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Introduction

The objects investigated in the thesis belong to analytic number theory. Universality properties of the

Riemann zeta-function and Hurwitz zeta-function are considered. The Riemann zeta-function ζ(s),

s = σ + it, is de�ned, for σ > 1, by the Dirichlet series

ζ(s) =

∞∑
m=1

1

ms
,

and can be analytically continued to the whole complex plane, except for a simple pole at the point

s = 1 with residue 1.

The Hurwitz zeta-function ζ(s, α) with parameter α, 0 < α ≤ 1, is also de�ned, for σ > 1, by the

Dirichlet series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and, as the function ζ(s), has analytic continuation to the whole complex plane, except for a simple

pole at the point s = 1 with residue 1. Clearly, ζ(s, 1) = ζ(s) and

ζ

(
s,

1

2

)
= (2s − 1)ζ(s). (0.1)

Thus, the Hurwitz zeta-function is a generalization of the Riemann zeta-function.

The main di�erence between the functions ζ(s) and ζ(s, α) is a fact that the function ζ(s) has the

Euler product over primes

ζ(s) =
∏
p

(
1− 1

ps

)−1

, σ > 1,

while the function ζ(s, α), except for the values α = 1 and α = 1
2 , has no such a product. This

di�erence has a great in�uence for analytic properties of the functions ζ(s) and ζ(s, α).

The function ζ(s) was already known to L. Euler, however, he considered ζ(s) as a function of a

real variable s. B. Riemann was the �rst who began to study ζ(s) with a complex variable s, and

applied it for the investigation of prime numbers in the set N, more precisely, for the asymptotics of

the function

π(x) =
∑
p≤x

1
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as x→∞. B. Riemann proposed [53] a famous idea, but his further arguments were not mathemat-

ically strict. Only in 1896, C. J. de la Vallée Poussin [59] and J. Hadamard [16], using Riemann's

ideas, completely proved the asymptotic distribution law of prime numbers in the form

π(x) =

x∫
2

du

log u
(1 + o(1)), x→∞. (0.2)

The function ζ(s, α) was introduced by A. Hurwitz [19]. It has no a direct relation to prime

numbers, however, plays an important role in the theory of Dirichlet L-functions which are the main

tool for the investigation of prime numbers in arithmetical progressions. Since the function ζ(s, α)

depends on the parameter α, the arithmetic nature of this parameter in�uences also its analytic

properties.

In general, the functions ζ(s) and ζ(s, α) are very interesting and important mathematical objects

which appear in solving various problems not only in mathematics but also in other sciences, for

example, in physics.

Now return to universality of zeta-functions. In general, universality in mathematics has a similar

sense as in practice, namely, one object has a certain in�uence for a wide class of other objects. In

analysis, this in�uence in usually realized by various types of approximation. Roughly speaking, the

universality, for example, of the function ζ(s) means that a wide class of analytic in some region

functions can be approximated with a given accuracy by shifts ζ(s + iτ), where τ runs a certain set

of real numbers. If τ takes arbitrary real values, then we have the continuous universality, while if τ

takes values from the set {kh : k ∈ N0} with a �xed h > 0, then we speak on the discrete universality.

Aims and problems

The aims of the thesis are discrete universality theorems for the functions ζ(s) and ζ(s, α). The

problems are the following.

1. Prove discrete universality theorems for composite functions of the Riemann zeta-function.

2. Prove discrete universality theorems for composite functions of the Hurwitz zeta-function.

3. Obtain information for the number of zeros of some composite analytic functions.

4. Prove a discrete universality theorem for a new class of Hurwitz zeta-functions.

Actuality

Universality of zeta-functions is a very interesting and important phenomenon in mathematics. Uni-

versality theorems of zeta-functions have a lot of theoretical and practical applications. Universality
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theorems are used for the proof of various denseness results and of the functional independence type

theorems, they are used to obtain a certain information on the number of zeros of some functions

related to zeta-functions, �nally, universality is closely connected to the self�approximation, and, thus

to the Riemann type hypotheses. Practical applications of universality are, of course, related to ap-

proximation problems of complicated analytic functions. Moreover, for practical applications, the

discrete universality of zeta-functions is more convenient than the continuous one, see, for example,

[4]. On the other hand, the works on the discrete universality are not numerous to compare with those

on the continuous universality. To remove this gap between continuous and discrete universality of

zeta-functions, the thesis is devoted to the discrete universality of zeta-functions, and it continues the

investigations of A. Reich, B. Bagchi, A. Laurin£ikas, R. Garunk²tis, K. Matsumoto and J. Steuding.

Methods

For the proof of discrete universality theorems, the probabilistic approach based on limit theorems on

weakly convergent probability measures in the space of analytic functions is applied. This approach is

combined with continuous operator theory as well as with the Mergelyan theorem on the approximation

of analytic functions by polynomials.

Novelty

All results of the thesis are new. Discrete universality theorems for composite functions of the Riemann

and Hurwitz zeta-functions have been never studied. Also, the above discrete theorems are applied,

for the �rst time, for the characterization of the zero-distribution. A discrete universality theorem for

the Hurwitz zeta-function is obtained for a new class of parameters.

History of the problem and the results

The �rst universality result in analysis belongs to M. Fekete, see [49], who proved the existence of a

real power series

∞∑
m=1

amx
m

such that, for every continuous function g(x), x ∈ [−1, 1], g(0) = 0, there exists an increasing sequence

{mk} ⊂ N such that the partial sum

mk∑
m=1

amx
m
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converges to g(x) as k →∞, uniformly on the interval [−1, 1].

An interesting universality result for entire functions was obtained by G. D. Birkho�. He proved

[3] that there exists an entire function f(s) such that, for arbitrary given entire function g(s), there

exists a sequence of complex numbers {an : n ∈ N} such that

lim
n→∞

f(s+ an) = g(s)

uniformly on compact subsets of C.

Later, many analytic objects were discovered, however, all they were not explicitly given, only

their existence was proved. Only in 1975, S. M. Voronin found [60] the �rst explicitly given analytic

object, and turned out that this object is the Riemann zeta-function ζ(s). The initial statement of

the Voronin theorem is of the following form.

Theorem A. Suppose that 0 < r < 1
4 . Let f(s) be a continuous non-vanishing function on the

disc |s| ≤ r which is analytic in the interior of this disc. Then, for every ε > 0, there exists a real

number τ = τ(ε) such that

max
|s|≤r

∣∣∣∣ζ(s+
3

4
+ iτ)− f(s)

∣∣∣∣ < ε

holds.

Theorem A shows that the set of values of the function ζ(s) is very rich. This property of ζ(s) was

already observed by H. Bohr who proved [5] that the function ζ(s) takes every non-zero value in the

strip {s ∈ C : 1 < σ < 1 + ε} with arbitrary ε > 0 in�nitely many times. Much more interesting is a

result of H. Bohr and R. Courant [6] that, for 1
2 < σ < 1, the set {ζ(σ + it) : t ∈ R} is dense in C.

Since the space of analytic functions is in�nite-dimensional one, Theorem A is an in�nite-dimensional

generalization of the Bohr-Courant theorem.

Theorem A is a very deep result in the theory of the function ζ(s), therefore, it was soon observed by

the mathematical community, and improved in the following sense. First, the disc |s| ≤ r was replaced

by compact sets, moreover, it was obtained that the set of shifts ζ(s+iτ), τ ∈ R, approximating a given

analytic function is in�nite. For the latest version of the Voronin theorem, we need some notation. Let

D =
{
s ∈ C : 1

2 < σ < 1
}
. Denote by K the class of compact subsets of the strip D with connected

complements, and by H0(K), K ∈ K, the class of continuous non-vanishing functions on K which

are analytic in the interior of K. Moreover, let measA be the Lebesgue measure of a measurable set

A ⊂ R. Then, in [24], [58] the following version of Theorem A can be found.

Theorem B. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε} > 0.

10



By Theorem B, we have that the set of shifts ζ(s + iτ) approximating the function f(s) with

accuracy ε has a positive lower density, thus, it is in�nite.

Theorems A and B are of the continuous type. A discrete analogue of Theorem B is contained in

the next theorem.

Theorem C. Suppose that K ∈ K and f(s) ∈ H0(K), and h > 0 is an arbitrary �xed number.

Then, for every ε > 0,

lim inf
T→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε} > 0.

Theorem C with slightly di�erent assumptions on the set K was obtained in [1].

It is not di�cult to see that some functions F (ζ(s)) also preserve the universality property. For

example, de�ne log ζ(s) in the strip D by continuous variation from log ζ(2) ∈ R along the line

segments [2, 2 + it] and [2 + it, σ + it] provided that the path does not pass a possible zero or pole at

s = 1. If this does, then we take

log ζ(σ + it) = lim
ε→+0

log ζ(σ + i(t+ ε)).

Denote by H(K), K ∈ K, the class of continuous functions on K which are analytic in the interior

of K. Then Theorem A holds for log ζ(s) with f(s) ∈ H(K). By the way, in [22], the universality of

the function ζ(s) is derived from that of log ζ(s). Also, a simple application of the Cauchy integral

formula leads to the universality of the derivative ζ ′(s) with f(s) ∈ H(K). Therefore, a problem

arises to describe some class of operators F such that the function F (ζ(s)) remains universal in the

above sense. In [29], [30], this was done in the continuous case. Denote by H(G) the space of analytic

functions on the region G ⊂ C endowed with the topology of uniform convergence on compacta. We

give one example from [29]. Let

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Theorem D. Suppose that F : H(D)→ H(D) is a continuous operator such that, for every open

set G ⊂ H(D), the set (F−1G)
⋂
S is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for every

ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|F (ζ(s+ iτ))− f(s)| < ε} > 0.

In Chapter 1 of the thesis, discrete analogues of Theorem D and other allied theorems are obtained.

Theorem 1.1. Suppose that F : H(D) → H(D) is a continuous operator such that, for every

open set G ⊂ H(D), the intersection (F−1G)
⋂
S is non-empty. Let K ∈ K and f(s) ∈ H(K). Then,

11



for every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε} > 0.

The statement of Theorem 1.1 is theoretical, it is di�cult to check the hypothesis that the set

(F−1G)
⋂
S 6= ∅ for every open set G ⊂ H(D). The latter hypothesis can be replaced by a stronger

but simpler one.

Theorem 1.2. Suppose that F : H(D) → H(D) is a continuous operator such that, for every

polynomial p = p(s), the intersection (F−1{p})
⋂
S is non-empty. Let K ∈ K and f(s) ∈ H(K).

Then the assertion of Theorem 1.1 is true.

The hypothesis that (F−1{p})
⋂
S 6= ∅ is related to the non-vanishing of the preimage F−1{p}

for each polynomial p. It is clear that if the absolute value of the constant term of a polynomial is

su�ciently large, then this polynomial has no roots in a bounded region. This observation leads to

the following simpli�cation of Theorem 1.2.

Let V be an arbitrary positive number. De�ne the sets

DV =

{
s ∈ C :

1

2
< σ < 1, |t| < V

}
and

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0}.

Theorem 1.3. Let K ∈ K and f(s) ∈ H(K), and let V > 0 be such that K ⊂ DV . Suppose

that F : H(DV ) → H(DV ) is a continuous operator such that, for each polynomial p = p(s), the

intersection (F−1{p})
⋂
SV is non-empty. Then the assertion of Theorem 1.1 is true.

It is not di�cult to present an example of the operator F in Theorem 1.3. Let F : H(DV ) →

H(DV ) be given by the formula

F (g) = c1g
′ + · · ·+ crg

(r), g ∈ H(DV ), c1, . . . , cr ∈ C \ {0},

and g(k) denotes the k-th derivative of the function g. In view of the Cauchy integral formula, the

operator F is continuous. Moreover, it is easy to check that, for every polynomial p = p(s), there

exists a polynomial q = q(s) such that q ∈ F−1{p} and q(s) 6= 0 for s ∈ DV . Then, by Theorem 1.3,

the function

c1ζ
′(s) + · · ·+ crζ

(r)(s)

is universal in the sense of Theorem 1.1.

12



In Chapter 1, one more class of operators F : H(D) → H(D) is investigated. For a1, . . . , ar ∈ C,

let

HF ;a1,...,ar (D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , r}
⋃
{F (0)}.

Theorem 1.4. Suppose that F : H(D) → H(D) is a continuous operator such that F (S) ⊃

HF ;a1,...,ar (D). For r = 1, let K ∈ K, and the function f(s) be continuous and 6= a1 on K, and analytic

in the interior of K. For r ≥ 2, let K be an arbitrary compact subset of D, and f(s) ∈ HF ;a1,...,ar (D).

Then the assertion of Theorem 1.1 is true.

From Theorem 1.4, the discrete universality for the functions ζN (s), N ∈ N, and sin(ζ(s)),

cos(ζ(s)), sinh(ζ(s)), cosh(ζ(s)) follows.

We note that Theorems 1.1�1.4 are the corresponding discrete analogues of continuous universality

theorems for the Riemann zeta-function obtained in [29] and [30].

Theorems 1.1�1.4 were obtained in [51], however, with the restriction that the number exp
{

2πk
h

}
is irrational for all k ∈ Z \ {0}. In the thesis, we remove this requirement for the number h > 0.

The proofs of Theorems 1.1�1.4 are probabilistic, based on limit theorems on weakly convergent

probability measures in the space of analytic functions as well as on Theorem C and the Mergelyan

theorem [43].

After Voronin's work [60], it was observed that not only the function ζ(s), but also other zeta and

L-functions are universal in the above sense. S. M Voronin himself obtained [60] the universality of

all Dirichlet L-functions L(s, χ) which are de�ned, for σ > 1, by the Dirichlet series

L(s, χ) =

∞∑
m=1

χ(m)

ms
,

where χ is a Dirichlet character, and can be continued meromorphically to the whole complex plane.

Also, zeta-functions ζ(s, F ) of Hecke eigen cusp forms F of weight κ are universal [20], [35], [36], [37].

They are entire functions de�ned, for σ > κ+1
2 , by the series

ζ(s, F ) =

∞∑
m=1

c(m)

ms
,

where c(m) are the Fourier coe�cients of the form F . In [26], the universality of zeta-functions

attached to Abelian groups was obtained. All these examples of zeta-functions have Euler products

over primes.

The another group of universal zeta-functions have no Euler product over primes. The simplest

member of this group is the already mentioned above Hurwitz zeta-function ζ(s, α). Its generalizations

are the Lerch zeta-function

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
, σ > 1,

13



with parameters λ ∈ R and α, 0 < α ≤ 1, and the periodic Hurwitz zeta-function

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

, σ > 1,

where a = {am : m ∈ N0} is a periodic sequence of complex numbers, and α is the same parameter as

in the de�nition of the functions ζ(s, α) and L(λ, α, s).

The continuous universality of the Hurwitz zeta-function is contained in the following theorem.

We recall that the number α is transcendental if it is not a root of any polynomial p(s) 6≡ 0 with

rational coe�cients.

Theorem E. Suppose that α is transcendental or rational number 6= 1, 1
2 . Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε} > 0.

Theorem E, for rational α, was obtained independently by S. M. Voronin [61], [62], S. M. Gonek

[15] and B. Bagchi [1]. The case of transcendental α can be found in the monograph [13]. The

universality of the function ζ(s, α) with algebraic irrational parameter α is an open problem. We

recall that the number α is algebraic if it is a root of a certain polynomial p(s) 6≡ 0 with rational

coe�cients. For example, the number
√

2 is algebraic irrational because it is a root of the polynomial

s2 − 2. Obviously, all rational numbers are algebraic.

The cases of rationals α = 1 or α = 1
2 in Theorem E are excluded because of the equalities

ζ(s, 1) = ζ(s) and (0.1). In these cases, the function ζ(s, α) remains universal in the above sense,

however, the approximated function f(s) must be non-vanishing on K.

For the function ζ(s, α), also a discrete university theorem is known.

Theorem F. Suppose that the parameter α, the set K and the function f(s) are as in Theorem E.

In the case of rational α, let the number h > 0 be arbitrary, while in the case of transcendental α, let

h > 0 be such that exp
{

2π
h

}
is a rational number. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− f(s)| < ε} > 0.

For rational α, Theorem F with slightly di�erent assumptions on the set K, is given in [1]. It can

be easily seen that those assumptions, in view of the Mergelyan theorem [43], can be replaced by the

assumptions of Theorem F. By a di�erent method, the case of rational α was treated in [54]. For

transcendental α, Theorem F follows from a similar theorem proven in [34] for the periodic Hurwitz

zeta-function.
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In [31], Theorem E was generalized for composite functions F (ζ(s, α)) with certain operators

F : H(D)→ H(D). We present only one example from [31].

Theorem G. Suppose that F : H(D) → H(D) is a continuous operator such that, for each

polynomial p = p(s), the set (F−1{p})
⋂
H(D) is non-empty. Let the parameter α, the set K and the

function f(s) be as in Theorem E. Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|F (ζ(s+ iτ, α))− f(s)| < ε} > 0.

In Chapter 2 of the thesis, discrete analogues of theorems obtained in [31] are proved. For a

su�ciently wide class of operators F , the discrete universality of F (ζ(s, α)) can be deduced directly

from Theorem F. We say that the operator F : H(D)→ H(D) belongs to the class Lip(β), β > 0, if

the following conditions are satis�ed:

1◦ for each polynomial p = p(s), there exists an element g ∈ F−1{p} ⊂ H(D);

2◦ for every set K ∈ K, there exist a positive constant c and a set K1 ∈ K such that

sup
s∈K
|F (g1(s))− F (g2(s))| ≤ c sup

s∈K1

|g1(s)− g2(s)|β

for all g1, g2 ∈ H(D).

