a">1-¢,}, V={ISI, <N"}, L={|L| <2}
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(recall that ¢, is defined in (53)) and write I;(¢) in the form I;(g) = Ell4Igl,. We
have

I1(e) = ElpIsly, < ETplyIL.

To upper bound /1 (¢) we use the following strategy. We can upper bound the probability
P{L} using the Berry—Esseen inequality,

P{L} < c.(e + N~1/?). (70

Furthemore, one can show that the probability P{A} = O(N~°"). We are going to
make use of both of these bounds. However, since the events A and L refer to the
same set of random variables Y, 41, ..., Yn, we cannot argue directly that EI5 I, ~
P{A}P{LL}. Nevertheless, invoking a complex conditioning argument we are able to
show that

L) <cREe+NV)+e, N2 Ri=N""1+87). (71)

The latter inequality together with the inequalities ¢ > by > N~/? imply the first
part of (64). Let us prove (71). As the proof is rather involved we start by providing an
outline. Let the integers n and M be defined by (29). Split {1,..., N} = OpU O1 U
---U Oy, where Og = {1, ..., m} and where the sets O;, for 1 < i < n, are defined

in (30). Split L, see (63),

n
L=) Ly—x, where Ly=N""2>"¢), for k=1,....n (72)
k=0 JjeO
and where Lo = N—1/2 ZjeOo g(X;).Observe, thatl isafunctionof Lo, L1, ..., Ly.

The random variables [ and Iy are functions of Y;,,11, ..., ¥y and do not depend on
X1, ..., X;. Therefore, denoting

m(ly, ..., 1)) =E{aly|Ly=1,....,L, =1,) and M =esssupm(y,...,1,)
we obtain from (70)
Elu Iyl = Elpm(Ly, ..., Ly) < cs(e + N"VHM. (73)

Clearly, the bound M < ¢,R would imply (71). Unfortunately, we are not able
to establish such a bound directly. In what follows we prove (71) using a delicate
conditioning which allows us to estimate quantities like M.

Step A.2.1. Firstly we replace Ly, 1 < k < n, by smooth random variables

= —=_ 41, 74
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where &1, ..., &, are symmetric i.i.d. random variables with the density function
defined by (22) with k = 6 and a = 1/6 so that the characteristic function
t — Eexp{it&} vanishes outside the unit interval {z : || < 1}. Note that E§14 < 00.
We assume that the sequences &1, &, ... and X1, ..., Xp, Yiut1, ..., Yy are inde-
pendent. In particular, & and Lj are independent.
Introduce the event
L= i < 35} .

1 n
I <l +Ljgzen),  Where  &=—5 ) &
k=1

n
L0+ng —X
k=1

Note that

Using Markov’s inequality and the inequality E€* < ¢ we estimate the probability

E§4 c - Cx

P{|§|2€N}§WEW_W7

where in the last step we used 2N > blz\,N > c),. Hence we have

El, Iyl < EI Iy +c N2 (75)
In the subsequent steps of the proof we replace the conditioning on Ly, ..., L, (in
(73)) by the conditioning on the random variables g1, .. ., g,. Since the latter random

variables have densities (their densities are analysed in Lemma 7 below) the corre-
sponding conditional distributions are much easier to handle. Moreover, we restrict
the conditioning on the event where these densities are positive.

Step A.2.2. Given w > 0, consider the events {|gr| < n~'/?w} and their indicator
functions [y = I, <,-1/2). Using the simple inequality nEg,% < ¢4 (where ¢,
depends on M, and r) we obtain from Chebyshev’s inequality that

Pily =1} =1 —P{lgl > n~Pw) = 1 —wnElgel* > 7/8,  (76)

where the lastinequality holds for a sufficiently large constant w (depending on M., r).

Fix w such that (76) holds and introduce the event B* = {3} _, [y > n/4}. Hoeffding’s
inequality shows P{BB*} > 1 — exp{—n/8}. Therefore,

ElLIvI; < EI\IyI:Ips + c N2 (77)

Given a binary vector = (01, ...,6,) (with 6 € {0; 1}) write [8] = ), k.
Introduce the event By = {I; = 6;, 1 < k < n} and the conditional expectation

me(z1, ..., z2n) = EQplylg, 181 =21, ..., 80 =20),  (21,...,20) € R".
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Note that I, , the indicator of the event By, is a function of g1, .. ., g,. It follows from
the identities

B* = Ujgj=naBy  and  Ip+ = Z I,
|0|>n/4

(here By N By = @, for 6 # 0’) that

ElpIvl;Ip- = Y Elalylyls, = Y ElgJrmo(gi.....g8n).
|0|>n/4 |0|>n/4

We shall show below that uniformly in 6, satisfying |0| > n/4, we have
My < ¢ 'R, where My :=ess sup myp(21,...,2n)- (78)

This bound in combination with (70), which extends to L as well, implies

ELulyl;Is- <R Y Elg,I; = ¢, RElp:I;
|0|>n/4

< ¢, RP{L} < ¢, R(s + N~'/%).
Combining the latter inequalities with (75) and (77) we obtain (71).
Step A.2.3. Here we show (78). Fix 0 = (04, ..., 6,) satisfying |#| > n/4. Denote,
for brevity, h = |6| and assume without loss of generality that 6; = 1,for 1 <i < h,

and §; = 0, for h + 1 < j < n. Consider the h—dimensional random vector g =
(g1, - - - » n)- Note that the random vector gj; and the sequences of random variables

Ygz{Yj:m+hM<j§N}, & =1{5:h<j=<n}

are independent. Recall S from (55) and note that the terms Sy and Sé of the decom-
position

1

S=S+Sp  Se()= NG > vy
N\ T2 jeo,
are independent as well.
ForZjg) = (z1, ..., z) € R" we have my(z1, ..., 24) < 1ig(Zjo)), where

g (Zig1) = ess supyE(Ialvlg, | g = Zio1, Yo, &)
denotes the "ess sup” taken with respect to almost all values of Yy and &y. To prove
(78) we show that
mo(Z[g)) < cxR. (79)
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Let us prove (79). Given Yy, denote fy = S (note that S, is a function of Yy). Using
the notation (40), we have for the interval J l/, =N"12J s

E(Ialvlg, | 216y = Zio1, Yo, &) = I, E(de,, (fo + So. J}) | 2oy = Zio1, Yo, &)

(80)
Note that the factor Ig, in the right side is non zero whenever zjg] = (21, ..., 2s)
satisfies |z;| < w/+/n, fori =1, ..., h. Introduce L” valued random variables
U=N""23% w(.Y), i=1...h
J€O0;
and the regular conditional probability
P@o1: A = E([w,....upedy | 81 = Zio1)-
Here A denotes a Borel subset of L” x --- x L" (h-times). By independence, there
exist regular conditional probabilities
Pi(zi; Ai) =E(ly,eq, | & =2), i=1,...,h, (81)

such that for Borel subsets A; of L™ we have

Pz At X - X Ap) = 1_[ Pi(zi; Ai).

1<i<h
In particular, for every z[g), the regular conditional probability P (Z[g}; -) is the (measure

theoretical) extension of the product of the regular conditional probabilities (81).
Therefore, denoting by ¥; arandom variable with values in L" and with the distribution

P{y; € B} = P;(z;; B), B C L" — Borel set, (82)
we obtain that the distribution of the sum
=Y+ Yy (83)
of independent random variables ¥y, . . ., ¥y, is the regular conditional distribution of
Sp, given gjg) = Z[g)- In particular, the expectation in the right side of (80) equals
8¢, (fo +¢), where

8(fo+¢) :=Eeds(fo +¢,J,), s>0, (84)

and where E; denotes the conditional expectation given all the random variables, but
¢. Recall ¢, defined by (53) and note that for any &, satisfying the inequality

Em = Ex (85)
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we have
e, (fo +8) <8, (fo +0). (86)

We put &, = 14|To|N~1/?/20 and apply Lemma 1 to upper bound 8¢, (fo + ¢) (the
quantity p4 is defined in (97) below). We will use the inequalities c*(Sg /n < /Li <
cl, 8% /n that follow from (217) below. Note that for 7y satisfying (38), integers m, n as
in (17), (29), and the quantity §3 (see (41)) satisfying

52> N, (87)

the inequality (85) holds, provided that N is sufficiently large (N > C,). Moreover,
we have
2 < c, 8INTHY, (88)

Now Lemma 1 (together with the moment inequalities of Lemma 10) implies the
inequality
86, (fo +¢) < cuct 26l P10 o N2, (89)

where the number i, defined in (97), satisfies ky < c,d5 r/ (Fz), by (218).
Denote 7 = r~! + (r — 2)~!. It follows from (89), (88) and (86), for r > 4, that

8o, (fo +0) 8y N~ + N2 <1+ 85N <R, (90)

In the last step we used the simple bound 8% < ¢4, see (200), and the inequality
1+ 83_7 < 2+ 67!, which holds for 7 < 1. Note that (90) and (80), (84) imply (79).
The proof the proof of the first inequality of (60) is complete.

Step B. Here we prove the second bound of (60). It is convenient to write the L"-valued
random variable (55) in the form

S=Ui+ - +Up 14Uy = S'+U,,  where Uy =N"'"23"y(.¥)). 91)
J€0;

Observe that Uy, . .., U,_ are independent and identically distributed. We are going
to apply Lemma 1 conditionally, given U, to the probability

P(B) =Ep(U,), where p(f) =E(ds,(S'+ f, N"'21)|U, = £).

To upper bound p(f) we proceed similarly as in the proof of (90). Lemma 9 shows
that Uy, .. ., U,_ satisfy the moment conditions of Lemma 1. Note that in this case
the quantity u, satisfies c*(S% /n < ui < ¢} /n (these inequalities follow from (201)).
The right inequality implies the bound &, < c,N~*8" instead of (88) above. As a
result we obtain a different power of §3 in the upper bound below. Proceeding as in

proof of (90), see (86), (88), (89), we obtain

P < el +8 PN < R,
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In the last step we used the inequality 1 + 85 rRr=D gy 87!, which follows from

r/2(r — 2) < 1 (recall that r > 4). Therefore, we have P{B} < Ep(U,) < c¢'R,
where R is defined in (71). This completes the proof of the second inequality in (60).

3.4 Proof of (26) fork = 3

Here we prove the bound |I3| < ¢ N —1=v_see (26). It follows from (48) and the
identity Ey exp{itT'} = o} exp{it W'}, see (13), that

E m
|13 5/ o7 |dt+c*N_1_”. (92)
n<ltl<t Il

Recall the event S = {||S||, < N"/10}, where S defined in (55). We have
Elo"| < Elsle"| + E(1 — Ig). 93)

Using Lemma 13 we upper bound the second term on the right: P{||S||, > NV/10) <
¢« N73. Furthermore, the one-term expansion of the exponent in (13) in powers of
itN=32 Y% ¥(X1.Y;) shows the inequality

Isle| < [Eexplit N~ 2g(X )} + IsltIN S|l

It follows from (7) that the first summand is bounded from above by 1 — v, for some
v > Odepending on A, M., D, § only, see the proof of (36). Furthermore, the second
summand is bounded from above by N ~°"/10 almost surely. Therefore, for sufficiently
large N > C, we have [g|o| < 1 — v/2 uniformly in N. Invoking this bound in (93)
we obtain

Ele"| < (1 —v/2)" +cuN72 < c.N73,

for m satisfying (17). The latter inequality implies that the integral in (92) is bounded
from above by ¢, N2 thus completing the proof.

4 Combinatorial concentration bound

We start the section by introducing some notation and collecting auxiliary inequalities.
Then we formulate and prove Lemmas 1 and 2.
Introduce the number

1 (erllgla/2m gt/ =2

§r = min ,
12¢, 1+4/llgll2

; (94)
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where ¢, = 1+ [Igll,/llgll2 and ¢, = (7/24)2" =D Denote

p* =1 —sup{[Ee"$XV|: 2715y < i < N7V,
It follows from the identity p* = p(2~'08;, o N~"F1/2) and the simple inequality
a; < 8/4, see (35), that p* > p(20 ay, o N~v+1/2y Furthermore, it follows from
(169) and the assumption cr% = lthat1/2 < o < 2 for sufficiently large N (N > Cy).

Therefore, p* > p(a;, 2N —vtl/ 2) > §', where the last inequality follows from (36).
We obtain, for N > C,,

1 — sup{|[Ee"#XV| 12718 < 1| < N7V > 6, 95)
where the number 8’ depends on Ay, Dy, M, vy, r, s, 8 only. In what follows we use

the notation co = 10. Let L), = {y € L" : fX y(x) Px(dx) = 0} denotes a subspace
of L". Observe, that Eg(X) = 0 implies y*(= pg(y)) € Ly, forevery y € Ly,.

4.1 Lemma 1

Let 1, ..., ¥, denote independent random vectors with values in L. For k =
1,...,n, write

o=y1+--+yYr and ¢ =y

Let W,- denote an independent copy of ¥;. Write ¥/ = pg(;) and %T = pg (Ei), see
(31). Introduce random vectors

=27 v, e =27l =Y, =27 W ).

