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Introduction

In this thesis, collections consisting from Dirichlet L - functions and Hurwitz or periodic Hurwitz zeta

- functions are considered.

Aims and problems

The aims of the thesis are mixed joint universality theorems for Dirichlet L - functions and Hurwitz

type zeta - functions, i.e., theorems on simultaneous approximation of a collection of analytic functions

by shifts of Dirichlet L - functions which have Euler's product over primes and by shifts of Hurwitz

type zeta - functions which have no the Euler product. The problems are the following:

1. A mixed joint universality theorem for Dirichlet L -functions and Hurwitz zeta - functions;

2. A mixed joint universality theorem of Dirichlet L - functions and periodic Hurwitz zeta - func-

tions;

3. The universality of composite functions of a collection of Dirichlet L - functions and Hurwitz

zeta - functions;

4. The universality of composite functions of a collection of Dirichlet L - functions and periodic

Hurwitz zeta - functions.

We remind the de�nitions of functions studied in the thesis. Let χ be a Dirichlet character modulo

q ∈ N. The Dirichlet L - function L(s, χ), s = σ + iτ , is de�ned, for σ > 1, by the series

L(s, χ) =

∞∑
m=1

χ(m)

ms
.

If χ is a non - principal character, then the function L(s, χ) is entire, while, for the principal character

χ0, the function L(s, χ0) has analytic continuation to the whole complex plane, except for a simple

pole at he point s = 1 with residue ∏
p|q

(
1− 1

p

)
.
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Moreover, the function L(s, χ), for σ > 1, has the Euler product over primes

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

Let α, 0 < α ≤ 1, be a �xed parameter. The Hurwitz zeta - function ζ(s, α) is de�ned, for σ > 1,

by the series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and can be analytically continued to the whole complex plane, except for a simple pole at the point

s = 1 with residue 1. We have that ζ(s, 1) is the Riemann zeta - function ζ(s), and

ζ(s,
1

2
) = (2s − 1)ζ(s).

Since, for σ > 1,

ζ(s) =
∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

,

the function ζ(s, α) has the Euler product over primes in the cases α = 1 and α = 1
2 , only.

Now let a = {am : m ∈ N0 = N ∪ {0}} be a periodic sequence of complex numbers with minimal

period k ∈ N. Then the periodic Hurwitz zeta - function ζ(s, α; a) is de�ned, for σ > 1, by the series

ζ(s, α, a) =

∞∑
m=0

am
(m+ α)s

.

The periodicity of the sequence a implies, for σ > 1, the equality

ζ(s, α, a) =
1

ks

k−1∑
m=0

amζ

(
s,
α+m

k

)
.

Therefore, the properties of the Hurwitz zeta - function show that the function ζ(s, α; a) has analytic

continuation to the whole complex plane, except for a simple pole at the point s = 1 with residue

a
def

=
1

k

k−1∑
m=0

am.

If a = 0, then the function ζ(s, α; a) is entire. Clearly, ζ(s, α; {1}) = ζ(s, α).

Actuality

The zeta and L - functions are the principal objects of analytic number theory. They are used not only

for solving many problems but also are widely studied themselves. Universality of zeta - functions

discovered by S.M. Voronin in 1975 is a very interesting and useful phenomenon having a series of

theoretical and practical applications. From universality theorems, the hypertranscendence of zeta -
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functions conjectured [14] by D. Hilbert in 1900 follows, [10], [31], [24], [59], [77], [79]. In the case of

the function ζ(s), this means that if given continuous function F0, F1, . . . , FN : Cn+1 → C are not all

identically zero,then
N∑
m=0

smFm(ζ(s), ζ ′(s), . . . , ζ(n)(s)) 6= 0

for some s ∈ C. Universality of zeta - functions without Euler's product can be applied for the

investigation of zero - distribution of these functions [44], [46], [54], [59], [77]. Also, there exists a

relation between the universality and zeros of multiple zeta - functions [65],[66], [68]. Universality can

be applied for the class number problem [63]. We remind that the class number h(d) of a quadratic

number �ied Q(
√
d) of discriminant d < 0 is equal to number of reduced binary quadratic forms of

discriminant d. Let Λ−1 be set of negative discriminants. Then the universality results of [63] imply

the density in R+ of the set
{
h(d)√
d

: d ∈ Λ−1
}
. The practical applications of universality of zeta -

functions are related to a direct approximation of complicated analytic functions. For example, the

universality of ζ(s) is applied [4] to path integrals in quantum mechanics. Universality is closely

related to the self - approximation, and thus, to the Riemann hypothesis (RH) that ζ(s) 6= 0 for σ > 1
2

It is known [77] that RH is equivalent to the assertion that the function ζ(s) can be approximated

uniformly on compact subsets by shifts ζ(s + iτ). Deep results in this direction were obtained by

T. Nakamura [67], T. Nakamura and �. Pańkowski [69], [70], �. Pańkowski [71], as well as by R.

Garunk²tis [8], R. Garunk²tis [8] and E. Karikovas [9], and by E. Karikovas and �. Pańkowski [25].

Theses and other examples show that the attention to universality of zeta - functions has a deep

motivation. The schools of universality in various countries (Lithuania, Japan, Germany, Canada,

France, South Korea, Poland ) also clearly con�rm the importance of the universality property for

zeta - functions. Therefore, the study of universality of zeta and L - functions is an urgent problem

of the contemporary analytic number theory.

Methods

In the thesis, the probabilistic approach for the proof of universality theorems based on limit theorem

of weakly convergent probability measures is developed. This method includes elements of the mea-

sure and ergodic theory. Also, the results of approximation of analytic functions, in particular, the

Mergelyan theorem, are applied.

Novelty

All results of the thesis are new. The mixed joint universality theorem for Dirichlet L - functions and

Hurwitz type functions were not considered.

9



History of the problem and results

Universality problem for zeta and L - functions comes back to S.M. Voronin who proved [78], [80] the

universality of the Riemann zeta - function. The initial form of the Voronin theorem is contained in

the following theorem.

Theorem A. Suppose that 0 < r < 1
4 , the function f(s) is continuous and non - vanishing on the

disc |s| ≤ r, and analytic in the interior of this disc. Then, for any ε > 0, there exists τ = τ(ε) ∈ R

such that

max
|s|≤r

|ζ(s+
3

4
+ iτ)− f(s)| < ε.

The function ζ(s) is called universal since suitable its shifts ζ(s+ 3
4 + iτ) uniformly approximate

any analytic target function satisfying the hypotheses of Theorem A.

The Voronin theorem was slightly improved by various authors. Let D = {s ∈ C : 1
2 < σ <

1}. Denote by K the class of compact subsets of the strip D with connected complements, and by

H0(K),K ∈ K, the class of non - vanishing continuous functions on K which are analytic in the

interior of K. Moreover, let meas A stand for the Lebesgue measure of a measurable set A ⊂ R. Then

a modern version of the Voronin theorem is of the form, see, for example,[31],[77].

Theorem B. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε} > 0.

Thus, Theorem B extends Theorem A in two directions. First, analytic functions are uniformly

approximated by shifts ζ(s + iτ) not only on discs but on more general compact sets of the class K.

Moreover, Theorem B shows that there exist in�nitely many shifts ζ(s + iτ) approximating a given

analytic function, the set of such shifts has a positive lower density.

It turned out that some other zeta and L - functions are also universal in the Voronin sense. S.M.

Voronin himself observed [78], see also, [24], [80], that all Dirichlet L - functions are also universal.

Thus, the following result is true.

Theorem C. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|L(s+ iτ, χ)− f(s)| < ε} > 0.
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Now it is known that wide classes of zeta and L - functions having Euler's product over primes

are universal in the above sense. Universality for some classes of Dirichlet series

∞∑
m=1

a(m)

ms

with multiplication coe�cients (a(mn) = a(m)a(n) for all m,n ∈ N, (m,n) = 1) was obtained in [26]

- [30] and [57]. The case of zeta - functions of certain cusp forms was considered in [22],[50],[48] and

[51]. In the monograph [77], the universality property was extended to the famous Selberg class [76]

of Dirichlet series.

Some zeta - functions without Euler's product are also universal in a similar sense. Denote by

H(K),K ∈ K, the class of continuous functions on K which are analytic in the interior of K. The

simplest and most important of zeta - functions without Euler's product is the Hurwitz zeta - function

ζ(s, α). At the moment, we have the following statement.

Theorem D. Suppose that the parameter α is transcendental or rational 6= 1, 1
2 . Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε} > 0.

In a slightly di�erent form, Theorem D for rational α was obtained independently by S.M. Gonek

[13] and B. Bagchi [1]. The case of transcendental α can be found in [47].

The universality property in Theorem D, sometimes is called a strong universality because the

shifts ζ(s+ iτ, α) approximate functions from a wider class H(K) ⊃ H0(K).

A generalization of the Hurwitz zeta - function is the Lerch zeta - function L(λ, α, s) which is

de�ned, for σ > 1, by the series

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
,

and by analytic continuation elsewhere with a �xed λ ∈ R. The universality if the function L(λ, α, s)

was considered in [32], [33] and [47]. The second generalization of the function ζ(s, α) is the periodic

Hurwitz zeta - function ζ(s, α; a). The latter function was introduced in [34]. The universality of the

function ζ(s, α; a) for transcendental α was proved in [19] and [20].

A more complicated and interesting is the joint universality of zeta and L - functions when a

collection of given analytic functions simultaneously are approximated by shifts of zeta or L - functions.

The �rst result in this direction also belongs to S.M. Voronon. In [79], he in a not explicit form

obtained the joint universality of Dirichlet L - functions. More precisely, he considered the joint

functional independence of Dirichlet L - function, but his arguments are also applicable to their joint
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universality. Before the statement of a joint universality theorem for Dirichlet L - functions, we recall

some notation and de�nitions.

A non - principal Dirichlet character χ(m),m ∈ N, modulo q is called primitive if, for (m, q) = 1,

the number q is the smallest period of χ(m). If a character χ(m) modulo q is non - primitive, then

there exists q1, q1 < q, and a primitive character χ1(m) modulo q1 such that

χ(m) =

χ1(m) if (m, q) = 1,

0 if (m, q) > 1.

In this case, we say that the character χ(m) is generated by a primitive character χ1(m). Two Dirichlet

characters are said to be equivalent if they are generated by the same primitive character.

Now we state a joint universality theorem for Dirichlet L - functions.

Theorem E. Suppose that χ1, . . . , χr are pairwise non - equivalent Dirichlet characters. For

j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε} > 0.

Proof of Theorem E can be found in [40]. In [1],[2] and [24], Theorem E was obtained in a slightly

di�erent form. It is clear that, in joint universality theorems, the approximating functions would

be independent in a certain sense. In Theorem E, this independence is realized by a pairwise non -

equivalence of Dirichlet characters.

The joint universality of Hurwitz zeta - functions has been considered in [7],[35], [62] and [64]. We

state a result obtained on [35]. For j = 1, . . . , r, let 0 < αj ≤ 1, and

L(α1, . . . , αr) = {log(m+ αj) : m ∈ N0, j = 1, . . . , r}.

Theorem F[35]. Suppose that the set L(α1, . . . , αr) is linearly independent over the �eld of

rational numbers Q. For j = 1, . . . , r, let Kj ∈ K, and fj(s) ∈ H(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj)− fj(s)| < ε} > 0.

Theorem F with a stronger hypothesis that the numbers α1, . . . , αr are algebraically independent

over Q has been proved in [64]. We recall that the numbers α1, . . . , αr are algebraically independent

over Q if there exist no polynomials with rational coe�cients p 6≡ 0 such that p(α1, . . . , αr) = 0.

In [7], the extension of Theorem F was given.
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Many works are devoted to joint universality of periodic Hurwitz zeta - functions. The �rst results

of such a kind for periodic Hurwitz zeta - functions with the same parameter α were obtained in [34].

For j = 1, . . . , r, let 0 < αj ≤ 1, and let aj = {amj : m ∈ N0} be a periodic sequence of complex

numbers with minimal period kj . Let k = [k1, . . . , kr] denote the least common multiple of the periods

k1, . . . , kr. De�ne

A =


a11 a12 · · · a1r

a21 a22 · · · a2r

...
...

. . .
...

ak1 ak2 · · · akr

 .

Then in [21], the following theorem was proved.

Theorem G. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and

rank(A) = r. Let, for j = 1, . . . , r, Kj ∈ K and fj(s) ∈ H(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε} > 0.

A more general result has been obtained in [52], where a joint universality theorem is free from a

rank condition.

The most general joint universality theorems for periodic Hurwitz zeta - functions are given in

[36],[37] and [53]. For j = 1, . . . , r, let αj , 0 < αj ≤ 1, be a �xed parameter, lj ∈ N, ajl = {akjl :

m ∈ N0} be a periodic sequence of complex numbers with minimal period kjl ∈ N. Then the joint

universality for the functions

ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ) (0.1)

can be considered. Let kj = [kj1, . . . , kjlj ] denote the least common multiple of the periods kj1, . . . , kjlj ,

and let

Aj =


a1j1 a1j2 · · · a1jlj

a2j1 a2j2 · · · a2jlj

...
...

. . .
...

akjj1 akjj2 · · · akjjlj

 , j = 1, . . . , r.

Then in [53] we �nd the following result.

Theorem H. Suppose that set L(α1, . . . , αr) is linearly independent over Q, and that rank(Aj) =

lj , j = 1, . . . .r. For j = 1, . . . , r, l = 1, . . . , lj, let Kjl ∈ K and fjl(s) ∈ H(Kjl). Then, for every

ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r
sup

1≤l≤kj
sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε} > 0.
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In [61], H. Mishou began to study the joint universality for zeta - functions having and having no

Euler products over primes. He proved a joint universality theorem for the Riemann zeta - function

and Hurwitz zeta - function with transcendental parameter α. Now, joint universality theorems of

such a kind are called mixed universality theorems. The Mishou mixed theorem is of the form.

Theorem I. Suppose that the number α is transcendental. Let K1,K2 ∈ K, and f1(s) ∈ H0(K1)

and f2(s) ∈ H(K2). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K1

|ζ(s+ iτ)− f1(s)| < ε

sup
s∈K2

|ζ(s+ iτ, α)− f2(s)| < ε} > 0.