The �rst theorem of Chapter 2 is of the following form.

Theorem 2.1. Suppose that the numbers α and h, the set K and the function f(s) are as in

Theorem F, and that F ∈ Lip(β). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε} > 0.

It easily follows from the Cauchy integral formula that the function F (g) = g′ belongs to the class

Lip(1). Therefore, the assertion of Theorem 2.1 is true for the function ζ ′(s, α).

Now we state discrete universality theorems for F (ζ(s, α)) for other classes of operators F .

Theorem 2.2. Suppose that the numbers α and h, the set K and the function f(s) are as in

Theorem F. Let F : H(D)→ H(D) be a continuous operator such that, for every open set G ⊂ H(D),

the set F−1G is non-empty. The the assertion of Theorem 2.1 is true.

The assumption of Theorem 2.2 on the operator F can be replaced by a simpler one.

Theorem 2.3. Suppose that F : H(D) → H(D) is a continuous operator such that, for each

polynomial p = p(s), the set F−1{p} is non-empty. Then with α, h,K and f(s) as in Theorem F the

assertion of Theorem 2.1 is true.

For g ∈ H(D), let

F (g) = c1g
′ + · · ·+ crg

(r), c1, . . . , cr ∈ C\{0}.
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Then, clearly, for each polynomial p = p(s), there exists a polynomial q = q(s) such that q ∈ F−1{p}.

Therefore, by Theorem 2.3, the function

c1ζ
′(s, α) + · · ·+ crζ

(r)(s, α)

has a discrete universality property with rational α 6= 1, 1
2 (in this case, h > 0 can be chosen arbitrarily)

and transcendental α (in this case, the number exp
{

2π
h

}
must be rational).

In the next theorem, the functions from a certain subset of H(D) are approximated by shifts

F (ζ(s+ ikh, α)). For a1, . . . , ar ∈ C, denote

Ha1,...,ar (D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , r}.

Theorem 2.4. Suppose that the numbers α and h are as in Theorem F, and that F : H(D) →

H(D) is a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D). For r = 1, let K ∈ K, and let

f(s) 6= a1 be a continuous function on K, which is analytic in the interior of K. For r ≥ 2, let K ⊂ D

be an arbitrary compact subset, and f(s) ∈ Ha1,...,ar (D). Then the assertion of Theorem 2.1 is true.

For example, if r = 1 and a1 = 0, the discrete universality of ζn(s, α), n ∈ N r {0}, follows. If

r = 2 and a1 = −1, a2 = 1, we have the same property for the functions sin(ζ(s, α)), cos(ζ(s, α)),

sinh(ζ(s, α)) and cosh(ζ(s, α)).

The next theorem shows that the functions from F (H(D)) can be always approximated by discrete

shifts of F (ζ(s, α)).

Theorem 2.5. Suppose that the numbers α and h are as in Theorem F, and that F : H(D) →

H(D) is an arbitrary continuous operator. Let K ⊂ D be a compact subset, and f(s) ∈ F (H(D)).

Then the assertion of Theorem 2.1 is true.

Theorems 2.1�2.5 are published in [40].

Denote by M(D) the space of meromorphic functions on D endowed with the topology of uniform

convergence on compacta. Clearly, H(D) ⊂M(D). We note that some analogues of Theorems 2.2�2.5

can be also obtained for continuous operators F : H(D)→M(D).

In Chapter 3 of the thesis, the zero-distribution of the functions ζ(s) and ζ(s, α) is brie�y discussed.

The zero-distribution of zeta and L-functions is the central problem of analytic number theory,

and the results in the �eld allow to solve many other important problems. For example, the location

of non-trivial zeros of the Riemann zeta-function ζ(s) has a direct relation to the distribution of prime

numbers. We remind that the zeros s = −2m, m ∈ N, of ζ(s) are called trivial and they are implied

by the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),
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where Γ(s) is the Euler gamma-function. The trivial zeros do not play an important role in the theory

of ζ(s). Moreover, it is known that the function ζ(s) has in�nitely many the so called non-trivial zeros

lying in the critical strip {s ∈ C : 0 ≤ σ ≤ 1}. The famous Riemann hypothesis (RH) asserts that all

non-trivial zeros of ζ(s) lie on the critical line σ = 1
2 , or that ζ(s) 6= 0 for σ > 1

2 .

For the proof of relation (0.2), it is su�cient to know that ζ(s) 6= 0 on the line σ = 1. It is known

[23] that the estimate

π(x) =

x∫
2

du

log u
+O(xα+ε),

where ε > 0 is and arbitrary number , is equivalent to the non-vanishing of ζ(s) for σ > α. In

particular, the RH is equivalent to the estimate [11]

π(x) =

x∫
2

du

log u
+O(

√
x log x).

The best known result on the location of zeros of ζ(s) asserts [22] that ζ(s) 6= 0 in the region

σ > 1− c

(log |t|) 2
3 (log log |t|) 1

3

, |t| ≥ t0 > 0,

where c > 0 is an absolute constant. This was obtained by H. E. Richert (unpublished). G. H. Hardy

proved [17] that in�nitely many zeros lie on the critical line. A. Selberg was the �rst proving [56] that

a positive proportion of all nontrivial zeros of ζ(s) lies on the line σ = 1
2 . Now it is know [7] that at

least 41 percent of non-trivial zeros of ζ(s) in the sense of density are located on the line σ = 1
2 . All

computer calculations also support the RH. For example, it is known [48] that the 1022 nd zero of

ζ(s) and 10 billion of its neighbours lie on the critical line.

Without the mentioned above in terms of the function π(x), several other equivalents of the RH

are known. One of them is stated in terms of self-approximation and is connected to the universality of

ζ(s). Namely, B. Bagchi proved [1] that the RH is equivalent to the assertion that, for every compact

set K ⊂ D,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− ζ(s)| < ε} > 0.

Some interesting approximations to this equivalent were made by T. Nakamura [45], T. Nakamura

and �. Pa«kowski [46], and R. Garunk²tis [14]. They considered the inequality

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− ζ(s+ idτ)| < ε} > 0.

Now it is known that the latter inequality holds for irrational d and rational non-zero d = a
b with

(a, b) = 1, |a− b| 6= 1. To prove RH, it su�ces to show that the above inequality holds with d = 0.

S. M. Voronin was the �rst who applied the universality of zeta-functions for estimation of the

number of zeros. In [61], he proved the following assertion.
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Theorem H. Let a, b ∈ N, 1 ≤ a < b, b 6= 2, (a, b) = 1. Then, for every σ1, σ2,
1
2 < σ1 < σ2 < 1,

there exists a constant c = c(a, b, σ1, σ2) > 0 such that the function ζ
(
s, ab

)
, for su�ciently large T ,

has more than cT zeros lying in the rectangle

{s ∈ C : σ1 < σ < σ2, 0 < t < T}.

Generalizations of Theorem H for linear combinations of various zeta and L-functions can be found

in [25] and [47]. An analogue of Theorem H for ζ ′(s, F ), where ζ(s, F ) is the zeta-function attached to

a Hecke eigen cups form F , was obtained in [27]. The estimates for the number of zeros of composite

functions of ζ(s) is discussed in [32].

In Chapter 3 of the thesis, discrete versions of the above mentioned results on the estimates of the

number of zeros for composite functions are given.

Theorem 3.1. Suppose that the operator F is as in one of Theorems 1.1�1.3. Then, for arbitrary

σ1 and σ2,
1
2 < σ1 < σ2 < 1, there exists a constant c = c(σ1, σ2, F, h) > 0 such that, for su�ciently

large N ∈ N, the function F (ζ(s+ ikh)) has a zero in the disc

|s− σ̂| ≤ σ2 − σ1

2
, σ̂ =

σ1 + σ2

2
,

for more than cN numbers k, 0 ≤ k ≤ N .

Theorem 3.1 is published in [52].

Now we pass to zeros of the Hurwitz zeta-function ζ(s, α). We have already mentioned that

the properties of ζ(s, α) depend on the arithmetical nature of the parameter α. H. Davenport and

H. Heilbronn observed [13] that, for transcendental or rational α 6= 1, 1
2 , the function ζ(s, α), di�erently

from ζ(s), has zeros in the region σ > 1. J. W. S. Cassels extended [9] the latter result for algebraic

irrational parameter α. Theorem H shows that, for rational α 6= 1, 1
2 , the function ζ(s, α) has zeros

in the critical strip {s ∈ C : 1
2 < σ < 1}. A similar assertion to Theorem H, for transcendental α,

was obtained in [33], Theorem 8.4.7. In the paper [42], the latter results were extended for F (ζ(s, α))

with some operators F de�ned on H(D).

Chapter 3 of the thesis contains theorems on the number of zeros of the function ζ(s + ikh, α),

and, more generally, of F (ζ(s + ikh, α)), k ∈ N0, for some classes of operators F , where h > 0 is a

�xed number.

Theorem 3.3. Suppose that α is transcendental or rational number 6= 1, 1
2 . In the case of rational

α, let h > 0 be an arbitrary �xed number, while in the case of transcendental α, let h > 0 be such

that exp
{

2π
h

}
is a rational number. Then, for all σ1, σ2,

1
2 < σ1 < σ2 < 1, there exists a constant

c = c(σ1, σ2, α, h) > 0 such that, for su�ciently large N ∈ N, the function ζ(s+ ikh, α) has a zero in

the disc

|s− σ̂| ≤ σ2 − σ1

2
, σ̂ =

σ1 + σ2

2
, (0.3)
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for more than cN numbers k, 0 ≤ k ≤ N .

The next theorems are analogues of Theorem 3.3 for F (ζ(s, α)).

Theorem 3.4. Suppose that the numbers α and h are as in Theorem 3.3, and that F : H(D →

H(D)) is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is non-empty,

or s− a ∈ F (H(D)) for all a ∈
(

1
2 , 1
)
. Then, for all σ1, σ2,

1
2 < σ1 < σ2 < 1, there exists a constant

c = c(σ1, σ2, α, h, F ) > 0 such that, for su�ciently large N ∈ N, the function F (ζ(s + ikh, α)) has a

zero in the disc (0.3) for more than cN numbers k, 0 ≤ k ≤ N .

Let F : H(D)→ H(D) be given by the formula

F (g) = gg′, g ∈ H(D).

Then it is not di�cult to see that s− a ∈ F (H(D)) for all a ∈
(

1
2 , 1
)
.

Let Ha1,...,ar (D) by the same set as in Theorem 2.4.

Theorem 3.5. Suppose that the numbers α and h are as in Theorem 3.3, and that F : H(D) →

H(D) is a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D), where Reaj 6∈
(
− 1

2 ,
1
2

)
, j =

1, . . . , r. Then the assertion of Theorem 3.4 is true.

For example, we can take F (g) = sin g or F (g) = cos g in Theorem 3.5.

Theorems 3.3�3.5 are published in [41].

The last, Chapter 4, of the thesis is devoted to the extension of Theorem F and Theorem 2.3.

Let, as usual, Q be the set of all rational numbers, Q+
1 be the set of positive rational numbers 6= 1,

and de�ne, for q ∈ Q+
1 , the set

L(α, q) = {(log(m+ α) : m ∈ N0), log q}.

Theorem 4.1. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over the

�eld Q. Let K ∈ K and f(s) ∈ H(K). Then, for every h > 0 such that the number exp
{

2π
h

}
is

rational, and every ε > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− f(s)| < ε} > 0.

We note that if α is transcendental, then the set L(α, q) is linearly independent over Q. On the

other hand, if α is algebraic irrational, then it is known [9] that at least 51 persent of elements of the

set

L(α) = {log(m+ α) : m ∈ N0}
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in the sense of density are linearly independent over Q. Thus, it is conceivable that, for some algebraic

irrational α, the set L(α, q) is also linearly independent over Q. Unfortunately, examples of algebraic

irrational α with linearly independent sets L(α) and L(α, q) at the moment are not known.

Theorem 4.1 can be generalized for composite functions F (ζ(s, α)) with some operators F :

H(D)→ H(D). As example, we give only a generalization of Theorem 2.3.

Theorem 4.2. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q,

F : H(D) → H(D) is a continuous operator such that, for each polynomial p = p(s), the preimage

F−1{p} is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for every h > 0 such that the number

exp
{

2π
h

}
is rational, and every ε > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε} > 0.

Theorems 4.1 and 4.2 are published in [8].

For the proofs of all universality theorems obtained in the thesis, the probabilistic method based

on weakly convergent probability measures in the space H(D) is applied.
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Approbation

The main results of the thesis were presented at the 8th International Algebraic Conference in Ukraine

dedicated to the memory of Professor Vitaliy Mikhaylovich Usenko, July 5-12, 2011, Lugansk, Ukraine,

at the MMA (Mathematical Modelling and Analysis) conferences (MMA 2011, May 25-28, 2011,

Sigulda, Latvia; MMA 2012, June 6-9, 2012, Tallinn, Estonia; MMA 2013, May 27-30, 2013, Tartu,

Estonia), at the Fifth International Conference in Honour of J. Kubilius, September 4-10, 2011,

Palanga, at the International Conference on Number Theory in Honour of A. Laurin£ikas, September

9-12, 2013, �iauliai, at the Conferences of Lithuanian Mathematical Society (2011, 2012, 2013), at the

seminars of Vilnius University and �iauliai University.
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Chapter 1

Discrete universality theorems for

composite functions

of the Riemann zeta-function

Let G be a region on the complex plane. Denote by H(G) the space of analytic functions on G

endowed with the topology of uniform convergence on compacta. In this chapter, we obtain discrete

universality theorems for the functions F (ζ(s)), where ζ(s) is the Riemann zeta-function and F :

H(D)→ H(D), D = {s ∈ C : 1
2 < σ < 1}, is a certain operator.

We observe that the space H(G) is metrisable one. It is well known, see, for example, [10], that

there exists a sequence of compact subsets {Kl : l ∈ N} ⊂ D such that

G =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ G is a compact subset, then K ⊂ Kl for some l ∈ N. For

g1, g2 ∈ H(G), de�ne

%(g1, g2) =

∞∑
l=1

2−l
sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
. (1.1)

Clearly, % is a metric of the space H(G). Moreover, % induces the uniform convergence on compacta.

Indeed, let {gn(s) : n ∈ N} ⊂ H(G) and g(s). Suppose that gn(s) converges to g(s) as n→∞. Then,

for every compact subset K ⊂ D,

sup
s∈K
|gn(s)− g(s)| −−−−→

n→∞
0. (1.2)

Therefore, for every l ∈ N,

sup
s∈Kl

|gn(s)− g(s)| −−−−→
n→∞

0. (1.3)
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Hence, in view of (1.1), %(gn, g)→ 0 as n→∞.

Now let %(gn, g)→ 0 as n→∞. Then, for every l ∈ N, (1.3) holds. Suppose that K is an arbitrary

compact subset of D. Then there exists l0 ∈ N such that K ⊂ Kl0 . Therefore,

sup
s∈K
|gn(s)− g(s)| ≤ sup

s∈Kl0
|gn(s)− g(s)| −−−−→

n→∞
0.

Since K is arbitrary, we have that relation (1.2) is true for all compact subsets K ⊂ D.

1.1. Statement of the results

We recall that

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

An operator F : H(G)→ H(G) is said to be continuous at g0 ∈ H(D) if, for every ε > 0, there exists

δ = δ(ε) > 0 such that

%(F (g), F (g0)) < ε

for all g ∈ H(G) satisfying

%(g, g0) < δ.

Moreover, we remind that K is the class of compact subsets of the stripD with connected complements,

and that H(K), K ∈ K, is the class of continuous functions on K which are analytic in the interior

of K.

The �rst discrete universality theorem for the composite function F (ζ(s)) uses a hypothesis on the

operator F stated in terms of open sets of the space H(D). Denote by F−1G the preimage of the set

G, h > 0 is a �xe number.

Theorem 1.1. Suppose that F : H(D) → H(D) is a continuous operator such that, for every

open set G ⊂ H(D), the intersection (F−1G)
⋂
S is non-empty. Let K ∈ K and f(s) ∈ H(K). Then,

for every ε > 0,

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε} > 0.

The next theorem, in place of the hypothesis (F−1G)
⋂
S 6= ∅, apply a hypothesis related to all

polynomials. As it will be shown in the proof, the hypothesis of such a kind is stronger, i.e., it implies
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the hypothesis of Theorem 1.1, however, it is more convenient, because it is not easy to describe all

open sets of the space H(D). Denote by F−1{p} the preimage of a polynomial p = p(s).

Theorem 1.2. Suppose that F : H(D) → H(D) is a continuous operator such that, for every

polynomial p = p(s), the intersection (F−1{p})
⋂
S is non-empty. Let K ∈ K and f(s) ∈ H(K).Then

the assertion of Theorem 1.1 is true.

Usually it is expected that the preimage of a polynomial is again a polynomial. The region

D = {s ∈ C : 1
2 < σ < 1} is not bounded one. Therefore, though a polynomial has only a �nite

number of roots, it is not a guarantee that at least one of roots lies in the strip D. This observation

suggests an idea to consider the space of analytic function in a bounded region, because a polynomial

with su�ciently large modulus of the constant term can't take the value zero in such a region.

For an arbitrary V > 0, de�ne the analogues of D and S by

DV = {s ∈ C :
1

2
< σ < 1, |t| < V }

and

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0}.

Then we have the following analogue of Theorem 1.2.