We shall assume that, for some ¢y > cp > cp > 0,

n PRIVl <y, cp <nEIYI5 < ch, (96)
for every 1 <i < n. Furthermore, denote /,Ll-z = E||1/~/i*||% and /%ir_z = %E”;ﬁ_,’.”; ,
Wy = min u;, Ky = max K;. 97)
1<i<n 1<i<n
Observe that, by Holder’s inequality and (32), we have k; > 1,fori =1, ..., n.

Lemmal Letd <r <5and0 < v < 10_2(r —4). Assume that n > NV, Suppose
that

4 9 n

Ky < — :

256 In N

Assume that (95), (96) as well as (106), (112) (below) hold. There exist a constant

cx > O which depends onr, s, v, Ay, Dy, M, § only such that for every Ty satisfying

(98)
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(38) we have
8. (f + & 1(T0)) < a(Cp/Cp) ' /226, 07D 4 e N2, (99)
for an arbitrary non-random element f € L{. Here &, = %% The function

85 (-, I(Tp)), is defined in (40).

In Step A.2.3 of Sect. 3 we apply this lemma to random vector { = ¥ + - - - + ¥y,
see (83). In Step B of Sect. 3 we apply this lemma to the random vector S, see (91).

Proof We shall consider the case where Ty > 0. For Ty < 0 the proof is t~he same.
We can assume without loss of generality that co < NV. Denote X = [|v/|]> and
Y = ¥l and u = pi, k = &;. By (32), we have ¥ > X.

Step 1. Here we construct the bound (100), see below, for the probability P{B; }, where
Bi ={X>p/2, Y <ku}.
Write

u? =EX? =EX%I4 +EX?Ip + EX?Ip,
A={X <pn/2}, D={X=u/2,Y >cku}

Substitution of the bounds
2
EX2I, < MT’

EX’Ig <EY?Ip < (cu)°P(B;},
EX?Ip < EY?Lysp) < (k) "EY”

gives
pu? <47 + i PP{BY + (k) > EY.

Finally, invoking the identity x"~2 = (8/3)EY” /" we obtain

3 EY" 3 4EY” 3 3
P{B;} > — — = —(1 - —) =— > =:p. (100)
42 (kp)” 4k 3l k2 82 ~ 8«2
Introduce the (random) set J = {i : B; occurs} C {1, ..., n}. Hoeffding’s inequal-
ity applied to the random variable |J| = I, + - - - 4 Ip, shows
P{J| < pn} < expl—np?/2} < N2, p:=p/2=03/16k % (101)

In the last step we invoke (98) and use (100).
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Step 2. Here we introduce randomization. Note that for any «; € {—1,+1},i =
1, ..., n, the distributions of the random vectors

Wisooa)and (g + VP + Un)
coincide. Therefore, denoting
o=oYn+ AP, Go=V14 o+ U,
we have for s > 0,
8y(f + ¢, 1(T0)) = 85(f + & + &, 1(T0)),
for every choice of «y, ..., a,. From now on let oy, ..., o, denote a sequence of

independent identically distributed Bernoulli random variables independent of Vi, 1},‘ ,
1 <i < n, and with probabilities P{o; = 1} = P{orjy = —1} = 1/2. Denoting by E,

the expectation with respect to the sequence «j, ..., o, We obtain
8s(f +¢. 1(To)) = Eabs(f + &n + &no 1(T0)). (102)
We are going to condition on ; and 1/;‘1', 1 <i < n, while taking expectations with
respecttoay, .. ., a,. It follows from (101), (102) and the fact that the random variable
|J| does not depend on «q, .. ., o, that
8s(f + ¢ 1(T0)) < Elysizpmys (Wi, ¥i, 1 <i <m)+ N2, (103)
where

vsWi ¥io V=i =m) = Belynizomlpapig, 460> 1- T 48,480 280)

denotes the conditional expectation given tﬁ,-, 1&,-, 1 < i < n.Note that (99) is a
consequence of (103) and of the bound

Ve, (i, Yin 1 < i < n) < corcd 26l 7200 (104)
Let us prove this bound. Introduce the integers
ng=1—1 [ = [895c Lo, T2, 3¢ = 2¢0(Cp/Cp)ks.

Let us show that
nog < pn. (105)
It follows from the inequalities

6! <20 NI D oy <l < i(é)l/(r—z)
CB 168
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that
2 2/
< S_ZL ﬁ " (N”nl/z)(r_z)/r < iiinl/z.
~ Cp ks \2c0 ~ 16 k. Cp
Note that (98) implies &, < n!/4. Therefore, the inequality
cylrcpt <nl/ (106)

implies [ < (3/16)k;2n = pn. We obtain (105).

Given v, 1}1-, 1 <i < n, consider the corresponding set J, say J = {iy, ..., ii}.
Assume that k > pn. From the inequality pn > ng, see (105), it follows that we can
choose a subset J' C J of size |J'| = ng. Split

&n Zzai&i‘f‘ Z i =1 G+ ¢

ieJ' ieJ\J’
and denote f + ¢’ + £, = f. Note that f; € L{ almost surely. Let

8 =ETp2, 400> 1-e2) Ll fitall <NV

where E’' denotes the conditional expectation given all the random variables,
but {a;, i € J'}. The bound (104) would follow if we show that

§ < conctPel 7RI, (107)
Step 3. Here we prove (107). Note that for j € J' the vectors
xXj = TON_1/21Z/~ and  x7 = pg(xj) = TON_1/21/~/;-‘

satisfy
2 = coews Ixjlly < s6xs 3¢ = 2¢0(Cp/Ch)ic. (108)

Given A C J’' denote

XA=in— Z Xi, Xy = pglxa).

icA ieJ'\A

We are going to apply Kleitman’s theorem on symmetric partitions (see, e.g. the
proof of Theorem 4.2, Bollobas [15]) to the sequence {xj, j € J'}in L?. Since
for j € J' we have ||x;f||2 > o€, it follows from Kleitman’s theorem that the
collection P(J’) of all subsets of J' splits into non-intersecting non-empty classes
P(J’) = D1 U---U Dy, such that the corresponding sets of linear combinations
V, = {xi, A e D}, t =1,2,...,s, are sparse, i.e., given 1, for A, A’ € D, and
A # A’ we have

Ik — il = coes. (109)
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Furthermore, the number of classes s is bounded from above by (L nz% J).

Next, using Lemma 2 we shall show that given f, the class D; may contain at most
one element A € D; such that

VA(futEa) > 1—el, | fs+Ealr <NV, Ea:= NPT xs (110)

This means that there are at most (Ln};% J) different subsets A C J’ for which (110)
holds. This implies (107)

XA no —172 —172 2
852 n0< )Scno / :csz / %1/28*2r .

[n0/2]

Finally, (99) follows from (103), (104), (107).
Given f; € Lj let us show that there is no pair A, A’ in D; which satisfy (110).
Fix A, A’ € D;. We have, by (108) and the choice of ng,
lea = xarllr <23 il < 2nosees < 25264

iel’
Denoting S4 = fx + X4 and Sy = fix + X4 we obtain

1S4 = Sarllr = N1 ixa — xarlly < 28067 NPT (111)

Assume that S4 and Sy satisfy the second inequality of (110), i.e., ||Sall, < N' and
IS4l < NV. We are going to apply Lemma 2 to the vectors S4 and S4/. In order
to check the conditions of Lemma 2 note that (114) and (115) are verified by (108),
(109) and (111). Furthermore, the inequalities c9 < N and

cp = 2NY(n/N)'/2, (112)

imply N2'~1/2 < ¢, Finally, we can assume without loss of generality that &, <
¢}, where ¢}, := min{(8'/4)"/?, (A2 6yr/ 2}. Otherwise (99) follows from trivial
inequalities

Je, <1< (8*/0;)(r_2)/2r = C*gir—Z)/2r

and the inequality «, > 1.

Now Lemma 2 implies min{vZ(S4), v2(S4)} <1— e% thus completing the proof
of Lemma 1. O

4.2 Lemma 2

Here we formulate and prove Lemma 2. Let us introduce first some notation. Given
y € L"(= L" (X, Py)) define the symmetrization y; € L" (X x X, Py X Py) by
ys(x, x") = y(x) — y(x'), for x, x’ € X. In what follows X, X, denote independent
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random variables with values in & and with the common distribution Px. By E we
denote the expectation taken with respect to Px. For & € L™ we write

Eh:Eh(XQ:/ h(x) Py (dx), Eel‘h:Ee”“Xl):/ " py(dx).
X X

Furthermore, for 2 < p <r, denote
Iyslp = Ely(X) —y(X2)I7,  llylp = Ely(X)|”.
Note that for y € Lj, we have y*(= p,(y)) € L and, therefore,
E[Y* (X)) — y* (X2)I> = 2Ely* (X)) (113)

Letyi, ..., yk, f be non-random vectors in L”. We shall assume that these vectors
belong to the linear subspace L{. Given non random vectors o = {ai}f.‘: , and ' =
{e/}*_ |, with a;, &) € {—1, +1}, denote

k k
Su=f+Y iy, Sw=f+) v
i=1 i=1
Lemma 2 Let s > 0. Assume that (95) holds and suppose that
N2 <& <min{(8'/4)7%, (Igll2/6)"?}.
Given Ty, satisfying (38), write T* = N1/2 T(;1 and assume that
Vil > coT*e, lyjllr <> T%, j=1,... k. (114)
Suppose that ||Sy |l < NY and ||Sy/ ||, < NV and
IS5 = Syl = coT*e,  1ISa = Sellr < 28T/ (115)

Then min{v?(S,), v2(Sy} < 1 — &2

Recall that the functionals v(-), T(-), u;(-) and the interval I = I(Tp) used in proof
below are defined in (39).

Proof Note that §; < 1/10 and §; < 1/12. In particular, we have
9/10 <1—8; <|s/To| <1468 < 11/10, for |s — To| < 8§ N"F1/2. (116)

Step 1. Assume that the inequality min{v>(Sy), v>(Sy} < 1 — &2 fails. Then for some
s,t € I we have

1—ur(Se)l* <& 1—|ug(Sp))? < &2, (117)
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see (39). Fix these s, t and denote
X =s(g+N"28,) —t(g+ N"'28,).
We are going to apply the inequality (256),
1 — B2 = 2711 —|Ee/Z ) — (1 — [Ee/Y )
toZ=—XandY = s(g+ N_I/ZSO,/). It follows from this inequality and (117) that
2> 1 — u(S)> = 1 — [EYHDP2 > 2711 — [Ee i X ?) — &2,

In view of the identity [Ee=iX| = [E¢/X| we have

1 — |[Ee'X |2 < 462, (118)

Step 2. Here we shall show that (118) contradicts the second inequality of (115). Firstly,
we collect some auxiliary inequalities. Write the decomposition (31) for S, and S,

So=ag+Sy, Sy=dg+Sk. (119)
Decompose

X = vg + h,
v=06-00+aN""?+ @ —a)sN~'2,
h=(s—0ONV2SE + sNTV2(S% — 80,

where v € R and where & € L” is L?-orthogonal to g. An application of (34) to Sk
and 7, — S gives
Il < cgN™V2(Is]1Sar = Sallr +1s = 1111 Sallr)- (120)

Furthermore, it follows from the simple inequality
I+ y13 = 27 x5 = Ivii3

that
17113 > 27 s NTYISE — SE13 — (s — )2 NSz 3. (121)

Note that for a and a’ defined in (119) we obtain from (33) and (115) that

lal < ISell llglls" < Nlgly ", (122)
la' —al < ISy — Sell-lgly " <2822/ NV2T,  glly " (123)
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Step 4.2.1. Consider the case where, |s —¢| < 8. Invoking the inequalities || Sy ||, <
NV and (115) we obtain from (120) that

1A, < (Aey)' 8y (N7 7712 4 2205 757 ).
Furthermore, using (116), (94), and NY~!/2 < &, we obtain for4 < r <5
allr <377 (" + g2(11/10)") < 3'77&2. (124)

Note that (32) implies ||S}ll2 < ||S¢ll» < NV. This inequality in combination with
(115) and (121) gives

1R3> 27 (s To) cfe® — 3N L.
Invoking (116) and using c¢p > 10, 65 < 1271, and N'~1/2 < ¢ we obtain
715 = (4/10)cge”. (125)
Now we are going to apply Lemma 12 statement a) to X = vg + h. For this
purpose we Verify the conditions of this lemma. Firstly, note that (125), (113) imply,
| 7ag ||2 > (8/ 10)c 2. Furthermore, it follows from the simple inequality E|h(X1) —

h(X2)|" < 2"E|h(X1)|" and (124) that ||A||"- < 3(2/3)"&2. Therefore, we obtain, for
4<r<5,