In [23], the Mishou theorem was generalized for a periodic zeta - function and a periodic Hurwitz

zeta - function. Let a = {lm : m ∈ N} be a periodic sequence of complex numbers. We remind that

the periodic zeta - function ζ(s; a) is de�ned, for σ > 1, by the series

ζ(s; a) =

∞∑
m=1

am
ms

,

and by analytic continuation elsewhere, except for a possible simple pole at the point s = 1.

In [12], the Riemann zeta - function was added to the system of functions (0.1), and, for an obtained

collection of zeta - functions, a mixed joint universality was proved. In the papers [49],[55],[58], [73]

the function ζ(s) was replaced by zeta - functions of certain cusp forms. Namely, the paper [73] is

devoted to a mixed joint universality theorem for zeta - function ζ(s, F ) attached to a normalized

Hecke eigen cusp form F and the functions (0.1), in [58], the function ζ(s, F ) was replaced by a zeta

- function of a newform, and in [55] the case of a zeta - function of a cusp form with respect to the

Hecke subgroup with Dirichlet character was considered.

Chapter 1 of the thesis is devoted to a mixed joint universality theorem for Dirichlet L - functions

and Hurwitz zeta - functions. The main result of the chapter is contained in the following statement

[18].

Theorem 1.1. Suppose that χ1, . . . , χr1 are pairwise non - equivalent Dirichlet characters, and

the numbers α1, . . . , αr2 are algebraically independent over Q. For j = 1, . . . , r1, let Kj ∈ K and

fj(s) ∈ H0(Kj), while, for j = 1, . . . , r2, let K̂j ∈ K and f̂j(s) ∈ H(K̂j). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r1
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− f̂j(s)| < ε} > 0.
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We see that, in Theorem 1.1, di�erently from Theorem G, any rank hypothesis is not needed.

Proof of Theorem 1.1 is probabilistic. Denote by H(G) the space of analytic functions on region

G equipped with the topology of uniform convergence on compacta, and by B(S) the σ - �eld of Borel

sets of the space S. More precisely, the proof of Theorem 1.1 is based on the weak convergence of the

probability measure

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ) ∈ A}, A ∈ B(Hr1+r2(D)),

where

Ξ(s) = (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)).

In Chapter 2 of the thesis, the mixed joint universality of Dirichlet L - functions and periodic

Hurwitz zeta - functions is investigated, and the following statement is proved. The notation of

Theorem H is used.

Theorem 2.1. Suppose that χ1, . . . , χd are pairwise non - equivalent Dirichlet characters, the

numbers α1, . . . , αr are algebraically independent over Q, and that rank(Aj) = lj , j = 1, . . . .r. For

j = 1, . . . , d, let Kj ∈ K and fj(s) ∈ H0(Kj), and, for j = 1, . . . , r, l = 1, . . . , lj, let Kjl ∈ K and

fjl(s) ∈ H(Kjl). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤d
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r

sup
1≤l≤kj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε} > 0.

Proof of Theorem 2.1, as of Theorem 1.1, is probabilistic and based on a multidimensional limit

theorem for a collection of functions

L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ).

Universality of functions plays an important role in analytic number theory, and in approximation

theory of analytic functions. Therefore, there exists a problem to extend the class of universal func-

tions. One of ways for solving this problem is the investigation of universality of composite functions.

The �rst results in this direction were obtained in [38] and [42], where the universality of composite

functions F (ζ(s)) for some operators F : H(D) → H(D) was considered. For example, the following

theorem takes place. Let S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.
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Theorem J. Suppose that F : H(D)→ H(D) is a continuous operator such that, for every open

set G ⊂ H(D), the set (F−1G) ∩ S is non - empty. Let K ∈ K and f(s) ∈ H(K). Then, for every

ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (ζ(s+ iτ))− f(s)| < ε} > 0.

In [46], the ideas of the paper [38] were applied for the Hurwitz zeta - function ζ(s, α). For example,

in [46], the following generalization of Theorem D was proved.

Theorem K. Suppose that the number α is transcendental, and that F : H(D) → H(D) is a

continuous operator such that, for each polynomial p = p(s), the set F−1{p} is non - empty. Let

K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (ζ(s+ iτ, α))− f(s)| < ε} > 0.

The paper [43] is devoted to the universality if the functions F (ζ(s), ζ(s, α)) for some operators

F : H2(D)→ H(D). One of examples is contained in Theorem L.

Theorem L. Suppose that the number α is transcendental, and that F : H2(D) → H(D) is a

continuous operator such that, for every polynomial p = p(s), the set (F−1{p}) ∩ (S ×H(D)) is not

empty. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (ζ(s+ iτ), ζ(s+ iτ, α))− f(s)| < ε} > 0.

Finally, in [43], the universality of the composite functions F (ζ(s, α1), . . . , ζ(s, αr)) has been con-

sidered. We state one theorem from [43].

Theorem M. Suppose that the set L(α1, . . . , αr) is linearly independent over Q, and that F :

Hr(D) → H(D) is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is

non - empty. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr))− f(s)| < ε} > 0.

Chapter 3 of the thesis is devoted to a generalization of Theorem 1.1. Here the universality of

the function F (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)) is discussed, and several theorems are

obtained.
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Theorem 3.1. Suppose that the Dirichlet characters χ1, . . . , χr1 , the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator such that,

for every open set G ⊂ H(D), the set (F−1G) ∩ (Sr1 × Hr2(D)) is non - empty. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χr1),

ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr2))− f(s)| < ε} > 0.

Theorem 3.1 is rather general, however, its hypothesis is di�cultly checked. The next theorem is

a simple modi�cation of Theorem 3.1.

Theorem 3.2. Suppose that the Dirichlet characters χ1, . . . , χr1 , and the numbers α1, . . . , αr2

satisfy the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator such

that, for every polynomial p = p(s), the set (F−1{p}) ∩ (Sr1 ×Hr2(D)) is non - empty. Let K ∈ K

and f(s) ∈ H(K). Then, for every ε > 0, the assertion of Theorem 3.1 is true.

We give an example of Theorem 3.2.

Corollary 3.3. Suppose that the Dirichlet characters χ1, . . . , χr1 , and the numbers α1, . . . , αr2

satisfy the hypotheses of Theorem 1.1. Let {j1, . . . , jr} 6= ∅ be a an arbitrary subset of {1, . . . , r1},

and {l1, . . . , lk} 6= ∅ be a an arbitrary subset of {1, . . . , r2}. Let K ∈ K and f(s) ∈ H(K). Then, for

every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|L(s+ iτ, χj1) . . . L(s+ iτ, χjr )×

× ζ(s+ iτ, αl1) . . . ζ(s+ iτ, αlk)− f(s)| < ε} > 0.

The non - vanishing of a polynomial in a bounded region can be controlled by its constant term.

Therefore, in some cases, it is more convenient to consider the space of analytic functions on a bounded

region. For V > 0, let DV = {s ∈ C : 1
2 < σ < 1, |t| < V }, and

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0}.

Then we have the following modi�cation of Theorem 3.2.

Theorem 3.4. Suppose that the Dirichlet characters χ1, . . . , χr1 , and the numbers α1, . . . , αr2

satisfy the hypotheses of Theorem 1.1, K ∈ K and f(s) ∈ H(K), and let V > 0 be such that K ⊂ DV .
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Let F : Hr1(DV ) × Hr2(D) → H(DV ) be a continuous operator such that, for every polynomial

p = p(s), the set (F−1{p}) ∩ (Sr1V × Hr2(D)) is non - empty.Then the assertion of Theorem 3.1 is

true.

In the next two theorems, we approximate analytic functions from a certain subclass of H(D). For

arbitrary distinct complex numbers a1, . . . , ak, de�ne

Hk(D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , k}.

Theorem 3.5. Suppose that the Dirichlet characters χ1, . . . , χr1 , and the numbers α1, . . . , αr2

satisfy the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator such

that F (Sr1 × Hr2(D)) ⊃ Hr(D). If k = 1, then let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1 on K. If

k ≥ 2, then let K ⊂ D be an arbitrary compact subset, and f(s) ∈ Hr(D). Then the assertion of

Theorem 3.1 is true.

For example, Theorem 3.5 implies the universality of the functions sin(L(s, χ1)+L(s, χ2)+ζ(s, α1)+

ζ(s, α2)) and cos(L(s, χ1) + L(s, χ2) + ζ(s, α1) + ζ(s, α2)) with non - equivalent character χ1 and χ2,

and algebraically independent α1 and α2.

The next theorem approximates the functions form the set F (Sr1 ×Hr2(D)).

Theorem 3.6. Suppose that the Dirichlet characters χ1, . . . , χr1 , and the numbers α1, . . . , αr2

satisfy the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator. Let

K be a compact subset of the strip D, and f(s) ∈ F (Sr1×Hr2(D)). Then the assertion of Theorem 3.1

is true.

The results of Chapter 3 were obtained in [15] and [17].

In Chapter 4 of the thesis, the universality of the composite function F (L(s, χ1), . . . , L(s, χd),

ζ(s, α1; a11) , . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )) for some classes of operators F is

investigated. First the approximation of functions from the space H(D) is discussed. Let v = d+ l1 +

. . .+ lr. The operator F : Hv(D)→ H(D) belongs to the class Lip(β1, . . . , βv), β1 > 0, . . . , βv > 0, if

the following hypotheses are satis�ed:

1o For every polynomial p = p(s) and all sets K1, . . . ,Kd ∈ K, there exists an element (g1, . . . , gd,

g11, . . . , g1l1 , gr1, . . . , grlr ) ∈ F−1{p} ⊂ Hv(D) such that gj(s) 6= 0 on Kj , j = 1, . . . , d;

2o For all K ∈ K, there exist a constant c > 0 and sets K1, . . . ,Kv ∈ K such that, for all

(gj1, . . . , gjv) ∈ Hv(D), j = 1, 2,

sup
s∈K
|F (g11(s), . . . , g1v(s))− F (g21(s), . . . , g2v(s)| ≤ c sup

1≤j≤v
sup
s∈Kj

|g1j(s)− g2j(s)|βj .

Theorem 4.1 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the se-

quences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and F ∈ Lip(β1, . . . , βv).
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Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

meas{τ ∈ [0;T ] : sup
s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χd),

ζ(s+ iτ, α1; a11), . . . , ζ(s+ iτ, α1; a1l1), . . . ,

ζ(s+ iτ, αr; ar1), . . . , ζ(s+ iτ, αr; arlr ))− f(s)| < ε} > 0.

For example, the operator F (g1, . . . , gd, g11, . . . , g1l1 , gr1, . . . , grlr ) = c1g
(n1)
1 + . . .+ cdg

(nd)
d + . . .+

c11g
(n11)
11 + . . . +c1l1g

(n1l1
)

1l1
+ . . . + cr1g

(nr1)
r1 + . . . + crlrg

(nrlr )
rlr

, where c1, . . . , cd, c11, . . . , c1l1 , . . . , cr1,

. . . , crlr ∈ C \ {0}, n1, . . . , nd, n11, . . . , n1l1 , . . . , nr1, . . . , nrlr ∈ N, and f (n) denotes the n th derivative

of the function f , belongs to the class Lip(1, . . . , 1).

Other theorems of Chapter 4 are analogues of those from Chapter 3. Let

v1 =

r∑
j=1

lj .

Theorem 4.3 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator such that, for every open set G ⊂ H(D), the set (F−1G)∩(Sd×Hv1(D))

is non - empty. Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 4.1 is true.

Theorem 4.3 implies the following modi�cation of Theorem 4.1.

Theorem 4.4 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypothesis of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator such that, for every polynomial p = p(s), the set (F−1{p}) ∩ (Sd ×

Hv1(D)) is non - empty. Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 4.1 is true.

We note that hypothesis 20 of the class Lip(β1, . . . , βv) implies the continuity of the operator F .

However, hypothesis 10 is weaker than the requirement that (F−1{p}) ∩ (Sd ×Hv1(D)) 6= ∅.

Sometimes, in Theorem 4.3, it is more convenient to use the spaceHv(DV , D) = Hd(DV )×Hv1(D)

in place of Hv(D). In notation of Theorem 3.4, the following version of Theorem 4.3 is true.

Theorem 4.5 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, K ∈ K and f(s) ∈

H(K), and V > 0 is such that K ⊂ DV . Let F : Hv(DV , D) → H(DV ) is a continuous operator

such that, for every polynomial p = p(s), the set (F−1{p})∩ (SdV ×Hv1(D)) is non - empty. Then the

assertion of Theorem 4.1 is true.
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Theorem 4.5 can be applied for the operator

F (g1, . . . , gv) = c1g1 + . . .+ cdgd, c1, . . . , cd ∈ C \ {0}.

Other theorems of Chapter 4 are devoted to the approximation of analytic functions from the

image of the set Sd ×Hv1(D) of the operator F : Hv(D)→ H(D).

Theorem 4.8 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator. Let K ⊂ D be a compact subset and f(s) ∈ F (Sd ×Hu(D)). Then

the assertion of Theorem 4.1 is true.

It is not easy to describe the set F (Sd×Hv1(D)). The next theorem of Chapter 4 is an example with

su�ciently simple set contained in F (Sd ×Hv1(D)). Namely, the following analogue of Theorem 3.5

is valid.

Theorem 4.9 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator such that F (Sd × Hu(D)) ⊃ Hk(D). For k = 1, let K ∈ K, f(s) ∈

H(K) and f(s) 6= a1 on K. For k ≥ 2, let K ⊂ D be an arbitrary compact subset, and f(s) ∈

Hk(D).Then the assertion of Theorem 4.1 is true.

A part of the results of Chapter 4 are contained in [16].
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Approbation

The results of the thesis were presented at the MMA (Mathematical Modeling and Analysis) con-

ferences (MMA 2012, June 6 - 9, 2012, Tallinn, Estonia), (MMA 2013, May 27 - 30, 2013, Tartu,

Estonia), (MMA 2014, May 26 - 39,2014, Druskininkai, Lithuania), at International Conference Alge-

bra, Number Theory and Discrete Geometry: Modern Problems and Applications (May 25 - 30, 2015,

Tula, Russia), at the Conferences of Lithuanian Mathematical Society (2013, 2014, 2015), as well as

at the Number Theory seminars of Vilnius University.
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Chapter 1

Joint universality of Dirichlet L -

functions and Hurwitz zeta - functions

In this chapter, we prove a joint universality theorem on the simultaneous approximation of a collection

of given analytic functions by shifts L(s+ iτ, χj) of Dirichlet L - functions

L(s, χj) =

∞∑
m=1

χj(m)

ms
, σ > 1, j = 1, . . . , r1,

and shifts ζ(s+ iτ, αj) of Hurwitz zeta - functions

ζ(s, αj) =

∞∑
m=0

1

(m+ αj)s
, σ > 1, j = 1, . . . , r2.

