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Abstract. The nonlinear diffusion equation corresponds to the diffusion processes which
can occur with a finite velocity. This statement is not satisfied in Fick’s second law or
linear diffusion equation. The processes by which different materials mix in the result of the
random Brownian motions of atoms, molecules and ions can be exactly described only with
presented nonlinear equation. It was important in practice that theoretically profiles fit with
the experimental profiles tail region, but get good coincidence between diffusion experiments
and the classical solutions is impossible. By using obtained theoretical solutions for two and
three-dimensional cases we can provide more exact modeling of all the stages of a planar
transistor formation.
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Introduction

In 1983, A.J. Janavičius proposed nonlinear diffusion equation which played an im-
portant role in theoretical and practical applications to technological processes of
electronic devices and micro schemes [10, 14]. Here obtained approximate analyti-
cal solutions [14] were in good fitting with diffusion experiments in silicon. In 1984
M. Sapagovas with collaborators [3] considered nonlinear diffusion using numerical
methods.The nonlinear theory accepted that diffusion processes must occur with fi-
nite velocity [1]. For this case diffusion coefficient must be directly proportional to the
concentration of the impurities [5]. The equation was solved for excited atoms irradi-
ated by X-rays and a new physical phenomenon such as impurities superdiffusion at
room temperature in the crystals was found [2, 6] and verified experimentally [2]. We
obtained important connections between higher dimensional and nonlinear diffusion
coefficients and solutions by considering nonlinear diffusion through a square window
in [4] two and three-dimensional cases. The root-mean-square displacement of the
diffusion cloud [4]

〈

R2
d

〉
1

2 =
√

2dDdt, (1)

must be consented with Einstein expression for diffusion coefficient [4]

Dd =
1

2d
Γdλ

2. (2)

http://dx.doi.org/10.15388/LMR.A.2015.05
mailto:AYanavy@gmail.com, turskienes@gmail.com, kest.zil@gmail.com


✐

✐

“LMD15_Janavicius_Turskkiene_Zil” — 2015/11/20 — 18:40 — page 25 — #2
✐

✐

✐

✐

✐

✐

Nonlinear diffusivity dependence on dimensions 25

Γd is diffusing particles jumping frequency in d dimensions, t is diffusion time. Sta-
tistical mechanics describes a sequence of unpredictable movement called a random
walk. The rules of random walk can be simplified into one-dimensional random jump-
ing of particles with constant frequencies. The displacements of particles after n+1-th
jump of the length λ are

xn+1 = xn ± λ. (3)

Taking both sides of this equation in square and overriding by a number of parti-
cles, requiring that the overage displacement 〈xn〉 = 0, we obtain

〈

x2
n+1

〉

=
〈

x2
n

〉

+ λ2,
〈

x2
n

〉

= Nλ2. (4)

Accepting that the mean time τ of jumps of diffusing particles in the homogeneous
matter must be constant for different stages of diffusion, we can get expression of the
number of jumps N = t

τ
for diffusion process duration time t. Then mean-square

displacement and path of diffusion can be determined by

〈

x2
n

〉

= λ2Γt, xd =
√

〈

x2
n

〉

=
√
λ2Γt. (5)

If the particle is hoping in the random way the path of diffusion is proportional
to the square root of the diffusion time. We can see that diffusion coefficient depends
on frequency and length of jumps and geometry of task. The diffusion coefficients for
diffusion in one D1, two D2 and three D3 dimensional cases and paths of diffusion xd

can be expressed [4] in homogeneous environment

D1 =
1

2
λ2Γ, D2 =

1

4
λ2Γ, D3 =

1

6
λ2Γ, xd =

√

2dDdt. (6)

For a symmetric case of jumps’ length λ, frequencies Γ of diffusing particles and
diffusion path xd does not depend on dimensions number. The diffusion coefficients
D = D1 for linear diffusion equation [4] for one-dimensional case

∂

∂t
N = D

∂2

∂x2
N, D = D0e

−

E

kt (7)

depend on exponential factor D0, temperature T , Boltsmann’s constants k and exci-
tation energy E of diffusing atoms. The diffusion coefficient D for one-dimensional
case in semiconductors can be defined from impurities profiles [5] or p− n junctions’
depths [8]. The experimental profile tail regions and theoretical solutions of linear dif-
fusion equation cannot be fitted [10, 5]. The aim of the article is more exact definition
of p− n depths and thickness of planar diodes and transistors [8].