6
sl < —082 < co2lhsll3 < erllhsll3, e = (772427070,
Furthermore, the inequalities (122), (123) and (116) imply

lu] <8+ 8allgly ' (NYTV2 42627 (11/10)) < &(1 +4ligll5 ),

for N"~1/2 < ¢ < 1. Invoking (94) and using the inequality | g||” < 2" [ g|l" and the
identity ||g, |3 = 2/lgl|3 we obtain

w2 < S lgly e 2Mslly _ er lgslly
=2 gl < 2 2 gl T 2 sl

as required by Lemma 12 a). This lemma implies
1= [Ee X2 > 67y =37 112

In the last step we used (113). Now (125), for cgp > 10, contradicts (118).
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Step 4.2.2. Consider the case where 8, < |s — 1| < §; N~"*t1/2_ It follows from
(120), (115) and (116) that

Elh| < |11l < cg(2826" |5/ To| + 81)
< (81 4 3828%7) < g8y + " (126)

Inthelaststepweused §> < 1/3.From (122),(123)and (116), we obtain for§, < |s—¢|
and NV1/2 < ¢,

o] > 8(1 — N""Y2|igll ) — 2826 |5/ Tol gl !
= 5(1 — lgll; (e + €27 (22/10)))
> 81 -3 )gly ") = 82/2,

provided that 2" < |gll»/6. Similarly, using in addition, §1, 6 < 1/4and e < | g||2,

we obtain, for |[s — 7] < §; N~VH1/2,

] < s — |14+ N""2)1gliy D) + 2826215/ Tol gl
<|s — (1 +eliglly ) + (22/10)56*" | gl "
<2|s—t|+1<NVF2

It follows from these inequalities, see (95), that
| — [Ee X2 > 1= |[EeX| > 1 — |Ee'V8| — E|h| > §' — E|h|.
Finally, invoking (126) and (37), we get
1= [Ee X2 > 6 — g8y — 2" > 8')2 > 462,

Once again we obtain a contradiction to (118), thus completing the proof. O

5 Expansions

Here we prove the bound

/ ‘Ee’ﬂr 6| < N1, (127)
lr<n It

where t; = N'/2/103 3. For the definition of T and G see Sect. 2.4. Here and below
¢, denotes a constant depending on Ay, My, Dy, r, s, vy only. We prove (127) for
sufficiently large N, that is, we shall assume that N > C,, where C, is a number
depending on Ay, M, Dy, r,s,v; only. Note that for N < C,, the bound (127)
becomes trivial, since in this case the integral is bounded by a constant.
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Let us first introduce some notation. Denote 2, = {1, ..., m}. For A C Qpy write
Ui(A) = ZjeA g1(X ;). Given complex valued functions f, h we write f < R if

f @Ot < e N
[t|<ty

andwrite f ~ hif f—h < R.Inparticular, (127) can be written in short Ee"’fr ~ G(t).
In order to prove (127) we show that

Ee'T ~Ee'T  and  Ee'T ~ G(1). (128)

In what follows we use the notation of Sect. 2. We denote o (1) = Ee'’8X1), We assume
that (16) holds.

5.1 Proof of the first relation of (128)
We have, see (19),
T=T+A1+Ay, Ar=A1+As, Ar=Ar+As+As,

where the random variables A ; are introduced in Sect. 2.4. We shall show that
Ee''T ~ Ee'THA0  and  Ee'THAD) ~ EeT, (129)

The second relation follows from the moment bounds of Lemma 5 via Taylor expan-
sion. We have

Ee'™ = Ee/'®*A) 4 R |R| < [1|E|Aa],
By Lyapunov’s inequality,

E|As| < (BA3)'? 4+ (BAD'? 4+ (BAD'.
Invoking the moment bounds of Lemma 5 we obtain |¢|E| As| < R, thus, proving the
second part of (129).

In order to prove the first part we combine Taylor’s expansion with bounds for
characteristic functions. Expanding the exponent we obtain

Eei'T+A0 — gei'T | 1B TR | + R, |R| < PE|A %

Invoking the identities

2 (m\ » (N —m\ &
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we obtain, for y» < c,and & < ¢4, see(5),andm < N 112 that R < R. We complete
the proof of (129) by showing that

E'TR, < R. (131)

Let us prove (131). Split W = W + W» 4+ W3 + Ry, where

Wy = Z Tx, Ry = Z T4.

ACQ, |Al=k ACQ, |A|=4

Here @' = {m +1,..., N}. Denote R = U3 + W3 + Ry and Uy = Y ), g1(X)).
We have T = U; + W, + R. Expanding the exponent in powers of iR we obtain

where

IRl <E|AR| < (r1 +r2)(r3 + 14+ 15),
ri =EA}, 3 =EA}, r}=EU}? r}=ER}, ri=EWi]

In the last step we applied the Cauchy—Schwartz inequality. Combining (130) with
the identities

3"

NS

m(N — m)

E(U)? = =3

V2, EW% =

&
and invoking the simple bound

Aj D,

2
ERy = N3 = N2+

’

we obtain 72(r; 4+ r2)(r3 + ra + r5) < R. Therefore, (132) implies
tEei[T[\1 ~ tEeit(U1+W2)[~\1.

Let us show that tEe/”W1+W2) A, ~ 0. Expanding the exponent in powers of irW»
we get

(Be"UITWIR = £1(0) + f2(t) + f3(0) + fa(0),
fi(t) = tEe"VI A4, Ht) = it?Ee ™V A W,
(1) = PB VAW, fa(r) = BV A W36, 2,

where 01, 0, are functions of W5 satisfying |6;| < 1.
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Let us show that f; < R, fori = 1, 2, 3, 4. Split the set 2, = {1, ..., m} in three
(non-intersecting) parts A1 U Ay U Az = Q,, of (almost) equal size |A;| = m /3. The
set of pairs {{i, jl C Qm} splits into six (non-intersecting) parts By, | <k <r <3
(the pair {i, j} belongs to By, if i € Ay and j € A,). Write

A=Y Mk, Mkr= Y gXk X)),

I<k<r<3 {i.j}eBir
Ae= Y Ask), A=) > gs(Xi, Xj. X)).
1<k<3 icArm+1<j<I<N

Let us prove fi < R. We shall show that
PEe VA (k, )W36, < R. (133)
Given a pair (k,r) denote A; = Q2 \ (Axr U A,) and write k; = |A;|. Note that

ki ~ m/3. We shall assume that k; > m /4. Since the random variable U;(A;) :=
>_jea; 81(X;) and the random variables A1 (k, r), W, are independent, we have

Eei’UlAl(k, r)W%@z — EeitUi(A) EA(k, r)W%Gz.

Therefore, . .
[Ee'"U' Ay (k, r)W36,| < [Ee'™1A0| E|A; (k, ) W. (134)

The first factor on the right is bounded from above by exp{—mt>/16N}, for k; > m /4,
see (165) below. The second factor is bounded from above by r, where

r? = EA}(k, )EWS < c,m® N>,
Here we combined the Cauchy—Schwartz inequality and the bounds
EA%(k, r) < c*m2N73, EW/V‘Zl < C*Nfz.
Finally, (133) follows from (134)
|PESVIA kW36, | < cliPe 1N N2 < R,

The proof of f3 < R is almost the same as that of f4 < R.

Letusprove f, < R.Splitthe set Q' = {m+1, ..., N}into three (non-intersecting)
parts By U B, U B3 = Q' of (almost) equal sizes |B;| ~ (N — m)/3. Split the set

of pairs {{i, j} : m+1 <i < j < N} into (non-intersecting) groups D (k, r), for
1 <k <r <3.Thepair{i, j} € D(k,r)ifi € By and j € B,. Write
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Wo= Y Wakr), Wakn= Y  aX,X).

1<k<r<3 {i,jleD(k,r)
As= ) Makr), Mkon= Y Y g(Xe Xi X)),
1<k<r<3 1<s<m{i,j}eD(k,r)

In order to prove f, < R we shall show that
BV A W (k, ) < R. (135)
Write B; = Q' \ (B U B,) and denote m; = |B;|. We shall assume that m; > N /4.
Since the random variable Uy (B;) = Y jeB; 81 (X j) and the random variables A and
Wa (k, r) are independent, we have, cf. (134),
[Ee'™1 A W (k, )| < [Ee'™T | BIA W2k, ). (136)

The first factor in the right is the product |a™ (¢)| < e™™i! 2/aN , see the argument used
in the proof of (133) above. The second factor is bounded from above by 7, where

72 = EAEW3 (k,r) < cam®N ™%,

Finally, we obtain, using the inequality m; > N /4,

12
exp{—E}.

m

B¢V E|AWak, r)| < com exp{—12 2y < ¢, 2
TN 4N'~ N2

This in combination with (136) shows (135). We obtain f, < R.
Let us prove f; < R. We shall show that f* < R and f* < R, where

f*=tE™A; and  fF =1EeV Ay
satisfy f* + f* = f1.
Let us show f* < R. Denote U} = Z;V:mﬁ g1(X ;). We obtain, by the indepen-
dence of U} and A that

IEe'VIA | < |E™Vi E|A].

Invoking, for N — m > N/2, the bound |Eei’UT| < e_’z/g, see (165) below, and the
bound E[A 1| < (EAD? < c,mN /% we obtain

1f*0)] < exltle™ N2 <R,
Let us prove f* < R. We shall show that, for | <k <r <3,

tEe" VT Ay (k, r) < R. (137)
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Proceeding as in the proof of (135) we obtain the chain of inequalities
BV Ay (k, )| < e /OB Ay(k, r)| < cue "/ 16m1 2 N=3/2, (138)

In the last step we applied Cauchy—Schwartz and the simple bound EAZ(k, r) <
cxmN 3. Clearly, (138) implies (137).

5.2 Proof of the second relation of (128)
Here we prove the second relation of (128). Firstly, we shall show that

Ee''T ~ Eexplit(Uy + Uy + Us)}, (139)

N
Eexp{it(U; + Uy + Uz)} ~ Eexp{it(U; + Uy)} + <

) )e_’2/2(it)4w, (140)

where w = Eg3(X1, X2, X3)g1(X1)g1(X2)g1(X3).
Let m(¢) be an integer valued function such that

m(t) ~ CiNt>In(t> +1), C,<|t| <1, (141)

and put m(t) = 10, for |[¢| < C;. Here C; denotes a large absolute constant (one can
take, e.g., C1 = 200). Assume, in addition, that the numbers m = m(¢) are even.

5.2.1 Proof of (139)
Given m write

T=0U; +U;+Us +H,
where

H = H,; + Hy, H, = Z Ty, H, = Z Ty4.
|A|>4, ANQ,,, =0 |A|>4, ANy, #0

In order to show (139) we expand the exponent in powers of i¢H and itUs,
Eexp{itT} = Eexp{it(U; + Uy + U3)} + Eexp{it(U; + Uy)}itH + R,
where |R| < t>(EH? + E|UsH]|). Invoking the bounds, see (166), (167), (5), (6),
EH? < N3A] < N2, EU3 < N4 <c,N72 (142)
we obtain, by Cauchy—Schwartz, |R| < Cot2N727V < R. We complete the proof of

(139) by showing that
Eexp{it(U; + Uy)}itH < R. (143)
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Before proving (143) we collect some auxiliary inequalities. For m = 2k write
Qn=A1UA, where Ap={1,...,k}, Ay =f{k+1,...,2k}. (144)
Furthermore, split the sum

Uy =71+ Zo + Z3 + Za,

Zi= ) @XuX), Zo=) Y oXi,X)),

I<i<j<m icAim<j<N
Zz=Y Y oXi.X). Zi= Y @X.X). (149
icAym<j<N m<i<j<N

In what follows we shall use the simple bounds, see (5),

2 2
m m " C
EZ} < 5 =cans,  BZis yﬁ <
2 m m 4 m? m?
EZ; < N2 < Cx 2 EZ; < cNav < Ceg 1= 2,3. (146)

Let us prove (143). Expand the exponent exp{it(U; + Z; + - - - + Za4)} in powers
of it7Z to get

Eexp{it(U; + Uy)}itH = hy(t) + R,
where h1(t) = Eexp{it(U; + Zy + - - - 4+ Z4)}itH and where
|R| < r*E[HZ;| < *(EH>)2(BZ)'/? < cut>mN~CF20/2,
For m = m(t) satisfying (141) we have R < R. Therefore, we obtain
Eexp(it(Uy + Up)}itH ~ hy.
In order to prove h; < R we write h1 = hy + h3 and show that Ay, h3 < R, where

hy =Eexp{it(U; 4+ Zy + - - - + Z4) }itHy,
hy =Eexpl{it(U; +Zy + - -+ 4+ Z4)}itH,.

Let us show that hy < R. Firstly, we prove that
hy ~ hay + hao + has, (147)
where hy 1(t) = Eexp{it (U + Z4)}itH, and, for j = 2, 3,
ha j(t) = Eexplit(Uy + Za)}(it)*H, Z;.
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Expanding the exponent in powers of i#(Z; + Z3) we obtain
hy =hai+ho2+h23+R,
where |R| < |t|°E|H|(Z> + Z3)? is bounded from above by
1P (BHD' 2 (E(Z2 + Z3)H)'? < e tPmNT 1 < R,
In the last step we used EH% < EH? and applied (142) and (146). Therefore, (147)
follows.