Since Dirichlet L - functions have the Euler product over primes

L(s, χj) =
∏
p

(
1− χj(p)

ps

)−1

, σ > 1, j = 1, . . . , r1,

and Hurwitz zeta - functions have no such a product if αj 6= 1, 1
2 , the theorem of this chapter is a mixed

joint universality theorem, and it connects a joint universality theorem for Dirichlet L - functions and

a joint universality theorem for Hurwitz zeta - functions. The functions of the collection

(L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)) (1.1)

must be in some sense independent, therefore, we use additional hypotheses on the characters χ1, . . . , χr1

and parameters α1, . . . , αr2 .

We recall that D = {s ∈ C : 1
2 < σ < 1}, K is the class of compact subsets of the strip D with

connected complements, H(K),K ∈ K, is the class of continuous functions on K which are analytic

in the interior of K, and H0(K),K ∈ K, is the subclass of H(K) of non-vanishing functions on K.

The main result of this chapter is the following theorem.
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Theorem 1.1. Suppose that χ1, . . . , χr1 are pairwise non-equivalent Dirichlet characters, and

that the numbers α1, . . . , αr2 are algebraically independent over Q. For j = 1, . . . , r1, let Kj ∈ K and

fj(s) ∈ H0(Kj), while, for j = 1, . . . , r2, let K̂j ∈ K and f̂j(s) ∈ H(K̂j). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r1
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− f̂j(s)| < ε} > 0.

We see that the independence of the functions of the collection (1.1) is expressed by the non-

equivalence of the Dirichlet characters χ1, . . . , χr1 and by the algebraical independence of parameters

α1, . . . , αr2 .

Theorem 1.1 has a series of corollaries on the universality of composite functions which will be

presented in Chapter 3.

Proof of Theorem 1.1 is based on probabilistic limit theorems on weakly convergent probability

measures in the space of analytic functions.

1.1. A limit theorem

Denote by γ the unit circle on the complex plane, i.e.,

γ = {s ∈ C : |s| = 1},

and de�ne two in�nite - dimensional tori

Ω =
∏
p

γp

and

Ω̂ =

∞∏
m=0

γm,

where γp = γ for all primes p, and γm = γ for all m ∈ N0. The tori Ω and Ω̂ with the product

topology and operation of pointwise multiplication, by the Tikhonov theorem, see, for example [72],

are compact topological Abelian groups. Let κ = 1 + r2, and

Ωκ = Ω× Ω̂1 × . . .× Ω̂r2 ,

where Ω̂j = Ω̂ for j = 1, . . . , r2. Then again, by the Tikhonov theorem, Ωκ is a compact topological

Abelian group. Therefore, denoting by B(X) the Borel σ - �eld of the space X, we have that, on
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(Ωκ,B(Ωκ)), the probability Haar measure mκ
H can be de�ned. This gives the probability space

(Ωκ,B(Ωκ),mκ
H). We note that the measure mκ

H is the product of the Haar measures mH and

m̂1H , . . . , m̂r2H on (Ω,B(Ω)) and (Ω̂1,B(Ω̂1)), . . . , (Ω̂r2 ,B(Ω̂r2)), respectively. For elements of Ωκ, we

use the notation ω = (ω, ω̂1, . . . , ω̂r2), where ω ∈ Ω and ω̂j ∈ Ω̂j , j = 1, . . . , r2. Moreover, let ω(p) be

the projection of ω ∈ Ω to the coordinate space γp, p ∈ P, and let ω̂j(m) denote the projection of

ω̂j ∈ Ω̂j to the coordinate space γm, m ∈ N0. For brevity, we put r = r1 +r2. Now, on the probability

space (Ωκ,B(Ωκ),mκ
H), de�ne the Hr(D) - valued random element Ξ(s, ω) by the formula

Ξ(s, ω) = (L(s, ω, χ1), . . . , L(s, ω, χr1), ζ(s, α1, ω̂1), . . . , ζ(s, αr2 , ω̂r2)),

where

L(s, ω, χj) =
∏
p

(
1− χj(p)ω(p)

ps

)−1

, j = 1, . . . , r1,

and

ζ(s, αj , ω̂j) =

∞∑
m=0

ω(m)

(m+ αj)s
, j = 1, . . . , r2.

Let PΞ be the distribution of the random element Ξ(s, ω), i.e.,

PΞ(A) = mκ
H(ω ∈ Ωκ : Ξ(s, ω) ∈ A), A ∈ B(Hr(D)).

Moreover, we will use the notation

Ξ(s) = (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)),

and, for A ∈ B(Hr(D)), de�ne

PT (A)
def

=
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ) ∈ A}.

Let P and Pn, n ∈ N, be probability measures on (X,B(X)). We recall that Pn converges weakly

to P as n→∞ if, for every real continuous bounded function g on X,

lim
n→∞

∫
X

gdPn =

∫
X

gdP.

We will consider the weak convergence of PT to P , when T is a continuous parameter, T → ∞.

By the de�nition, this means that, for every real continuous bounded function g on X,

lim
T→∞

∫
X

gdPT =

∫
X

gdP. (1.2)

If the function g is �xed, then the relation (1.2) is true if and only if

lim
n→∞

∫
X

gdPTn =

∫
X

gdP
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for every sequence {Tn}, Tn −−−−→
n→∞

∞. Consequently, PT converges weakly to P if and only if PTn

converges weakly to P for any sequence {Tn}, Tn −−−−→
n→∞

∞. Therefore, the case of continuous

parameter does not di�er essentially.

Then we have the following limit theorem.

Theorem 1.2. Suppose that the numbers α1, . . . , αr2 are algebraically independent over Q. Then

PT converges weakly to PΞ as T →∞.

Proof. The theorem follows from Theorem 2 of [37]. For j = 1, . . . , r1, let aj = {ajm : m ∈ N}

be a periodic sequence of complex numbers with minimal period kj ∈ N, and let ζ(s; aj) be the

corresponding periodic zeta - function. Analogically, for j = 1, . . . , r2, let bj = {bjm : m ∈ N0} be an

another periodic sequence of complex numbers with minimal period lj ∈ N, and let ζ(s, αj ; bj), 0 <

αj ≤ 1, be the periodic Hurwitz zeta - function. In [37], under certain additional hypotheses, the

joint universality of the functions ζ(s; a1), . . . , ζ(s; ar1), ζ(s, α1; b1), . . . , ζ(s, αr2 ; br2) was considered,

and, �rst of all, a joint limit theorem in the space Hr(D) was obtained. Let, for brevity, α =

(α1, . . . , αr2), a = (a1, . . . , ar1), b = (b1, . . . , br2) and

ζ(s, α; a, b) = (ζ(s; a1), . . . , ζ(s; ar1), ζ(s, α1; b1), . . . , ζ(s, αr2 ; br2)).

Then Theorem 2 of [37] asserts that if the sequences a1, . . . , ar1 are multiplicative, and that the

numbers α1, . . . , αr1 are algebraically independent over Q, then

1

T
meas{τ ∈ [0;T ] : ζ(s+ iτ, α; a, b) ∈ A}, A ∈ B(Hr(D)),

converges weakly to the measure Pζ as T → ∞, where Pζ is the distribution of the Hr(D) - valued

random element

ζ(s, α, ω; a, b) = (ζ(s, ω; a1), . . . , ζ(s, ω; ar1), ζ(s, ω̂1, α1; b1), . . . , ζ(s, ω̂r2 , αr2 ; br2)),

where

ζ(s, ω; aj) =

∞∑
m=1

ajmω(m)

ms
, j = 1, . . . , r1,

and

ζ(s, αj ; ω̂j ; bj) =

∞∑
m=0

bjmω̂j(m)

(m+ αj)s
, j = 1, . . . , r2.

It is not di�cult to see that Theorem 1.2 satis�es the hypotheses of Theorem 2 of [37]. Indeed,

the characters χ1, . . . , χr1 are periodic completely multiplicative functions. Therefore, Dirichlet L -

functions L(s, χ1), . . . , L(s, χr1) are partial case of the periodic zeta - functions. Moreover, obviously,

the Hurwitz zeta - functions ζ(s, α1), . . . , ζ(s, αr2) are partial case of the periodic Hurwitz zeta -

functions ζ(s, α1; b1), . . . , ζ(s, αr2 ; br2). In this case, bj1 = . . . = bjr2 ≡ 1.
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1.2. Support of PΞ

Let X be a separable metric space, and P be a probability measure on (X,B(X)). We remind that

a minimal closed set SP ∈ B(X) is called the support of the measure P if P (SP ) = 1. The set

SP consists of all elements x ∈ X such that, for every open neighbourhood G of x, the inequality

P (G) > 0 is satis�ed.

For the proof of Theorem 1.1, the explicit form of the support of the measure PΞ is needed. We

will use the following lemmas. Let, for brevity, χ = (χ1, . . . , χr1), ω̂ = (ω̂1, . . . , ω̂r2),

L(s, ω, χ) = (L(s, ω, χ1), . . . , L(s, ω, χr1))

and

ζ(s, α, ω̂) = (ζ(s, α1, ω1), . . . , ζ(s, αr2 , ωr2)).

Moreover, let PL denote the distribution of the random element L(s, ω, χ), i.e.,

PL(A) = mH(ω ∈ Ω : L(s, ω, χ) ∈ A), A ∈ B(Hr1(D)),

where mH is the probability Haar measure on (Ω,B(Ω)), and let Pζ denote the distribution of the

random element ζ(s, α, ω̂), i.e.,

Pζ(A) = m̂H(ω̂ ∈ Ω̂1 × . . .× Ω̂r2 : ζ(s, α, ω̂) ∈ A), A ∈ B(Hr2(D)),

where m̂H is the probability Haar measure on (Ω̂1 × . . . × Ω̂r2 ,B(Ω̂1 × . . . × Ω̂r2)). De�ne the set

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Lemma 1.3. Suppose that χ1, . . . χr1 are pairwise non-equivalent Dirichlet characters. Then the

support of the measure PL is the set Sr1 .

Proof of the lemma is given in [40], Lemma 12.

Lemma 1.4. Suppose that the numbers α1, . . . , αr2 are algebraically independent over Q. Then

the support of the measure Pζ is the set Hr2(D).

Proof. Let L(α1, . . . , αr2) = {log(m + αj) : m ∈ N0, j = 1, . . . , r2}. Then in [35], Theorem 11,

it was proved that if the set L(α1, . . . , αr2) is linearly independent over Q, then the support of Pζ is

the set Hr2(D). However, if the numbers α1, . . . , αr2 are algebraically independent over Q, then the

set L(α1, . . . , αr2) is linearly independent over Q. Indeed, suppose, on the contrary, that this set is

linearly dependent over Q, i.e., there exist integers k1, . . . , kv, not all zeros, such that

k1 log(m1 + α1) + . . .+ kv log(mv + αv) = 0.
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Suppose that k1 > 0, . . . , ku > 0 and ku+1 < 0, . . . , kv < 0. Then

(m1 + α1)k1 . . . (mu + αu)ku = (mu+1 + αu+1)ku+1 . . . (mv + αv)
kv .

However, this contradicts the algebraic independence of the numbers α1, . . . , αv.

Therefore, the lemma follows from Theorem 11 of [35].

Theorem 1.5. Suppose tat χ1, . . . , χr1 are pairwise non-equivalent Dirichlet characters, and that

the numbers α1, . . . , αr2 are algebraically independent over Q. Then the support of PΞ is the set

Sr1 ×Hr2(D).

Proof. The spaces Hr1 and Hr2 are separable, therefore [13]

B(Hr1+r2(D)) = B(Hr1(D))× B(Hr2(D)).

Therefore, it su�ces to consider PΞ on the set A = A1 × A2, where A1 ∈ B(Hr1(D)) and A2 ∈

B(Hr2(D)). Moreover, we observe that the measure mκ
H is the product of the measures mH and m̂H

in the above notation, i.e.,

mκ
H(A1 ×A2) = mH(A1)m̂H(A2).

Therefore,

PΞ = mκ
H(ω ∈ Ωκ : Ξ(s, ω) ∈ A) =

= mH(ω ∈ Ω : L(s, ω, χ) ∈ A1)×

m̂H(ω̂ ∈ Ω̂1 × . . .× Ω̂r2 : ζ(s, α, ω̂) ∈ A2).

This shows that PΞ(A) = 1 if and only if the equalities

mH(ω ∈ Ω : L(s, ω, χ) ∈ A1) = 1 (1.3)

and

m̂H(ω̂ ∈ Ω̂1 × . . .× Ω̂r2 : ζ(s, α, ω̂) ∈ A2) = 1 (1.4)

hold. However, in view of Lemma 1.3, the minimal set A1 satisfying (1.3) is Sr1(D), and, by

Lemma 1.4, the minimal set A2 satisfying (1.4) is Hr2(D). Therefore, the minimal closed set A

such that PΞ(A) = 1 is the set Sr1 ×Hr2(D).

1.3. Proof of the universality theorem

We start with the statement of the Mergelyan theorem on the approximation of analytic functions by

polynomials. We state it as a separate lemma.
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Lemma 1.6. Suppose that K ⊂ D is a compact subset with connected complement, and that f(s)

is a continuous function on K and analytic in the interior of K. Then, for every ε > 0, there exists

a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

The proof of lemma is given in [60], see also [81].

We also need an equivalent of the weak convergence of probability measures in terms of open sets.

Taking into account a remark before the statement of Theorem 1.2, we state this equivalent for a

sequence of probability measures.

Lemma 1.7. Let P and Pn, n ∈ N, be probability measures on (X,B(X)). Then Pn converges

weakly to P as n→∞ if and only if, for every open set G of X,

lim inf
n→∞

Pn(G) ≥ P (G).

The lemma is a part of Theorem 2.1 from [3], and there its proof given.

Proof of Theorem 1.1. By Lemma 1.6, there exist polynomials p1(s), . . . , pr1(s) and p̂1(s), . . . , p̂r2(s)

such

sup
1≤j≤r1

sup
s∈Kj

|fj(s)− epj(s)| <
ε

2
(1.5)

and

sup
1≤j≤r2

sup
s∈K̂j

|f̂j(s)− p̂j(s)| <
ε

2
. (1.6)

De�ne

G = {g1, . . . , gr1 , ĝ1, . . . , ĝr2) ∈ Hr(D) : sup
1≤j≤r1

sup
s∈Kj

|gj(s)− epj(s)| <
ε

2
,

sup
1≤j≤r2

sup
s∈K̂j

|ĝj(s)− p̂j(s)| <
ε

2
}.