Theorem 1.3. Let K ∈ K and f(s) ∈ H(K), and let V > 0 be such that K ⊂ DV . Suppose

that F : H(DV ) → H(DV ) be a continuous operator such that, for every polynomial p = p(s), the

intersection (F−1{p})
⋂
SV is non-empty. Then the assertion of Theorem 1.1 is true.

We give a simple example. Denote by g(k) the k th derivative of the function g ∈ H(DV ), and

de�ne the operator F : H(DV )→ H(DV ) by the formula

F (g) = c1g
′ + · · ·+ crg

(r), g ∈ H(DV ), c1, . . . , cr ∈ C\{0}.

For the proof of the continuity of F , we apply the classical Cauchy integral formula, see, for example,

[55]: Let G be a region in C, f(s) be an analytic function on G, Γ be a simple contour contained with

its interior in G, and s0 ∈ intΓ. Then, for n = 0, 1, 2, . . .,

f (n)(s0) =
n!

2πi

∫
Γ

f(s)

(s− s0)n+1
ds.

We use an equivalent of the continuity of operator in terms of sequences: F is continuous at the point

g if, for every sequence {gn}, gn −−−−→
n→∞

g, we have that F (gn) −−−−→
n→∞

F (g). Let K be an arbitrary

compact subset of the rectangle DV , G ⊃ K be an open set lying in DV , and let K1 be a compact
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subset such that G ⊂ K1 ⊂ DV . We take a simple closed contour L lying in K1\G and enclosing the

set G. Then, by the Cauchy integral formula, we �nd that

sup
s∈K
|F (gn(s))− F (g(s))| ≤ 1

2π

r∑
j=1

j!|cj |
∫
L

|gn(z)− g(z)|
|z − s|j+1

|dz| ≤

≤ 1

2π

r∑
j=1

j!|cj ||L|
δj+1

sup
s∈K1

|gn(s)− g(s)|, (1.4)

where δ is the distance of the contour L from the set K, and |L| is the length of L. Now if gn(s) −−−−→
n→∞

g(s) in H(DV ), then

sup
s∈K1

|gn(s)− g(s)| −−−−→
n→∞

0.

This together with (1.4) shows that

sup
s∈K
|F (gn(s))− F (g(s))| −−−−→

n→∞
0.

Therefore, F (gn) −−−−→
n→∞

F (g) in the space H(DV ), thus, the operator F is continuous.

Now we check the hypothesis that the preimage F−1{p} of an arbitrary polynomial p = p(s)

contains an element g such that g(s) 6= 0 on DV . We have to prove that, for each polynomial

p = p(s), there exists an other polynomial q = q(s) such that q ∈ F−1{p}, and q(s) 6= 0 for s ∈ DV .

Thus, we take a polynomial

p(s) = aks
k + · · ·+ a1s+ a0, ak 6= 0,

of degree k, and search for a polynomial q(s) of degree k + 1 in the form

q(s) = bk+1s
k+1 + · · ·+ b1s+ b0, bk+1 6= 0.

First suppose that r ≤ k + 1. Then we �nd that

q′(s) = (k + 1)bk+1s
k + · · ·+ 2b2s+ b1,

q′′(s) = (k + 1)kbk+1s
k−1 + · · ·+ 2b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q(r)(s) = (k + 1)k . . . (k − r + 2)bk+1s
k−r+1 + · · ·+ r!br.

Since F (q) = p, hence we obtain that

(k + 1)c1s
k + · · ·+ 2c1b2s+ c1b1 + (k + 1)kc2bk+1s

k−1 + · · ·+

2c2b2 + · · ·+ (k + 1)k . . . (k − r + 2)crbk+1s
k−r+1 + · · ·+ r!crbr =

aks
k + · · ·+ a1s+ a0.
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Therefore, we have a system of equations

(k + 1)c1bk+1 = ak,

(k + 1)kc2bk+1 + kc1bk = ak−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r!crbr + · · ·+ 2c2b2 + c1b1 = a0

for the coe�cients bj , j = k + 1, . . . , 1, of the polynomial q(s).

If r > k + 1, then we obtain a similar system of equations. In this case, q(j)(s) = 0 for j ≥ k + 2.

Having the coe�cients bk+1, . . . , b1, we take b0 to be |b0| su�ciently large, then q(s) 6= 0 for

s ∈ DV .

In the next theorem, we approximate by shifts F (ζ(s + it)) the functions from some subsets of

H(D). For di�erent a1, . . . , ar ∈ C, and F : H(D)→ H(D), de�ne the set

HF ;a1,...,ar (D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , r}
⋃
{F (0)}.

Theorem 1.4. Suppose that F : H(D) → H(D) is a continuous operator such that F (S) ⊃

HF ;a1,...,ar (D). For r = 1, let K ∈ K, and the function f(s) be continuous and 6= a1 on K and analytic

in the interior of K. For r ≥ 2, let K be an arbitrary compact subset of D, and f(s) ∈ HF ;a1,...,ar (D).

Then the assertion of Theorem 1.1 is true.

If r = 1 and a1 = 0, Theorem 1.4 implies the universality of the function ζN (s), N ∈ N. In the case

r = 2, a1 = 1, a2 = −1, we obtain the universality for the functions sin(ζ(s)), cos(ζ(s)), sinh(ζ(s)),

cosh(ζ(s)). We remind that

sin s =
eis − e−is

2i
, cos s =

eis + e−is

2

and

sinh s =
es − e−s

2
, cosh s =

es + e−s

2
.

We consider only the case of sin(ζ(s)). Other functions are considered analogically. We solve the

equation

eig − e−ig

2i
= f

with respect to g. Putting eig = y, we have the equation

y2 − 2ify − 1 = 0.
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Hence,

y = fi±
√

1− f2,

and

g =
1

i
log
(
fi±

√
1− f2

)
.

If f ∈ HF ;1,−1(D), i.e., f(s) 6= 1 and f(s) 6= −1 on D, the function fi +
√

1− f2 is analytic on D,

and fi +
√

1− f2 6= 0 on D. Therefore, there exists a branch of logarithm which is analytic and

non-vanishing on D. Thus, g ∈ S, and we have that

F (S) = sin(S) ⊃ HF ;1,−1(D).

Therefore, by Theorem 1.4, for arbitrary compact set K ⊂ D, f(s) ∈ H(D) and f(s) 6= 1,−1 on D,

and every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
| sin(ζ(s+ ikh))− f(s)| < ε

}
> 0.

1.2. Limit theorems

In this section, we present probabilistic limit theorems which are applied for the proof of universality.

Let B(X) be the σ-�eld of Borel sets of the space X. De�ne

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} def
= γ is the unit circle for all primes p. By the Tikhonov theorem,

see [50], the in�nite-dimensional torus Ω, with the product topology and pointwise multiplication is

a compact topological Abelian group. Therefore, on (Ω,B(Ω)), the unique probability Haar measure

mH exists. This gives the probability space (Ω,B(Ω),mH). Let P be the set of all prime numbers.

Denote by ω(p) the projection of an element ω ∈ Ω to the coordinate space γp, p ∈ P, and on the

space (Ω,B(Ω),mH) de�ne the H(D)-valued random element ζ(s, ω) by the formula

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

.

We note that the latter product, for almost all ω ∈ Ω with respect to the measure mH , converges

uniformly on compact subsets of the strip D. All above statements can be found in [24]. Let Pζ be

the distribution of the random element ζ(s, ω), i,e.,

Pζ(A) = mH(ω ∈ Ω : ζ(s, ω) ∈ A), A ∈ B(H(D)).
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We recall that if Pn, n ∈ N, and P are probability measures on (X,B(X), then we say that Pn

converges weakly to P as n→∞ if, for every real bounded continuous function f on X

lim
n→∞

∫
X

fdPn =

∫
X

fdP.

The proof of Theorem B is based on the assertion that

1

T
meas{τ ∈ [0, T ] : ζ(s+ iτ) ∈ A}, A ∈ B(H(D)),

converges weakly to the measure Pζ as T →∞, and that the support of Pζ is the set S.

The probabilistic background for Theorem C is more complicated, and we need some additional

de�nitions. A �xed number h > 0 is called of type 1 if the number exp
{

2πm
h

}
is irrational for all

m ∈ N, and h is of type 2 if it is not of type 1.

Suppose that h > 0 is of type 2. Then there exists the smallest m0 ∈ N such that the number

exp
{

2πm0

h

}
is rational. Letm = um0+v, u, v ∈ N0, 0 ≤ v < n, and the number exp

{
2πm
h

}
is rational.

Since the number exp
{

2πm0

h

}
is rational, the number exp

{
2πum0

h

}
is rational as well. Moreover,

exp

{
2πm

h

}
= exp

{
2πum0

h

}
exp

{
2πv

h

}
.

Hence, we �nd that the number

exp

{
2πv

h

}
= exp

{
2πm

h

}/
exp

{
2πum0

h

}
.

is also rational. However, 0 ≤ v < m0, and m0 is the smallest with property that the number

exp
{

2πm
h

}
is rational. This shows that v = 0, and we have that m = um0, i.e., m is a multiple of m0.

Suppose that

exp

{
2πm0

h

}
=
a

b

with a, b ∈ N, (a, b) = 1. Consider the set P0 ⊂ P,

P0 =

p ∈ P : αp 6= 0 in
a

b
=
∏
p∈P

pαp

 .

Obviously, we have that the set P0 is �nite one.

Denote by Ωh the closed subgroup of the group Ω generated by p−ih, p ∈ P. Then again Ωh is a

compact topological Abelian group, therefore, on (Ωh,B(Ωh)), the probability Haar measure mh
H can

be de�ned, and we obtain a new probability space (Ωh,B(Ωh),mh
H). The group was considered in [1],

Lemma 4.2.2, and it was proved that Ωh = Ω if h is of type 1, and

Ωh = {ω ∈ Ω : ω(a) = ω(b)}
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if the number h is of type 2.

On the probability space (Ωh,B(Ωh),mh
H), de�ne the H(D)-valued random element ζh(s, ωh) by

the formula

ζh(s, ωh) =
∏
p

(
1− ωh(p)

ps

)−1

.

Let Pζ,h be the distribution of the random element ζh(s, ωh), i.e.,

Pζ,h(A) = mh
H{ωh ∈ Ωh : ζ(s, ωh) ∈ A}, A ∈ B(H(D)).

Clearly, if h is of type 1, then Pζ,h coincide with Pζ .

Theorem 1.5. For N →∞,

PN,h(A)
def
=

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh) ∈ A}, A ∈ B(H(D)),

converges weakly to Pζ,h.

Proof. The case of h of type 1 is a partial case of a discrete theorem for Matsumoto zeta-functions

obtained in [21].

The case of h of type 2 is based on the following assertions proved in [39]. Let

QN,h(A)
def
=

1

N + 1
#{0 ≤ k ≤ N : (p−ikh; p ∈ P) ∈ A}, A ∈ B(Ωh).

Then QN,h converges weakly to the Haar measure mh
H as N →∞.

The second assertion is related to the ergodic theory. For brevity, we put ah = (p−ih : p ∈ P).

Then, clearly, ah ∈ Ωh. De�ne the transformation ϕh(ωh) of Ωh by

ϕh(ωh) = ahωh, ω ∈ Ωh.

Since the Haar measure mh
H is invariant with respect to translations by points from Ωh, we have that

ϕh is a measurable measure preserving transformation on the probability space (Ωh,B(Ωh),mh
H). We

recall that a set A ∈ B(Ωh) is called invariant with respect to the transformation ϕh if the sets A and

ϕh(A) can di�er one from another at most by a set of mh
H -measure zero. The transformation ϕh is

ergodic if the σ-�eld of invariant sets consists only from the sets A with mh
H(A) = 1 or mh

H(A) = 0.

In [21], it is proved that h is of type 2, then the transformation ϕh is ergodic.

Now the proof for h of type 2 runs in a standard way. First the weak convergence of QN,h

allows to prove limit theorems for certain absolutely convergent Dirichlet series related to ζ(s). The

ergodicity of the transformation ϕh together with the Gallagher lemma, Lemma 1.4 of [44], ensures

the approximation in the mean for the functions ζ(s) and ζ(s, ωh) by absolutely convergent Dirichlet
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series. From this, using a standard method, limit theorems for ζ(s) and ζ(s, ωh) follow. Finally,

an application of the classical Birkho�-Khintchine ergodic theorem together with ergodicity of the

transformation ϕh shows that the measure PN,h converges weakly to Pζ,h as N →∞.

In the sequel, we will use several times the following well-known fact. Let X1 and X2 be two metric

spaces, and u : X1 → X2 be a (B(X1),B(X2))-measurable function, i.e.,

u−1B(X2) ⊂ B(X1).

Then every probability measure P on (X1,B(X1)) induces on (X2,B(X2)) the unique probability

measure Pu−1 de�ned by the formula

Pu−1(A) = P (u−1A), A ∈ B(X2).

Lemma 1.6. Let Pn, n ∈ N, and P be probability measures on (X,B(X)) and u : X1 → X2 be a

continuous function. Suppose that Pn converges weakly to P as n→∞. Then Pnu
−1 also converges

weakly to Pu−1 as n→∞.

The lemma is a partial case of Theorem 5.1 from [2].

Lemma 1.7. Suppose that F : H(D)→ H(D) is a continuous operator. Then

PN,h,F (A)
def
=

1

N + 1
#{0 ≤ k ≤ N : F (ζ(s+ ikh)) ∈ A}, A ∈ B(H(D)),

converges weakly to the measure Pζ,hF
−1.

Proof. The lemma is an immediate corollary of Theorem 1.5 and Lemma 1.6. Really, we have that,

for A ∈ B(H(D)),

PN,h,F (A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh) ∈ F−1A} = PN,h(F−1A).

Thus, PN,h,F = PN,hF
−1. Since the operator F is continuous, Theorem 1.5 and Lemma 1.6 imply the

weak convergence of PN,h,F to Pζ,hF−1 as N →∞.

For V > 0, we denote by PN,h,V and Pζ,h,V the restrictions to the space (H(DV ),B(H(DV ))) for

the measures PN,h and Pζ,h, respectively.

Lemma 1.8. For every V > 0, PN,h,V converges weakly to Pζ,h,V as N →∞.

Proof. Obviously, DV ⊂ D. Therefore, the function u : H(D) → H(DV ) given by the formula

u(g(s)) = g(s)|s∈DV , g ∈ H(D), is continuous. Thus, the lemma follows from Lemmas 1.7 and 1.6.

Lemma 1.9. Suppose that the operator F : H(DV )→ H(DV ) is continuous. Then

PN,h,F,V (A)
def
=

1

N + 1
#{0 ≤ k ≤ N : F (ζ(s+ ikh)) ∈ A}, A ∈ B(H(DV )),
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converges weakly to the measure Pζ,h,V F
−1 as N →∞.

Proof. We use Lemmas 1.9 and 1.6, and repeat the proof of Lemma 1.7.

1.3. Supports

In this section, we consider the supports of the limit measures in Lemmas 1.7 and 1.9. For this, we will

use the properties of operators F in Theorems 1.1-1.4. We remind that if X a separable metric space,

and P is a probability measure on (X,B(X)), then a minimal closed set SP such that P (SP ) = 1 is

called the support of the measure P .

Lemma 1.10. The support of the measure Pζ,h is the set

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Proof. In the case of h of type 1, the proof of the lemma is given in [33], Lemma 6.5.5. In the case

of h of type 2, we repeat the arguments of h of type 1 because the random elements ζ(s, ω), ω ∈ Ω,

and ζ(s, ωh), ωh ∈ Ωh, have the same form. Moreover, by a di�erent method, the lemma for h of

type 2 is proved in [1], Theorem 5.3.2.

Lemma 1.11. The support of the measure Pζ,h,V is the set

SV = {g ∈ H(DV ) : g(s) 6= 0 or g(s) ≡ 0}.

Proof of the lemma completely coincides with that of Lemma 1.10.

Lemma 1.12. Suppose that the operator F satis�es the hypotheses of Theorem 1.1. Then the

support of the measure Pζ,hF
−1 is the whole of H(D).

Proof. Let g be an arbitrary element of H(D), and G be any open neighbourhood of g. Since the

operator F is continuous, the set F−1G is open as well. Moreover, by the hypothesis of Theorem 1.1,

the set (F−1G)
⋂
S is non-empty. Therefore, there exists an element g1 ∈ S which is also an element

of the set F−1G. Thus, F−1G is an open neighbourhood of the element g1. However, the support of

the measure Pζ,h consists of all elements g1 such that, for every open neighbourhood G1 of g1, the

inequality Pζ,h(G1) > 0 is satis�ed. Therefore, by Lemma 1.10,

Pζ,hF
−1(G) = Pζ,h(F−1G) > 0.
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Since g and G are arbitrary, this proves the lemma.

For the investigation of supports of other limit measures, we will apply the Mergelyan theorem on

the appriximation of analytic functions by polynomials. We state this theorem as a separate lemma.

Lemma 1.13. Let K ⊂ C be a compact subset with connected complement, and let f(s) be a

continuous function on K which is analytic in the interior of K. Then, for every ε > 0, there exists

a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

Proof of the lemma is given in [43], see also [63].

Lemma 1.14. Suppose that the operator F satis�es the hypotheses of Theorem 1.2. Then the

support of the measure Pζ,hF
−1 is the whole of H(D).

Proof. We will prove that the operator F satis�es the hypotheses of Theorem 1.1. Then the lemma

will follow from Lemma 1.12.