Let us show hy; < R, fori = 1, 2, 3. The random variable U; (A1) does not
depend on the observations X ;, j € €\ Aj. Therefore, we can write

o3 = EexplitUp (A} Eexplit (U1 (R \ A1) + Za)}(it)*H, Z;3.

Furthermore, using (165) we obtain, for |[A{| = m/2,

1/2
m m
23] < 2l (OIBH Zs| < et exp{—1* o} (148)

In the last step we combined the bound EH% < ¢, N7272V1 apnd (146) to get
E|H,Z3| < (EHD)'/2(EZ3)'/? < c,m!PN7271,

Note that choosing of Cj in (141) sufficiently large implies, for || > Cq,
?m/12N ~ (C1/12) In(t> + 1) > 101In(:> + 1).

An application of this bound to the argument of the exponent in (148) shows i2 3 < K.
The proof of iy ; < R, fori = 1, 2, is almost the same. Therefore, we obtain 4y < K.

Let us prove 3 < R. Firstly we collect some auxiliary inequalities. Write m = 2k
(recall that the number m is even) and split 2, = B U D, where B denotes the set of
odd numbers and D denotes the set of even numbers. Split H, = Hp 4+ Hp + Hc.
Here, for A C Qpn and |A| > 4, we denote by Hp the sum of T4 suchthat ANB = ¢
and A N D # #; Hp denotes the sum of T4 suchthat AN B # @ and AN D = @,
H¢ denotes the sum of T4 such that AN B # @ and A N D # (. It follows from the
inequalities (177) and (6) that

EHZ < cm?N™421,  EHy =EH3 < cmN 3721, (149)
Using the notation z = it exp{it(U; 4+ Zo + Z3 + Z4)} write

hy =EzHy = h3 1 + h3o + hi s,
h31 =EzHp, h3p=EzHp, h33 =EzHc.
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We shall show that h3; < R, fori = 1,2, 3. The relation h33 < R follows from
(149) and (146), and by Cauchy—Schwartz, |h3 3| < c|t| mN~2" < R,

Let us show that 413, < R. Expanding the exponent in powers of i#(Z, + Z3) we
obtain

h3a2 =h3, + R, h3 5 = Eexp{it(U; + Z4)}itHp,
where |R| < t*E|Hp(Z, + Z3)|. Combining the bounds (146) and (149) we obtain,
by Cauchy—Schwartz, |R| < c*tsz_(5+2"1)/2 < R. Next we show that h;_z <
R. The random variable Ui (D) = >_;cp g1(X;) and the random variable Hp are
independent. Therefore, we can write
|73 5] < |t| [Eexp{itU(D)}|E|Hp|.
Combining (165) and (149) we obtain using Cauchy—Schwartz,
|h§‘2| < C*|t|e—mtz/Sle/2N—(3+2vl)/2 <R,
The proof of 3.1 < R is similar. Therefore, we obtain 13 < R. This together with the

relation iy < R, proved above, implies 71 < R. Thus we arrive at (143) completing
the proof of (139).

5.2.2 Proof of (140)

We start with some auxiliary moment inequalities. Split

Us=W+2Z, W= Z Ty, Z= Z Ty.
|A|=3, ANQ,, #D |A|=3, AN, =0

Using the orthogonality and moment bounds for U -statistics, see, e.g., Dharmadhikari
et al. [20], one can show that

EW? < mN%Eg3(X1, X2, X3), EZ? < N°Eg3 (X1, X2, X3),
and E|Z|* < ¢N¥/?E|g3(X1, X2, X3)|*. Invoking (5) we obtain
EW? <comN73, EZ><c.N72,  E|Z <cN°. (150)
For the sets Ay, Ay C 2, defined in (144) write

D={ACQn:|Al =3, AN, 0},
Di={AeD: ANA| =0},
Dy={AeD: AN A, =0},
Di={AeD: ANA| #0, AN Ay #0}.
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We have D = Dy UD, UD3and W = ZAep T4. Therefore, we can write W =
Wi + Wa + W3, where W; = ZAEDJ' Ta.
A calculation shows that
EW} = EWF < kN*Eg3(X1, X2, X3), EWj <k*NEgi(X1, X2, X3).
Therefore, we obtain form (5) that

EW? =EW; <conN73,  EW; <com?N~4 (151)

Let us prove (140). Write U3 = W + Z. Expanding the exponent in powers of it W
we obtain

Eexp{it(U; + Uy + U3)} = ha + hs + R,
hy = Eexp{it(U; + Uy + 2)},
hs = Eexp{it(U; + Uy + 2)}itW,

where, by (150), |R| < t?EW? < c,t>mN~3 < R. This implies
Eexp{it(U; + Uy + Uz)} ~ ha + hs.

In order to prove (140) we shall show that

hs ~ Eexp{itU;}itW, (152)

ha ~ Eexplit(U; + Up)} + EexplitU}irZ, (153)
N

EexplirU;}itUs ~ <3>e—’2/2(n)4w. (154)

Let us prove (152). Expanding the exponent (in /5) in powers of i# Z we obtain
hs = hg + R, he = Eexp{it(U; + Uy)}itW,
where, by (150) and Cauchy—Schwartz,
IR| < PE|WZ| < cut’m'PNT2 < R.

We have, hs ~ hg.
It remains to show that he ~ Eexp{itU;}it W. Split

Upy=U5+U5 U= > Tx U= > Tx (155)
|A|=2, ANQ, 0 |A|=2, ANQ =0

We have, see (146),

E(U3? <cumN72,  EU3)? <c N (156)
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Expanding the exponent (in /) in powers of iU} we obtain
he = h7 + R, where  h7 = Eexp{it(U; + U3)}irW,
and where, by (150), (156) and Cauchy—Schwartz,
IR| < PE|WU}| < cut>’mN % < R.
Therefore, we obtain hg ~ h7.
We complete the proof of (152) by showing that 77 ~ Eexp{itU;}itW. Use the
decomposition W = Wy + W, + W3 and write
h7 =h71+h72+h73,  hyj =Eexplit(U; +U3)}itW;.
We shall show that
h7.; ~ EexplitU;}itW;, j=1,2,3. (157)
Expanding in powers of iU} we obtain
h7.j = EexplitU}itW; + R;,
where R; = (it)°E exp{itU;}W;U36 and where 0 is a function of U} satisfying
|#] < 1. In order to prove (157) we show that R; < R, for j = 1,2, 3.
Combining (151) and (156) we obtain via Cauchy—Schwartz

|R3| < cxt>’mNT? < R.

Furthermore, using the fact that the random variable U; (A») and the random variables
U% and W, are independent, we can write

|Ra| < 2[EexplitUy (A2)}[E|WaU3| < curle ™ BN 2N-2 < R,

Here we used (165) and the moment inequalities (151) and (156). The proof of R < R
is similar. We arrive at (157) and, thus, complete the proof of (152).
Let us prove (153). We proceed in two steps. Firstly we show

ha ~ hg + ho,
hy = Eexplit(U; +Us)},  ho = Eexplit(U; + Un)}irZ.  (158)

Secondly, we show
hg ~ Eexp{itU,}itZ. (159)

In order to prove (158) we write
hga =hg+ho+ R, R = Eexp{it(U; + Uy)}r, r=explitZ}—1—itZ,
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and show that R < R. In order to bound the remainder R we write U, = U} + U3, see
(155), and expand the exponent in powers of iU;. We obtain R = Ry + R,, where

Ry =Eexplit(U; + U} and  |Ry| < E[itUsF|.

Note that, for 2 < s < 3, we have |7| < ¢|tZ|*/>. Combining (150) and (156) we
obtain via Cauchy—Schwartz,

|R2| < |t|1+s/2E|Z|S/2|[U;| < C*|t|l+s/2ml/2N—1—s/2 <R,

In order to prove R; < R we use the fact that the random variable U; (£2,,) and the
random variables U3 and 7 are independent. Invoking the inequality || < 12Z% we
obtain from (165) and (150)

IRi| < 2" ()|EZ2 < cor?e ™ /AN N2 L R,

We thus arrive at (158).
Let us prove (159). Use the decomposition (145) and expand the exponent (in /9)
in powers of itZ to get hg = h1g + R, where

hio = Eexp{it(Uy + Zo + Zs + Z4)}itZ, |R| < t°E|ZZ,].
Combining (146) and (150) we obtain via Cauchy—Schwartz
IR| < cst’mN 2 < R.
Therefore, we have
hg ~ hjp.

Now we expand the exponent in /g in powers of it(Zy + Z3) and obtain kg =
hi1 4+ h12 + R, where

hi = Eexplit(Uy + Za)}itZ,  hip = Eexplit(Uy + Za)}(it)* Z(Za + Z3),

and where |R| < |t|°E|Z||Zy + Z3|*. Combining (146) and (150) we obtain via
Cauchy—Schwartz |R| < |t|>mN—3 < R. Therefore, we have

hio ~ hi1 + hia.
We complete the proof of (159) by showing that
hi1 ~Eexp{itU}itZ and hpp <R. (160)
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In order to prove the second bound write
hi2 = Ry + R3, where  R; = Eexp{it(U; + Z4)}(it)2ZZ,-.

We shall show that R3 < R. Using the fact that the random variable U (A;) and the
random variables Z, Z3 and Z4 are independent we obtain from (165)

IR3| < £2|a™2(1)|E|ZZ3] < 2e™™Bm2N2 < R.
In the last step we combined (146), (150) and Cauchy—Schwartz. The proof of R; < R
is similar.
In order to prove the first relation of (160) we expand the exponent in powers of

itZ4 and obtain hy; = Eexp{itU;}itZ + R. Furthermore, combining (165), (146)
and (150) we obtain

IR| < t*|a™ (1)|E| ZZ4| < C*IZe*mt2/4NN73/2 <R

Hence the first relation of (160). The proof of (153) is complete.
Let us prove (154). By symmetry and the independence,

. N : Itx1 itxg i
Ee”UlitU3 — <3>h13Ee”U*, /’l13 — Ee”xle”xze”milz. (161)

Here we denote z = g3(X1, X2, X3) and write,

U=xt+x+x3+U0, U= Z g1(Xj),  x;=gi(X;).
4<j<N

Furthermore, write
rj=e" —1—itx;, v;j=e" —1.
In what follows we expand the exponents in powers of itx;, j = 1,2, 3 and use the

fact that E(g3 (X1, X», X3)|X1, Xg) = 0 as well as the obvious symmetry. Thus, we
have

hiz = his + Ry, hig = Ee!*2/1%3 (it)zle, R = Eeitxzeitx3itzr1,
hia=his+ Ry,  his =Ee™(i1)zx1x2, Ry = Ee™(i1)?zx11m
his = hig + R3, hig = E(it)4ZX1x2x3, R; = E(it)Slex2r3.

Furthermore, we have
Ry = Eitzirivavs, Ry = E(it)?zx1rpv3.
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Invoking the bounds |r;| < |txj|2 and |v;| < |tx;| we obtain

hi3 = hig + R, (162)

where |R| < c|t|5E|zx1xz|x32. The bound, |R| < c¢|r]°N~%/2 (which follows, by
Cauchy—Schwartz) in combination with (161) and (162) implies

) N )
Ee'V1i1U; ~ <3 >Ee”U* (i)*w. (163)

Note that (§)|w| < ¢,N~!. In order to show (154) we replace Ee/'U* by e /2.
Therefore, (154) follows from (163) and the inequalities

. N4 . N4
(l;v) (Ee”U* _e—lzaz(N—S)/ZN) <R, (lltv) (e—ﬂoz(zv—m/zzv_e—ﬂ/z)<R.

The second inequality is a direct consequence of (169). The proof of the first inequality
is routine and here omitted. Thus the proof of (140) is complete.

5.2.3 Completion of the proof of (128)

Here we show that

Eexp{itU; +Uy)} + <];I)e’2/2(it)4w ~G(@). (164)

This relation in combination with (139) and (140) implies Ee''T ~ G(t).

Let Gy (r) denote the two term Edgeworth expansion of the U - statistic U; + Us.
That is, Gy () is defined by (2), but with k4 replaced by k', where « is obtained from
k4 after removing the summand 4Eg(X1)g(X2)g(X3)x (X1, X2, X3). Furthermore,
let G v (t) denote the Fourier transform of Gy (¢). It easy to show that

Gt =Gy + (13V>e—f2/2(ir)4w.

Therefore, in order to prove (164) it suffices to show that éU (t) ~ Eexp{it(U;+U>)}.
The bound

~ dt
f |Gy (1) — Eexp{it(U; +U2)}|m <eyN~!
ltl<i

where ¢y | 0, was shown by Callaert, Janssen and Veraverbeke [16] and Bickel,
Gotze and van Zwet [11]. An inspection of their proofs shows that under the moment
conditions (5) one can replace &, by ¢, N ~". This completes the proof of (127).