Then G is an open set in Hr(D). Moreover, by Theorem 1.5, the collection

(ep1(s), . . . , epr1 (s), p̂1(s), . . . , p̂r2(s)) ∈ Hr(D)

is an element of the support of the measure PΞ. This means that the set G is an open neighbourhood

of an element of the support of PΞ. Therefore, the properties of the support imply the inequality

PΞ(G) > 0. From this, using Theorem 1.2 and Lemma 1.7, we �nd that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ) ∈ G} ≥ PΞ(G) > 0,
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or, by the de�nition of the set G and vector Ξ,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r1
sup
s∈Kj

|L(s+ iτ, χj)− epj(s)| <
ε

2
,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− p̂j(s)| <
ε

2
} > 0. (1.7)

Suppose that τ ∈ R satis�es the inequality

sup
1≤j≤r1

sup
s∈Kj

|L(s+ iτ, χj)− epj(s)| <
ε

2
.

Then it follows from (1.5) that, for such τ ,

sup
1≤j≤r1

sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| ≤ sup
1≤j≤r1

sup
s∈Kj

|L(s+ iτ, χj)− epj(s)|+

+ sup
1≤j≤r1

sup
s∈Kj

|fj(s)− epj(s)| <
ε

2
+
ε

2
= ε.

Similarly, inequality (1.6) shows that, for τ ∈ R satisfying the inequality

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− p̂j(s)| <
ε

2
,

the inequality

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− fj(s)| < ε

is valid. From these remarks, it follows that

{τ ∈ [0;T ] : sup
1≤j≤r1

sup
s∈Kj

|L(s+ iτ, χj)− epj(s)| <
ε

2
,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− p̂j(s)| <
ε

2
} ⊂

{τ ∈ [0;T ] : sup
1≤j≤r1

sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− fj(s)| < ε}.

Therefore, taking into account inequality (1.7), we obtain that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤r1
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj)− f̂j(s)| < ε} > 0.

The theorem is proved.
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Chapter 2

Joint universality of Dirichlet L -

functions and periodic Hurwitz zeta -

functions

Let a = {am : m ∈ N0} be a periodic sequence of complex numbers with minimal period k ∈ N, and

let α, 0 < α ≤ 1, be a �xed parameter. We remind that the periodic Hurwitz zeta - function ζ(s, α; a)

is of the form

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

, σ > 1,

and has meromorphic continuation to the whole complex plane. For j = 1, . . . , r, let αj , 0 < αj ≤ 1,

be a �xed parameter, lj ∈ N, ajl = {amjl : m ∈ N0} be a periodic sequence of complex numbers with

minimal period kjl ∈ N. In this chapter, we obtain a joint universality theorem for the functions

L(s, χ1), . . . , L(s, χd), ζ(s, α1, a11), . . . , ζ(s, α1, a1l1), . . . , ζ(s, αr, ar1), . . . , ζ(s, αr, arlr ). (2.1)

Periodic Hurwitz zeta - functions, as classical Hurwitz zeta - functions, also have no Euler product

over primes. Therefore, the joint universality of the functions (2.1) is also of mixed type. Now we

state the main result of the chapter.

For j = 1, . . . , r, denote by kj the least common multiple of the periods kj1, . . . , kjlj , and de�ne

the matrix

Aj =


a1j1 a1j2 · · · a1jlj

a2j1 a2j2 · · · a2jlj

...
...

. . .
...

akjj1 akjj2 · · · akjjlj

 , j = 1, . . . , r.
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Theorem 2.1. Suppose that χ1, . . . , χd are pairwise non-equivalent Dirichlet characters, the num-

bers α1, . . . , αr are algebraically independent over Q, and that rank(Aj) = lj, j = 1 . . . , r. For

j = 1, . . . , d, let Kj ∈ K, and fj(s) ∈ H0(Kj), and, for j = 1, . . . , r, l = 1, . . . , lj, let Kjl ∈ K and

fjl(s) ∈ H(Kjl). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

1≤j≤d
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ it, αj ; ajl)− fjl(s)| < ε} > 0.

For the proof of Theorem 2.1, a limit theorem in the space of analytic functions for the functions

(2.1) is applied.

2.1. An extended multidimensional limit theorem

We use the same in�nite - dimensional tori Ω and Ω̂, however, it is more convenient, in this chapter,

to use the notation Ω1 in place of Ω̂. De�ne

Ωκ = Ω× Ω11 × . . .× Ω1r,

where Ω1j = Ω1 for all j = 1, . . . , r, and κ = 1+r. Then we have the probability space (Ωκ,B(Ωκ),mκ
H),

where mκ
H is the probability Haar measure on (Ωκ,B(Ωκ)). Let Ωr1 = Ω11× . . .×Ω1r. Then the mea-

sure mκ
H is the product of probability Haar measures mH and mr

H on (Ω,B(Ω)) and (Ωr,B(Ωr)),

respectively.

Let

u =

r∑
j=1

lj ,

and

Hd,u = Hd,u(D) = Hd(D)×Hu(D).

On the probability space (Ωκ,B(Ωκ),mκ
H), de�ne theHd,u - valued random element using the following

notation. We denote by ω(p) the projection of ω ∈ Ω to γp, p ∈ P, and by brevity, ω = (ω, ω1, . . . , ωr),

α = (α1, . . . , αr), χ = (χ1, . . . , χd) and a = (a11, . . . , a1l1 , . . . , ar1, . . . , arlr ). Let the Hd,u - valued

random element Ξ(s, χ, α, ω; a) be given by

Ξ(s, χ, α, ω; a) = (L(s, ω, χ1), . . . , L(s, ω, χd), ζ(s, α1, ω1; a11), . . . ,
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ζ(s, α1, ω1; a1l1), . . . , ζ(s, α1, ωr; ar1), . . . , ζ(s, α1, ωr; arlr )),

where

L(s, ω, χj) =
∏
p

(
1− χj(p)ω(p)

ps

)−1

, j = 1, . . . , d,

and

ζ(s, αj , ωj ; ajl) =

∞∑
m=0

amjlω(p)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

Denote by PΞ the distribution of the random element Ξ(s, χ, α, ω; a), i.e., for A ∈ B(Hd,u),

PΞ(A) = mκ
H(ω ∈ Ωκ : Ξ(s, χ, α, ω; a) ∈ A).

Moreover, let

Ξ(s, χ, α; a) = (L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . ,

ζ(s, α1; a1l1), . . . , ζ(s, α1; ar1), . . . , ζ(s, α1; arlr )).

In this section, we consider the weak convergence of

PT (A)
def

=
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α; a) ∈ A}, A ∈ B(Hd,u),

as T →∞.

Theorem 2.2. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT converges weakly to PΞ as T →∞.

We note that Theorem 2.2 is more general than Theorem 1.2, therefore, we will give its proof.

Lemma 2.3. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT (A)
def

=
1

T
meas{τ ∈ [0;T ] : ((p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0),

. . . , ((m+ αr)
−iτ : m ∈ N0)) ∈ A}, A ∈ B(Ωκ),

converges weakly to the Haar measure mκ
H as T →∞.

The proof of the lemma is given in [37], Theorem 3.

Let σ0 >
1
2 be a �xed parameter number, and

vn(m) = exp
{
−
(m
n

)σ0
}
, m, n ∈ N.

vn(m,α) = exp

{
−
(
m+ α

n+ α

)σ0
}
, m ∈ N0, n ∈ N.
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De�ne

Ln(s, χj) =

∞∑
m=1

χj(m)vn(m)

(m)s
, j = 1, . . . , d,

ζn(s, αj ; ajl) =

∞∑
m=0

amjlvn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj ,

and, for ω0 = (ω0, ω10, . . . , ωr0) ∈ Ωκ, put

Ln(s, χj , ω0) =

∞∑
m=1

χj(m)ω0(m)vn(m)

ms
, j = 1, . . . , d,

ζn(s, αj , ω0j ; ajl) =

∞∑
m=0

amjlω0j(m)vn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

It is known [19], [40] that all latter series are absolutely convergent for σ > 1
2 . Here the function ω(p)

is extended to the set N by the formula

ω(m) =
∏
pk|m
pk+1-m

ωk(p), m ∈ N.

Let, for brevity,

Ξn(s, χ, α; a) = (Ln(s, χ1), . . . , Ln(s, χd), ζn(s, α1; a11), . . . ,

ζn(s, α1; a1l1), . . . , ζn(s, α1; ar1), . . . , ζn(s, α1; arlr )),

and

Ξn(s, χ, α, ω; a) = (Ln(s, ω, χ1), . . . , Ln(s, ω, χd), ζn(s, α1, ω1; a11), . . . ,

ζn(s, α1, ω1; a1l1), . . . , ζn(s, α1, ωr; ar1), . . . , ζn(s, α1, ωr; arlr )).

In the sequel, the following property of the weak convergence of probability measures will be

useful. Let X1 and X2 be two metric spaces. The mapping h : X1 → X2 is called (B(X1),B(X2))

- measurable if h−1A ∈ B(X1) for every A ∈ B(X2), in other words, h−1B(X2) ⊂ B(X1). It is

well known, see, for example, [3], that every continuous mapping h : X1 → X2 is (B(X1),B(X2)) -

measurable. If h is (B(X1),B(X2)) - measurable, than every probability measure P on (X1,B(X1))

induces on (X2,B(X2)) the unique probability measure Ph−1 given by the formula

Ph−1(A) = P (h−1A), A ∈ B(X2).

Moreover, the following statement is true.

Lemma 2.4. Suppose that Pn, n ∈ N, and P are probability measures on (X1,B(X1)), and that

h : X1 → X2 is a continuous mapping. If Pn, as n→∞, converges weakly to P , then also Pnh
−1, as

n→∞, converges weakly to Ph−1.
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The lemma is partial case of theorem 5.1 from [3].

Lemma 2.5. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then,

on (Hd,u,B(Hd,u)), there exists a probability measure Pn such that

PT,n(A)
def

=
1

T
meas{τ ∈ [0;T ] : Ξn(s+ iτ, χ, α; a) ∈ A}, A ∈ B(Hd,u),

and

PT,n,ω0
(A)

def

=
1

T
meas{τ ∈ [0;T ] : Ξn(s+ iτ, χ, α, ω0; a) ∈ A}, A ∈ B(Hd,u),

both converges weakly to Pn as T →∞.

Proof. De�ne the function hn : Ωκ → Hd,u by the formula

hn(ω) = Ξn(s, χ, α, ω; a), ω ∈ Ωκ.

In view of the absolute convergence of the series for the functions Ln(s, χj , ω) and ζn(s, αj , ωj ; ajl),

the function hn is continuous. Moreover,

hn((p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0), . . . , ((m+ αr)
−iτ : m ∈ N0)) = Ξn(s+ iτ, χ, α; a).

Therefore, we have that PT,n = QTh
−1
n . This, the continuity of the function hn, and Lemmas 2.3

and 2.4 show that PT,n converges weakly to Pn = mκ
Hh
−1
n as T →∞.

Let h : Ωκ → Ωκ be given by formula h(ω) = ωω0, ω ∈ Ωκ, and hn,ω0
: Ωκ → Hd,u be de�ned by

the formula

hn,ω0
(ω) = Ξn(s, χ, α, ωω0; a), ω ∈ Ωκ.

Then, repeating the above arguments, we �nd that PT,n,ω0
converges weakly to Pn,ω0

= mκ
Hh
−1
n,ω0

as

T → ∞. However, we have that hn,ω0
(ω) = hn(h(ω)). Since the Haar measure mκ

H is invariant with

respect to translations by points from Ωκ, from this it follows that

mκ
Hh
−1
n,ω0

= mκ
H(hnh)−1 = (mκ

Hh
−1)h−1

n = mκ
Hh
−1
n .

Thus, PT,n,ω0
also converges weakly to the measure Pn = mκ

Hh
−1
n as T →∞. The lemma is proved.

For the proof of Theorem 2.2, it remains to pass from the measure PT,n to PT . For this, the metric

on Hd,u is needed. Let {Kv : v ∈ N} be a sequence of compact subsets of the strip D such that

D =

∞⋃
v=1

Kv,

Kv ⊂ Kv+1 for all v ∈ N, and if K ⊂ D is a compact subset, then K ⊂ Kv for some v. The existence

of such a sequence {Kv : v ∈ N} is proved in [5]. For g1, g2 ∈ H(D), de�ne
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%(g1, g2) =

∞∑
v=1

2−v
sups∈Kv |g1(s)− g2(s)|

1 + sups∈Kv |g1(s)− g2(s)|
.

Then % is a metric on the space H(D) inducing the topology of uniform convergence on compacta.

For g
j

= (gj1, . . . , gj,d+u) ∈ Hd,u, j = 1, 2, we put

%d+u(g
1
, g

2
) = max

1≤l≤d+u
%(g1l, g2l).

Then %d+u is a desired metric on Hd,u. Let %d and %u be analogical metrics on Hd(D) and Hu(D),

respectively.

Lemma 2.6. The equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

%d+u(Ξ(s+ iτ, χ, α; a),Ξn(s+ iτ, χ, α; a))dt = 0

holds.

Proof. In [40], it was proved that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

%d(L(s+ iτ, χ), Ln(s+ iτ, χ)dt = 0, (2.2)

where

L(s, χ) = (L(s, χ1), . . . , L(s, χd))

and

Ln(s, χ) = (Ln(s, χ1), . . . , Ln(s, χd)).

Moreover, in [53], it was obtained that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

%u(ζ(s+ iτ, α; a), ζ
n
(s+ iτ, α; a))dt = 0, (2.3)

where

ζ(s, α; a) = (ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ))

and

ζ
n
(s, α; a) = (ζn(s, α1; a11), . . . , ζn(s, α1; a1l1), . . . , ζn(s, αr; ar1), . . . , ζn(s, αr; arlr )).

Thus, the assertion of the lemma follows from (2.2), (2.3) and the de�nition of the metric %d+u.