Let ε > 0 be an arbitrary �xed number. We �x l0 ∈ N such that∑
l>l0

2−l <
ε

2
. (1.5)

Let {Kl : l ∈ N} be a sequence of compact subsets of the strip D which occurs in the de�nition of the

metric % in the space H(D). Suppose that, for f, g ∈ H(D),

sup
s∈Kl0

|f(s)− g(s)| < ε

2
.

Then, in view of the relation Kl ⊂ Kl+1, l ∈ N, we �nd that

sup
s∈Kl

|f(s)− g(s)| < ε

2
.

for all l = l, . . . , l0 − 1. Thus, in virtue of (1.5),

%(f, g) =

∞∑
l=1

2−l
sup
s∈Kl

|f(s)− g(s)|

1 + sup
s∈Kl

|f(s)− g(s)|
≤

≤
l0∑
l=1

2−l
sup
s∈Kl

|f(s)− g(s)|

1 + sup
s∈Kl

|f(s)− g(s)|
+
∑
l>l0

2−l <
ε

2
+
ε

2
= ε.

This shows that, in the space H(D), the function g approximates a function f with a given accuracy

if g approximates f with a suitable accuracy uniformly on Kl for su�ciently large l. Clearly, the sets

Kl can be chosen to be with connected complements. For example, we can take closed rectangles.
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Therefore, in the space H(D), we can limit ourselves by uniform approximation on compact subsets

with connected complements.

Let g be an arbitrary element of H(D), and G be an open neighbourhood of g. Then the continuity

of F implies that the set F−1G is also open. We will prove that the set (F−1G)
⋂
S is non-empty.

Let K ⊂ D be a compact subset with connected complement. Then, by Lemma 1.13, there exists

a polynomial p = p(s) which approximates the function g uniformly on K with desired accuracy.

Therefore, since g ∈ G, we may �nd a polynomial p(s) such that p ∈ G, too. By the hypothesis of

Theorem 1.2, we have that (F−1{p})
⋂
S 6= ∅. Thus, (F−1G)

⋂
S 6= ∅, and the lemma follows from

Lemma 1.12.

Lemma 1.15. Suppose that the operator F satis�es the hypotheses of Theorem 1.3. Then the

support of the measure Pζ,h,V F
−1 is the whole of H(DV ).

Proof. Let g be an arbitrary element of H(DV ), and G be any open neighbourhood of g. Then

the set F−1G is open as well. Repeating the proof of Lemma 1.14, we obtain that (F−1G)
⋂
SV 6= ∅.

Therefore, there exists an element g1 ∈ SV which also belongs to F−1G. Thus, F−1G is an open

neighbourhood of element g1. Therefore, by Lemma 1.11, Pζ,h,V (F−1G) > 0. Hence,

Pζ,h,V F
−1(G) = Pζ,h,V (F−1G) > 0.

Since g and G are arbitrary, this proves the lemma.

Lemma 1.16. Suppose that the operator F satis�es the hypotheses of Theorem 1.4. Then the

support of the measure Pζ,hF
−1 contains the closure of the set HF ;a1,...,ar (D).

Proof. By the hypotheses for the operator F , we have that, for each element f ∈ HF ;a1,...,ar (D),

there exists an element g ∈ S such that F (g) = f . Therefore, for every open neighbourhood G of f ,

in view of Lemma 1.10,

Pζ,hF
−1(G) = Pζ,h(F−1G) > 0.

This shows that f is an element of the support of the measure Pζ,hF−1. Hence, it follows that the set

HF ;a1,...,ar (D) is a subset of the support of Pζ,hF−1. Since the support is a closed set, we have that

the closure of the set HF ;a1,...,ar (D) belongs to the support of Pζ,hF−1.

1.4. Proof of universality theorems

Proof of Theorems 1-4 uses the corresponding limit theorems, explicit forms of supports of the limit

measures in them, as well as Lemma 1.13 (the Mergelyan theorem).
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Additionally, we remind an equivalent of the weak convergence of probability measures in terms

of open sets.

Lemma 1.17. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then Pn converges

weakly to P as n→∞ if and only if, for every open set G ⊂ X,

lim inf
n→∞

Pn(G) ≥ P (G).

The lemma is a part of Theorem 2.1 from [2].

Proof of Theorem 1.1. By Lemma 1.13, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (1.6)

De�ne the set

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Since the set G is open, Lemmas 1.7 and 1.17 imply the inequality

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : F (ζ(s+ ikh)) ∈ G} ≥ Pζ,hF−1(G). (1.7)

In virtue of Lemma 1.12, the polynomial p(s) is an element of the support of the measure Pζ,hF−1.

Since the set G is an open neighbourhood of the polynomial p(s), the properties of the support imply

the inequality Pζ,hF−1(G) > 0. This together with (1.7) shows that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− p(s)| < ε

2

}
> 0. (1.8)

It remains to replace the polynomial p(s) by the function f(s). Taking into account (1.6), for k

satisfying

sup
s∈K
|F (s+ ikh)− p(s)| < ε

2
,

we �nd that

sup
s∈K
|F (s+ ikh)− f(s)| ≤ sup

s∈K
|F (s+ ikh)− p(s)|+ sup

s∈K
|f(s)− p(s)| < ε.

Therefore,{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− p(s)| < ε

2

}
⊂
{

0 ≤ k ≤ N : sup
s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
.

This and (1.8) shows that

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε} > 0.
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The theorem is proved.

Proof of Theorem 1.2. We repeat the arguments of the proof of Theorem 1.1, and, in place of

Lemma 1.12, we apply Lemma 1.14.

Proof of Theorem 1.3. We argue with obvious changes similarly to the proof of Theorem 1.1, and,

in place of Lemmas 1.7 and 1.12, we use Lemmas 1.9 and 1.15.

Proof of Theorem 1.4. We begin with the case r = 1. Using Lemma 1.13, we �x a polynomial p(s)

such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (1.9)

Since f(s) 6= a1 on K, we have that p(s) 6= a1 on K as well if ε is small enough. Thus, we can de�ne

a continuous branch of log(p(s)− a1) which will be an analytic function in the interior of K. Again,

in view if Lemma 1.13, there exists a polynomial p1(s) such that

sup
s∈K
|p(s)− a1 − ep1(s)| < ε

4
. (1.10)

For brevity, we put ha1(s) = ep1(s) + a1. Then we have that ha1(s) ∈ H(D), and, obviously, ha1(s) 6=

a1. Therefore, by Lemma 1.16, ha1(s) is an element of the support of the measure Pζ,hF−1. Moreover,

the inequalities (1.9) and (1.10) imply the inequality

sup
s∈K
|f(s)− ha1(s)| ≤ sup

s∈K
|f(s)− p(s)|+ sup

s∈K
|p(s)− ha1(s)| < ε

4
+
ε

4
=
ε

2
. (1.11)

Let de�ne the set

G1 =

{
g ∈ H(D) : sup

s∈K
|ha1(s)− g(s)| < ε

2

}
.

Then G1 an open neighbourhood of the element ha1(s) of the support of Pζ,hF−1. Therefore,

Pζ,hF
−1(G) > 0, thus, by Lemmas 1.7 and 1.17,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− ha1(s)| < ε

2

}
> Pζ,hF

−1(G) > 0.

This and (1.11) give the assertion of the theorem.

Now let r ≥ 2. De�ne the set

G2 =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Since f(s) ∈ HF :a1,...,ar (D), Lemma 1.16 shows that f(s) is an element of the support of the measure

Pζ,hF
−1. Since G2 is an open set, hence we have that Pζ,hF−1(G) > 0. Therefore, Lemmas 1.7

and 1.17 given the inequality

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
> Pζ,hF

−1(G) > 0.

The theorem is proved.
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Chapter 2

Discrete universality theorems for

composite functions

of the Hurwitz zeta-function

Let α, 0 ≤ α ≤ 1, be a �xed parameter. We recall that the Hurwitz zeta-function ζ(s, α) is de�ned,

for σ > 1, by the Dirichlet series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and can be analytically continued to the whole complex plane, except for a simple pole at the point

s = 1 with residue 1.

This chapter is devoted to the discrete universality of the functions F (ζ(s, α)) for some classes of

operators F : H(D)→ H(D). It is easy to give an example of such operators. Suppose that F (g) = eg

for g ∈ H(D), K ∈ K, f(s) ∈ H0(K), and h > 0 is as in Theorem F. Then we can de�ne a continuous

branch of the function log f(s) on K, which will be analytic in the interior of K. Suppose that k ∈ N0

satis�es the inequality

sup
s∈K
|ζ(s+ ikh, α)− log f(s)| < ε

eMK
, (2.1)

where MK = max

(
sup
s∈K
|f(s)|, 1

)
. Using the inequality

|es − 1| ≤ |s|e|s|

which is valid for all s ∈ C, we obtain that, for k ∈ N0 satisfying (2.1) with 0 < ε < 1,

sup
s∈K
|eζ(s+ikh,α) − f(s)| = sup

s∈K
|f(s)||eζ(s+ikh,α)−log f(s) − 1| ≤

39



≤ sup
s∈K
|f(s)||ζ(s+ ikh, α)− log f(s)|e|ζ(s+ikh,α)−log f(s)| < ε. (2.2)

However, by Theorem F, the set of m ∈ N0 satisfying (2.1) has a positive lower density. Therefore, in

view of (2.2), we obtain that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K

∣∣∣eζ(s+ikh,α) − f(s)
∣∣∣ < ε

}
> 0.

The later example shows that the composite functions F (ζ(s, α) can preserve the discrete univer-

sality property for the Hurwitz zeta-function. In this chapter, we describe some classes of operators

F for which any analytic function can be approximated by discrete shifts F (ζ(s + ikh, α)). In other

words, we give generalizations of the results of Chapter 1 for the function ζ(s, α).

2.1. Lipschitz class

For a su�ciently wide class of operators F : H(D) → H(D), the discrete universality of F (ζ(s, α))

can be deduced directly from Theorem F. We say that the operator F : H(D) → H(D) belongs to

the class Lip(β), β > 0, if the following hypotheses are satis�ed:

1◦ for each polynomial p = p(s), there exists an element g ∈ F−1{p} ⊂ H(D);

2◦ for every set K ∈ K, there exists a positive constant c and a set K1 ∈ K such that

sup
s∈K
|F (g1(s))− F (g2(s))| ≤ c sup

s∈K1

|g1(s)− g2(s)|β

for all g1, g2 ∈ H(D).

We observe that hypotheses 2◦ of the class Lip(β) is similar to the classical Lipschitz condition.

Theorem 2.1. Suppose that the numbers α and h, the set K and the function f(s) are as in

Theorem F, and that F ∈ Lip(β). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε

}
> 0.

It is easy to see that the operator F : H(D)→ H(D) given by the formula F (g) = g′, g ∈ H(D),

belongs to the class Lip(1). Obviously, each polynomial has a preimage in H(D). Therefore, it remains

to check hypothesis 2◦ of the class Lip(β).

Let K1 and Γ be the same as in Chapter 1, page 24. Then, by the Cauchy integral formula, we

have that for g1, g2 ∈ H(D) and s ∈ K,

F (g1(s))− F (g2(s)) =
1

2πi

∫
Γ

g1(z)− g2(z)

(z − s)2
dz.
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Hence,

sup
s∈K
|F (g1(s))− F (g2(s))| ≤ |L|

2πδ2
sup
s∈K1

|g1(s)− g2(s)| = c sup
s∈K1

|g1(s)− g2(s)|,

where c = |L|
2πδ2 , and the quantities |L| and δ are the same as in Chapter 1, page 24. Thus, hypothesis

2◦ of the class Lip(1) is also satis�ed, and we have that F ∈ Lip(1).

Proof of Theorem 2.1. By Lemma 1.13, there exists a polynomial p = p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (2.3)

Hypothesis 1◦ of the class Lip(β) implies the existence of g(s) ∈ F−1{p} ⊂ H(D). Let k ∈ N0 satisfy

the inequality

sup
s∈K1

|ζ(s+ ikh, α)− g(s)| < c−
1
β

(ε
2

) 1
β

, (2.4)

where K1 and c are from hypothesis 2◦ of the class Lip(β). Then, in view of hypothesis 2◦, for k

satisfying (2.4),

sup
s∈K
|F (ζ(s+ ikh, α))− p(s)| = sup

s∈K
|F (ζ(s+ ikh, α))− F (g(s))| ≤

≤ c sup
s∈K1

|ζ(s+ ikh, α)− g(s)|β < c

(
c−

1
β
ε

1
β

2

)β
=
ε

2
. (2.5)

However, by Theorem F,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ζ(s+ ikh, α)− g(s)| < c−
1
β

(ε
2

) 1
β

}
> 0.

Thus, by (2.5),

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− p(s)| < ε

2

}
> 0. (2.6)

From (2.3), we have that

sup
s∈K
|F (ζ(s+ ikh, α))− f(s)| ≤ sup

s∈K
|F (ζ(s+ ikh, α))− p(s)|+ sup

s∈K
|f(s)− p(s)| < ε

2
+
ε

2
= ε.

This shows that{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− p(s)| < ε

2

}
⊂
{

0 ≤ k ≤ N : sup
s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε

}
.

Therefore, in view of (2.6), we �nd that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε

}
> 0.

The theorem is proved.
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2.2. Other classes of operators F

In this section, we state universality theorems for the composite functions F (ζ(s, α)) for some other

classes of operators F : H(D → H(D)). They are analogues of the corresponding universality theorems

of Chapter 1 for the Riemann zeta-function. However, we do not consider the space H(DV ) because

the shifts ζ(s+ ikh, α) approximate functions from the class H(K), K ∈ K, and we do not need the

non-vanishing of preimages F−1{p} for polynomials p = p(s).

Theorem 2.2. Suppose that the numbers α and h, the set K and the function f(s) are as in

Theorem F. Let F : H(D)→ H(D) be a continuous operator such that, for every open set G ⊂ H(H),

the set F−1G is non-empty. Then the assertion of Theorem 2.1 is true.

The hypothesis that F−1G 6= ∅ for every open set G ⊂ H(D) is not easily checked. Obviously, it

is satis�ed in the case F (H(D)) = H(D). On the other hand, this hypothesis is quite general, and we

can consider its special cases. The next theorem is an example of such a type.

Theorem 2.3. Suppose that F : H(D) → H(D) is a continuous operator such that, for each

polynomial p = p(s), the set F−1{p} is non-empty. Then with α, h,K and f(s) as in Theorem F the

assertion of Theorem 2.1 is true.

The example

F (g) = c1g
′ + · · ·+ crg

(r), c1, . . . , cr ∈ C \ {0},

of operators F : H(D) → H(D) satis�es the hypothesis F−1{p} 6= ∅ for each polynomial p = p(s).

Indeed, always there exists a polynomial q = q(s) such that F (q) = p, and this was proved in the

example of Theorem 1.3. Unfortunately, other non-trivial examples of operators F , which are not

related to derivatives, are not numerous. Obvious, one of examples is an integral operator

F (g) =

s∫
s0

g(z)dz, g ∈ H(D),

with s0 ∈ D.

Now we state an analogue of Theorem 1.4. For this, we de�ne the subset of analytic functions on

H(D)

Ha1,...,ar (D) = {g ∈ H(D) : (g(s)− aj)−1 ∈ H(D), j = 1, . . . , r}

with di�erent complex numbers a1, . . . , ar. Clearly, the set Ha1,...,ar (D) consists of analytic functions

on D which do not take the values a1, . . . , ar. In the next theorem, we approximate analytic functions

from the set Ha1,...,ar (D) ⊂ F (H(D)) by shifts F (ζ(s + ikh, α)). Clearly, Ha1,...,ar (D) ⊂ H(D),
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therefore, such an universality is weaker than that above theorem, however, it includes the universality

of some elementary functions.

Theorem 2.4. Suppose that the numbers α and h are as in Theorem F, and that F : H(D) →

H(D) is a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D). For r = 1, let K ∈ K, and let

f(s) 6= a1 be a continuous function on K which is analytic in the interior of K. For r ≥ 2, let K ⊂ D

be an arbitrary compact subset, and f(s) ∈ Ha1,...,ar (D). Then the assertion of Theorem 2.1 is true.

We note that, in the case r = 1, the functions f(s) ∈ Ha1(D) also can be approximated by shifts

F (ζ(s+ ikh, α)), however, the requirement, of the theorem is weaker than that f(s) ∈ Ha1(D).

It is easy to check that the operator F : H(D)→ H(D) given by the formula

F (g) = gN , g ∈ H(D), N ∈ N \ {1},

satis�es the hypotheses of Theorem 2.4. Let gn → g in the space H(D). Then, for every compact

subset K ⊂ D,

sup
s∈K
|gn(s)− g(s)| −−−−→

n→∞
0.

Hence,

sup
s∈K
|F (gn(s))− F (g(s))| = sup

s∈K
|gNn (s)− gN (s) = sup

s∈K
|gn(s)− g(s)|||gN−1

n (s) + · · ·+ gN−1(s)| −−−−→
n→∞

0.

Therefore, the operator F is continuous.

Now let f(s) ∈ H0(D). Then the equation

gN = f

has a solution g = N
√
f ∈ H(D). Therefore, F (H(D)) ⊃ H0(D). Thus, by Theorem 2.4, we have that

if K ∈ K, and f(s) 6= 0 is a continuous function on K which is analytic in the interior of K, then, for

every ε > 0 and N ∈ Nr {1}

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζN (s+ ikh, α)− f(s)| < ε

}
> 0.

The case N = 1 corresponds Theorem F. In this case, f(s) is an arbitrary function from the class

H(K).