For the reader convenience we formulate in Lemma 3 a known result on upper
bounds for characteristic functions.
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Lemma 3 Assume that (16) holds. There exists a constant c, depending on Dy, My, r,
s, vy only such that, for N > ¢y and |t| < N'/?/103B3 and B C Qy, we have

()] < 1—12/4N,  EexplitUi(B)}] < la(@)|Pl < ¢ BIP/AN  (165)

Here a(t) = Eexplitg1(X1)} and U(B) = ZjeB g1(X ).
Proof Let us prove the first inequality of (165). Expanding the exponent, see (188),
we obtain
)] < [1=27"Egi(X1)| + 67 '11PElgi (X))
= |1 —0?t?/2N| + p30° |t J6N*/?
Invoking the inequality 1 — 1073 < 62 < 1 which follows from (169) for N > c,,
where c, is sufficiently large, we obtain |x(7)] < 1 — t2/4N, for |t| < NV2/103Bs.

The second inequality of (165) follows from the first one via the inequality 1 +x <
e’ forx € R. O
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6 Appendix 1

In Lemma 4 below we compare the moments A,Zn and ER,%1 , where R,, is the remainder
of expansion (14),

T=ET+U;+---+U,,_1 + Ru, R, =0, +---+0Uy.
Fork =1,...,N, write Q; = {1,2,...,k} anddenoteok2 = Eg,%(Xl,...,Xk) =

ETék. It follows from (14), by the orthogonality property (15), that

N N
N
of =Y EU;, ER,=) EU;, EU= (k)a,f. (166)
k=1 k=m

Lemma 4 Assume that ET? < oo. Then

ER2 < N~(m=D A2, (167)
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AL < N o2 £ NTIAZ L, (168)

Assume that (5) and (6) hold, then there exists a constant ¢, < 00 depending on
D., My, r,s, vy such that

2502 < cuN7L (169)

0<l-o
Remark. For m = 3, inequality (168) yields A3 < ¢ + N™1AZ.

Proof Let us prove (167). The identity

Dy---D,T = Z Ty = Z Ukjm

A:Q,, CACQN m=<k=<N

where Uy = ZlAlzk,ADSZm T4, implies

N —m
2 2 2 2
E(D; - D,T)* = > EUj,. EIUklm:gk<k_m>_ (170)
m<k<N
We have
N-—m N
2 2 2
E(D\D;--- D, T)? = Z ak<k_m>= Z ok(k)bk, (171)
m=k=N m<k<N

where by = [kl /[N]y satisfies by > b, > m!N~™. Here we denote [x], =
x(x —1)---(x —m + 1). A comparison of (166) and (171) shows (167)

ER? < N"E(D; --- D, T)> = N~"=DA2 .

Let us prove (168). We have

N_
E(D; - DyT =02+ Y. a,3< m)

m<k<N k—m
N—m—1)\-
2 2
m<k<N

where I;k = (N —m)/(k —m) < N. We obtain the inequality
E(D; - D,T)* <0, + NE(D; -+ Dpyyi T)?
which implies (168).
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Let us prove (169). From (166), (167) we have, for ol = Nalz,
2 2 2 2

0<1-% < <N>U_z+<N)6_a+Lﬂ,
2=\t T3 T

Invoking the bounds, which follow from (5),
2 2/
No; =By (X1.X2) < Mi'02,  N°0f = Ex*(X1, X2, X3) < Mo}

and using (6) we obtain (169). O

In Lemma 5 below we establish moments bounds for various parts of Hoeffding
decomposition defined in Sect. 2.

Lemma5 Assume that 012. =1 For3<m < N ands > 2, we have

3

3 2
EA2 <7 A2 EAZ <D A2 EjAP <es (172)

E|A4l* <c(s)mPN"32¢, En? < NT*A], EAZ <mN*A3. (173)

Here c denotes an absolute constant and c(s) denotes a constant which depends only
ons.

Proof The inequalities (172) are proved in [4].
Let us prove (173). Split Ay = z1 + - -+ + z;u, Where

Zi = Z Ty.

|A|=3, ANQ,, =i

Let E’ denote the conditional expectation given X, 1.1, . .., X . It follows from Rosen-
thal’s inequality that almost surely

m m
E/A4l" < () Y Bl +co) (Y E'Z)".
i=1 i=1
Invoking Holder’s inequality we obtain, by symmetry,
E|A4]" = EE'| A4l < c(s)m**Elzi |’ (174)

Using well known martingale moment inequalities (and their applications to U statis-
tics), see [20], one can show the bound E|z{|* < c¢(s)N —3s/ ZQ. Invoking this bound
in (174) we obtain the first bound of (173).

In order to prove the second bound of (173) write

N—m+1
ni = Z Ug, Uf= Z Ty.
k=4

|Al=k, AN, ={i}
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A simple calculation shows E(U, ,:‘)2 = (Alij")akz. Therefore, by orthogonality,

N—m+1 N—m+1
N —m N —4
B = ) (k_1>o,3: )3 (k_4)bkak2
k=4
< N3E(D; --- D4T)>. (175)

In the last step we invoke (170) and use the bound by < N3, where by, =

) (]Z:f)_l. Clearly, (175) implies En? < N~*A7. Finally, using the fact that

N1, ..., Ny are uncorrelated we obtain
A% =Enf+~--+En,%l SmN*“A%
thus completing the proof. O

Before formulating next result we introduce some notation. Given m let D denote
the class of subsets A C Qu satisfying |[A| > 4 and 2,, N A # (. Introduce the
random variable H(m) = Aep I'a. Denote x; = 2i — 1 and y; = 2i. For even
integer m = 2k < N write

Qpu=ArUBr, Ar={x,....,x}, Be={y1,..., %}

and put Ag = By = . Let A(k) (respectively B(k)) denote the collection of those
A € D which satisfy A N Ay = @ (respectively A N By = #). Furthermore, let C (k)
denote the collection of A € D such that A N Ay # @ and A N By, # (. Write

Hy (k) = Z Tx, Hgk) = Z Th,  Hek) = Z Ty
Ac A(k) AeB(k) AeC(k)

Lemma 6 There exists an absolute constant ¢ such that,
EH2(m) < c—2 A2, f —4,5....N (176)
m _CN4 1 or m=4,5,...,N.

For even integer m = 2k < N we have

k k?
EH? (k) = EH% (k) < cmAﬁ, EHZ (k) < cﬁAﬁ. 177)

Proof Let us prove the first bound of (176). For m = 4 we have

H(4) = Hy + Hy + H3 + Hy, Hp = Z Ty.
|A|=4, |ANQu|=k
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A calculation shows that, fork =1, 2, 3, 4,

w= () 211 24) = () 5o

where the numbers

()
ar(j) = =5 < N*°*
(=2
Invoking (171) we obtain
EH? < c N*FE(D; --- DyT)? = cN 3% A2, (178)

Finally, we obtain (176) for m = 4
EH?(4) =EH} +--- + EH} < cN~*AL.
In order to prove (176) form =5, 6, ... we apply a recursive argument. Write
EH?(m + 1) = EH?(m) + Ed>, (179)

where d,, = H(m + 1) — H(m) is the sum of those T4 with |A| > 4 satisfying
ANQy =0Wand AN Q4 # P In particular, we have

dy = Z Taupm+13-
[A|=3, ANQy+1=0

Therefore,

Jj= j=1 j=4
where the numbers
(N]:nl 1) 3
Cj=——F— <N".
(522

Invoking (171) we obtain Ed,%l <N _4AZ. This bound together with (179) implies
(176).

Letus prove (177). Note that form = 2k we have H(m) = H, (k) +Hp (k) +Hc (k)
and the summands are uncorrelated. Therefore, the first bound of (177) follows from
(176).
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Let us show the second inequality of (177). For k = 2 we have C(2) C C, where
C denotes the class of subsets A C Qpy such that |A| > 4 and |A N Q4] > 2. Write
He =) 4cc Ta. We have

EHZ(2) < EHZ = EH} + EH] + EH} < cN AL
In the last step we applied (178). We obtain (177), for k = 2.

In order to prove the bound (177), for k = 3, 4, ..., we apply a recursive argument
similar to that used in the proof of (176). Denote

dpg =Hek+1) —Hek)y = > Ta.
AeC(k+1\C (k)

‘We shall show that
Edj, < ckN 7> Aj. (180)

This bound in combination with the identity EH% k+1) = EH% (k) + Ed[zk] shows
(177) for arbitrary k.
In order to show (180) split the set C(k + 1) \ C(k) into 2k + 1 non-intersecting
parts
Clk+ 1)\ C(k) = (UiZ1Cri) U (U2, Cyi) UCxy,

where we denote

Coy={A=AU{xp1. 5641} : AN(BLUAY) =0, |A] > 2},
Cri={A=AU{yq1.xi}: AN(BrUA;_) =9, |[A] >
Cyi ={A=AU{xq1, 3} AN(Bi-1UA) =0, |A

By the orthogonality property (ET4Ty = 0 for A # V), the random variables

dyi = Z Ty, dy.i = Z Ty, dx.y: Z Ty

AECXJ' AeCy.,- AECX_y

are uncorrelated. Therefore, we have
k
Ed}, =Ed;  +) (Ed}, +Ed})). (181)
i=1
A calculation shows that
N N
N —2k—2 N —4
2 2 _ 2 .
Fhr = Z“J’( j=2 ) =L (j —4>””
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where the coefficients

(N—Ek2—2)
Uj = # < N2.
(js)
Invoking (171) we obtain Edf y = N3 AZ. The same argument shows Edg.i =
Ed}; < N7>Aj. The latter bound in combination with (181) shows (180). The lemma
is proved. o

7 Appendix 2

Here we construct bounds for the probability density function (and its derivatives) of
random variables g; = (N/M)'%g; for 1 <k <n— 1, where g are defined in (74).
Since these random variables are identically distributed it suffices to consider

i N 12 m+M
g =(3;) $1=" Zg(,)+—

j=m+1

Here R = «/n M N . Introduce the random variables

—1/2

g =g —M gy, g =gf — M (gWms1) + 8(Ymi2)).

Let p; (-) denote the probability density function of gf, fori =1, 2, 3. Recall that the
integers n ~ N3OV < Nv2/10 gnd M~ N/n > N9/10 are introduced in (29) and the
number v > 0 is defined by (17).

Lemma 7 Assume that conditions of Theorem 1 are satisfied. There exist positive

constants Cy, ¢4, ¢}, depending only on My, Dy, 8, r and vy, v suchthat, fori = 1,2, 3,
we have uniformly inu € R and N > C,

Ipi)] < e, 1Pi)] < cx, Ipf W] < e, |p]" W] < . (182)

Furthermore, given w > 0 there exists a constant C,(w) depending on My, Dy, §,r,
V1, v and w such that uniformly in z, € [—2w, 2w] and N > C,(w) we have

Proof We shall prove (182) and (183) for i = 1. For i = 2, 3, the proof is almost
the same. Before starting the proof we introduce some notation and collect auxiliary
results.

Denote

6 =Egi =M"%0;, 6, =Eg(Ypi1),

@ Springer



1212 M. Bloznelis, F. Gotze

s2 =E(@g(Ymi1) =007, B3 =5 Elg¥pt1) — 61

and recall that gy = P{A;}, where A; = {||Z;.||r < N9} 1t follows from
Eg(Xm+1) = 0 that

01 = a4y Eg(Xus DA,y = —4y B§ X)) (1 =L, ).
Therefore, by Chebyshev’s inequality, for « = 3/(r + 2) we have
011 < ay' N~ VElg s DI 12541 177 < N2 (184)
In the last step we invoke the inequalities a(r — 1) > 14+ (r — 1)/(r +2) > 3/2 and
qﬁl < ¢4, see (45), and E|g(X+1)] ||Z;n |:’1 < M,, where the latter inequality

follows from (5) by Holder inequality.
Similarly, the identities

+1l

52 = gy B X+ Dl — 07 = qy'0% — gy ' Eg* (X)) (1 — 14, ) — 6}
in combination with (44) and the inequalities
Eg>(Xmi1)(1 —1I4,,) < N PEg*(Xpp1) 12 172 < N2 M,

anda(r —2) = 1 +2(r —4)/(r — 2) > 1 yield

2

Is? — 02| <cN"L (185)

Introduce the random variables

&1 8y j) — 01

g =S5+ p S=wit-tww, wj= T ga

We have g, = s_l(g’lk — 0). Let p(-) denote the density function of g,. Note that
piw) = s~ p(s™'(u — 0)). Furthermore, we have, by (184), || < ¢,N~! and, by
(185), (169), |s2 -1 < c«N~L. Therefore, it suffices to prove (182) and (183) for
p(-) (the latter inequality we verify for every z, € [—3w, 3w]).