1 Nonlinear diffusion in one-dimensional case

The parameters of microelectronics can be sufficiently exactly defined by nonlinear
diffusion equation [10] and impurities flux J [5] of thermodiffusion in silicon

∂

∂t
N =

∂

∂x

(

D(N)
∂

∂x
N

)

, J = −D(N)
∂

∂x
N(x), D(N) =

N(x)

NS

D. (8)
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The nonlinear diffusion coefficient is directly proportional to concentration of the
impurities [10] and defined by impurities concentration NS at the source. This model
includes the physically realistic model according to which the impurities flux J , rewrit-
ten by the discretiation method [7], differs from zero at the point x + ∆x only if
impurities are present at the point x. The latter equation means that the length of
the jump of diffusing particles from the point x to x +∆x in the diffusion process is
not greater than ∆x and the jump is possible only when a diffusing particle exists at
the point x.

Now we will present a similarity solution [7] of the nonlinear diffusion equation (8)
satisfying the boundary and initial conditions

N(0, t > 0) = NS , N(∞, t) = 0, N(x, 0) = 0, x > 0. (9)

Introducing the similarity variable [4]

ξ =
x√
Dst

, Ds = DnNs, Dn = D(N) (10)

and N(x, t) = Nsf(ξ), into (8) we obtained equation for solution satisfying condi-
tions (9)

2
d

dξ

(

f
d

dξ
f

)

+ ξ
d

dξ
f = 0, f(ξ) =

m
∑

n=0

anξ
n, a0 = 1. (11)

Then solution with included terms until fourth power m = 4 was expressed [5]

N4 = Ns

(

1− 0.44ξ − 0.098ξ2 − 6.67× 10−3ξ3 + 4.002× 10−4ξ4
)

,

ξ04 = 1.62, x04 = ξ04
√

NSDnt, 0 6 x 6 x04,

x04 = ξ04
√

DSt, DS = NSDn. (12)

The obtained approximate solutions satisfy boundary and initial (9) conditions
and sufficient good coincidence [3] with ξ0 = 1.64. The obtained maximum pene-
tration depths of impurities (12) are proportional to

√
t and coincide with Brownian

movement theory [4]. Substituting ξ04 into N4 we got 1.71 × 10−3, whence we see
that the roots ξ04 and the solutions N4 are obtained with sufficient accuracy.

2 Nonlinear diffusion in three-dimensional case

Rewriting equation (12) and using [2, 4] we obtained a nonlinear diffusion equation
in the three-dimensional case

∂

∂t
N =

∂

∂x

(

(D(N)
∂

∂x
N

)

+
∂

∂y

(

D(N)
∂

∂y
N

)

+
∂

∂z

(

D(N)
∂

∂z
N

)

, (13)

D(N) =
1

NS

DN(x, y, z, t), N2 = N(x, y, t), N3 = N(x, y, z, t) (14)

with diffusion coefficients D(N) defined as D(N2) in the x, y plane and D(N3) accord-
ing to z axe when off-diagonal elements equal zero [4]. Stochastic jumps of particles
can occur according to orthogonal directions in the x, y and z axis. It can happen in
crystals with diamond type lattice [4].
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The equation (8) will be solved by introducing similarity variables [4]

ξ1 =
|x| − h√

Dt
, ξ2 =

|y| − h√
Dt

, ξ3 =
z√
Dt

,

h 6 |x| 6 x0, h 6 |y| 6 y0, 0 6 z 6 z0, z0 = ξ30
√
Dt,

0 6 ξ1 6 ξ10, 0 6 ξ2 6 ξ20, 0 6 ξ3 6 ξ30,

x0 = ξ10
√
Dt+ h, y0 = ξ20

√
Dt+ h, (15)

for two-dimensional N2 = N(ξ1, ξ2) or three-dimensional case N3 = N(ξ1, ξ2, ξ3)
consequently describing the square source with the diagonals length 2h with defined
corners (x0, y0) at z = 0.