Theorem 2.4 also implies the universality of the functions F (ζ(s, α)) with the operators F :

H(D)→ H(D) given by the formulae

F (g) = sin g, F (g) = cos g, F (g) = sinh(g), F (g) = cosh(g).
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We check the hypotheses of Theorem 2.4 for the operator de�ned by the hyperbolic cosine. Suppose

that f(s) ∈ H−1,1(D). Consider the equation

cosh(g) =
eg + e−g

2
= f.

Putting y = eg gives the equation

y2 − 2fy + 1 = 0.

Hence,

y = f ±
√
f2 − 1,

and

g = log(f ±
√
f2 − 1) ∈ H(D).

Therefore, F (H(D)) ⊃ H−1,1(D), and we have the universality of cosh(ζ(s, α)).

The last theorem of Chapter 2 extends the approximation of analytic function from the set

F (H(D)) for all continuous operator F : H(D)→ H(D) by shifts F (ζ(s+ ikh, α)).

Theorem 2.5. Suppose that the numbers α and h are as in Theorem F, and that F : H(D) →

H(D) is an arbitrary continuous operator. Let K ⊂ D be a compact subset, and f(s) ∈ F (H(D)).

Then the assertion of Theorem 2.1 is true.

Theorem 2.5 is rather general, however, from the other hand, it is di�cult to describe the set

F (H(D)). Therefore, Theorem 2.4 is more convenient for the investigation of concrete universal

functions.

2.3. Lemmas

For proving Theorem 2.2-2.5, we will apply as, in Chapter 1, a probabilistic approach based on limit

theorems on the weak convergence of probability measures in the space H(D).

Additionally to the torus Ω de�ned in Section 1.2, we de�ne one more in�nite-dimensional torus

Ω1 =

∞∏
m=0

γm,

where γm = γ for all nonnegative integers m. By the Tikhonov theorem, the torus Ω1 with the

product topology and pointwise multiplication is a compact topological Abelian group. Therefore, on

(Ω1,B(Ω1)), the probability Haar measure m1H can be de�ned, and we have the probability space

(Ω1,B(Ω1),m1H). We denote by ω1(m) the projection of ω1 ∈ Ω1 to the coordinate space γm, m ∈ N0.
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We recall that ω(p) is the projection of ω ∈ Ω to the coordinate space γp, p ∈ P. We extend the

function ω(p) to the set N by the formula

ω(m) =
∏
pr|m
pr-m

ωr(p), m ∈ N.

Suppose that α is a rational number 6= 1, 1
2 . Thus, α = a

q with some a, q ∈ N, 1 ≤ a ≤ q, q ≥ 3,

(a, q) = 1. Then, on the probability space (Ω,B(Ω),mH), we de�ne the H(D)-valued random element

ζ(s, ω, α) by the formula

ζ(s, ω, α) = ω(q)qs
∞∑
m=1

m≡a(modq)

ω(m)

ms
,

where ω(q) means the complex conjugate of ω(q), and denote by Pζ the distribution of ζ(s, ω, α), i.e.,

Pζ(A) = mH(ω ∈ Ω : ζ(s, ω, α) ∈ A), A ∈ B(H(D)).

If α is transcendental, then, on the probability space (Ω1,B(Ω1),m1H), we de�ne the H(D)-valued

random element ζ(s, ω1, α) by the formula

ζ(s, ω1, α) =

∞∑
m=0

ω1(m)

(m+ α)s
,

and denote by P1ζ its distribution, i.e.,

P1ζ(A) = m1H(ω1 ∈ Ω1 : ζ(s, ω1, α) ∈ A), A ∈ B(H(D)).

Lemma 2.6. Suppose that α is a rational number 6= 1, 1
2 , and that h > 0 is an arbitrary number.

Then

PN (A)
def
=

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α) ∈ A}, A ∈ B(H(D),

converges weakly to Pζ as N → ∞. If α is transcendental and h > 0 is such that exp
{

2π
h

}
is a

rational number, then PN converges weakly to P1ζ as N →∞.

For rational α, the lemma was obtained in [1], and, for transcendental α, the lemma is given in

[34].

Now we state a limit theorem for composite functions.

Lemma 2.7. Suppose that F : H(D)→ H(D) is a continuous operator. If α is a rational number

6= 1, 1
2 and h > 0 is an arbitrary number, then

PN,F (A)
def
=

1

N + 1
#{0 ≤ k ≤ N : F (ζ(s+ ikh, α)) ∈ A}, A ∈ B(H(D),
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converges weakly to PζF
−1 as N → ∞. If α is transcendental and h > 0 is such that exp

{
2π
h

}
is a

rational number, then PN,F converges weakly to P1ζF
−1 as N →∞.

Proof. Since, for all A ∈ B(H(D)),

PN,F (A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α) ∈ F−1A} = PN (F−1A),

we have that PN,F = PNF
−1. Therefore, the lemma is a consequence of Lemmas 2.6 and 1.6.

We also need the explicit form of the support of the limit measure in Lemma 2.7. Since the space

H(D) is separable, we know that the support of a measure P on (H(D),B(H(D))) is a minimal closed

set SP ⊂ H(D) such that P (SP ) = 1. The set SP consists of all g ∈ H(D) such that, for every open

neighbourhood G of g, P (G) > 0. We will use the following assertion.

Lemma 2.8. The supports of the measure Pζ and P1ζ both are the whole of H(D).

Proof of the lemma for Pζ is given in [1], and, for the measure P1ζ , can be found in [39].

Lemma 2.9. Let F : H(D) → H(D) be a continuous operator such that, for every open set

G ⊂ H(D), the set F−1G is non-empty. Then the supports of the measures PζF
−1 and P1ζF

−1 are

both the whole of H(D).

Proof. Let g be an arbitrary element of H(D), and G be any open neighbourhood of g. Since F is

continuous, the set F−1G is also open, and, moreover, by the assumptions of the lemma, non-empty.

Thus, F−1G is an open neighbourhood of a certain element g1 ∈ H(D). Therefore, by Lemma 2.8,

Pζ(F
−1G) > 0 and P1ζ(F

−1G) > 0.

Hence,

PζF
−1(G) = Pζ(F

−1G) > 0

and

P1ζF
−1(G) = P1ζ(F

−1G) > 0.

Since g and G are arbitrary objects, this proves the lemma.

Lemma 2.10. Let F : H(D) → H(D) be a continuous operator such that, for every polynomial

p = p(s), the set F−1{p} is non-empty. Then the supports of the measures PζF
−1 and P1ζF

−1 are

both the whole of H(D).

Proof. We have seen in the proof of Lemma 1.14 that the approximation in the space H(D) reduces

to that on compact subsets with connected complements. Therefore, we can use the Mergelyan theorem

(Lemma 1.13).
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Let g ∈ H(D) be an arbitrary element, and G be any open neighbourhood of g. If K ∈ K, then,

in view of Lemma 1.13, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K
|g(s)− p(s)| < ε.

Thus, the polynomial p(s) ∈ G if the number ε is small enough. Since, by the hypothesis of the

lemma, the set F−1{p} is non-empty, the set F−1G is also non-empty. Therefore, the lemma follows

from Lemma 2.9.

Lemma 2.11. Suppose that F : H(D) → H(D) is a continuous operator. Then the supports of

the measures PζF
−1 and P1ζF

−1 both are the closure of F (H(D)).

Proof. Let g be an arbitrary element of F (H(D)), and G be any open neighbourhood of g. Then

there exists g1 ∈ H(D) such that F (g1) = g. Therefore, the open set F−1G is non-empty, and

Lemma 2.8 gives

PζF
−1(G) = Pζ(F

−1G) > 0

and

P1ζF
−1(G) = P1ζ(F

−1G) > 0.

Moreover,

PζF
−1(F (H(D))) = Pζ(H(D)) = 1

and

P1ζF
−1(F (H(D))) = P1ζ(H(D)) = 1.

Since the support is a closed set, the last four relations show that the supports of the measures PζF−1

and P1ζF
−1 both are the closure of F (H(D)).

Lemma 2.12. Let F : H(D)→ H(D) be a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D).

Then the supports of the measures PζF
−1 and P1ζF

−1 both contain the closure of the set Ha1,...,ar (D).

Proof. By Lemma 2.11, both these supports are the closure of F (H(D)). Since F (H(D)) ⊃

Ha1,...,ar (D), we have that the closure of F (H(D)) contains the closure of the set Ha1,...,ar (D). There-

fore, the supports of considered measures contain the closure of the set Ha1,...,ar (D).
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2.4. Proof of universality theorems

Proof of Theorem 2.2. By Lemma 1.13, there exists a polynomial p = p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (2.7)

De�ne

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Then G is an neighbourhood of the polynomial p(s). In view of Lemma 2.9, the polynomial p(s) is an

element of the supports of the measures PζF−1 and P1ζF
−1. Therefore,

PζF
−1(G) > 0 and P1ζF

−1(G) > 0.

This and Lemmas 2.7 and 1.17 imply the inequalities

lim inf
N→∞

1

N + 1
# {0 ≤ k ≤ N : F (ζ(s+ ikh, α)) ∈ G} ≥ PζF−1(G) > 0

for rational α, and

lim inf
N→∞

1

N + 1
# {0 ≤ k ≤ N : F (ζ(s+ ikh, α)) ∈ G} ≥ P1ζF

−1(G) > 0

for transcendental α. Hence, by the de�nition of G,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζN (s+ ikh, α))− p(s)| < ε

2

}
> 0

for rational and transcendental α. Combining this with (2.7) gives the assertion of the theorem.

Proof of Theorem 2.3. We repeat the proof of Theorem 2.2 with application of Lemma 2.10 instead

of Lemma 2.9.

Proof of Theorem 2.4. We separate two cases, r = 1 and r ≥ 2.

Let r = 1. Then, by Lemma 1.13, we �nd a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

4
. (2.8)

Since f(s) 6= a1 on K, we have by (2.8) that p(s) 6= a1 on K if ε is small enough. Therefore, there

exists a continuous branch of log(p(s) − a1) on K, which is analytic in the interior of K. Applying

Lemma 1.13 once more, we �nd a polynomial q(s) satisfying

sup
s∈K
|p(s)− a1 − eq(s)| <

ε

4
. (2.9)

We set g1(s) = eq(s) + a1. Then g1(s) ∈ H(D), and g1(s) 6= a1 on D. Thus, g1(s) ∈ Ha1(D).

Therefore, by the assumption of the theorem that F (H(D)) ⊃ Ha1(D) and Lemma 2.12, we have that

g1(s) is an element of the supports of the measures PζF−1 and P1ζF
−1. De�ne

G1 =

{
g ∈ H(D) : sup

s∈K
|g(s)− g1(s)| < ε

2

}
.

48



Then G1 is an open neighbourhood of the function g1(s), thus, by the above remark, PζF−1(G1) > 0

and P1ζF
−1(G1,) > 0. Therefore, Lemmas 2.7 and 1.7, and the de�nition of the set G1, show that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− g1(s)| < ε

2

}
≥ PζF−1(G1) > 0 (2.10)

for rational α, and

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− g1(s)| < ε

2

}
≥ P1ζF

−1(G1) > 0 (2.11)

for transcendental α. Inequalities (2.8) and (2.9) imply

sup
s∈K
|f(s)− g1(s)| < ε

2
.

This shows that, for k ∈ N0 satisfying (2.10) or (2.11),

sup
s∈K
|F (ζ(s+ ikh))− f(s)| < ε.

This together with (2.10) and (2.11) proves the theorem.

Now let r ≥ 2. De�ne

G2 =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

By the hypothesis of the theorem and Lemma 2.12, the function f(s) is an element of the supports of

the measures PζF−1 and P1ζF
−1. Thus, the set G2 is an open neighbourhood of an element of the

supports of the measures PζF−1 and P1ζF
−1, and hence,

PζF
−1(G2) > 0

and

P1ζF
−1(G2) > 0.

Therefore, using Lemmas 2.7 and 1.7 again, we obtain, by the de�nition of G2, that

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε

}
> 0.

The theorem is proved.

Proof of Theorem 2.5. We use Lemma 2.11 and apply the same arguments as in the proof of the

case r ≥ 2 of Theorem 2.4.
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Chapter 3

Zeros of the functions ζ(s) and ζ(s, α)

in the critical strip

In this chapter, we present a certain information on the number of zeros of the functions F (ζ(s+ ikh))

and F (ζ(s + ikh, α)), k ∈ N0, h > 0, for some classes of operators F : H(D) → H(D). For this,

we will apply universality theorems of Chapters 1 and 2. Moreover, we will use the classical Rouché

theorem.

3.1. Zeros of functions related to ζ(s)

Universality theorems for the Riemann zeta-function ζ(s), Theorems B and C, do not give any infor-

mation on zeros of ζ(s) because approximated functions in these theorems belong to the class H0(K).

The picture changes when composite functions F (ζ(s)) are considered. Then the shifts F (ζ(s+ iτ)) or

F (ζ(s+ikh)) approximate analytic functions from the classH(K), and we can derive some information

on zeros of these shifts. More precisely, this is described in the next theorem.

Theorem 3.1. Suppose that the operator F is as in one of Theorems 1.1-1.3. Then, for arbitrary

σ1 and σ2,
1
2 < σ1 < σ2 < 1, there exists a constant c = c(σ1, σ2, F, h) such that, for su�ciently large

N ∈ N, the function F (ζ(s+ ikh)) has a zero in the disc

|s− σ̂| ≤ σ2 − σ1

2
, , σ̂ =

σ1 + σ2

2
,

for more than cN numbers k, 0 ≤ k ≤ N.

Before the proof of Theorem 3.1, we remind the Rouché theorem.
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Lemma 3.2. Let G be a region on the complex plane, K be a compact subset of G, and f(s) and

g(s) be analytic functions in G such that

|f(s)− g(s)| < |f(s)|

for every point s in the boundary of K. Then the functions f(s) and g(s) have the same number of

zeros in the interior of the set K, taking into account multiplicities.

Proof of the lemma can be found, for example, in [55].

Proof of Theorem 3.1. De�ne

σ0 = max

(∣∣∣∣σ1 −
3

4

∣∣∣∣ , ∣∣∣∣σ2 −
3

4

∣∣∣∣) ,
f(s) = s − σ̂ and 0 < ε < σ2−σ1

20 . Moreover, let K =
{
s ∈ C :

∣∣s− 3
4

∣∣ ≤ σ0

}
. Then, clearly, K ∈ K

and f(s) ∈ H(K). Then, by Theorems 1.1-1.3 we have that

lim inf
N→∞

1

N + 1
#

0 ≤ k ≤ N : sup
|s− 3

4 |≤σ0

|F (ζ(s+ ikh))− f(s)| < ε

 > 0.

From this, it follows that there exists a constant c = c(σ1, σ2, F, h) > 0 such that, for su�ciently large

N ,

1

N + 1
#

0 ≤ k ≤ N : sup
|s− 3

4 |≤σ0

|F (ζ(s+ ikh))− f(s)| < ε

 > c. (3.1)

The circle

|s− σ̂| = σ2 − σ1

2
(3.2)

lies in the disc ∣∣∣∣s− 3

4

∣∣∣∣ ≤ σ0. (3.3)

Indeed, suppose that s lies on the circle (3.2). Then∣∣∣∣s− 3

4

∣∣∣∣ =

∣∣∣∣(s− σ̂) +

(
σ̂ − 3

4

)∣∣∣∣ ≤ |s− σ̂|+ ∣∣∣∣σ̂ − 3

4

∣∣∣∣ =
σ2 − σ1

2
+

∣∣∣∣σ̂ − 3

4

∣∣∣∣ . (3.4)

If σ̂ ≥ 3
4 , then, in view of (3.4), we have that∣∣∣∣s− 3

4

∣∣∣∣ ≤ σ2 − σ1

2
+
σ1 + σ2

2
− 3

4
= σ2 −

3

4
≤ σ0.

If σ̂ < 3
4 , then σ1 <

3
4 , and∣∣∣∣s− 3

4

∣∣∣∣ ≤ σ2 − σ1

2
+

3

4
− σ1 + σ2

2
=

3

4
− σ1 ≤ σ0.
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Thus, we have that in both the cases, s lies in the disc (3.3). Therefore, for k ∈ N0 satisfying (3.1),

we obtain that

max
|s−σ̂|=σ2−σ1

2

|F (ζ(s+ ikh))− (s− σ̂)| < σ2 − σ1

20
. (3.5)

This shows that, in the disc

|s− σ̂| ≤ σ2 − σ1

2
, (3.6)

the functions f(s) = s− σ̂ and g(s) = F (ζ(s+ ikh)) satisfy the hypotheses of Lemma 3.2. However,

the function s− σ̂ has precisely one zero s = σ̂ in that disc. Therefore, the function F (ζ(s+ ikh)) also

has one zero in the disc (3.5). Since, in view of (3.1), the number of such k, 0 ≤ k ≤ N , satisfying

(3.5), is larger than cN , this proves the theorem.

3.2. Zeros of the Hurwitz zeta-function

In this section, we obtain an analogue of Theorem 3.1 for the Hurwitz zeta-function ζ(s, α). For this,

we apply a discrete universality theorem (Theorem F) for ζ(s, α), and we have the following result.

We preserve the notation of Section 3.1.

Theorem 3.3. Suppose that α is transcendental or rational number 6= 1, 1
2 . In the case of rational

α, let h > 0 be arbitrary �xed number, while in the case of transcendental α, let h > 0 be such

that exp
{

2π
h

}
is a rational number. Then, for all σ1, σ2,

1
2 < σ1 < σ2 < 1, there exists a constant

c = c(σ1, σ2, α, h) > 0 such that, for su�ciently large N ∈ N, the function ζ(s+ ikh, α) has a zero in

the disc

|s− σ̂| ≤ σ2 − σ1

2

for more than cN numbers k, 0 ≤ k ≤ N .