In order to prove (182) and (183) we approximate the characteristic function p(¢) =

Ee!’8+ by ¢! */2 and then apply a Fourier inversion formula. Write
A i t : .
P =B =yMr( ).y =B T(r) = B,
s

The fact that ©(¢) = 0, for |z| > 1, implies p(t) = 0, for |¢| > s R. Therefore, we
obtain from the Fourier inversion formula,

1 +oo 1 sR .
p(x) = 2—/ e " H(t)dt = —/ e " p(t)dt.
T J_00 2 —sR
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Write p(t) — e=*/2 = r1(t) + r2(t), where
r@) =M@ — e /sR), ) = e (x(t/sR) — 1).

We shall show below that

/|| R|”i(t)|df§C*M_1/2, i=1,2. (186)
1<s

These bounds in combination with the simple inequality
/ e s <cM™/?
[t|=sR

show that

Ip(x) — o) <exM~1? xeR. (187)

Here ¢ denotes the standard normal density function

+0o0
2 1 . 2
e AC— e e t/zdt.

px) = T )

It follows from (187) that

[p(xX)] <cx, x€eR
Furthermore, given w we have uniformly in |z,| < 3w
—-1,2

Ip(z)] = e(Bw) —cxM ™/ > ¢} > 0,

for sufficiently large M (for N > Cy(w)).
In order to prove an upper bound for the k—th derivative, | p®(x)] < ¢y, write

) | A
pr) = T (—in)" exp{—itx}p()dt, k=1,2,3,
T J-

and replace p(¢) by ¢=*/2 as in the proof of (187). We obtain

(k) 1 teo k . —12)2 —1/2
pr(x)=— (—it)" exp{—itx}e (tdt +r, [r| < ceM .
27 J_ o

This implies |p®(x) — ¢®(x)] < c.M /2. We arrive at the desired bound
Ip® @) < e, fork =1,2,3.
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In the remaining part of the proof we verify (186). For i = 2 this bound follows
from |t(t/sR) — 1| < ct?/(sR)?. The latter inequality is a consequence of the short
expansion

|Eexplité/sR} — | — Eit&/sR| < E(t&)*/2(sR)*
and E&) = 0 and E§12 < ¢, for some absolute constant c.

Let us prove (186) for i = 1. Introduce the sequence of i.i.d. centered Gaussian
random variables 11, 12, ... with variances ETI,~2 = M~!. Denote

f() =Eel™ = ¢ /O and 5(6) = y (1) — f(1).

We are going to apply the well known inequality

o v (iv)? (iv)k=! v
e —(1—1-3—1- o +”.+(k—l)!>‘fﬂ‘ (188)

It follows from (188) and identities En‘i = Ew‘i, i =1,2, that

It]3

8O = 3

(Elwi® + Elm®) < cltPElw; . (189)

Here we use the inequality E|n; I* < cE|w; |3, which follows from En% = Ew%.
Combining (189) and the simple identity

M
Mo — Moy =Yy oo

k=1

we obtain
M) — M) < cltPZ) M~ Bs. (190)

Here we denote
Z(t)y= max |f"@)y" @)
r+v=M-1

We shall show below that
2

Z() < exp{—%%} Fexp(—8"(M —1)/2), 0<li|<sR,  (191)

where §” > 0 depends on 8, Ay, Dy, My, vi and it is given in (36). This inequality in
combination with (190) proves (186).

Let us prove (191). Clearly, Z < | fM=1(t)| + |y™~1(¢)|. Furthermore, fM(¢) =
¢~*/2 Tn order to prove (191) we shall show

_42 ~
M@ <e B, 0<| < MV?/B;, (192)
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ly@| <e 2, M2/ < 1] <sR. (193)

To show (192) we expand el using (188),

itw 2o g P 3

ly@)] = [Ee"™| < |1 - EEwl |+ ?E|w1|
— |1 — i + Eﬁ

B 2M 31 M3/2

N U Y
o 2M 3 VM

IA
|
|

Here we used the identity |1 —2/2M| = 1 —¢2/2M, which holds for || < M'/2 /B3,
since B3 > 1. Finally, an application of the inequality 1 —x < e *tox =2/3M > 0
completes the proof of (192).

Let us prove (193). For 8” defined by (36) we shall show 8" < 25, where

§=1—sup{ly(®)|: M'?B;" <|t| <sR}
=1 — sup{|Eexp{iuc ™' g(Yi1)| : 0/s B3 < lu] < ov/n N}.

We are going to replace g(Yu+1), B3, s2 by g(Xm+1), B3, o2 respectively. Write

Eeivg(ym+l) — q;lEeivg(Xerl)HAerl — Eeivg(Xm+l) + r1 + r,

r = q&lEeivg(Xm+l)(]IAm+] _ 1), rp = (41\7/1 _ I)Eeivg(Xerl).
It follows from (44), (45) that, for every v € R,

r1l < gy Ella,,, — 1l =gy (1 =P{A1) = g5 — 1 < N2,

Il <gy' —1<eN"2
These bounds imply
[Ee'v8Tm+1) _ EelvsXmiD)| < ¢, N2, forevery v eR. (194)
One can show that, for sufficiently large N (i.e., for N > C,), we have
Bs/Bs — 1| < 175,  |s*/o® — 1| < 1/5, |s* —1] < 1/5. (195)
Using (194), (195) we get, for N > C,,
§ = 1 — sup{[Be™ 80| 2p5)~" < ul < NOHOV2)
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> 1 — supf[Ee” Xm0 1 285)7" < u| < NP2} — ¢, N2
> §"/2.

We obtain |y (1)] <1 —8 < 1 — §”/2 and, therefore, |y (1)| < ¢~%"/2. The lemma is
proved. O

8 Appendix 3

The main results of this section are moment inequalities of Lemma 9 and corresponding
inequalities for conditional moments of Lemma 10. Lemma 8 provides an auxiliary
inequality.

We start with some notation. We call v = v(:),u = u(-) € L" orthogonal if
(u, v) = 0, where

(u,v) = /Xu(x)v(x)PX(dx) =Eu(X)v(Xy).

Given f € L%(Px) we have for the kernel ** defined in (41)

Ey ™ (X1, X2)(f(X1)g(X2) + f(X2)g(X1)) =0
and almost surely

E(W™ (X1, X2)|X1) =0, (196)
E(y* (X1, X2)g(X1)|X2) = 0. (197)

The latter identity says that almost all values of the L”-valued random variable
¥**(-, X») are orthogonal to the vector g(-) € L".

Let pg : L" — L" denote the projection on the subspace of elements u € L” which
are orthogonal to g¢ = g(-). For v € L", write v* = p,(v). It follows from (197) that

V) (= (WG VD)) = 97T + (b, (198)

where b*() = pg(b(:)) = a’ng(E(w(-, X1)g(X1) ). Denote
1
Ui (= peU0) = —= Y ¥*C. Y, U =N""72 3"y, 1),
ﬁjEOk J€O0k

where the L”-valued random variables Uy are introduced in (91). For the random
variables g and Ly introduced in (72) and (74), we have

1
Uf = U + Lib* () = U + (g — ﬁ%w*(-). (199)
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Denote K = E|y (X1, X3)|" and K; = E|y ™ (X1, X2)|*,s <r.
Lemma8 Letd <r <5. Fors <r, we have

l*llg(Xl)I’)2

KIS <K, < cK(l +
o

(200)

Proof The first inequality of (200) is a consequence of Lyapunov’s inequality. Let us
prove the second inequality. The inequality |a + b + c|” < 3" (la|" + |b|" + |c|")
implies

K, = E[y** (X1, X2)|" < 3"(K 4 2E|b(X1)|"E[g(X2)[").

Therefore, (200) is a consequence of the inequalities

lic|”
odr

2}"
E[b(XD|" < K+ Elg(XDI",

k2 < oY By (X1, Xo) < o*K?".
Here «k = Ey (X1, X2)g(X1)g(X2). To prove the first inequality use |a + b|" <
2"(la|” 4 |b]") to get

r Kr

E[E(y (X1, X2)g(X2)|X1)|" + - Elg(X )"

2
Eb(X)I" =

o2r

Furthermore, by Cauchy—Schwartz,
[E(y (X1, X2)g(X2) | X1)| < (B (X1, X2) | X1)) 0.
Finally, Lyapunov’s inequality implies
(E@W2(X1, X2) | X)? < E(y (X1, Xo)I" [ X)),
We obtain E|E(1// (X1, X2)g(X2) | X1) |r < Ko thus completing the proof. O

Lemma9 Letl <k <n—1. For UZ, an independent copy of U,f, we have

c N —

283 — oy < 37BNV — Ukl <283 + e, (201)
— M~\r/2

ElU = Uil <o) - (202)

Recall that 8% = E[y*™* (X1, X2)|%
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1218 M. Bloznelis, F. Gotze

Proof Let us prove (201). By symmetry, we have, fori, j € Oy,
— M M
E|\Uf = U I3 =2—H —2—H,,
Uy 1112 i — 2 Hy
Hy =EIY*C.YpI3  H=EW YY), " Y)), i # ).
The inequality (201) follows from the inequalities

83 — N9 < g < 82 +c,, (203)
Hy < ¢, N7%0=2), (204)

Let us prove (203). From (198) we have H; = V; + V, + 2V3, where
Vi=E[y™C YpI3, Vo= Ib*OI3ES*(Y)), V3 =Eg(Y;){(¥*™*(.Y)),b*()).

Let us show that
83 —c N9 <y <83 4 e N7, (205)

This inequality follows from (44), (45) and the identity
Vi =gy Bl (X1, X)PP1a, = a5 By ™ (X1, X )P — qy' Vi,
where V| = E|[y** (X1, Xj)|2(l — I4;) satisfies, by (43),
0< V| < N“UDE[Y™ (X0, X)PIZ; 1772 <eeN 70720 (206)
In the last step we applied Holder’s inequality and Lemma 8 to get
2r

_ _ 2 _
B[y (X1 X)PIZ72 < K @IZGINDT27 < KR <,

Let us show that
0=V <oy (207)

For 15(-) = Evy (-, X1)g(X1) we have, by Cauchy—Schwartz,
I5() 13 = E(E(W (X, Xg(X1)| X)) < Ey2(X, X)) o? < c0.
Now the identity b* = o2 Dg (b) implies
15*115 < o 1Bl < 0 ¢, (208)

Invoking the bound Eg2(Y;) < c,02, see (47), we obtain (207).
Finally, write

Vs=qy'EVIs,, V=g(X)y™ (X1, X))b*(X)).
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Identity (197) implies EV = 0. Therefore V3 = qA_,lEf/(H A; — 1). Invoking (43) and
using q;,l < ¢4, see (45), we obtain

V3l < ceN*UVEIV||Z)[7* < cuN 700, (209)

In the last step we used the bound E|V| ||Z’/. ||;’4 < c¢4. In order to prove this bound
we invoke the inequalities '

labe| < (ab)? + * < a* +b* + 2
to show that
VI < [gX )1+ 1™ (X1, X)I* + Ib* (XD
Furthermore, by Holder’s inequality and (200),
ElgX)MZ5I* < e, B X0, XHMIZGIT < e
By the independence and (208),
Ep*(XDIPIZ5I" = IB* BN Z)112 < cw.

Thus we arrive at (209). Combining (205), (207) and (209) we obtain (203).
Let us prove (204). Using (198) write H> = Q1 + Q2 + 203, where

01 =Ey™ (X1, Y)Y (X1, Y), Q2= |Ib*I3Eg(Y)g(Y)),
03 = Ey™ (X1, Y))g(Y)b* (X1).

It follows from the identity (196) that
01 = gy Ey™ (X1, XY™ (X1, Xi)(Ia; — D4, — D).

The simple inequality [ ** (X1, X )¥** (X1, X;)| < [y (X1, X)P+y** (X1, Xi)|?
yields, by symmetry,

1011 < 2q3 B[y (X1, X)IP(1 —14,) < e, N7, (210)

In the last step we applied (206) and q{,l < ¢4, see (44).
Furthermore, using the identity Eg(X;) = O we obtain from (43)

IEg(Y)| =gy Eg(X)(La, — D)
<y ' NTUCTVE (XD Zi [ < e NTUD, @11)

In the last step we applied Holder’s inequality to show E|g(X;)||| Z; II;_1 < Cx.
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1220 M. Bloznelis, F. Gotze

The bounds (211), (44) and (208) together imply
|0kl < e, N2V k=23, (212)
The bound (204) follows from (210) and (212).
Let us prove (202). For this purpose we shall show that
E| > j_%”: <cy, where V;=vy(.Y) -y Y)), (213)
J€O0k
and where Y ;j denote independent copies of Y, j € Oy. Using
Elly ¢, X)Il =Ely (X1, X)I" < e
we obtain, by symmetry and (47),
E[Vill; =2"ElY (. Y)l; < cEIY G, Xy < cx.