Analogically, from [40] and [53], we deduce

Lemma 2.7. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then the

equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

%d+u(Ξ(s+ iτ, χ, α, ω; a),Ξn(s+ iτ, χ, α, ω; a))dt = 0
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holds for almost all ω ∈ Ωκ.

In what follows, we will use the notions of the relative compactness and tightness of families

of probability measures. Let {P} be a family of probability measures on (X,B(X)). We say that

the family {P} is relatively compact if each sequence {Pn} ⊂ {P} contains a weakly convergent

subsequence {Pnk} to a certain probability measure P as k →∞. The family {P} is tight if, for every

ε > 0, there exists a compact subset K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}. The notions of the relative compactness and tightness are related by the Prokhorov

theorem which is the following assertion.

Lemma 2.8. If the family {P} is tight, then it is relatively compact.

The lemma is Theorem 6.1 of [3].

Lemmas 2.5 and 2.6 are su�cient for the proof of the weak convergence for PT . However, the

identi�cation of the limit measure requires one more lemma. De�ne one more measure

PT,ω(A)
def

=
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α, ω; a) ∈ A}, A ∈ B(Hd,u).

Denote by D−→ convergence in distribution. For the proof of Theorem 2.2, the following statement

will be very useful.

Lemma 2.9. Let (X, %̂) be a separable metric space, and let Yn, X1n, X2n, . . . be the X - valued

random elements de�ned on a certain probability space (Ω̂,A, µ). Suppose that Xkn
D−→ Xk as n→∞,

and also Xk
D−→ X as k →∞. If, for every ε > 0,

lim
k→∞

lim sup
n→∞

µ(%̂(Xkn, Yn) ≥ ε) = 0,

then Yn
D−→ X as n→∞.

The lemma is 4.2 Theorem from [3].

Lemma 2.10. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then,

on (Hd,u,B(Hd,u)), there exists a probability measure P such that the measures PT and PT,ω both

converge weakly to P as T →∞.

Proof. Let θ be a random variable de�ned on a certain probability space (Ω̂,A,P) and uniformly

distributed on the interval [0, 1]. De�ne the Hd,u - valued random element

XT,n = XT,n(s) = (XT,n,1(s), . . . , XT,n,d(s), XT,n,1,1(s), . . . ,

XT,n,1,l1(s), . . . , XT,n,r,1(s), . . . , XT,n,r,lr (s)) = Ξn(s+ iθT, χ, α; a).
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Then, by Lemma 2.5, we have that

XT,n
D−−−−→

T→∞
Xn, (2.4)

where

Xn = (Xn,1, . . . , Xn,d, Xn,1,1, . . . , Xn,1,l1 , . . . , Xn,r,1, . . . , Xn,r,lr )

is a Hd,u - valued random element having the distribution Pn, and Pn is the limit measure in

Lemma 2.5. We will prove that the family of probability measures {Pn : n ∈ N} is tight.

Let Kv be the set from the de�nition of the metric %. Since the series for Ln(s, χj) converges

absolutely for σ > 1
2 , we have that, for σ >

1
2 ,

lim
T→∞

1

T

∫ T

0

|Ln(σ + it, χj)|2dt =

∞∑
m=1

|χj(m)vn(m)|2

m2σ
≤
∞∑
m=1

1

m2σ
.

From this, by a standard way, we deduce that

lim
T→∞

1

T

∫ T

0

sup
s∈Kv

|Ln(s+ iτ, χj)|dt ≤ CvRjv, (2.5)

where

Rjv =

( ∞∑
m=1

1

m2σv

) 1
2

, j = 1, . . . , d,

with some Cv > 0 and σv > 1
2 , v ∈ N. Similarly, the absolute convergence of the series for ζn(s, αj ; ajl)

leads to the estimate

lim
T→∞

1

T

∫ T

0

sup
s∈Kv

|ζn(s+ iτ, αj ; ajl)|dt ≤ ĈvRjlv, (2.6)

where

Rjv =

( ∞∑
m=0

|amjl|2

(m+ αj)2σ̂v

) 1
2

, j = 1, . . . , r, l = 1, . . . , lj ,

with some Ĉv > 0 and σ̂v > 1
2 , v ∈ N.

Now let ε > 0 be arbitrary �xed number,

Mjv = Mjv(ε) = CvRjv2
v+1dε−1, j = 1, . . . , d, v ∈ N,

and

Mjlv = Mjlv(ε) = ĈvRjlv2
v+1uε−1, j = 1, . . . , r, l = 1, . . . , lj , v ∈ N.
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Then the bounds (2.5) and (2.6) imply

lim sup
T→∞

P(∃j = 1, . . . , d : sup
s∈Kv

|XT,n,j(s)| > Mjv or

∃(j, l), j = 1, . . . , r, l = 1, . . . , lj : sup
s∈Kv

|XT,n,j,l(s)| > Mjlv)

≤
d∑
j=1

lim sup
T→∞

P( sup
s∈Kv

|XT,n,j(s)| > Mjv)

+

r∑
j=1

lj∑
l=1

lim sup
T→∞

P( sup
s∈Kv

|XT,n,j,l(s)| > Mjlv)

=

d∑
j=1

lim sup
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈Kv
|Ln(s+ iτ, χj)| > Mjv}

+

r∑
j=1

lj∑
l=1

lim sup
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈Kv
|ζn(s+ iτ, αj); ajl| > Mjlv}

≤
d∑
j=1

1

Mjv
sup
n∈N

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kv

|Ln(s+ iτ, χj)|dt

+

r∑
j=1

lj∑
l=1

1

Mjlv
sup
n∈N

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kv

|ζn(s+ iτ, αj ; ajl)|dt <

<
ε

2v+1
+

ε

2v+1
=

ε

2v
, v ∈ N.

This together with (2.4), for all n ∈ N, gives

P(∃j = 1, . . . , d : sup
s∈Kv

|Xn,j(s)| > Mjv or

∃(j, l), j = 1, . . . , r, l = 1, . . . , lj : sup
s∈Kv

|Xn,j,l(s)| > Mjlv)

<
ε

2v
, v ∈ N. (2.7)
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De�ne the set

Kd,u = Kd,u(ε) = {(g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hd,u :

sup
s∈Kv

|gj(s)| ≤Mjv, j = 1, . . . , d,

sup
s∈Kv

|gjl(s)| ≤Mjlv, j = 1, . . . , r, l = 1, . . . , lj , v ∈ N}.

Then, by the compactness principle, Kd,u is a compact subset in the space Hd,u. Moreover, in view

of (2.7), we �nd that for, all n ∈ N,

P (Xn ∈ Kd,u) = 1− P(Xn 6∈ Kd,u) ≥ 1− ε
∞∑
v=1

1

2v
= 1− ε,

or, by the de�nition of the random element Xn, we obtain that, for all n ∈ N,

Pn(Kd,u(ε)) ≥ 1− ε.

Thus, we have proved that the family of probability measures {Pn : n ∈ N} is tight. Hence, by

Lemma 2.8, it is relatively compact. Therefore, there exists a sequence {Pnk} ⊂ {Pn} such that Pnk

converges weakly to a certain probability measure P on (Hd,u,B(Hd,u)) as k →∞. This also can be

written in the form

Xn
D−−−−→

k→∞
P. (2.8)

Let

XT = XT (s) = Ξ(s+ iTθ, χ, α; a)

be one more Hd,u - valued random element on the probability space (Ω̂,A,P). By Lemma 2.6, we

have that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P(%d+u(XT (s), XT,n(s)) ≥ ε)

= lim
n→∞

lim sup
T→∞

1

T
meas{τ ∈ [0;T ] : %d+u(Ξ(s+ iτ, χ, α; a),Ξn(s+ iτ, χ, α; a)) ≥ ε}

≤ lim
n→∞

lim sup
T→

1

Tε

∫ T

0

%d+u(Ξ(s+ iτ, χ, α; a),Ξn(s+ iτ, χ, α; a))dt = 0.

Along with (2.4), (2.8) and Lemma 2.9, the last equality implies the relation

XT
D−−−−→

T→∞
P (2.9)
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which is equivalent to the weak convergence of PT to P as T → ∞. Moreover, (2.9) shows that the

measure P is independent of the choice of subsequence {Pnk}. Therefore, taking into account the

relative compactness of the family {Pn : n ∈ N}, we obtain that

Xn
D−−−−→

T→∞
P. (2.10)

It remains to prove the weak convergence of the measure PT,ω. We put

XT,n,ω = XT,n,ω(s) = Ξn(s+ iTθ, χ, α, ω; a))

and

XT,ω = XT,ω(s) = Ξn(s+ iTθ, χ, α, ω; a)).

Then, repeating the arguments used above for the random elements XT,n,ω and XT,ω, and using (2.10)

and Lemma 2.7, we �nd, as in the case of PT , that the measure PT,ω also converges weakly to P as

T →∞. The lemma is proved.

Lemma 2.10 gives the weak convergence of PT to a certain probability measure P as T → ∞. It

remains to show that the measure P coincides with PΞ. For this, some elements of ergodic theory are

applied.

For τ ∈ R, let

aτ = {(p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0), . . . , ((m+ αr)
−iτ : m ∈ N0)}.

Then {aτ : τ ∈ R} is a one - parameter group. De�ne a family of transformations {Φτ : τ ∈ R} on

Ωκ by putting Φτ (ω) = aτω, ω ∈ Ωκ. Then {Φτ : τ ∈ R} is the one - parameter group of measurable

measure preserving transformations on Ωκ. We recall that a set A ∈ B(Ωκ) is said to be invariant

with respect to the group {Φτ : τ ∈ R} if, for every τ ∈ R, the sets A and Aτ = Φτ (A) may di�er one

from another at most by mκ
H - measure zero. The group {Φτ : τ ∈ R} is called ergodic if its σ - �eld

of invariant sets consists only of the sets of mκ
H - measure zero or one.

Lemma 2.11. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

the group {Φτ : τ ∈ R} is ergodic.

Proof of the lemma is given in [37], Lemma 7, and uses the linear independence over Q for the set

{(log p : p ∈ P), (log(m+ α1) : p ∈ N0), . . . , (log(m+ αr) : p ∈ N0)}.

Now we recall the classical Birkho�-Khinchin ergodic theorem.

Lemma 2.12. Let a process X(τ, ω) be ergodic, E|X(τ, ω)| < ∞, and let its simple paths be

integrable almost surely in the Riemann sense over every �nite interval. Then

lim
T→∞

1

T

∫ T

0

X(τ, ω)dt = EX(τ, ω)
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almost surely.

The above de�nitions and proof of the lemma are given in [6], see also [31].

For the proof Theorem 2.2, we will apply one equivalent of the weak convergence of probability

measures.

Let P be a probability measure (X,B(X)). A ∈ B(X) is called a continuity set of P , if P (∂A) = 0,

where ∂A denotes the boundary of A.

Lemma 2.13. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then Pn, as n→∞,

converges weakly to P if and only if, for every continuity set A of P ,

lim
T→∞

Pn(A) = P (A).

The lemma is a part of the Theorem 2.1 from [3].

Now we are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. We have mentioned above that it is su�cient to show that the limit measure

P in Lemma 2.10 coincides with PΞ.

Let A be a �xed continuity set of the measure P . Then, by Lemmas 2.10 and 2.13, we have that

lim
T→∞

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α, ω; a) ∈ A} = P (A). (2.11)

On the probability space (Ωκ,B(Ωκ),mκ
H), de�ne the random variable

ξ(ω) =

0 if Ξ(s+ iτ, χ, α, ω; a) ∈ A,

1 otherwise.

It is easily seen that the expectation Eξ of ξ is of the form

Eξ =

∫ κ

Ω

ξ(ω)dmκ
H = mκ

H(ω ∈ Ωκ : Ξ(s+ iτ, χ, α, ω; a) ∈ A). (2.12)

In view of Lemma 2.11, the random process ξ(Φτ (ω)) is ergodic. Therefore, Lemma 2.12 implies the

equality

lim
T→∞

1

T

∫ T

0

ξ(Φτ (ω))dt = Eξ. (2.13)

On the other hand, the de�nitions of ξ and Φτ yield

1

T

∫ T

0

ξ(Φτ (ω))dt =
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α, ω; a) ∈ A}.
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This, (2.12) and (2.13) show that

lim
T→∞

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α, ω; a) ∈ A} = PΞ(A).

Hence, in view of (2.11), we �nd that P (A) = PΞ(A). Since A was an arbitrary continuity set of the

measure P , the latter equality holds for all continuity sets of P . It is well known that continuity sets

constitute a determining class, see, for example, [3]. Consequently, P (A) = PΞ(A) for all A ∈ B(Hd,u),

i.e., P = PΞ. The theorem is proved.

2.2. Support of the limit measure in Theorem 2.1

This section is devoted to the explicit form of the support SPΞ
of the limit measure P in Theorem 2.1.

We preserve the notation of Section 1.2 for the set S.

Theorem 2.14. Suppose that χ1, . . . , χd are pairwise non - equivalent Dirichlet characters, the

parameters α1, . . . , αr are algebraically independent over Q, and that rank(Aj) = lj , j = 1, . . . , r.

Then the support of PΞ is the set Sd ×Hu(D).

Proof. The space Hd,u is separable one, therefore [3]

B(Hd,u) = B(Hd(D))× B(Hu(D)).

Thus, it su�ces to consider PΞ(A×B), where A ∈ B(Hd(D)) and B ∈ B(Hu(D)). Let

L(s, χ, ω) = (L(s, χ1, ω), . . . , L(s, χd, ω))

and

ζ(s, α ω˜; a) = (ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )),

where ω˜ = (ω1, . . . , ωr). Since the Haar measure mκ
H is the product of the Haar measures mH and

mr
H , we have that

PΞ(A×B) = mκ
H(ω ∈ Ωκ : Ξ(s, χ, α, ω; a) ∈ A×B) =

mH(ω ∈ Ω : L(s, χ, ω) ∈ A)mr
H(ω˜ ∈ Ωr : ζ(s, α, ω˜; a) ∈ B). (2.14)

In [40], it was obtained that Sd is a minimal closed set such that

mH(ω ∈ Ω : L(s, χ, ω) ∈ Sd) = 1,

and in [53], it was proved that Hu(D) is a minimal closed set such that

mr
H(ω˜ ∈ Ωr : ζ(s, α, ω˜; a) ∈ Hu(D)) = 1.

These equalities, the minimality of the support and (2.14) prove the theorem.
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2.3. Proof of Theorem 2.1

The proof of Theorem 2.1 is similar to that of Theorem 1.1, and is based on the Mergelyan theorem

and Theorems 2.2 and 2.14.