Proof. We take f(s) = s− σ̂, K =
{
s ∈ C :

∣∣s− 3
4

∣∣ ≤ σ0

}
and 0 < ε < σ2−σ1

20 in Theorem F. Then,

by Theorem F, we have that

lim inf
N→∞

1

N + 1
#

0 ≤ k ≤ N : sup
|s− 3

4 |≤σ0

|ζ(s+ ikh, α)− f(s)| < ε

 > 0.

Therefore, there exists a positive constant c = c(σ1, σ2, α, h) such that, for su�ciently large N ,

#

0 ≤ k ≤ N : sup
|s− 3

4 |≤σ0

|ζ(s+ ikh, α)− f(s)| < ε

 > cN. (3.7)
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Since the circle |s− σ̂| = σ2−σ1

2 lies in the disc
∣∣s− 3

4

∣∣ ≤ σ0, we have that, for k ∈ N satisfying (3.7),

the inequality

max
|s−σ̂|=σ2−σ1

2

|ζ(s+ ikh, α)− (s− σ̂)| < σ2 − σ1

20
.

is satis�ed. Thus, the functions s − σ̂ and ζ(s + ikh, α) on the disc K satisfy the hypotheses of

Lemma 3.2. Hence, repeating the arguments of the proof of Theorem 3.1, we obtain the assertion of

the theorem.

3.3. Zeros of functions related to ζ(s, α)

This section is devoted for analogues of Theorem 3.3 for composite functions F (ζ(s, α)) with some

operators F : H(D)→ H(D).

Theorem 3.4. Suppose that the numbers α and h are as in Theorem 3.3, and that F : H(D) →

H(D) is a continuous operator such that, for every open set G ⊂ H(D), the set F−1G is non-empty,

or s− a ∈ F (H(D)) for all a ∈
(

1
2 , 1
)
. Then, for all σ1, σ2,

1
2 < σ1 < σ2 < 1, there exists a constant

c = c(σ1, σ2, α, h, F ) > 0 such that, for su�ciently large N ∈ N, the function F (ζ(s + ikh, α)) has a

zero in the disc

|s− σ̂| ≤ σ2 − σ1

2

for more than cN numbers k, 0 ≤ k ≤ N .

We give an example of an operator F : H(D)→ H(D) such that s−a ∈ F (H(D)) for all a ∈
(

1
2 , 1
)
.

Let

F (g) = gg′, g ∈ H(D).

We solve the equation

gg′ = s− a

with respect to g. We have that

1

2
(g2)′ = s− a.

Hence, we �nd that

g2 = s2 − 2as+ C

with arbitrary C ∈ C, and

g = ±(s2 − 2as+ C)
1
2 .
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If s2 − 2as+ C = 0, then

s = a±
√
a2 − C.

Therefore, there exists C0 ∈ C such that s2 − 2as + C0 6= 0 on D. Thus, there exists a function

g ∈ H(D), we can take, for example, g(s) = (s2 − 2as + C0)
1
2 , such that F (g) = s − a. Hence,

s− a ∈ F (H(D)).

Proof of Theorem 3.4. First we observe that if s − a ∈ F (H(D)), where F : H(D) → H(D) is a

continuous operator, then, for every compact subset K ⊂ D and every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− (s− a)| < ε

}
> 0. (3.8)

Really, this is partial case of Theorem 2.5 with f(s) = s− a.

Since a ∈
(

1
2 , 1
)
, we can take a = σ̂ = σ1+σ2

2 . Then an application of Theorem 2.2 and (3.8) shows

that there exists a positive constant c = c(σ1, σ2, α, h, F ) such that, for su�ciently large N ,

#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− (s− σ̂)| < σ2 − σ1

20

}
> cN. (3.9)

Moreover, we have that the functions s−σ̂ and F (ζ(s+ikh, α)), in the discK =
{
s ∈ C :

∣∣s− 3
4

∣∣ ≤ σ0

}
,

satisfy the hypotheses of Lemma 3.2. Hence, the theorem follows.

Theorem 3.5.Suppose that the numbers α and h are as in Theorem 3.3, and that F : H(D) →

H(D) is a continuous operator such that F (H(D)) ⊃ Ha1,...,ar (D), where Reaj 6∈
(
− 1

2 ,
1
2

)
, j =

1, . . . , r. Then the assertion of Theorem 3.4 is true.

Proof. Let f(s) and K be as in the proof of previous theorems of this chapter. Since Reaj 6∈(
− 1

2 ,
1
2

)
, we have that f(s) = s− σ̂ 6= aj on D, j = 1, . . . , r. Indeed, for s ∈ D,

−1

2
< Re(s− σ̂) <

1

2
,

since 1
2 < σ < 1 and 1

2 < σ̂ < 1. Therefore, we have that the function f(s) on the disc K satis�es the

hypotheses of Theorem 2.4, and the further proof runs in the same way as that of Theorem 3.3.

We consider the example F (g) = sin g. Suppose that f(s) ∈ H−1,1(D) and solve the equation

sin g =
eig − e−ig

2i
= f.

Using the notation y = eig, we arrive to the equation

y2 − 2iyf − 1 = 0.

Thus,

y = if ±
√
−f2 + 1,
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and

g = log(if ±
√
−f2 + 1).

Since f(s) ∈ H−1,1(D), the function
√
−f2 + 1 ∈ H(D), and

g = log(if +
√
−f2 + 1) ∈ H(D).

Therefore, F (H(D)) ⊃ H−1,1(D). Moreover, since a1 = −1 and a2 = 1, we have that Reaj 6∈
(
− 1

2 ,
1
2

)
,

j = 1, 2. Thus, all hypotheses of Theorem 3.5 are satis�ed for the operator F (g) = sin g, g ∈ H(D),

and, for all σ1, σ2, 1
2 < σ1 < σ2 < 1, there exists a positive constant c = c(σ1, σ2, α, h) such that, for

su�ciently large N ∈ N, the function sin(ζ(s+ ikh, α)) has a zero in the disc

|s− σ̂| ≤ σ2 − σ1

2

for more than cN numbers k, 0 ≤ k ≤ N .
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Chapter 4

Discrete universality theorems for the

Hurwitz zeta-function

The discrete universality of the Hurwitz zeta-function ζ(s, α) is described by Theorem F. However,

in that theorem, the parameter α is transcendental or rational 6= 1, 1
2 . The case of rational α is

completely solved, in this case the number h > 0 is arbitrary. In the case of transcendental α, it is

required that h > 0 must be such that the number exp
{

2π
h

}
would be rational. It remains the case of

algebraic irrational α which is an open problem. In this chapter, we extend the case of transcendental

parameter α.

4.1. Results

Let Q be the set of all rational numbers. Denote by Q+
1 the subset of Q of positive rational numbers

6= 1, and de�ne, for q ∈ Q+
1 , the set

L(α, q) = {(log(m+ α) : m ∈ N0, log q)}.

The main result of this chapter is the following theorem.

Theorem 4.1. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over the

�eld Q. Let K ∈ K and f(s) ∈ H(K). Then, for every h > 0 such that the number exp
{

2π
h

}
is

rational, and every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− f(s)| < ε

}
> 0.
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It is not di�cult to see that, for transcendental α, the set L(α, q) is linearly independent over Q.

Indeed, suppose that there exists the numbers k1, . . . , kr, k ∈ Z r {0} such that

k1 log(m1 + α) + · · ·+ kr log(mr + α) + k log q = 0.

Then

(m1 + α)k1 · · · (mr + α)krqk − 1 = 0.

This shows that the number α is a root of the polynomial

(m1 + s)k1 · · · (mr + s)krqk − 1

with integer coe�cients, and this contradicts the transcendence of α. The equality

k1 log(m1 + α) + · · ·+ kr log(mr + α) = 0

with k1, . . . , kr, k ∈ Z r {0} also leads to the contradiction.

On the other hand, it can happen that the set L(α, q) is linearly independent over Q with some

algebraic irrational α. This conjecture is supported by the Cassels theorem [9] that at least 51 percent

of elements of the set

L(α) = {log(m+ α) : m ∈ N0}

with algebraic irrational α in the sense of density are linearly independent over Q. Therefore, one can

conjecture that there exists an algebrais irrational α such that the set L(α) in linearly independent

over Q. Hence, the set L(α, q) also can be linearly independent over Q. Thus, Theorem 4.1 extend

the case of transcendental α in Theorem F. However, Theorem 4.1 is non-e�ective because we do not

know any algebraic irrational α with linearly independent over Q the set L(α, q).

Obviously, the set L(α, q) with rational α is linearly dependent over Q. Indeed, let α = a
b , a, b ∈

N, b > 1, (a, b) = 1. Then the set

{log
a

b
, log q}

with q = a
b is linearly dependent over Q because it contains two equal elements.

Theorem 4.1 can be generalized for composite functions in the same way as Theorem F was

generalized in Chapter 2. We present only an analogue of Theorem 2.3.

Theorem 4.2. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q,

F : H(D) → H(D) is a continuous operator such that, for each polynomial p = p(s), the preimage

F−1{p} is not empty. Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|F (ζ(s+ ikh, α))− f(s)| < ε

}
> 0.
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As in the case of Theorem 2.3, we have the universality of the function F (ζ(s + ikh, α)) with an

operator

F (g) = c1g
′ + · · ·+ crg

(r), c1, . . . , cr ∈ Cr {0}, g ∈ H(D).

For proving of Theorems 4.1 and 4.2, we use limit theorems on weakly convergent probability

measures.

4.2. Main lemma

In section 2.3, we have de�ned the torus Ω1 which is the product over the set N0 of unit circles. For

convenience of the notation, in this section, we will denote Ω1 by Ω, i.e.,

Ω =

∞∏
m=0

γm,

where γm = γ for all m ∈ N0. For m ∈ N0, we will denote the projection of ω ∈ Ω to the circle γm.

In this section, we will prove a discrete limit theorems for probability measures on (Ω,B(Ω)).

The torus Ω is a compact topological Abelian group. Therefore, for proving of a limit theorem,

with will apply the method of Fourier transforms. We recall that a continuous function χ : Ω→ γ is

a character of Ω if χ(ω1ω2) = χ(ω1)χ(ω2). All character of Ω form a group G which is called the dual

group or character group. The Fourier transform of the measure µ on (Ω,B(Ω)) is de�ned by∫
Ω

χ(ω)dµ, χ ∈ G.

It is known [33] that the dual group of Ω is isomorphic to

D def
=

∞⊕
m=0

Zm,

where
⊕

denotes the direct sum, and Zm = Z for all m ∈ N0. An element k = (k0, k1, . . .) ∈ D acts

on Ω by the formula

k → ωk =

∞∏
m=0

ωkm(m),

where only a �nite number of integers km are distinct from zero. Therefore, the Fourier transform of

the measure µ on (Ω,B(Ω)) is ∫
Ω

∞∏
m=0

ωkm(m)dµ. (4.1)
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For probability measures on compact groups, a continuity theorems in terms of Fourier transforms

is valid [18]. We state a theorem of such a type in the form of the following lemma.

Lemma 4.3. Let Pn, n ∈ N, be a probability measure on (Ω,B(Ω)), and gn(k) be the corresponding

Fourier transform. Suppose that gn(k), for all k ∈ D, converges to a continuity function g(k) as

n→∞. Then on (Ω,B(Ω)), there exists a probability measure P such that Pn converges weakly to P

as n→∞. In this case, g(k) is the Fourier transform of the measure P .

The lemma is a partial case of Theorem 1.4.2 from [18].

Let mH be the probability Haar measure on (Ω,B(Ω)). Thus, we have the probability space

(Ω,B(Ω),mH). Then {ω(m) : m ∈ N0} is a sequence of independent complex-valued random variables

de�ned on the probability space (Ω,B(Ω,mH)).

Let, for A ∈ B(Ω),

QN (A)
def
=

1

N + 1
#
{

0 ≤ k ≤ N : ((m+ α)−ikh : m ∈ N0) ∈ A
}
.

In this section, we consider the weak convergence of QN as N → ∞. The next lemma is the main

result of the section.

Lemma 4.4. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q.

Then, for any h > 0 such that exp
{

2π
h

}
is rational, the measure QN converges weakly to the Haar

measure mH as N →∞.

Proof. In view of (4.1), we have that the Fourier transform gN (k) of QN is∫
Ω

∞∏
m=0

ωkm(m)dQN ,

where only a �nite number of integers km are distinct from zero. Thus, by the de�nition of QN ,

gN (k) =
1

N + 1

N∑
k=0

∞∏
m=0

(m+ α)−ikkmh =
1

N + 1

∞∑
k=0

exp

{
−ikh

∞∑
m=0

km log(m+ α)

}
, (4.2)

where only a �nite number of integers km are distinct from zero. The linear independence over Q of

the set L(α, q) implies, obviously, that of the set L(α). Therefore,

∞∑
m=0

km log(m+ α) = 0

if and only if k = 0. Here and in the sequel, we have in mind that the above sum is �nite. Moreover,

we observe that

exp

{
−ih

∞∑
m=0

km log(m+ α)

}
6= 1 (4.3)
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for k 6= 0. Indeed, if the above inequality is not true, then

exp

{
−ih

∞∑
m=0

km log(m+ α)

}
= e2πia

with some a ∈ Z. Hence,

−ih
∞∑
m=0

km log(m+ α) = 2πib

for some b ∈ Z r {0}, and
∞∑
m=0

km log(m+ α) =
2πc

h
(4.4)

with some c ∈ Zr {0}. Since the number exp
{

2π
h

}
is rational, the number exp

{
2πc
h

}
is also rational

number, say, q 6= 1. If q > 1, then by (4.4),

∞∑
m=0

km log(m+ α)− log q = 0,

where only a �nite number of integers km are not zero. However, this contradicts the linear indepen-

dence of the set L(α, q). If q < 1, similar arguments hold with log 1
q .

Taking into account (4.3) and using the formula for the sum of geometric progression with denom-

inator

exp

{
−ih

∞∑
m=0

km log(m+ α)

}
,

we �nd from (4.2) that, for k = 0,

gN (k) =

1− exp

{
−i(N + 1)h

∞∑
m=0

km log(m+ α)

}
(N + 1)

(
1− exp

{
−ih

∞∑
m=0

km log(m+ α)

}) . (4.5)

Clearly, gN (0) = 1. Therefore, by (4.5),

gN (k) =


1 if k = 0,

1−exp

{
−i(N+1)h

∞∑
m=0

km log(m+α)

}
(N+1)

(
1−exp

{
−ih

∞∑
m=0

km log(m+α)

}) if k 6= 0.

Hence,

lim
N→∞

gN (k) =

1 if k = 0,

0 if k 6= 0.

The function

g(k) =

1 if k = 0,

0 if k 6= 0,
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is continuous in the discrete topology. Moreover, g(k) is the Fourier transform of the Haar measure

mH . Indeed, the measure mH is the product of the Haar measures on (γm,B(γm)), m ∈ N0. Thus,

the Fourier transform ĝ(k) of mH is

ĝ(k) =

∞∏
m=0

∫
γm

ωkm(m)dµ, (4.6)

where µ is the Haar measure on (γm,B(γm)). Clearly, if k = 0, then ĝ(k) = 1. If km 6= 0 for some

km ∈ Z, then ∫
γm

ωkm(m)dµ =

2π∫
0

eikmxdx =
e2πikm − 1

km
= 0.

Thus, in view of (4.6), g(k) = 0 for k 6= 0. This shows that ĝ(k) = g(k). Now Lemma 4.3 proves that

QN converges weakly to mH as N →∞. The lemma is proved.

4.3. Limit theorems for absolutely convergent series

In this section, using Lemma 4.4, we will obtain limit theorems on the weak convergence of probability

measures on (H(D),B(H(D))) de�ned by terms of absolutely convergent Dirichlet series.

For a �xed number σ1 >
1
2 , and m ∈ N0, n ∈ N, let

vn(m,α) = exp

{
−
(
m+ α

n+ α

)σ1
}
,

and de�ne

ζn(s, α) =

∞∑
m=0

vn(m,α)

(m+ α)s

and

ζn(s, α, ω) =

∞∑
m=0

ω(m)vn(m,α)

(m+ α)s
, ω ∈ Ω.

In [33], it was proved that the Dirichlet series for the functions ζn(s, α) and ζn(s, α, ω) converge

absolutely for σ > 1
2 . For a �xed ω̂ ∈ Ω, de�ne

PN,n(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s+ ikh, α) ∈ A}, A ∈ B(H(D)),

and

PN,n,ω̂(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s+ ikh, α, ω̂) ∈ A}, A ∈ B(H(D)).

Lemma 4.5. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q.

Then, for every h > 0 such that the number exp
{

2π
h

}
is rational, PN,n and PN,n,ω̂ both converge

weakly to the same probability measure Pn on (H(D),B(H(D))) as N →∞.
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Proof. For proving of the theorem, we apply standard arguments used in the continuous case [33].

De�ne the function un : Ω→ H(D) by the formula

un(ω) = ζn(s, α, ω).

The absolute convergence of the series for ζn(s, α, ω) implies the continuity of the function un. More-

over, for A ∈ B(H(D)),

PN,n(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s, α, ((m+ α)−ikh : m ∈ N0)) ∈ A}

=
1

N + 1
#{0 ≤ k ≤ N : un(((m+ α)−ikh : m ∈ N0) ∈ A}

=
1

N + 1
#{0 ≤ k ≤ N : ((m+ α)−ikh : m ∈ N0) ∈ u−1

n A} = QN (u−1
n A).