Now (213) follows from the well known inequality

k k r/2
&0+ + &l < ct) Y _El&; +c(r) (ZEII&-II3> , k=1,2,... (214

i=1 i=1

which is valid for independent centered random elements &; with values in L". One can
derive this inequality from Hoffmann—Jorgensen’s inequality (see e.g., Proposition 6.8
in Ledoux and Talagrand [32]) using the type 2 property of the Banach space L" and
the symmetrization lemma (see formula (9.8) and Lemma 6.3 ibidem). The proof of
the lemma is complete. O

Before formulating and proving Lemma 10 we introduce some more notation. Let
B(L") denote the class of Borel sets of L". Consider the regular conditional probability
Py : R x B(L") — [0, 1], defined, for zx € Rand B € B(L"),

Pi(zi; B) :=P(Ur € B|gr = zt) = E(lyenlge = 20).
Recall, see (82), that v, denotes a L” valued random variable with the distribution

P{yx € B} = Pi(zx; B). Note that the L" valued random variable 1//,;" = pe(Y) has
distribution

P{y; € B} =P{p,(Yn) € B} =P{yy € p, ' (B))
=P(Urep,'B) ok =u)=PU; € Blgx =z). (215)

Furthermore, using (199) we write (215) in the form

1 &
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Let 1/, respectively W; denote an independent copy of v respectively ;*. Denote
v = M~U=H2 4§ N2y

Lemma 10 Letk =1,...,n— 1. Let |zx| < w n~ V2, There exist positive constants
ci'), i =0,1,2,3, which depend on w, r, vy, v2, 8, Ay, Dy, My only such that for

w <83, 216)

we have
V82 < nE(yf — ¥l3 < P52 217)
Ellyr — Ylly < cPn~r/2, 218)

Condition (216) requires N to be large enough. A simple calculation shows 7y <
N~ for v satisfying (17). Therefore, (87) implies ty < N ’65”8% In particular,
under (87) the inequality (216) is satisfied provided that N > c,, where c, does not
depend on §3.

Proof By ¢, ¢, we denote positive constants which depend only on w, r, vi, v2, 8, A,
D.., M,. These constants can be different in different places of the text. Given i, j €
Oy, i # j,introduce random variables

€k 1
ge=n+e =2, f=—— Y g(¥),
R m/EOk
R 107, B (0 B (07)
l MY VM M

Here R = «/n M N satisfies N/2 < R < N, by the choice of n and M. Let p, po,
p1, and py denote the densities of random variables n, ¢ + 1, & + 1, and &;; +
respectively.

Note that g, = +/N/Mg. Therefore, the condition gy = z; is equivalent to
g« = Zx, Where z, = /N /Mzy. Furthermore, |zz| < wn~? & |z,| < w,, where
wy = w/N/Mn < 2w.

Given arandom variable Y, we denote the conditional expectation E(Y |gx = z4) =
E(Y|gr = zx) by E,Y. For an event A, we have P(A|gr = zx) = P(A|g« = z+).

Proof of (217). For the L" valued random variable lﬁ* = Y — zxb* we have

n 1 &
P{w*eB}:P(U,j*—Nmb*eB‘g*zz*). (219)

Note that for an independent copy WZ of ¥ the distributions of vf —W: and J* — 1,@;“
are the same. Here x@c* denotes an independent copy of I/A/* Therefore,

Elv; — V3 =Elv* — U715 = 2E1¥*(13 — 2EJ*|3. (220)
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1222 M. Bloznelis, F. Gotze

In order to prove (217) we show that
IEG* )5 < &N~ (221)
and, for ty < cio)ég (i.e., for sufficiently large N),
&3 < nE[9*)3 < &,83. (222)

Since N~1n < 1y, we can choose cio) small enough such that the inequalities (220),

(221) and (222) together imply (217)
Proof of (221). Recall that an Aelemegt m = m(-) € L?(Py) is called mean of an
L?(Pyx) valued random variable /* = *(-) if for every f = f(-) € L*>(Px)

(fm) =E(f. 7).
We shall show below that E|| 1}* ||% < 00. Then, by Fubini,
B(7. )= [ F0OEI @P(an.

Therefore, m(x) = Etﬁ*(x), for Py almost all x.
For f € L*(Px) it follows from (219) that

R 1
E(f,9°) =E*<f,U,j*—Nn%b*>
M
:E*<f,Uf*)—%(f,b*)E*n. (223)
Fix i € O. By symmetry,
E (f U**)— £E (f Y Y-)) (224)
* s U | = \/ﬁ * 5 s L))
An application of (252) yields
ok ok g(Yi)
E.{f, S Y)) = E(f, Y T =
(f ™. 1) PR (fov™C YD) pi(z «/M)
= {fue), @)
where
bz*(‘) ok gy
Z*-: > bZ*ZE "Yi ok T T —
@z, () =~ O =Ey"CYpi (e - 2
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are non-random elements of L". It follows from (223), (224), (225) that

M v M
)= —a, (-) — —b*(-) Eyn.
m(-) Naz*() ~ () Esn

In order to prove (221) we show that, for |z.| < ws,

62,112 < exM ™, (226)
|E.n| < &M 4+ 6, R7V2, (227)
pi(zs) = ¢, i=0,1,2, (228)

and apply (208). Note that, by Lemma 7, there exist positive constants ¢, ¢, such that,
for M, N > ¢,, the inequality (228) holds.

Let us prove (226). In Lemma 7 we show, for i = 1, 2, that p; and its derivatives
are bounded functions. That is,

"

lpil <o, IPil<cen AP/ Sy P S v i=1,2. (229)

Expanding in powers of M ~1/2g(Y;) we obtain

: 2 : Vi
g(Yi) g~ (Y) p12(9). (230)

Y; ,
- M) = p1(z4) — —P1(Z*) + —

VM VM M

It follows from the identities (196) and (197) that for Py almost all x

pl(Z*

Ey*™*(x,Y;) = ‘IﬁlElﬁ**(x, X)L,
= qy By (x, X)(Ia, — 1)
=:qy'ao(x),
Ey ™ (x, Yg(Yi) = gy By (x, X)g(X)la,
= qy By (x, X)g(Xi)(la, — 1)

= ql\_jlal(x).

Using (229) and the inequality q&l < ¢4, see (44), we obtain from (230)

Cy

VM

c
162, (D2 < cxllao()ll2 + lar()ll2 + M*Ilaz(-)llz,
where we denote a> (1) = Ey**(-, ;) gz(Yi). In order to prove (226) we show that

C C
laoO)llz = wooms MOl = 5= leOlk <e. 23D
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1224 M. Bloznelis, F. Gotze

Let us prove (231). Invoking (43) we obtain, by Holder’s inequality,

1 Z /”r—l KT=D/r

lap(x)| < E[y**(x, X;)| w!/" () (232)

Not(r 1) — Not(r 1

where we denote w(x) = E|v¥**(x, X;)|". Furthermore, by Lyapunov’s inequality,

2/r

Il I = Bw? (X) < (Ew ()" = K; 233)

Clearly, the first bound of (231) follows from (232), (233) and (200). A similar argu-
ment shows the second bound of (231). We have

» ”Z{”r—2 l/r (r 1)/r
a1 (0] < Bl ™ (v, X0)g (Xl oty < w'l" (x A oy (@239
where we denote V = E(|| Z/||"72|g(X)| r/r=h. By Holder’s inequality,
AL
v < Elgxol) TV EIZ) TV < e (235)

Clearly, (233), (234) and (235) imply the second bound of (231). The last bound of
(231) follows from (47), by Cauchy-Shwartz. Indeed, we have

laz ()| < Bl (x, X0)lg? (X)) < c(Ely™ (x, X)PEg* (X)),

Therefore, [|ax(1)[15 < ¢ K2Eg*(X;) < cx, by (200).
Let us prove (227). We have, by (251),

En = py ' @B — Opax — 0.
In order to prove (227) it suffices to show in view of (228) that
Bz — O)p(ze — Ol < cxR™2 4 ecM ™12, (236)
Let p denote the density function of &. Then p(u) = R p(R u). We have

sin®(R(z, — £)/6)

E(z« — O p(zs« — ¢) = 6ccE
(R (z: — 0)/6)°

Therefore, denoting H(zx) = 1 4+ |R (z+« — g“)|5, we obtain
E|(z — 0)p(z« — )| < cEH ™ (z0). (237)

On the event | — 74| > R~Y2 we have H_l(z*) < R~3/2, Furthermore, a bound for
the probability of the complementary event

P{|§ - Z*| =< R_l/z} =< C*R_l/z + C*M_l/27
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follows by the Berry—Esseen bound applied to the sum ¢. Therefore, EH 1 (z) is
bounded by the right side of (236). Now (236) follows from (237).
Proof of (222). Write

1 ék M

U — — 22 p* = T — 1),

i Nf \/—(l 2)

Ty := DU Y, Th=nb*.
\/_IGOA

It follows from (219), by the inequality ||u+v||% > ||u||%/2—||v||%,foru, v e L2(Py),
that

n M M M
EllV*|} = BT = 3 > ﬁE*nTln% —~ NE*IITzllg-

We shall show that

ET03 < py' @ (e RT"M™2 ¢, R7?), (238)
E. T3 > P()_I(Z*)(Pl(z*)rSgZ, — C4TN), (239)
E. T3 < P()_I(Z*)(Pl(z*)rsgz, + cTN). (240)

The inequalities (238) and (239) imply the lower bound in (222). Indeed, by (228),

we have, for small C(O)

c C
M1—;2R + R3*/2 < ity < 6clV83 < pi(z)d3 /4.

Similarly, the inequalities (238) and (240) imply the upper bound in (222).
Proof of (238). We have, by (251),

Ea? =pyl@OW, W i=E@. — 0 pGa—0).

Proceeding as in proof of (236), we obtain

W =

36 sin®(R(zx —¢)/6) ¢ ~
—_— E _E * /)y
R R —oer —rH @)

where H(zy) = 1 + |R(zx — 0)|* satisfies
EI:I_](Z*) = C*R_l/z + C*M_l/z'

Therefore, W < C*R_3/ 24 o R~IM~1/2 This inequality in combination with (208)
implies (238).
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Proof of (239). Fix i, j € Oy, i # j. By symmetry,

E.|T1|3 = E.Ti1 + (M — 1)E,. T2,
T =Y C Y03, Tio= ™Y, v, Y)). (241)

We have, by (252),

E.Ti = py (z0H1,  E.Tio = py'(z0) Ho,

g(Yp) g(Yi) +g(Y;)
Hy =ETpi(z« — —=), H=ETpp(ze — ——F———).
p ( * \/M) p ( * \/M )
The inequality (239) follows from (241) and the bounds
Hi > p1(z:)83 — caM™1/2, (242)
|Hy| < cx N7 e, M= =272, (243)

Let us prove (242). It follows from (229), by the mean value theorem, that

lg(Y7)l
N7

where |Q| < ¢, M ™72, Indeed, by (47) and Cauchy—Schwartz,

Hy = p1(z)ET11 + Q,  |0] < c.ETy (244)

2
ET112(YD)| < By C, XnI31g(Xnl < K, %0 < ..
In the last step we applied (200). Furthermore, the identity

ETi1 = g5 'ElY™* (X, X)*1s, = E[Y™ (X, X)I* — by — bo,
b1 = (1 — gy EW* (X, X)>, by =qy Ely™ (X, X)*(1 —14,)

combined with (43), (44) and (45) yields ETy; > 62 — ¢, M~!/2. This bound together
with (244) shows (242).
Let us prove (243). Write y; = g(¥;) and expand

ity

B ity ) i) -
P22+ W)_pZ(Z*) P5(z4) N 7

+Q7

where O denotes the remainder term. From (229) it follows, for 2 < r — 2 < 3 that

101 < culyi +y; "2/ M2,
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Furthermore, denote

hy = ETy, hy = ETp8(Y;),
hy =ET1g*(Y:),  ha=ETng(Y)g(Y)).