For solution of (8) expressed in new similarity variables

N(x, y, z, t) = NSf(ξ1d, ξ2d, ξ3d),
3

∑

i=1

(

2
∂

∂ξid

(

f
∂f

∂ξid

)

+ ξid
∂f

∂ξid
+ ξi0

∂f

∂ξid

)

= 0, (16)

ξ1d = ξ1 − ξ10, ξ2d = ξ2 − ξ20, ξ3d = ξ3 − ξ30,

−ξ10 6 ξ1d 6 0, −ξ20 6 ξ2d 6 0, −ξ30 6 ξ3d 6 0, (17)

we will use the approximate Taylor power expansion [7] at maximum penetration
points ξ10, ξ20, ξ30 of impurities.

The solution f(ξ1, ξ2, ξ3) of (16) can be presented by the Taylor series by expan-
sion [13]

f(ξ1, ξ2, ξ3) = f(P0) +
3

∑

i=1

(ξi − ξi0)
∂f

∂ξi

∣

∣

∣

∣

P0

+
1

2!

3
∑

i=1

3
∑

j=1

(ξi − ξi0)(ξj − ξj0)
∂2f

∂ξi∂ξj

∣

∣

∣

∣

P0

+R3. (18)

at the same point P0 = P0(ξ10, ξ20, ξ30) where we included boundary condition
f(P0) = 0 and dropped the terms R3 of order 3 and higher. Then we have

f(ξ1d, ξ2d, ξ3d) =
3

∑

i=1

(

aiξid + ai+3ξ
2
id

)

+ a7ξ1dξ2d + a8ξ1dξ3d + a9ξ2dξ3d, 0 6 f 6 1.

(19)

Substituting (19) into (16) and equating collected coefficients at ξn
id

, with n = 0, 1;
i = 1, 2, 3 to zero and using boundary conditions

f(−ξ10,−ξ20,−ξ30) = 1, ξ1 = 0, ξ2 = 0, ξ3 = 0, (20)

f(0,−ξ20,−ξ30) = 0, ξ1 = ξ10, ξ2 = 0, ξ3 = 0, (21)

f(−ξ10,−ξ20, 0) = 0, ξ1 = 0, ξ2 = 0, ξ3 = ξ30, (22)

we define relative concentration of impurities in the center of the square (20) displaced
in the x, y plane and zero concentration at the maximum penetration depths ξ10, ξ20,
ξ30, according to the coordinate axes x, y, z (21), (22) consequently. Then including
the symmetry f(ξ1, ξ2, ξ3) = f(ξ1, ξ2, ξ3) of solution for the square source (2) we
obtained

ξ10 = ξ20, a1 = a2, a4 = a5, a8 = a9. (23)
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✐

✐

“LMD15_Janavicius_Turskkiene_Zil” — 2015/11/20 — 18:40 — page 28 — #5
✐

✐

✐

✐

✐

✐

28 A. J. Janavičius, S. Turskienė, K. Žilinskas

Requiring that solution (19) must satisfy nonlinear equation (16) and boundary
conditions (20), (21), (22) we got the following system of equations:

4a21 + 2a23 + 2ξ10a1 + ξ30a3 = 0, (24)

a1 + 16a1a4 + 4a1a7 + 4a3a8 + 4a1a6 + 2ξ10a4 + ξ30a8 + ξ10a7 = 0, (25)

a7 + 12a4a7 + 2a6a7 + 2a28 = 0, (26)

a3 + 8a1a8 + 8a3a4 + 12a3a6 + 2ξ10a8 + 2ξ30a6 = 0, (27)

a8(1 + 8a4 + 2a7 + 6a6) = 0, (28)