Therefore, we have that PN,n = QNu
−1
n . The Lemmas 4.4 and 1.6 together with the continuity of un

show that PN,n converges weakly to Pn = mHu
−1
n as N →∞.

It remains to consider the measure PN,n,ω̂. Let the function un,ω̂ : Ω → H(D) be given by the

formula

un,ω̂(ω) = ζn(s, α, ω̂ω).

Then, similarly as above, we �nd that the measure PN,n,ω̂ converges weakly to mHu
−1
n,ω̂ as N → ∞.

Let u : Ω→ Ω be given by u(ω) = ω̂ω. Then we have that un,ω̂ = un(u). Now we use the invariance

of the Haar measure mH , i.e., for all A ∈ B(Ω) and ω ∈ Ω,

mH(A) = mH(ωA) = mH(Aω).

Therefore, in view of the de�nition of u,

mHu
−1
n,ω̂ = mH(unu)−1 = (mHu

−1)u−1
n = mHu

−1
n = Pn.

Thus, the measures PN,n and PN,n,ω̂ both converge weakly to Pn = mHu
−1
n as N →∞.

4.4. Approximation in the mean

For s ∈ D and ω ∈ Ω, de�ne

ζ(s, α, ω) =

∞∑
m=0

ω(m)

(m+ α)s
.

Then in [33] it is proved that the latter series converges uniformly on compact subset of the strip

D for almost all ω ∈ Ω. In other words, ζ(s, α, ω) is a H(D)-valued random element de�ned on the

probability space (Ω,B(Ω),mH).
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To pass from the function ζn(s, α) to ζ(s, α), and from the function ζn(s, α, ω) to ζ(s, α, ω), we

need certain approximation results. In this section, we approximate the above functions in the mean.

We start with auxiliary results.

Lemma 4.6. Suppose that 1
2 < σ < 1. Then, for T →∞,

T∫
0

|ζ(σ + it, α)|2dt� T.

The lemma is Theorem 3.3.1 of [33].

Lemma 4.7. Suppose that 1
2 < σ < 1. Then, for T →∞,

T∫
0

|ζ ′(σ + it, α)|2dt� T.

Proof. By the integral Cauchy formula, we have that

ζ ′(s, α) =
1

2πi

∫
|z−s|=δ

ζ(z, α)

(s− z)2
dz,

where the circle |z − s| = δ is lying in D. Then, for some σ1,
1
2 < σ1 < 1, by Lemma 4.6,

T∫
0

|ζ ′(σ + it, α)|2dt =

T∫
0

∣∣∣∣∣∣∣
1

2π

∫
|z−σ|=δ

ζ(z + it)

(z − σ)2
dz

∣∣∣∣∣∣∣
2

dt�
2T∫
0

|ζ(σ1 + it)|2dt� T.

The Gallagher lemma connects continuous and discrete mean-values. We state it as the following

lemma.

Lemma 4.8. Let T0 and T ≥ δ > 0 be real numbers, and T be a �nite set in the interval

[T0 + δ
2 , T0 + T − δ

2 ]. De�ne

Nδ(x) =
∑
t∈T
|t−x|<δ

1,

and let S(x) be a complex-valued continuous function on [T0, T + T0] having a continuous derivative

on (T0, T + T0). Then

∑
t∈T

N−1
δ (t)|S(t)|2 ≤ 1

δ

T0+T∫
T0

|S(x)|2dx+

 T0+T∫
T0

|S(x)|2dx
T0+T∫
T0

|S′(x)|2dx


1
2

.
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The lemmas is Lemma 1.4 of [44], where its proof is given.

Let % be the metric of the space H(D) de�ned in Chapter 1.

Lemma 4.9. The relation

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%(ζ(s+ ikh, α), ζn(s+ ikh, α)) = 0

holds for all h > 0 and α, 0 ≤ α < 1.

Proof. An application of Lemma 4.8 gives, for �xed σ, 1
2 < σ < 1,

N∑
k=0

|ζ(σ + ikh+ it, α)|2 ≤ 1

h

Nh∫
0

|ζ(σ + iτ + it, α)|2dτ

+

 Nh∫
0

|ζ(σ + iτ + it, α)|2dτ
Nh∫
0

|ζ ′(σ + iτ + it, α)|2dτ


1
2

.

Therefore, Lemmas 4.6 and 4.7 imply the estimate

N∑
k=0

|ζ(σ + ikh+ it, α)|2 � N(1 + |t|). (4.7)

Let σ1 >
1
2 be the same as in Section 4.3. De�ne

ln(s, α) =
s

σ1
Γ

(
s

σ1

)
(n+ α)s.

Then a straightforward application of the Mellin formula

1

2πi

b+i∞∫
b−i∞

Γ(s)a−sds = e−a, a, b > 0,

leads to a formula

ζn(s, α) =
1

2πi

σ1+i∞∫
σ1−i∞

ζ(s+ z, α)ln(z, α)
dz

z
. (4.8)

Let 1
2 < σ2 < 1 and σ2 < σ. Then, moving the line of integration in (4.8) to the left, we obtain, by

the residue theorem, that

ζn(s, α)− ζ(s, α) =
1

2πi

σ2−σ+i∞∫
σ2−σ−i∞

ζ(s+ z, α)ln(z, α)
dz

z
+Rn(s, α), (4.9)

where

Rn(s, α) = Resz=1−sζ(s+ z, α)ln(z, α)z−1.
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Let K be an arbitrary compact subset of the strip D, and let L be a simple closed contour of

length |L| lying in same compact set of D and enclosing the set K such that the distance δ of L from

the set K in strongly positive. Then, applying once more the integral Cauchy formula, we �nd that

sup
s∈K
|ζ(s+ ikh, α)− ζn(s+ ikh, α)| � 1

2πδ

∫
L

|ζ(z + ikh, α)− ζn(z + ikh, α)||dz|.

Hence,

1

N + 1

N∑
k=0

sup
s∈K
|ζ(s+ ikh, α)− ζn(s+ ikh, α)|

� 1

Nδ

∫
L

|dz|

(
N∑
k=0

|ζ(Rez + ikh+ iImz, α)− ζn(Rez + ikh+ iImz, α)|

)

� |L|
Nδ

sup
s∈L

N∑
k=0

|ζ(σ + it+ ikh, α)− ζn(σ + it+ ikh, α)|. (4.10)

Moreover, in view of (4.9),

ζ(σ + it+ ikh, α)− ζn(σ + it+ ikh, α)

�
∞∫
−∞

|ζ(σ2 + it+ ikh+ iτ, α)||ln(σ2 − σ + iτ, α)|dτ + |Rn(σ + it+ ikh, α)|

Therefore,

1

N

N∑
k=0

|ζ(σ + it+ ikh, α)− ζn(σ + it+ ikh, α)|

�
∞∫
−∞

|ln(σ2 − σ + iτ, α)|

(
1

N

N∑
k=0

|ζ(σ2 + it+ ikh+ iτ, α)|

)
dτ

+
1

N

N∑
k=0

|Rn(σ + it+ ikh, α)|. (4.11)

We observe that t is bounded for s ∈ L. Thus, using (4.7) and the Cauchy type inequality, we �nd

1

N

N∑
k=0

|ζ(σ2 + it+ ikh+ iτ, α)| �

(
1

N

N∑
k=0

|ζ(σ2 + it+ ikh+ iτ, α)|2
) 1

2

� 1 + |τ |. (4.12)

Taking account the properties of the gamma-function, see, for example, Chapter 1 of [33], and applying

Lemma 4.8 once more, we obtain that

1

N

N∑
k=0

|Rn(σ + it+ ikh, α)| = o(1) (4.13)

as N →∞. Now, from (4.10)-(4.13), we conclude that

1

N

N∑
k=0

sup
s∈K
|ζ(s+ ikh, α)− ζn(s+ ikh, α)| � sup

s∈L

∞∫
−∞

|ln(σ2 − σ + iτ, α)|(1 + |τ |)dτ + o(1) (4.14)
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as N → ∞. By the choice of σ2, we have that σ2 − σ < 0. This implies, in view of the de�nition of

ln(s, α), that

lim
n→∞

∞∫
−∞

|ln(σ2 − σ + iτ, α)|(1 + |τ |)dτ = 0,

and (4.14) implies the equality

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈K
|ζ(s+ ikh, α)− ζn(s+ ikh, α)| = 0.

This and the de�nition of the metric % prove the lemma.

The case of the approximation of ζ(s, α, ω) by ζn(s, α, ω) is more complicated, and we need a result

of the ergodic theory.

Let, for τ ∈ R,

aτ,α = {(m+ α)−iτ : m ∈ N0},

and let the one-parameter family {ϕτ : τ ∈ R} of transformations on Ω be de�ned by

ϕτ,α(ω) = aτ,αω, ω ∈ Ω.

Then we have that {ϕτ,α : τ ∈ R} is a one-parameter group of measurable transformations on Ω.

Indeed, aτ,α is an element of Ω. Therefore, a−1
τ,αA ∈ B(Ω) for A ∈ B(Ω). Hence,

ϕ−1
τ,α(A) = {ω ∈ Ω : ϕτ,α(ω) ∈ A} = {ω ∈ Ω : ω ∈ a−1

τ,αA} ∈ B(Ω),

and ϕτ,α is measurable for every τ ∈ R. Obviously, the set {ϕτ,α : τ ∈ R} forms a group. We have

that ϕτ1,α ·ϕτ2,α = ϕτ1+τ2,α, ϕ0,α is the unit element, ϕ−τ,α is the inverse element of ϕτ,α, and, clearly,

all axioms of a group are satis�ed.

Moreover, the group {ϕτ,α : τ ∈ R} is measure preserving. From the invariance of the Haar

measure mH , we �nd that, for every A ∈ B(Ω) and τ ∈ R,

mH(ω ∈ Ω : ϕτ,α(ω) ∈ A) = mH(ω ∈ Ω : ω ∈ a−1
τ,αA) = mH(A).

Now we recall some notions of the ergodic theory. A set A ∈ B(Ω) is called invariant with respect

to {ϕτ,α : τ ∈ R} if the sets A and Aτ = ϕτ,α(A) di�er one from another at most by a set mH -measure

zero. All invariants sets form a sub-σ �eld of the �eld B(Ω). The group {ϕτ,α : τ ∈ R} is called ergodic

if all invariant sets have mH -measure 1 or 0.

We remind that L(α) = {log(m+ α) : m ∈ N0}.
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Lemma 4.10. Suppose that the set L(α) is linearly independent over Q. Then the group {ϕτ,α :

τ ∈ R} is ergodic.

Proof. We have seen in the proof of Lemma 4.4 that a character χ of Ω is of the form

χ(ω) =

∞∏
m=0

ωkm(m), ω ∈ Ω,

where only a �nite number of integers km are distinct from zero. Let χ be a non-trivial character of

Ω, i.e., χ(ω) 6≡ 1. Then we have that

χ(aτ,α) =

∞∏
m=0

(m+ α)−iτkm = exp

{
−iτ

∞∑
m=0

km log(m+ α)

}
.

Since the set L(α) is linearly independent over Q, then
∞∑
m=0

km log(m+ α) = 0

if and only if k = {km} = 0. Therefore, there exists τ0 ∈ R such that

χ(aτ0,α) 6= 1. (4.15)

Let A ∈ B(Ω) be an invariant set of the group {ϕτ,α : τ ∈ R}, and IA be its indicator function,

i.e.,

IA(ω) =

1 if ω ∈ A,

0 if ω 6∈ A.

Then

IA(aτ0,α, ω) = IA(ω)

for almost all ω ∈ Ω because the sets A and aτ0A di�er one from on other at most by a set of

mH -measure zero. Let f̂(χ) denote the Fourier transform of f . Then we have that

ÎA(χ) =

∫
Ω

χ(ω)IA(ω)dmH =

∫
Ω

χ(aτ0,αω)IA(aτ0,αω)dmH

= χ(aτ0,α)

∫
Ω

χ(ω)IA(ω)dmH = χ(aτ0,α)ÎA(χ).

Therefore, in view of (4.15), for a non-trivial character χ,

ÎA(χ) = 0. (4.16)

Now let χ0 be the trivial character of Ω, i.e., χ0(ω) ≡ 1. Suppose that ÎA(χ0) = u. Then, using

the orthogonality of characters

∫
Ω

χ(ω)dmH =

0 if χ 6= χ0,

1 if χ = χ0,
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and (4.16), we �nd that, for any character χ of Ω,

ÎA(χ) = u

∫
Ω

χ(ω)dmH = u1̂(χ) = û(χ). (4.17)

The function IA(ω) is uniquely determined by its Fourier transform ÎA(χ). Thus, by (4.17), we see

that IA(ω) = u for almost all ω ∈ Ω. Thence, IA(ω) = 1 or IA(ω) = 0 for almost all ω ∈ Ω. Therefore,

mH(A) = 1 or mH(A) = 0. This proves the ergodicity of the group {ϕτ,α : τ ∈ R}.

For the sequel, we need the classical Birkho�-Khintchine ergodicity theorem. First we remind

some de�nitions. Let ξ(τ, ω), τ ∈ T , be a random process de�ned on the probability space (Ω̂,F , µ),

and X be the space of all �nite real functions x(τ), τ ∈ T . Then the family of �nite-dimensional

distributions of the process ξ(τ, ω) determines a probability measure Q on (X,B(X)). Then on the

probability space (X,B(X), Q), a translation transformation gu mapping each function x(τ) ∈ X to

x(τ + u), can be de�ned.

A random process ξ(τ, ω) is called strongly stationary if all its �nite-dimensional distributions are

invariant with respect to the transformation gu.

Let Au = gu(A), A ∈ B(X). A set A ∈ B(X) is called an invariant set of the process ξ(τ, ω) if,

for every u ∈ R, the sets A and Au can di�er one from another at most by a set of Q-measure zero.

A strongly stationary process is called ergodic if its σ-�eld of invariant sets consists only of sets of

Q-measure 1 or 0.

Now we state the Birkho�-Khintchine theorem as the following lemma. Denote by Eξ the expec-

tation of a random element ξ.

Lemma 4.11. Suppose that the random process ξ(τ, ω) is ergodic, E|ξ(τ, ω)| < ∞, and that its

sample paths are integrable almost surely in the Riemann sense over every �nite interval. Then

lim
T→∞

1

T

T∫
0

ξ(τ, ω)dτ = Eξ(0, ω).

The above remarks and the proof the lemma can be found, for example, in [12].

Lemma 4.12. Suppose that the set L(α) is linearly independent over Q, and 1
2 < σ < 1. Then,

for T →∞,

T∫
0

|ζ(σ + it, α, ω)|2dt� T

for almost all ω ∈ Ω.
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Proof. Let, for brevity,

ζ̂(σ, α, ω) = |ζ(σ, α, ω)|2 =

∣∣∣∣∣
∞∑
m=0

ω(m)

(m+ α)σ

∣∣∣∣∣
2

.

Using the pairwise orthogonality of the random variables ω(m),

∫
Ω

ω(m)ω(n)dmH =

1 if m = n,

0 if m 6= n,

we �nd that

Eζ̂(σ, α, ω) =

∫
Ω

ζ̂(σ, α, ω)dmH =

∫
Ω

∞∑
m=0

ω(m)

(m+ α)σ

∞∑
m=0

ω(n)

(n+ α)σ
=

∞∑
m=0

1

(m+ α)2σ
<∞. (4.18)

Moreover, by the de�nition of the transformation ϕτ,α, we have that

ζ̂(σ, α, ϕτ,α(ω)) = |ζ(σ, α, aτ,αω)|2 = |ζ(σ + iτ, α, ω)|2,

and, in view of Lemma 4.10, the random process |ζ(σ+ iτ, α, ω)| is ergodic. Therefore, by Lemma 4.11

and (4.18), we obtain that

lim
T→∞

1

T

T∫
0

|ζ(σ + iτ, α, ω)|2dτ = Eζ̂(σ, α, ω) <∞

for almost all ω ∈ Ω. This proves the lemma.

Now we are ready to prove an analogue of Lemma 4.9.

Lemma 4.13. Suppose that the set L(α) is linearly independent over Q. Then, for almost all

ω ∈ Ω,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

%(ζ(s+ ikh, α, ω), ζn(s+ ikh, α, ω)) = 0.

Proof. We apply arguments similar to those used in proof of Lemma 4.9.

From Lemma 4.12 and the integral Cauchy formula, it follows that, for 1
2 < σ < 1 and T →∞,

T∫
0

|ζ ′(σ + it, α, ω)|2dt� T

for almost all ω ∈ Ω. This, Lemmas 4.12 and 4.8 lead, for almost all ω ∈ Ω, to the estimate

N∑
k=0

|ζ(s+ ikh+ it, α)|2 � N(1 + |t|).

Therefore, the remained part of the proof completely coincides with the corresponding part of the

proof of Lemma 4.9 with one di�erence that all estimates are valid for almost all ω ∈ Ω.
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4.5. Discrete limit theorems for ζ(s, α) and ζ(s, α, ω)

For A ∈ B(H(D)) and ω ∈ Ω, de�ne

PN (A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α) ∈ A}

and

PN,ω(A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω) ∈ A}.

In this section, we will consider the weak convergence of PN and PN,ω as N → ∞. For this aim,

we need some results from the theory of weak convergence of probability measures.