We obtain, by symmetry,

p/z(Z*) P/Q/(Z*) ~

H, = hy =2 h h h ET; ,

> = pa(zs)h N 2+ i (h3 + ha) +ET120
E|T120| < c.M~"22E|g(Y;)| 2| T12]. (245)

Denote
Tz = g3 ¥ (X, X)y™ (X, X)).
It follows from (45), by Holders inequality and (200), that
Elg(Y)| 2| Tia| < Elg(X)I" I Tial < e

Therefore, _
E|T120| < c,M~"72/2, (246)

Furthermore, (196) and (197) imply

hi =ETp(Ia, — DAa; — D, hy = ET1pg(X;)([a, — D4, — 1),
h3 = ETig>(X)la, Ly, = 1. ha = ETiog(Xi)g(X)Ta, — D(lla, — .
Invoking the inequalities ¢> < cy4,86e (44), and 1 — I4, < V5, s > 0, where
g q qN i 1
Vi = Zlf II-/N¢, see (43), we obtain, by Holder’s inequality,
lhi| < E|Tial(Vi V)22 < e ,N72072),
|ha| < BITing(Xp)| V" V2V 722 < e N3,
h3| < BITilg* (X)) V)™ < euN74U9,
lhal < E|Tg(X)g(X)I(V; V)72 < e, N720=9), (247)

Combining (245), (247), (246) and using the simple inequalities

1 1 1 1

— - <
& Natr=4Hpr — ]\7’

- N s a(r—2) r—=2)/2
N3 12 =< [ N = min{N M }

and the inequalities (229), we obtain (243).
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Proof of (240). The inequality follows from (241), (243) and the inequality

Hi < p1(z)ETi1 + M™% < p1(z:)83 4+ cu N~ + cuM /2
< PI(Z*)3§ +C*M_1/2,

which is obtained in the same way as (242) above.
Proof of (218). In order to prove (218) we shall show that

E|[yll] < ™72, (248)
Split O, = BU D, where BN D = () and |B| = [M /2] and write

VM 1
U= "=Up+Up)., Up=—= ¥(.Y)),
3 ﬁ( g+ Up) B mjeBI/f( i)

1
= —+ s = — Y.
(= +&ip, B mZg( )

JjeB

In particular, we have g« = n + (g + {p.
The inequality

Bl = Bl Uel; =2 (3) " (Bl Usl] +EclUp )
combined with the bounds
ElUslly < ¢, ElllUpl} < cx (249)
imply (248). Let us prove the first bound of (249). By (252), we have

E.|Usll. = py ' (z)ENUBI. p3(z — C8),

where p3 denotes the density of n + ¢{p. Furthermore, invoking the bound
SUp,cr 1P3(x)| < cx, (which is obtained using the same argument as in the proof
of Lemma 7) and the inequality (228), we obtain E.||Ug||. < ¢.E|Ug||}. Finally,
invoking the bound

1
EUsI; < csEll D UE XN < e (250)

JjEB

see (47) and (214), we obtain the first bound of (249). The second bound is obtained
in the same way. This completes the proof of the lemma. O

We collect some facts about conditional moments in a separate lemma.
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Lemma 11 Let n and ¢ be independent random variables. Assume that n is real valued
and has a density, say x — p(x).
(i) Assume that ¢ is real valued. Then the function

x—>Ep(x—-1¢), xekR,

is a density of the distribution Py of n+¢. Letw : R — R be a measurable function
such that Elw(n)| < oo. For Py almost all x € R, we have

E _ _
E(w() |n+¢=x) = w(;:p(i)_"(;) 2 251)

(ii) Assume that ¢ takes values in a measurable space, say Y. Assume that u, v :
Y — R are measurable functions and denote Py, () the distribution of n + u(¢). If
Ev(¢)| < o0, then for Pyyy () almost all x € R,

Ev(0)p(x —u())
Ep(x —u(®))

E(u@) |n+u() =x) = (252)

9 Appendix 4
In the next lemma we consider independent and identically distributed random vectors

(€, n)and (¢', n’) with values in R? and the symmetrization (£, ;) where & = & —&'
and n, = n — n’. Note that in the main text we apply this lemma to & = g(X;) and

n=NTV2YN v (X1L Y,
Lemma12 Let 0 < v < 1/2 and r > 2. Assume that E|&|" + E|n|" < oo. The
following statements hold.
(a) For ¢, = (7/12)27" the conditions
1" El&|" < ¢;BE),  E&ny =0, Eln,|" < ¢ En;

imply 1 — [Eexpli (1§ + m)}* = 67 (’E&} + Enp}).
(b) Assume that for some ¢1, ¢; > 0 we have

Ee2/12 — N7'En? > & and ¢, EBE2/EIg| > &2 (253)
Let ¢ > 0 be such that
e < 1/683, eI <g2/4A, &% <02/4B, (254)

where ¢3 = 2 + (5/51)2GZ2 and where the numbers A, B are defined in (265). Here
012 = E(& + N~'/2n,)2. Assume that for some 0 < 8 < ¢ and §' > 10&2,

sup  |Ee'S| <1—8 and Elns <8 NY/2. (255)

S<|t|<N-v+1/2
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Then for every T*, satisfying N1/2=v < |T*| < NYH2 the set
I =T <t <T*+ N2 BT EN 02 > g2

is an interval of size at most 551_18.

Proof Proof of (a). Invoking the inequality 1 —cos x > x?/2 —x?/24 — |x|" and using
the simple inequality |a + b|" < 2"~ (Ja|" + |b|") we obtain

1 — |[Eexpli(t& + r))}l2 =1— Ecos(t& + ny)

\

11 _
> 1 B0E +n9)” = 27 Bl | + Elng|")
> 6~ (1’EE2 + En?).
In the last step we use the conditions a).
Proof of (b). Introduce the functionr — 7, =1 — |Eei’(E+N—1/2y,) |2. Assume that
the set /* is non-empty and choose s, ¢ € I*, i.e., we have 7", 7] < g2, Firstly we

show that |s — ]| < 55171 ¢, thus proving the bound for the size of the set 7*.
The inequality 1 — cos(x + y) > (1 —cosx)/2 — (1 — cos y) implies

1 — [Ee/ X012 > 2711 — |E™X %) — (1 — BT P, (256)

for arbitrary random variables X, Y. Choosing ¥ = (€ + N~'/?p) and X = (s —
(& + N~1/23) shows )
tf > (1 — [Ee'X %) /2 — 1. (257)

s =

Now we show that the inequality |r — s| > 5¢] e implies 1 — |[Ee!X|? > 5¢2, thus,
contradicting to our choice 7, 7 < &2 and (257). In what follows the cases of “large”
and “small” values of |t — s| are treated separately.
For 5¢; 'e < |t — 5| < & we shall apply (256) to X = X + Y, where X = (s — 1)§
and Y = (s — t)N~!/23. Note that the statement a) implies
1 — |[Ee'X|? > (t — 5)°EE£2/6. (258)

Indeed, in view of the second inequality of (253), the conditions of a) are satisfied for
|t —s| <8 < ¢y. Furthermore, we have

0<1—I[EeV>=1—cos(N"*(s—1)my) < (s —1)>’N"'En?. (259)
Invoking the bounds (258) and (259) in (256) we obtain
1 — |EeiX |2 > (s — 1)’BE2/12 — (s — 1)*N'En? > (s — 1)? > 2567
In the last step we used (253).
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Ford < |t —s| < N7"H1/2 we expand in powers of a = i(s — HN~125 to get

1 — [E¢X2 =1 —Eexpli(s — )& +a} > 1 — Eexpli(s — 1)&) — Ela|
=8 —Elt = )N~y = 8 = N"VEln,|
> 68'/2 > 5¢°.
In the last step we applied (255).
Let us prove that /* is indeed an interval. Assume the contrary, i.e. there exist
s <u < tsuchthats,t € I*andu ¢ I'*. In particular, 7, < &2 < 7,7 Clearly, we can
choose u to be a local maximum (stationary) point of the function # — 1,*. Denote
Z=§s+N_l/277s» ozzzEzz.
An application of (256)to Y' = (t —u)(€ + N~'/?n) and X' = u(& + N~'/%n) gives
> 1r/2— (1 —Ee"™%) = ¢¥/2 — (1 — Ecos(t — u)z).
Invoking the inequalities 7, < e2and 1 — cos(t — u)z < (t — u)?z%/2 we obtain
TF <26+ (1 —u)lol < &G, &G =24 (5/é) 07 (260)
Here we used the bound |t — u| < |t — 5| < S5¢/¢; pr(_)ved_ above.
Denoting y = (r — u)z we have 7,7 = 1 — Ee'"“¢". Invoking the expansion
eV =14iy+ (iy)?/2 + R, where |R'| < y*>/6 + |y|”, we obtain
T} =1 —iEye* 4+ 27'Ey?™ + R,  |R| <Ey?/6+E|y|" = Ry. (261)

For a stationary point u we have 0 = %tﬂ —iEze'"2. Therefore, Eye'** = 0

and (261) implies

t=u"_

T > o+ 27N — u)’E%e™ — Ry,
Write the right hand side in the form ;° + 271t — u)® Ry, where
Ry = Ez%e" — 37162 — 2E[z|"|t —u| 2.
Note that the inequality R > 0 contradicts to our assumption 7;" < 7,;. We complete
the proof by showing that Ry > 0.

Since the random variable z is symmetric we have Ez? sin uz = 0. Therefore,

Ez’e’"* = Ez? cosuz = azz — Ez*(1 — cosuz). (262)
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Given A > 0 split
Ez2(1 —cosuz) = Ezz(l — cosuz) (H{szz} + H{Zzzxz})
< AZE(1 — cosuz) + 2E|z|" 2>, (263)

In the last step we used Chebyshev’s inequality. Furthermore, invoking the inequality
E(1—cosuz) = 7} < 362, see (260), we obtain from (262) and (263) for 2> = ¢!

Ez%e"? > 02 — e¢302 — V22K | 027 (264)

Finally, invoking the inequality |t — u| < |t — 5| < 551_18 we obtain from (264)

Ry >02(1 -3 —ec3) —e" P24 —¢"72B,

where for random variable z = & + N ~1/25, we write

A=2E[z|'6?" and B =2E|z|"(5/&) 2. (265)
Thus, for ¢ satisfying (254) we have R; > 0. O
10 Appendix 5
Let Zy, ..., Zx be independent copies of the L” valued random element Z = {x —
¥ (x, Y)}. Recall that almost surely || Z|| < N¢. Here || - || denotes the norm of the

Banach space L, where r > 4 and 1/2 > a > 0. Write M, = E[/ (X1, X2)|”.

Lemma 13 (i) Assume that ||EZ||2 < E||Z||2/N. Then there exists a constant c¢(r) >
0 such that for k < N and x > c(r) we have

P{|Z1 + -+ Zi|| > k" ?ux} < exp{=27x2(1 + xN®/k'?uw)~1y. (266)

Here u®> = E| Z|.
(ii) The following inequalities hold

IEZ| < M,/qyN" =D, (267)

ay ' (My — M,N~0=2%) < E|1Z|? < g (M} + M, N~0=2%). (268)

Remark. Assume that
My = 2M, N~T=2% M%< (gy/2)MaN”,  where 3 =2(r — Da — 1.

Then (267) and (268) imply the inequality |[EZ|> < E||Z|>/N. Note that roe > 2
implies sc > 2. Furthermore, by (44), the probability gy > 1 — M, N~"%.
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Proof We derive (i) from Yurinskii’s [36] inequality. Denote ¢ = Z| + - -+ + Zg.
Using the type—2 inequality for an L” valued random variable ¢ — E¢y,

Ell¢ — Egll* < ké(r)E|Z) — EZ; )%,
and the inequality || Z; — EZ{||> < 2|1 Z1||> + 2|[EZ;]||?, we obtain
1/2
Ellg — Eqll < (Bllg —Eql?)? < k2 ) + |EZ ).
We have

E| |l < Ell& — Egll + kIEZ, ||
< MKPu+ k(1 + K HIEZ | =: B

It follows from the inequality || Z1]] < N¢ that
E|Z Y <27 'Lw?NeE=D ) L =23, ...
Write B,% = ku?. Theorem 2.1 of Yurinskii [36] shows

=2
P{l|¢cll = x B} < exp{—B}, B = %(1 + (XN/2B)) ", (269)

provided that x = x — /By > 0.
Since Br/Br < 14 ¢’ (r)(1 + k~1/2) we have, for x > ¢(r) := 4c'(r) + 2,

x>2B/Br and x>Xx>x/2.

The latter inequality implies

2 2
B> B = %(1 + (xN*/B) "\
Finally, replacing B by B’ in (269) we obtain (266).
Let us prove (ii). The mean value EZ = {x — E/(x, Y)} is an element of L". For
Px almost all x € X we have Eyr(x, X) = 0. Therefore,

EZ = ¢y E¢(x, X)Is = gy B (x, X)(I4 — 1).

Invoking (43) and using Chebyshev and Holder inequalities, we obtain, for Px almost
all x,

. 1 o
EZ| < EIZ' 1 (x X)) < gy BIZID 0 a ),

qNNot(rfl)
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where a(x) = (E[¢(x, X)|")!/". Note that E|| Z'||. = M, and ||a||” = M,. Finally,
IEZ|| < llal M~ /gy NeC=D = M, JquNeCD.

Let us prove (268). Denote b, (x) = (Ex, |/ (X1, x)|?)!/?. Here Ex, denotes the
conditional expectation given all the random variables, but X|. We have

E|Z|? = ¢y EL4b2(X) = gy EP2(X) + q5' R, R =E(4 — DHX(X). (270)
By Holder’s inequality b, (x) > b>(x), for Py almost all x. Therefore,
M, = Eb3(X) < Eb2(X) < M. @71)

Combining (271) and (270) and the bound |R| < M, N —(r=2)@ e obtain (268). In
order to bound |R| we use (43), |R| < N_(’_z)"‘EHZ’Hﬁ_be(X), and apply Holder’s
inequality,

E|Z'[I72b7(X) < (B Z'|)" 2/ Bb(X)*" = M,.

The lemma is proved. O
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