Proof of Theorem 2.1. By Lemma 1.6, there exist polynomials pj(s), j = 1, . . . , d, and pjl(s), j =

1, . . . , r, l = 1, . . . , lj , such that

sup
1≤j≤d

sup
s∈Kj

|fj(s)− pj(s)| <
ε

4
(2.15)

and

sup
1≤j≤r

sup
1≤j≤lj

sup
s∈Kjl

|fjl(s)− pjl(s)| <
ε

2
. (2.16)

Since fj(s) 6= 0 on Kj , we have that pj(s) 6= 0 on Kj if ε is small enough, j = 1, . . . , d. Therefore,

there exists a continuous branch of log pj(s) which is analytic in the interior of Kj , j = 1, . . . , d.

Applying Lemma 1.6 once more, we �nd polynomials qj(s), j = 1, . . . , d, such that

sup
1≤j≤d

sup
s∈Kj

|pj(s)− eqj(s)| <
ε

4
.

Combining this with (2.15) gives

sup
1≤j≤d

sup
s∈Kj

|fj(s)− eqj(s)| <
ε

2
. (2.17)

By Theorem 2.14,

(eq1(s), . . . , eqd(s), p11(s), . . . , p1l1(s), . . . , pr1(s), . . . , prlr (s))

is an element of the support of the measure PΞ. Therefore, setting

G = {g ∈ Hd,r : sup
1≤j≤d

sup
s∈Kj

|gj(s)− eqj(s)| <
ε

2
,

sup
1≤j≤r

sup
1≤j≤lj

sup
s∈Kjl

|gjl(s)− pjl(s)| <
ε

2
},

we obtain, by Theorem 2.2, Lemma 1.7 and properties of the support, that

lim
T→∞

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α; a) ∈ G} ≥ PΞ(G) > 0. (2.18)

Clearly, in view of (2.16) and (2.17),

{τ ∈ [0;T ] : sup
1≤j≤d

sup
s∈Kj

|L(s+ iτ, χj)− eqj(s)| <
ε

2
,

sup
1≤j≤r

sup
1≤j≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− pjl(s)| <
ε

2
} ⊂
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{τ ∈ [0;T ] : sup
1≤j≤d

sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r

sup
1≤j≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε}.

Therefore, the de�nition of G and (2.18) complete the proof of the theorem.
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Chapter 3

Universality of composite functions of

Dirichlet L - functions and Hurwitz

zeta - functions

In this chapter, we use Theorem 1.1 to extend the class of universal functions. Namely, we consider

the universality of functions

F (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2))

for some classes of operators F : Hr1+r2(D)→ H(D).

3.1. Statement of the results

We start with a general theorem.

Theorem 3.1 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator such that,

for every open set G ⊂ H(D), the set (F−1G) ∩ (Sr1 × Hr2(D)) is non-empty. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2))− f(s)| < ε} > 0.

The main requirement for the operator F that the set (F−1G)∩(Sr1×Hr2(D)) would be non-empty

can be replaced by a stronger but simple one.
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Theorem 3.2 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator such that,

for every polynomial p = p(s), the set (F−1{p}) ∩ (Sr1 × Hr2(D))is non-empty. Let K ∈ K and

f(s) ∈ H(K). Then the assertion of Theorem 3.1 is true.

The next corollary gives an example for Theorem 3.2.

Corollary 3.3 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 sat-

isfy the hypotheses of Theorem 1.1. Let {j1, . . . , jr} 6= ∅ be arbitrary subset of {1, . . . , r1}, and

{l1, . . . , lk} 6= ∅ be arbitrary subset of {1, . . . , r2}. Let K ∈ K and f ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|L(s+ iτ, χj1) . . . L(s+ iτ, χjr )×

× ζ(s+ iτ, αl1) . . . ζ(s+ iτ, αlk)− f(s)| < ε} > 0.

The strip D is not bounded, therefore, it is not easy to ensure the non-vanishing of a polynomial.

However, the problem of non-vanishing becomes simpler if we consider polynomials on a bounded

region. Thus, sometimes it is more convenient to deal with the following modi�cation of Theorem 3.2.

For arbitrary �xed V > 0, let DV = {s ∈ C : 1
2 < σ < 1, |t| < V }, and

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0}.

Theorem 3.4 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, K ∈ K, f(s) ∈ H(K), and let V > 0 be such that K ⊂ DV . Let

F : Hr1(DV )×Hr2(D)→ H(DV ) be a continuous operator such that, for every polynomial p = p(s),

the set (F−1{p}) ∩ (Sr1V ×Hr2(D)) is non-empty. Then the assertion of Theorem 3.1 is true.

The above universality theorems are rather general, in them functions from the whole space H(D)

are approximated. The next theorems are devoted to approximation of analytic function from certain

subsets of H(D).

Let a1, . . . , ak be arbitrary distinct complex numbers. De�ne the set of analytic functions Hk(D)

by

Hk(D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , k}.

Theorem 3.5 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, and that F : Hr1+r2(D) → H(D) is a continuous operator such that

F (Sr1 ×Hr2(D)) ⊃ Hk(D). If k = 1, then let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1 on K. If k ≥ 2,
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then let K ⊂ D be an arbitrary compact subset, and f(s) ∈ Hk(D). Then the assertion of Theorem 3.1

is true.

It is not di�cult to see that from Theorem 3.5 the universality of the functions sin(L(s, χ1) +

L(s, χ2) + ζ(s, α1) + ζ(s, α2)), cos(L(s, χ1) +L(s, χ2) + ζ(s, α1) + ζ(s, α2)), sinh(L(s, χ1) +L(s, χ2) +

ζ(s, α1) + ζ(s, α2)) and cosh(L(s, χ1) + L(s, χ2) + ζ(s, α1) + ζ(s, α2)) follows provided the characters

χ1 and χ2 are non-equivalent, and the numbers α1 and α2 are algebraically independent.

The last theorem of the chapter is of the following form.

Theorem 3.6 Suppose that the Dirichlet characters χ1, . . . , χr1 and the numbers α1, . . . , αr2 satisfy

the hypotheses of Theorem 1.1, and that F : Hr1+r2(D)→ H(D) is a continuous operator. Let K be

a compact subset of the strip D, and f(s) ∈ F (Sr1 ×Hr2(D)). Then the assertion of Theorem 3.1 is

true.

Theorems 3.1 and 3.4 � 3.6 were obtained in [15], while Theorem 3.2 and Corollary 3.3 were

proved in [17].

3.2. Limit theorems

For the proof of universality theorems stated in Section 3.1, we will use the probabilistic method.

Therefore, we start with certain limit theorems in the space of analytic functions for composite func-

tions. These theorems are based on Theorem 1.2. We recall that

PT (A) =
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ) ∈ A}, A ∈ B(Hr(D)),

where

Ξ(s) = (L(s, χ1), . . . , L(s, χr1), ζ(s, α1), . . . , ζ(s, αr2)),

and r = r1 + r2. Moreover, PΞ is the distribution of the random element Ξ(s, ω).

Theorem 3.7 Suppose that the numbers α1, . . . , αr2 are algebraically independent over Q, and

that F : Hr1+r2(D)→ H(D) is a continuous operator. Then

PT,F (A)
def

=
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ A}, A ∈ B(H(D)),

converges weakly to PΞF
−1 as T →∞.

Proof. By the de�nitions of the measures PT and PT,F , we have that, for A ∈ B(H(D)),

PT,F (A) =
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ F−1A} = PTF

−1(A).

Therefore, the assertion of the theorem follows from Theorem 1.2, Lemma 2.4 and the continuity of

the operator F .
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Now, for V > 0, denote by PT,V and PΞ,V the restrictions of the measures PT and PΞ, respectively,

to the space (Hr1(DV ) × Hr2(D),B(Hr1(DV ) × Hr2(D))). More precisely, for A ∈ B(Hr1(DV ) ×

Hr2(D)),

PT,V (A) =
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ) ∈ A}

and

PΞ,V (A) = mκ
H{ω ∈ Ωκ : Ξ(s, ω) ∈ A}.

Theorem 3.8 Suppose that the numbers α1, . . . , αr2 are algebraically independent over Q. Then

the measure PT,V converges weakly to PΞ,V as T →∞.

Proof. The mapping hV : Hr1+r2(D)→ Hr1(DV )×Hr2(D) given by the formula

hV (g
r1

(s), g
r2

(s)) = (g
r1

(s)|s∈DV , gr2(s)), (g
r1

(s), g
r2

(s)) ∈ Hr1+r2(D),

is continuous because DV ⊂ D. Moreover, PT,V = PTh
−1
V . Therefore, the theorem, as Theorem 3.7,

follows from Theorem 1.2 and Lemma 2.4.

Theorem 3.9 Suppose that the numbers α1, . . . , αr2 are algebraically independent over Q, and

that F : Hr1+r2(DV )→ H(DV ) is a continuous operator. Then

PT,V,F (A)
def

=
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ A}, A ∈ B(H(DV )),

converges weakly to PΞ,V F
−1 as T →∞.

Proof. By the de�nitions of PT,V and PT,V,F , we have that, for A ∈ B(H(DV )),

PT,V,F (A) =
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ A} =

1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ F−1A} = PT,V F

−1(A).

Therefore, the theorem is a corollary of Theorem 3.8 and Lemma 2.4.

3.3. Supports

In this section, we present explicit forms of the supports the limit measures in theorems of Section 3.2.

Theorem 3.10 Suppose that all hypotheses Theorem 3.1 are satis�ed. Then the support of the

measure PΞF
−1 is the whole of H(D).
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Proof. Let g ∈ H(D) be an arbitrary element, andG be its open neighbourhood. Since the operator

F is continuous, the set F−1G is also open, and, in virtue of the hypothesis (F−1G)∩ (Sr1×Hr2(D)),

contains at least one element of the set Sr1 ×Hr2(D). Thus, the set F−1G is an open neighbourhood

of a certain element of the set Sr1×Hr2(D). Therefore, by Theorem 1.5, we have that PΞ(F−1G) > 0.

Hence, PΞF
−1(G) > 0. Since g and G are arbitrary, this inequality proves the theorem.

Theorem 3.11 Suppose that all hypotheses Theorem 3.2 are satis�ed. Then the support of the

measure PΞF
−1 is the whole of H(D).

Proof. Let g = g(s) be an arbitrary element of H(D), and G be any open neighbourhood of g. In

[42], it was noted that the approximation on H(D) reduces to that on compact subsets K ⊂ D with

connected complements. Moreover, by Lemma 1.6, for every ε > 0, there exists a polynomial p = p(s)

such that

sup
s∈K
|g(s)− f(s)| < ε.

If ε is small enough, we have that the polynomial p(s) belongs to G. Since F is continuous, the set

F−1G is open. Moreover, in view of the inequality (F−1{p}) ∩ (Sr1 ×Hr2(D)) 6= ∅, it follows that

(F−1G)∩ (Sr1 ×Hr2(D)) 6= ∅. This shows that F−1G is an open neighbourhood of an element of the

set Sr1 ×Hr2(D). This and Theorem 1.5 imply the inequality PΞ(F−1G) > 0. Thus, PΞF
−1(G) > 0,

and the theorem is proved.

Lemma 3.12 Suppose that χ1, . . . , χr1 are pairwise non-equivalent Dirichlet characters, and that

the numbers α1, . . . , αr2 are algebraically independent over Q. Then the support of PΞ,V is the set

Sr1V ×Hr2(D)).

The proof of the lemma completely coincides with that of Theorem 1.5.

Theorem 3.13 Suppose that all hypotheses of Theorem 3.4 are satis�ed. Then the support of the

measure PΞ,V F
−1 is the whole of H(DV ).

Proof. We apply arguments similar to those of the proof of Theorem 3.11. We take an arbitrary

g = g(s) ∈ H(DV ) and an arbitrary open neighbourhood G of g. Let K ⊂ DV be a compact subset

with connected complement. By Lemma 1.6, there exists a polynomial p = p(s) which approximates

on K the element g with a desired accuracy. This means that p approximates g in the space H(DV ).

Therefore, we may suppose that p belongs to G. Since the set (F−1{p})∩(Sr1V ×Hr2(D)) is non-empty,

from this it follows that (F−1G)∩ (Sr1V ×Hr2(D) 6= ∅. Thus, repeating the proof of Theorem 3.1 and

using Lemma 3.12, we obtain that PΞF
−1(G) > 0. This proves the theorem.

Theorem 3.14 Suppose that all hypotheses of Theorem 3.5 are satis�ed. Then the support of the

measure PΞF
−1 contains the closure of Hr(D).
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Proof. In virtue of the relation F (Sr1 × Hr2(D)) ⊃ Hk(D), we have that, for every g ∈ Hk(D),

there exists g1 ∈ Sr1 ×Hr2(D) such that F (g1) = g. Let G be an arbitrary open neighbourhood of g.

Then F−1G is an open neighbourhood of g1. Therefore, by Theorem 1.5, we �nd that

PΞ(F−1G) = PΞF
−1(G) > 0.

This shows that g is an element of the support SF of the measure PΞF
−1. Since g is arbitrary, we

have that Hk(D) ⊂ SF . However, since SF is a closed set, SF contains the closure of Hk(D).

Theorem 3.15 Suppose that all hypotheses of Theorem 3.6 are satis�ed. Then the support of the

measure PΞF
−1 is the closure of the set F (Sr1 ×Hr2(D)).

Proof. Let g be an arbitrary element of the set F (Sr1 × Hr2(D)), and G be its arbitrary open

neighbourhood. Then there exists g1 ∈ Sr1 ×Hr2(D) such that F (g1) = g. Thus, F−1G is an open

neighbourhood of the element g1. By Theorem 1.5, Sr1 ×Hr2(D) is the support of the measure PΞ.

Therefore, PΞ(F−1G) > 0. Hence, PΞF
−1(G) > 0. Moreover, again by Theorem 1.5,

PΞF
−1(F (Sr1 ×Hr2(D))) = PΞ(Sr1 ×Hr2(D)) = 1.

Therefore, since the support is a closed set, the support of PΞF
−1 is the closure of F (Sr1 ×Hr2(D)).

3.4. Proof of universality theorems

Proof of Theorem 3.1. By Lemma 1.6, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (3.1)

De�ne the set

G = {g ∈ H(D) : sup
s∈K
|g(s)− p(s)| < ε

2
}.