Let {P} be a family of probability measures on (X,B(X)). This family is called tight if, for every

ε > 0, there exists a compact set K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}. The family {P} is called relatively compact if each sequence {Pn} ⊂ {P} contains a

weakly convergent subsequence to a certain probability measure on (X,B(X)).

The Prokhorov theorem connects the notions of tightness and relative compactness. We need only

the direct Prokhorov theorem which is contained in the next lemma.

Lemma 4.14. Suppose that the family {P} is tight. Then it is relative compact.

Proof of the lemma can be found in [2], Theorem 6.1.

Let {ξn} be a sequence of X-valued random elements de�ned on a certain probability space

(Ω̂,F , µ). This sequence converges to a random element ξ in distribution as n → ∞
(
ξn

D−−→
n→

ξ
)

if the distribution of ξn

µ(ω̂ ∈ Ω̂ : ξn(ω̂) ∈ A), A ∈ B(X),

converges weakly to the distribution of ξ

µ(ω̂ ∈ Ω̂ : ξ(ω̂) ∈ A), A ∈ B(X),

as n→∞.

We will use the following assertion.
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Lemma 4.15. Let the metric space (X, d) is separable, and let ηn, ξ1n, ξ2n, . . . be X-valued random

elements on the probability space (Ω̂,F , µ). Suppose that, for each k, ξkn
D−−−−→

n→∞
ξk, ξk

D−−−−→
k→∞

ξ, and

that, for every ε > 0,

lim
k→∞

lim sup
n→∞

µ{d(ξkn, ηn) ≥ ε} = 0.

Then ηn
D−−−−→

n→∞
ξ.

The lemma is Theorem 4.2 from [2], where its proof is given.

Lemma 4.16. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q.

Then, for every h > 0 such that the number exp
{

2π
h

}
is rational, the measures PN and PN,ω both

converge to the same probability measure P as N →∞.

Proof. By Lemma 4.5, the measure PN,n converges weakly to the measure Pn as N → ∞. Let

Xn(s) be the H(D)-valued random element with the distribution Pn. Moreover, let θN be a discrete

random variable de�ned on a certain probability space (Ω0,B(Ω0), µ) and having the distribution

µ(θN = kh) =
1

N + 1
, l = 0, . . . , N.

De�ne an H(D)-valued random element XN,n(s) by

XN,n(s) = ζn(s+ iθN , α).

Then we can write the assertion of Lemma 4.5 for the measure PN,n in the form

XN,n(s)
D−−−−→

N→∞
Xn(s). (4.19)

Let Kl be a compact set in the de�nition of the metric %. Then, using (4.7) with t = 0,

N∑
k=0

|ζ(σ + ikh, α)|2 � N,
1

2
< σ < 1,

we deduce by the integral Cauchy formula that

N∑
k=0

sup
s∈Kl

|ζ(σ + ikh, α)|2 �l N.

For this and from the relation

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kl

|ζ(s+ ikh, α)− ζn(s+ ikh, α)| = 0

obtained in the proof of Lemma 4.9, we �nd that

sup
n∈N

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈Kl

|ζn(s+ ikh, α)| ≤ Rl <∞. (4.20)
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Now let ε > 0 be an arbitrary number, and M = Ml(ε) = 2lRlε
−1. Then (4.20) and the Chebyshev

type inequality yield

µ

(
sup
s∈Kl

|XN,n(s)| > M

)
=

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈Kl
|ζn(s+ ikh, α)| > M

}
≤ 1

(N + 1)M

N∑
k=0

sup
s∈Kl

|ζn(s+ ikh, α)| ≤ ε

2l
. (4.21)

Clearly, the relation (4.19) implies

sup
s∈Kl

|XN,n(s)| D−−−−→
N→∞

|Xn(s)|.

Combining this with (4.21) gives

µ

(
sup
s∈Kl

|Xn(s)| > M

)
≤ ε

2l
. (4.22)

Let

K = K(ε) = {g ∈ H(D) : sup
s∈Kl

|g(s)| ≤Ml, l ∈ N}.

Then the set K is uniformly bounded on compact subsets, therefore, it is a compact subset of H(D).

Moreover, in view of (4.22),

µ(Xn(s) ∈ K) ≥ 1− ε
∞∑
l=1

1

2l
= 1− ε,

or

Pn(K) ≥ 1− ε

for all n ∈ N. Thus, the family of probability measures {Pn : n ∈ N} is tight. Therefore, by Lemma 4.14,

this family is relatively compact. Hence, there exists a subsequence {Pnr} ⊂ {Pn} such that Pnr

converges weakly to a certain probability measure P on (H(D)),B(H(D)) as r →∞. In other words,

we have that

Xnr
D−−−→

r→∞
P. (4.23)

De�ne one more H(D)-valued random element

XN (s) = ζ(s+ iθN , α).

Then, in view of Lemma 4.9, we �nd that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ (% (XN (s), XN,n(s)) ≥ ε)

= lim
n→∞

lim sup
N→∞

1

N + 1
#{0 ≤ k ≤ N : %(ζ(s+ ikh, α), ζn(s+ ikh, α)) ≥ ε}
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≤ lim
n→∞

lim sup
N→∞

1

(N + 1)ε

N∑
k=0

%(ζ(s+ ikh, α), ζn(s+ ikh, α)) = 0.

This, (4.19), (4.23) and Lemma 4.15 show that

XN
D−−−−→

N→∞
P, (4.24)

and the later relation is equivalent to the weak convergence of PN to P as N → ∞. Moreover,

relation (4.24) shows that the measure P does not depend on the sequence {Pnr}. Thus, the relative

compactness of the family {Pn : n ∈ N} implies the relation

Xn
D−−−−→

n→∞
P. (4.25)

It remains to consider the weak convergence of the measure PN,ω. De�ne the H(D)-valued random

elements

XN,n,ω(s) = ζn(s+ iθN , α, ω)

and

XN,ω(s) = ζ(s+ iθN , α, ω).

Then, repeating the above arguments, and using (4.25) and Lemma 4.13, we �nd that PN,ω also

converges weakly to P as N →∞.

4.6. Main limit theorem

In this section, we will prove a limit theorem on the weak convergence of the measure PN with

explicitly given limit measure. Denote by Pζ the distribution of the random element ζ(s, α, ω),i.e.,

Pζ(A) = mH(ω ∈ Ω : ζ(s, α, ω) ∈ A), A ∈ B(H(D)).

Theorem 4.17. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q.

Then, for every h > 0 such that the number exp
{

2π
h

}
is rational, the measure PN converges weakly

to the measure Pζ as N →∞.

In view of Lemma 4.16, it remains to identify the limit measure in that lemma. For this, we will

apply some elements of ergodic theory.

Let

ah,α = {(m+ α)−ih : m ∈ N0},
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and, for ω ∈ Ω, let

ϕh,α(ω) = ah,αω.

Then, similarly to the case of ϕτ,α, we have that ϕh,α is a measurable measure preserving trans-

formation on the probability space (Ω,B(Ω),mH). A set A ∈ B(Ω) is invariant with respect to the

transformation ϕh,α if the sets A and A = ϕh,α(A) can di�er one from another at most by a set of

zero mH -measure. The transformation ϕh,α is ergodic if its σ-�eld of invariant sets consist only of

sets hawing mH -measure equal to 1 or 0.

Lemma 4.18. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q.

Then the transformation ϕh,α is ergodic.

Proof. Let χ be a non-trivial character of Ω. As in the proof of Lemma 4.4, we have that

χ(ω) =

∞∏
m=0

ωkm(m), ω ∈ Ω,

where only a �nite number of integers km are distinct from zero. Clearly, ah,α ∈ Ω. Therefore,

χ(ah,α) =

∞∏
m=0

(ω + α)−ikmh = exp

{
−ih

∞∑
m=0

km log(m+ α)

}
.

Thus, in view of (4.3),

χ(ah,α) 6= 1. (4.26)

Let A ∈ B(Ω) be an invariant set of the transformation ϕh,α, and let IA be its indicator function.

Then

IA(ah,αω) = IA(ω)

for almost all ω ∈ Ω. Hence, denoting by f̂ the Fourier transform of a function f , we have that

ÎA(χ) =

∫
Ω

χ(ω)IA(ω)dmH

=

∫
Ω

χ(ah,αω)IA(ah,αω)dmH

= χ(ah,α)

∫
Ω

χ(ω)IA(ω)dmH = χ(ah,α)ÎA(χ)

in virtue of the invariance of the Haar measure mH , and multiplicativity of χ. Therefore, by inequality

(4.26), for a non-trivial character χ,

ÎA(χ) = 0. (4.27)
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Now let χ0 be the trivial character of Ω, and ÎA(χ0) = u. Then, using the relations

∫
Ω

χ(ω)dmH =

0 if χ 6= χ0,

1 if χ = χ0,

and (4.27), we �nd that, for any character χ of Ω,

ÎA(χ) = u

∫
Ω

χ(ω)dmH = u1̂(χ) = û(χ).

Hence, as in the case of Lemma 4.10, we obtain thatmH(A) = 0 ormH(A) = 1, i.e., the transformation

ϕh,α is ergodic.

Now we state the individual Birkho�-Khintchine theorem.

Lemma 4.19. Let ϕ be a measurable measure preserving ergodic transformation on the space

(Ω̂,F , µ). Then, for every integrable with respect µ function g

lim
n→∞

1

n

n∑
k=0

f(ϕkω) = Ef.

Proof of the lemma can be found in [57].

We also will use the equivalent of weak convergence of probability measures in terms of continuity

sets. We remind that a set A ∈ B(X) is called a continuity set of a measure P on (X,B(X)) if

P (∂A) = 0, where ∂A is the boundary of A.

Lemma 4.20. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then Pn converges

weakly to P as n→∞ if and only if, for every continuity set A of P ,

lim
n→∞

Pn(A) = P (A).

The lemma is a part of Theorem 2.1 from [2].

Now we are ready to prove Theorem 4.17.

Proof of Theorem 4.17. Let A be a �xed continuity set of the limit measure P in Lemma 4.16.

Then, by Lemmas 4.16 and 4.20,

lim
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω) ∈ A} = P (A). (4.28)
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On the probability space (Ω,B(Ω),mH), de�ne a random variable θ by

θ(ω) =

1 if ζ(s, α, ω) ∈ A,

0 if ζ(s, α, ω) 6∈ A.

then, clearly, the expectation of θ is

E(θ) =

∫
Ω

θdmH = mH(ω ∈ Ω : ζ(s, α, ω) ∈ A) = Pζ(A). (4.29)

Since, by Lemma 4.18, the transformation ϕh,α is ergodic, using of Lemma 4.19 shows that

lim
N→∞

1

N + 1

N∑
k=0

θ(ϕkh,α(ω)) = Eθ (4.30)

for almost all ω ∈ Ω. However, by the de�nitions of θ and ϕh,α,

1

N + 1

N∑
k=0

θ(ϕkh,α(ω)) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω) ∈ A}.

Therefore, in view of (4.29) and (4.30),

lim
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α, ω) ∈ A} = Pζ(A)

for almost all ω ∈ Ω. This and (4.28) show that P (A) = Pζ(A) for any continuity set A of the

measure P . However, it is known [2] that all continuity sets constitute a determining class. Hence,

P (A) = Pζ(A) for all A ∈ B(H(D)). The theorem is proved.

Theorem 4.17 implies a limit theorem for the composite function F (ζ(s, α)).

Let, as in Chapter 2, for F : H(D)→ H(D),

PN,F (A)
def
=

1

N + 1
#{0 ≤ k ≤ N : F (ζ(s+ ikh, α)) ∈ A}, A ∈ B(H(D)).

Theorem 4.21. Suppose that the set L(α, q), for every q ∈ Q+
1 , is linearly independent over Q,

and that F : H(D) → H(D) is continuous operator. Then, for every h > 0 such that the number

exp
{

2π
h

}
is rational, the measure PN,F converges weakly to the measure PζF

−1 as N →∞.

Proof of the theorem uses Theorem 4.17 and completely coincides with that of Lemma 2.7.

4.7. Supports

In Chapters 1 and 2, we have seen that, for proving of universality theorems, the explicit forms

of supports of the limit measures in limit theorems on weakly convergent probability measures in
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the space of analytic functions are needed. In this chapter, we consider limit theorems under new

hypotheses, therefore, we must check the supports of the limit measures in them.

Theorem 4.22. Under the hypotheses of Theorem 4.1, the support of measure Pζ is the whole of

H(D).

Proof. The measure Pζ does not depend on h. Moreover, since the linear independence over Q of

the set L(α, q) implies that of the set L(α), in [28] it was obtained that the support of Pζ is the whole

of H(D).

Theorem 4.23. Suppose that the numbers α and h, and the operator F satisfy the hypotheses of

Theorem 4.2. Then the support of the measure PζF
−1 is the whole of H(D).

Proof. We apply the same arguments as in the proof of Lemma 2.10. Let g be an arbitrary element

of H(D), and G by any open neighbourhood of g. Since F is continuous, the set F−1G is open, too. By

Lemma 1.13 and the approximation in the space H(D), there exists a polynomial p = p(s) ∈ G. Since,

by a hypothesis of the theorem, the preimage F−1{p} is non-empty, we have that F−1G is an open

neighbourhood of some element of the space H(D). Thus, in view of Theorem 4.22, Pζ(F−1G) > 0.

Therefore,

PζF
−1(G) = Pζ(F

−1G) > 0

for every open neighbourhood G of arbitrary element g ∈ H(D). Thus, the support of PζF−1 is the

whole of H(D).

4.8. Proof of universality theorems

Theorems 4.1 and 4.2 are consequences of Theorems 4.17, 4.22 and 4.21, 4.23, respectively.

Proof of Theorem 4.1. By Lemma 1.13, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (4.31)

De�ne

G =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.

Then G is open neighbourhood of the polynomial p(s) which, by Theorem 4.22, is an element of the

support of the measure Pζ . Thus, Pζ(G) > 0. Therefore, using Lemma 1.17, we have, by Theorem 4.17,

that

lim inf
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, α) ∈ G} ≥ Pζ(G) > 0.
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Thus, by the de�nition of G,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− p(s)| < ε

2

}
> 0. (4.32)

If k ∈ N0 satis�es the inequality

sup
s∈K
|ζ(s+ ikh, α)− p(s)| < ε

2
,

then, in view of (4.31), we �nd that

sup
s∈K
|ζ(s+ ikh, α)− f(s)| < ε.

This shows that

#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− p(s)| < ε

2

}
≤ #

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, α)− f(s)| < ε

}
.

Thus, the assertion of the theorem follows from (4.32).

Proof of Theorem 4.2. We use Theorems 4.21 and 4.23 in place of Theorems 4.17 and 4.22, and

repeat the proof of Theorem 4.1.

Theorem 4.2 is only one example of universality theorems for composite functions under new

hypotheses on the numbers α and h. Obviously, we can state other allied theorems of Chapter 2

under new hypotheses involving the linear independence over Q of the set L(α, q).
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Conclusions

In the thesis, the following assertions of discrete type were obtained:

1. Discrete universality theorems for composite functions F (ζ(s)) with some operators F : H(D)→

H(D) on the approximation of a wide class of analytic functions by shifts F (ζ(s+ ikh)), where

ζ(s) is the Riemann zeta-function, k ∈ N0, and h > 0 is a �xed number, are valid.

2. Discrete universality theorems for composite functions F (ζ(s, α)) with some operators F :

H(D) → H(D) on the approximation of a wide class of analytic functions by shifts F (ζ(s +

ikh, α)), where ζ(s, α), is the Hurwitz zeta-function, k ∈ N0, and for some types of the numbers

α, 0 < α < 1, and h > 0, are valid.

3. The composite functions F (ζ(s + ikh)) and F (ζ(s + ikh, α)), for all σ1, σ2,
1
2 < σ1 < σ2 < 1,

and su�ciently large N have a zero in the disc∣∣∣∣s− σ1 + σ2

2

∣∣∣∣ ≤ σ2 − σ1

2

for more than cN numbers k, 0 ≤ k ≤ N , where c = c(σ1, σ2, F, h, α) is a positive constant,

c = c(σ1, σ2, F, h) in the case of the Riemann zeta-function ζ(s).

4. An extension of a discrete universality theorem for the Hurwitz zeta-function ζ(s, α) with tran-

scendental parameter α exists.
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Notation

N set of all positive integers

P set of all prime numbers

N0 set of all non-negative integers

Q set of all rational numbers

Z set of all integers

R set of all real numbers

C set of all complex numbers

m,n, k, l positive or non-negative integers

p prime number

s = σ + it, σ, t ∈ R, i =
√
−1 complex variable

F−1G preimage of a set G

#A number of elements of a set A

measA Lebesque measure of a measurable set A ⊂ R

ζ(s) Riemann zeta-function de�ned,

for σ > 1,by the series

ζ(s) =
∞∑
m=1

1
ms ,

and by analytic continuation elsewhere

ζ(s, α) Hurwitz zeta-function de�ned,

for σ > 1, by the series

ζ(s) =
∞∑
m=0

1
(m+α)s ,

and by analytic continuation elsewhere

Γ(s) Euler gamma-function de�ned,

for σ > 0 by the integral

Γ(s) =
∞∫
0

e−xxs−1dx,

π(x) number of prime numbers not exceeding x

log x = loge x

D = {s ∈ C : 1
2 < σ < 1}

H(G) space of analytic functions on G
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S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}

f(x) = O(g(x)), g(x) > 0, x ∈ X means that there exists a constant C > 0

such that, for x ∈ X,

|f(x)| ≤ Cg(x)

f(x)� g(x), g(x) > 0, x ∈ X mean that f(x) = O(g(x)), x ∈ X
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