−2a1ξ10 − a3ξ30 + 2a4ξ
2
10 + a6ξ

2
30 + a7ξ

2
10 + 2a8ξ10ξ30 = 1, (29)

−ξ10a1 − ξ30a3 + a4ξ
2
10 + a6ξ

2
30 + a8ξ10ξ30 = 0, (30)

−2a1 + 2ξ10a4 + ξ10a7 = 0. (31)

The first five equations are obtained by equating the collected terms at constant,
and at (ξ1−ξ10), (ξ1−ξ10)(ξ2−ξ20), (ξ3−ξ30), (ξ1−ξ10)(ξ3−ξ30) consequently. We got
the last three equations (29), (30), (31) requiring to satisfy the boundary conditions
(20)–(22). Equations we solved by using the computer algebra system Maple 14. The
following meanings of constants for (19) was found

a1 = a2 = 0, a3 = −0.745356, a4 = a5 = −0.075000, a6 = −0.050000,

a7 = 0.150000, a8 = a9 = 0, ξ10 = ξ20 = 3.65148, ξ30 = 1.49071. (32)

Then approximate solution of (19) can be represented

f(ξ1d, ξ2d, ξ3d) = a3ξ3d + a4ξ
2
1d + a4ξ

2
2d + a6ξ

2
3d.+ a7ξ1dξ2d. (33)

This solution does not satisfy conditions (6) for diffusion coefficients and paths
for different dimensions. The presented results can be applied in inhomogeneous
environment.

We can compare obtained solution with the same boundary conditions (14) using
in power expansion essentially different variables ξ1i = ξi

ξ1
i0

until square terms were

obtained as close solutions ξ110 = ξ120 = 4 and ξ130 = 1.42. Here correlation term ξ1ξ2
as in (31) was not included and for this reason our solutions for ξ10, ξ20, ξ30 are more
exact than values ξ110, ξ120, ξ130. The terms ξ30 = 1.49 and ξ130 = 1.42 coincide with
sufficient accuracy.

Similar expansion in power series (ξ − ξ0)
n for solution of one-dimensional case

of the nonlinear diffusion equation (11) gives the fast convergence of solution and
maximum values ξn0 for finite n [9]

ξ10 =
√
2, ξ20 = 1.633, ξ30 = 1.618, ξ40 = 1.616. (34)

3 Results and conclusions

The obtained solutions (32), (33) are sufficiently exact and can be used for theoretical
calculations of impurities spreading by diffusion from a square window in semicon-
ductors for the production of electronic devices. The nonlinear diffusion equation
for two-dimensional case also was solved [12] and the following result for maximum
similarities variables was obtained ξ10 = ξ20 = 0.429.
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Our results can also be used for the heat transfer problem in solids from surfaces
of materials heated with lasers [11]. The presented nonlinear equation can be applied
to gasses [1] and solid states.
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REZIUMĖ

Netiesinės difuzijos priklausomybė nuo dimensijų
A.J. Janavičius, S. Turskienė, K. Žilinskas

Straipsnyje nagrinėjami netiesinės difuzijos lygties sprendiniai vienmačiu ir trimačiu atvejais, pateikti
maksimalūs priemaišų įsiskverbimo gyliai kietuose kūnuose. Nustatyti parametrai vienmačiam, dvi-
mačiam ir trimačiam netiesinės difuzijos uždaviniui. Paprasto ryšio tarp difuzijos koeficientų kaip
tiesinės difuzijos atveju negavome, bet yra galimybė pasirinkti prioritetines difuzijos sklidimo kryptis
atsižvelgiant į kristalų struktūrą, aplinkos nehomogeniškumą.

Raktiniai žodžiai: netiesinė difuzijos lygtis, priemaišų įsiskverbimo gylis, difuzijos koefficientas, apy-
tikslis analizinis sprendinys.
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