Then G is an open neighbourhood of the polynomial p(s). By Theorem 3.10, the polynomial p(s) is an

element of the support of the measure PΞF
−1. Thus, PΞF

−1(G) > 0. Hence, in view of Theorem 3.7

and Lemma 1.7, we have that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ G} ≥ PΞF

−1(G) > 0.

From this, using the de�nition of the set G, we �nd that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ))− p(s)| < ε

2
} > 0. (3.2)

Suppose that τ ∈ R satis�es the inequality

sup
s∈K
|F (Ξ(s+ iτ))− p(s)| < ε

2
.
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Then, for such τ , inequality (3.1) implies

sup
s∈K
|F (Ξ(s+ iτ))− f(s)| ≤ sup

s∈K
|F (Ξ(s+ iτ))− p(s)|

+ sup
s∈K
|f(s)− p(s)| < ε

2
+
ε

2
< ε.

This shows that

{τ ∈ [0;T ] : sup
s∈K
|F (Ξ(s+ iτ))− p(s)| < ε

2
} ⊂

{τ ∈ [0;T ] : sup
s∈K
|F (Ξ(s+ iτ))− f(s)| < ε}.

Therefore, taking into account inequality (3.2), we �nd that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ))− p(s)| < ε} > 0.

The theorem is proved.

Proof of Theorem 3.2. We repeat the proof of Theorem 3.1 with Theorem 3.11 in place of Theo-

rem 10.

Proof of Corollary 3.3. We take the operator F : Hr1+r2(DV )→ H(DV ) given by

F (g1, . . . , gr1 ; ĝ1, . . . , ĝr2) = gj1 . . . gjr ĝl1 . . . ĝlk .

Then the operator F is continuous. Moreover, for every polynomial p = p(s), we have that

F (1, . . . , 1; 1, . . . , 1, ĝl1 , 1, . . . , 1) = p

and

(1, . . . , 1; 1, . . . , 1, ĝl1 , 1, . . . , 1) ∈ Sr1 ×Hr2(D)

with ĝl1 = p. Thus, the hypotheses of Theorem 3.2 are satis�ed, therefore, we have the assertion of

the corollary.

Proof of Theorem 3.4. The proof is similar to that of Theorems 3.1 and 3.2. De�ne the set

GV = {g ∈ H(DV ) : sup
s∈K
|f(s)− p(s)| < ε

2
},

where the polynomial p(s) satis�es inequality (3.1). Then, by Theorem 3.8 and Lemma 1.7, we obtain

that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ)) ∈ GV } ≥ PΞ,V (G).

Moreover, Theorem 3.13 shows that PΞF
−1(G) > 0. These two inequality give inequality (3.2) which

together with (3.1) proves the theorem.
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Proof of Theorem 3.5. We consider separately the cases r = 1 and r ≥ 2. First let r = 1. By

Lemma 1.6, we �nd a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (3.3)

Since f(s) 6= a1 on K, we have that also p(s) 6= 0 on K provided the number ε is small enough.

Therefore, on K there exists a continuous branch of the logarithm log(p(s)− a1) which is analytic in

the interior of K. Again by Lemma 1.6, there exists a polynomial q(s) such that

sup
s∈K
|p(s)− a1 − eq(s)| <

ε

4
. (3.4)

Clearly, we have that eq(s) + a1 ∈ H(D) and eq(s) + a1 6= a1 in the strip D. In other words, the

function eq(s) + a1 is an element of the set H1(D). Therefore, in view of Theorem 3.14, eq(s) + a1 is

an element of the support of the measure PΞF
−1. De�ne the set

G1 = {g ∈ H(D) : sup
s∈K
|g(s)− eq(s) − a1| <

ε

2
}.

Then, similarly as above, we have that PΞF
−1(G1) > 0, and obtain, by Theorem 3.7 and Lemma 1.7,

that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ)− eq(s) − a1| <

ε

2
} > 0. (3.5)

Inequalities (3.3) and (3.4) show that

sup
s∈K
|f(s)− eq(s) − a1| ≤ sup

s∈K
|f(s)− p(s)|+

+ sup
s∈K
|p(s)− eq(s) − a1| <

ε

4
+
ε

4
=
ε

2
.

This and (3.5) prove the theorem in the case r = 1.

Now let r ≥ 2. De�ne the set

G2 = {g ∈ H(D) : sup
s∈K
|g(s)− f(s)| < ε}.

By the hypotheses of the theorem and Theorem 3.14, the function f(s) is an element of the support of

the measure PΞF
−1. Thus, PΞF

−1(G2) > 0. This together with Theorem 3.7 and Lemma 1.7 prove

the theorem in the case r ≥ 2.

Now we will prove the universality for the functions de�ned after the statement of Theorem 3.5.

We will consider only the case of the function cos(· ), the cases of other functions are similar. Suppose

that f(s) ∈ H2(D) with a1 = 1 and a2 = −1. In view of the formula

eis + e−is

2
= cos s,

we have to solve the equation

eig(s) + e−ig(s)

2
= f(s)
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with respect to function g(s). Denoting y = eig(s), we obtain the equation

y2 − 2f(s)y + 1 = 0.

Hence,

y = f(s)±
√
f2(s)− 1.

Therefore, taking the case with the sign "+" and the principal branch of the logarithm, we have that

g(s) =
1

i
log(f(s) +

√
f2(s)− 1)

is an analytic function on D. Then the function

cos(g1 + g2 + g3 + g4)

with g1 = 1, g2 = −1, g3 = g(s), g4 = 0 satis�es the equality

cos(g1 + g2 + g3 + g4) = f(s).

Moreover, g1, g2 ∈ S and g3, g4 ∈ H(D). This shows that cos(g1 + g2 + g3 + g4) ⊃ H2(D) with a1 = 1

and a2 = −1. Thus by Theorem 3.5, the function cos(L(s, χ1) + L(s, χ2) + ζ(s, α1) + ζ(s, α2)) with

non-equivalent Dirichlet characters χ1 and χ2, and algebraically independent α1 and α2 is universal.

For example [11], we can take α1 = ( 3
√

2)−1 and α2 = ( 3
√

4)−1.

Proof of Theorem 3.6. We use Theorem 3.15 and repeat the proof of Theorem 3.5 in the case

r ≥ 2.
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Chapter 4

Universality of composite functions of

Dirichlet L - functions and periodic

Hurwitz zeta - functions

In this chapter, we consider the universality of the function

F (L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )) (4.1)

for some classes of operators F : Hv(D)→ H(D), where v = d+l1 +. . .+lr. For this, we apply, except

for Theorem 4.1, the probabilistic method based on Theorem 2.1. Also, we preserve the notation of

Chapter 2.

We divide universality theorems for the function (4.1) into two groups. The �rst group consists of

universality theorems on the approximation of analytic functions from the class H(K),K ∈ K, thus

from space H(D). The second group deals with approximation of analytic functions from the set

(F (Sd ×Hv1(D)), where v1 = l1 + . . .+ lr.

4.1.Application of the Lipschitz type inequality

In this section, we consider a su�ciently wide class of operators F : Hv(D) → H(D) described as

follows. We say that an operator F belongs to the class Lip(β1, . . . , βv) with β1 > 0, . . . , βv > 0 if the

following hypotheses are satis�ed:

1o For each polynomial p = p(s) and all compact subsets K1, . . . ,Kd ∈ K, there exists an element

g = (g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ F−1{p} ⊂ Hv(D) such that gj(s) 6= 0 on Kj , j =

1, . . . , d;
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2o For all K ∈ K, there exist a constant c > 0 and sets K1, . . . ,Kv ∈ K such that, for all

(gj1, . . . , gjv) ∈ Hv(D), j = 1, 2,

sup
s∈K
|F (g11(s), . . . , g1v(s))− F (g21(s), . . . , g2v(s)| ≤ c sup

1≤j≤v
sup
s∈Kj

|g1j(s)− g2j(s)|βj .

We note that hypothesis 20 is an analogue of the classical Lipschitz condition.

Theorem 4.1 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the se-

quences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and F ∈ Lip(β1, . . . , βv).

Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

meas{τ ∈ [0;T ] : sup
s∈K
|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χd),

ζ(s+ iτ, α1; a11), . . . , ζ(s+ iτ, α1; a1l1), . . . , ζ(s+ iτ, αr; ar1), . . . , ζ(s+ iτ, αr; arlr ))− f(s)| < ε} > 0.

Thus, Theorem 4.1 belongs to the �rst group of universality theorems on approximation of analytic

functions from the space H(D).

It is not di�cult to give an example of application of Theorem 4.1. De�ne the operator F :

Hv(D)→ H(D) by the formula

F (g1, . . . , gd, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) = c1g
(n1)
1 + . . .+ cdg

(nd)
d + . . .+

c11g
(n11)
11 + . . .+ c1l1g

(n1l1
)

1l1
+ . . .+ cr1g

(nr1)
r1 + . . .+ crlrg

(nrlr )
rlr

,

where c1, . . . , cd, c11, . . . , c1l1 , . . . , cr1, . . . , crlr ∈ C\{0}, n1, . . . , nd, n11, . . . , n1l1 , . . . , nr1, . . . , nrlr ∈ N,

and g(n) denotes the n th derivative. For each polynomial p = p(s) and all sets K1, . . . ,Kd ∈ K, there

exists an element g ∈ F−1{p} ⊂ Hv(D) such that gj(s) 6= 0 on Kj , j = 1, . . . , d. Indeed, if

p = p(s) = aks
k + ak−1s

k−1 + . . .+ a0, ak 6= 0,

then we can take g = (1, . . . , 1, 1, . . . , 1, 1, . . . , 1, grlr ), where

grlr (s) =
1

crlr

(
aks

k+nrlr

(k + 1) . . . (k + nrlr )
+ . . .+

a0s
nrlr

1 . . . nrlr

)
.

Clearly, we have that gj(s) = 1 6= 0 on Kj , j = 1, . . . , d, , and F (g) = p. Thus, hypothesis 10 of the

class Lip(β1, . . . , βv) is satis�ed.

Hypothesis 20 of the class Lip(β1, . . . , βv) follows from the well - known Cauchy integral formula

which we state as the following lemma, see, for example [75].
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Lemma 4.2 Let G be a domain in C, f(s) an analytic function in G. Then, for s0 ∈ intL and

n ∈ N0,

f (n)(s0) =
n!

2πi

∫
L

f(s)

(s− s0)n+1
ds.

We write the operator F in a more convenient form

F (g1, . . . , gv) =

v∑
j=1

cjg
(nj)
j

with obvious changes of the notation. Let K ∈ K, and K ⊂ G ⊂ K1, where G is an open set and

K1 ∈ K. Moreover, let L be a simple closed contour lying in K1 \G and containing inside the set K.

Then Lemma 4.2 shows that, for (gj1, . . . , gjv) ∈ Hv(D), j = 1, 2 and s ∈ K,

|F (g11(s), . . . , g1v(s))− F (g21(s), . . . , g2v(s))| =∣∣∣∣∣∣
v∑
j=1

cj
nj !

2πi

∫
L

g1j(z), . . . , g2j(z)

(z − s)nj+1
dz

∣∣∣∣∣∣ ≤
v∑
j=1

|cj |Cj sup
s∈L
|g1j(s)− g2j(s)| ≤

c sup
1≤j≤v

sup
s∈K1

|g1j(s)− g2j(s)|

with some constants Cj > 0, j = 1, . . . , v, and c > 0. Thus, we have that F ∈ Lip(1, . . . , 1). Moreover,

in this case K1 = . . . = Kv = K1.

Proof of Theorem 4.1. Lemma 1.6 implies the existence of polynomial p = p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (4.2)

Using hypothesis 10 of the class Lip(β1, . . . , βv), we have that, for all sets K1, . . . ,Kd ∈ K, there

exists an element (g1, . . . , gd, g11, . . . , grl1 , . . . , gr1, . . . , grlr ) ∈ F−1{p} such that gj(s) 6= 0 on Kj , j =

1, . . . , d. Suppose that τ ∈ R satis�es the inequalities

sup
1≤j≤d

sup
s∈Kj

|L(s+ iτ, χj)− gj(s)| < c−
1
β (
ε

4
)

1
β (4.3)

and

sup
1≤j≤d

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− gjl(s)| < c−
1
β (
ε

4
)

1
β , (4.4)

where the sets K1, . . . ,Kd,K11, . . . ,K1l1 , . . . ,Kr1, . . . ,Krlr ∈ K correspond the set K in hypothesis 20

of the class Lip(β1, . . . , βv), and β = min1≤j≤v βj , with notation K1l = Kd+l, l = 1, . . . , l1, . . . ,Krl =

Kd+l1+...+lr−1+l, l = 1, . . . , lr. Then, in view of Theorem 2.1, the set of τ ∈ R satisfying inequalities
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(4.3) and (4.4) has a positive lower density. Moreover, hypothesis 20 of the class Lip(β1, . . . , βv) shows

that, for the same τ ,

sup
s∈K
|F (Ξ(s+ iτ, χ, α, a))− p(s)| ≤

c sup
1≤j≤d

sup
s∈Kj

|L(s+ iτ, χj)− gj(s)|βj+

sup
1≤j≤d

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− gjl(s)|βj ≤

2cc−
β
β (
ε

4
)
β
β =

ε

2
. (4.5)

We recall that here χ = (χ1, . . . , χd), α = (α1, . . . , αr), a = (a11, . . . , a1l1 , . . . , ar1, . . . , arlr ) and

Ξ(s, χ, α, a) = L(s, χ1), . . . , L(s, χd), ζ(s, α1; a11), . . . ,

ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ),

and the notation β1l = βd+l, l = 1, . . . , l1, . . . , βrl = βd+l1+...+lr−1+l, l = 1, . . . , lr, is used. Thus, by

the above remark, inequality (4.5) and monotonicity of the measure, we obtain that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α, a))− p(s)| < ε

2
} > 0.

Combining this with inequality (4.2) proves the theorem.

4.2. Approximation of analytic functions from the space H(D)

In Theorem 4.1, analytic functions from the class H(K) are approximated. In this section, we develop

the latter approximation. We recall that

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0},

and that

v1 =

r∑
j=1

lj .

Theorem 4.3 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator such that, for every open set G ⊂ H(D), the set (F−1G)∩(Sd×Hv1(D))

is non - empty. Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 4.1 is true.

We note that Theorem 4.3 is a generalization of Theorem 3.1.
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The hypotheses (F−1G) ∩ (Sd × Hv1(D)) 6= ∅ for every open set G ⊂ H(D) is general but

su�ciently complicated. Obviously, it is satis�ed if every g ∈ H(D) has a preimage in the set

Sd ×Hv1(D). On the other hand, Theorem 4.3 implies the following modi�cation of Theorem 4.1.

Theorem 4.4 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator such that, for every polynomial p = p(s), the set (F−1{p}) ∩ (Sd ×

Hv1(D)) in non - empty. Let K ∈ K and f(s) ∈ H(K). Then the assertion of Theorem 4.1 is true.

Clearly, hypotheses 20 of the class Lip(β1, . . . , βv) implies the continuity of the operator F . How-

ever, on the other hand, hypotheses 10 of the class Lip(β1, . . . , βv) is weaker than the requirement of

Theorem 4.3.

Theorem 4.4 is a generalization of Theorem 3.2.

Non-vanishing of the polynomial p(s) on a bounded region can be controlled by its constant term.

Therefore, sometimes it is more convenient, in place of Theorem 4.3, to have a generalization of

Theorem 3.4. We preserve the notation used in Theorem 3.4.

Theorem 4.5 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, K ∈ K and f(s) ∈

H(K), and V > 0 is such that K ⊂ DV . Let H
v(DV , D) = Hd(DV )×Hv1(D) and F : Hv(DV , D)→

H(DV ) be a continuous operator such that, for every polynomial p = p(s), the set (F−1{p}) ∩ (SdV ×

Hv1(D) is non - empty. Then the assertion of Theorem 4.1 is true.

Before the proof of the stated above theorems, we will give some auxiliary results of probabilistic

type. We preserve the notation of Chapter 2.

Theorem 4.6 Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and that

the operator F : Hv(D)→ H(D) is continuous. Then

PT,F (A)
def

=
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ, χ, α; a)) ∈ A}, A ∈ B(H(D)),

converges weakly to PΞF
−1 as T →∞.

Proof. In our notation, we have that Hd,u = Hd,u(D) = Hv(D) Therefore, we may use Theo-

rem 2.2, where the measure

PT (A) =
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α; a) ∈ A}, A ∈ B(Hd,u),

is considered. From the de�nitions of PT and PT,F , we �nd that, for all A ∈ B(Hv(D)),

PT,F (A) =
1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α; a) ∈ F−1A} = PT (F−1A) = PTF

−1(A).

This, Theorem 2.2, the continuity of F and Lemma 2.4 prove the theorem.
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For the proof of universality theorems, we also need the explicit form of the support of the measure

PΞF
−1. For this, we will apply Theorem 2.14.

Lemma 4.7 Suppose that the hypotheses of Theorem 2.14 are satis�ed, and that the operator

F : Hv(D) → H(D) is continuous. Then the support of the measure PΞF
−1 is the closure of the set

F (Sd ×Hu(D)).

Proof. Let g be an arbitrary element of the set F (Sd×Hu(D)), and G be any open neighbourhood

of g. From the continuity of F , we have that the set F−1G is open as well. This means that F−1G

is an open neighbourhood of a certain element of the set Sd ×Hu(D). Therefore, Theorem 2.14 and

properties of the support imply that PΞ(F−1G) > 0. Hence, PΞF
−1(G) > 0. Moreover, again in

virtue of Theorem 2.14,

PΞF
−1(F (Sd ×Hu(D))) = PΞ(Sd ×Hu(D)) = 1.

Since g and G are arbitrary, and the support of PΞF
−1 is a closed set, from this the lemma follows.

Proof of Theorem 4.3. It is not di�cult to see that, under hypotheses of Theorem 4.3, the support

of the measure PΞF
−1 is the whole of H(D). Indeed, if (F−1G) ∩ (Sd ×Hu(D)) 6= ∅ for every open

set G ⊂ H(D), we have that, for every element g ∈ H(D) and its any open neighbourhood G, there

exists an element of the set F (Sd × Hu(D)) which belongs to the set G. This shows that the set

F (Sd × Hu(D)) is dense in H(D). Since, by Lemma 4.7, the support of the measure PΞF
−1 is the

closure of the set F (Sd × Hu(D)), from this we obtain that the support of PΞF
−1 is the whole of

H(D).

In view of Lemma 1.6, there exists a polynomial p(s) satisfying inequality (4.2). De�ne the set

G = {g ∈ H(D) : sup
s∈K
|g(s)− p(s)| < ε

2
}.

Obviously, G is an open neighbourhood of the polynomial p(s) which is an element of the support

of the measure PΞF
−1. Thus, PΞF

−1(G) > 0. Therefore, Theorem 4.6 and Lemma 1.7 imply the

inequality

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ, χ, α; a)) ∈ G} ≥ PΞF

−1(G) > 0,

or, by the de�nition of G,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)| < ε

2
} > 0. (4.6)

Suppose that τ ∈ R satis�es the inequality

sup
s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)| < ε

2
.

Then, for this τ , inequality (4.2) shows that

sup
s∈K
|F (Ξ(s+ iτ, χ, α; a))− f(s)| ≤
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sup
s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)|+

sup
s∈K
|f(s)− p(s)| < ε.

Thus, we have that

{τ ∈ [0;T ] : sup
s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)| < ε

2
} ⊂

{τ ∈ [0;T ] : sup
s∈K
|F (Ξ(s+ iτ, χ, α; a))− f(s)| < ε}.

Combining this with (4.6) implies the inequality

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)| < ε} > 0.

The theorem is proved.

Proof of Theorem 4.4. In the proof of Theorem 3.2, we have observed that the approximation

in the space H(D) reduces to that on compact subsets with connected complements. Using this

remark, we will show that the hypotheses of the theorem imply those of Theorem 4.3. Let G ⊂ H(D)

be an arbitrary non - empty open set. Then, in view of Lemma 1.6 and the above remark on the

approximation in the space H(D), there exists a polynomial p = p(s) ∈ G. Therefore, the hypothesis

(F−1{p}) ∩ (Sd ×Hu(D)) 6= ∅

implies that of Theorem 4.3 that the set

(F−1G) ∩ (Sd ×Hu(D))

is non - empty. Therefore, the theorem is a corollary of Theorem 4.3.

Proof of Theorem 4.5. The approximation in the space H(DV ) also reduces to that on compact

subsets with connected complements. Therefore, as in the proof of Theorem 4.4, using of Lemma 1.6

shows that the hypotheses that

(F−1{p}) ∩ (SdV ×Hu(D)) 6= ∅

for every polynomial p = p(s) implies the hypothesis that

(F−1G) ∩ (SdV ×Hu(D)) 6= ∅ (4.7)

for every open set G ⊂ H(DV ). Thus, it su�ces to repeat with corresponding changes the proof of

Theorem 4.3.

Denote by PΞ,V the restriction of the limit measure PΞ in Theorem 2.2 to the space Hv(DV , D).

Then it follows from Theorem 2.2 and Lemma 2.4 that

1

T
meas{τ ∈ [0;T ] : Ξ(s+ iτ, χ, α; a) ∈ A}, A ∈ B(Hv(DV , D)),
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converges weakly to PΞ,V as T →∞. This together with Lemma 2.4 and the continuity of F leads to

the weak convergence of

PT,V,F (A)
def

=
1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ, χ, α; a)) ∈ A}, A ∈ B(H(DV )),

to PΞ,V F
−1 as T →∞.

Repeating the proof of Theorem 2.14 shows that the support of the measure PΞ,V is the set

SdV ×H(D). Now the continuity of the operator F together with (4.7) gives that the support of the

measure PΞ,V F
−1 is the whole of H(DV ). To obtain this, it su�ces to repeat the proof of Lemma 4.7

and the �rst part of the proof of Theorem 4.3.

The remaining part of the proof is similar to that of Theorem 4.3. We take a polynomial p(s)

satisfying (4.2) and de�ne the set

GV = {g ∈ H(DV ) : sup
s∈K
|g(s)− p(s)| < ε

2
}.

Since p(s) is an element of the support of PΞ,V F
−1, we obtain from the weak convergence of the

measure PT,V,F that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : F (Ξ(s+ iτ, χ, α; a)) ∈ GV } ≥ PΞ,V F

−1(GV ) > 0.

Hence, by the de�nition of GV ,

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− p(s)| < ε

2
} > 0.

Combining this with (4.2) shows that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− f(s)| < ε} > 0.

The theorem is proved.

We give an example of an operator satisfying the hypothesis of Theorem 4.5. Suppose that

F (g1, . . . , gv) = c1g1 + . . .+ cdgd, c1, . . . , cd ∈ C \ {0}.

Let p(s) be an arbitrary polynomial. Then, taking

g1(s) = . . . = gd−2(s) = 1,

gd−1(s) = − 1

cd−1
C,

gd(s) =
1

cd
(p(s) + C),

and

gd+1(s) = . . . = gv(s) = 1,
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where |C| is su�ciently large, we have that

F (g1, . . . , gv) = p(s).

Moreover, g1(s) 6= 0, . . . , gd(s) 6= 0 on H(DV ) if |C| is large enough. Thus,

(F−1{p}) ∩ (SdV ×Hu(D)) 6= ∅.

4.3. Approximation of analytic functions from subsets of H(D)

In this section, we approximate analytic functions from the set F (Sd ×Hu(D)).

Theorem 4.8 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the

sequences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D)→

H(D) is a continuous operator. Let K ⊂ D be a compact subset and f(s) ∈ F (Sd ×Hu(D)). Then

the assertion of Theorem 4.1 is true.

Obviously, the set F (Sd ×Hu(D)) depends on the operator F , therefore, in general, its structure

is not known. However, we can approximate analytic functions from some simple subset of F (Sd ×

Hu(D)). Thus, we have the following generalization of Theorem 3.5. We recall that, for a1, . . . , ak ∈ C,

Hk(D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , k}.

Theorem 4.9 Suppose that the Dirichlet characters χ1, . . . , χd, the numbers α1, . . . , αr and the se-

quences a11, . . . , a1l1 , . . . , ar1, . . . , arlr satisfy the hypotheses of Theorem 2.1, and that F : Hv(D) →

H(D) is a continuous operator such that

F (Sd ×Hu(D)) ⊃ Hk(D).

For k = 1, let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1 on K. For k ≥ 2, let K ⊂ D be an arbitrary

compact subset, and f(s) ∈ Hk(D).Then the assertion of Theorem 4.1 is true.

Proof of Theorem 4.8. Since f(s) ∈ F (Sd ×Hu(D)), we have, in view of Lemma 4.7, that f(s) is

an element of the support of the measure PΞF
−1. Consequently,PΞF

−1(G) > 0 for

G = {g ∈ H(D) : sup
s∈K
|g(s)− f(s)| < ε}.

Therefore, from Theorem 4.6 and Lemma 1.7, and the de�nition of G, it follows that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− f(s)| < ε} > 0.
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Proof of Theorem 4.9. First suppose that k = 1. By Lemma 1.6, we can �nd a polynomial p(s)

such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (4.8)

By the hypotheses of the theorem, f(s) 6= a1, on K. Therefore, p(s) 6= 0 on K as well if ε > 0 is small

enough. Hence, on K there exists a continuous branch of the logarithm log(p(s) − a1) which will be

an analytic function on the interior of K. Applying Lemma 1.6 once more, we can �nd a polynomial

q(s) such that

sup
s∈K
|p(s)− a1 − eq(s)| <

ε

4
. (4.9)

Let, for brevity, ga1
(s) = a1 + eq(s). Then ga1

(s) ∈ H(D) and ga1
(s) 6= a1 on D. This shows that

ga1(s) ∈ H1(D). In view of Theorem 4.7, the support of the measure PΞF
−1 contains the closure of

the set H1(D). Therefore, the function ga1(s) is an element of the support of the measure PΞF
−1.

Hence, PLF−1(G) > 0, where

G = {g ∈ H(D) : sup
s∈K
|g(s)− ga1(s)| < ε

2
}.

This together with Theorem 4.6 and Lemma 1.7 shows that

lim inf
T→∞

1

T
meas{τ ∈ [0;T ] : sup

s∈K
|F (Ξ(s+ iτ, χ, α; a))− ga1

(s)| < ε} > 0. (4.10)

It is easily seen that inequalities (4.8) and (4.9) imply the inequality

sup
s∈K
|f(s)− ga1

(s)| < ε

2
.

This and (4.10) yield the assertion of theorem in the case k = 1.

The case k ≥ 2 is contained in Theorem 4.8.
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Conclusions

In the thesis, the following universality results were proved:

1. Collections consisting from Dirichlet L - functions with pairwise non - equivalent characters and

from Hurwitz zeta - functions with algebraically independent parameters are jointly universal.

2. Collections consisting from Dirichlet L - functions with pairwise non - equivalent characters

and from periodic Hurwitz zeta functions with algebraically independent parameters are jointly

universal.

3. Some classes of composite functions of collections described in 1. are universal.

4. Some classes of composite functions of collections described in 2. are universal.
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Notation

P set of all prime numbers

N set of all positive integers

N0 set of all non - negative integers

R set of all real numbers

R+ set of all positive real numbers

C set of all complex numbers

i =
√
−1 imaginary unity

s = σ + it, σ, t ∈ R complex variable

H(G) space of analytic functions on G

B(X) Borel σ - �eld of the space X

χ(m) Dirichlet character
D−→ convergence in distribution

ζ(s) Riemann zeta-function de�ned, for σ > 1, by

ζ(s) =
∞∑
m=1

1
ms ,

and by analytic continuation elsewhere

L(s, χ) Dirichlet L - function de�ned, for σ > 1, by

L(s, χ) =
∞∑
m=1

χ(m)
ms ,

and by analytic continuation elsewhere

ζ(s, α) Hurwitz zeta - function de�ned, for σ > 1, by

for σ > 1, by

ζ(s, α) =
∞∑
m=0

1
(m+α)s ,

and by analytic continuation elsewhere

ζ(s, α; a) periodic Hurwitz zeta - function de�ned, for σ > 1, by

for σ > 1, by

ζ(s, α; a) =
∞∑
m=0

am
(m+α)s ,

and by analytic continuation elsewhere
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Γ(s) Euler gamma-function de�ned,

for σ > 1, by

Γ(s) =
∞∫
0

e−uus−1du,

and by analytic continuation elsewhere

measA Lebesgue measure of A ⊂ R

F−1G preimage of a set G

F−1{p} preimage of a polynomial p
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