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SUMMARY
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and
dynamic adaptation amid developmental hierarchies. The source of dynamic reorganizationwithin the spatial
context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved tran-
scriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs
across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and
adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astro-
cytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host
interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number
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alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcrip-
tional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblas-
toma stem cells implanted into human and rodent neocortical tissue mimicking various environments
confirmed that transcriptional states originate from dynamic adaptation to various environments.
INTRODUCTION

Single-cell technologies have provided insights into the tran-

scriptional regulation and dynamic evolution of individual cells

within the healthy human brain and malignancy (Darmanis

et al., 2015; Grubman et al., 2019; Neftel et al., 2019; Patel

et al., 2014; Tabula Muris Consortium, 2020; Tirosh et al.,

2016a; Venteicher et al., 2017). Single-cell RNA sequencing

(scRNA-seq) studies of high- and low-grade gliomas have

demonstrated that intratumoral heterogeneity and dynamic

plasticity across cellular states are hallmarks of malignant brain

tumors (Neftel et al., 2019; Tirosh et al., 2016a; Venteicher

et al., 2017). This dynamic adaptation occurs within four

different states, namely the mesenchymal-like (MES-like), neural

progenitor cell-like (NPC-like), astrocyte-like (AC-like), and the

oligodendrocytic precursor cell-like (OPC-like) states, mirroring

early development of the healthy human brain (Couturier et al.,

2020; Neftel et al., 2019). Although brain tumors present similar

transcriptional adaptations and evolution to the healthy brain,

they have long been studied as an independent entity, overlook-

ing the role of the local microenvironment in tumorigenesis.

However, recent reports have sought to detail the local

interactions of tumor cells with the neuronal environment,

where neurons and glial and immune cells contribute to the intri-

cate and dynamically heterogeneous glioma network (Neftel

et al., 2019; Osswald et al., 2015; Venkataramani et al., 2019;

Venkatesh et al., 2019; Venteicher et al., 2017; Wurm

et al., 2019).

Single-cell analysis provides only indirect inferences of cellular

interactions due to the loss of spatial-organization information. In

the brain, spatial organization and function are closely related.

Thus, we hypothesize that CNS malignancies are also function-

ally and spatially organized. Spatially resolved transcriptomics is

a novel technology that allows us to characterize cellular interac-

tions and organization in situ and thus decipher the ecosystem of

malignant brain tumors.

Given that scRNA-seq and spatial transcriptomics are not

considered competitive but rather complementary (Elosua-

Bayes et al., 2021; Kleshchevnikov et al., 2020), the integration

of both technologies is pivotal. In addition to the spatially

resolved transcriptome, supplementary molecular analyses are

required to obtain comprehensive insights into the impact of

the microenvironment on tumor cells. Cellular communications

and metabolism are two crucial factors that have a decisive

impact on the dynamic adaptation of brain cancers, facilitating

growth, infiltration, and therapy resistance (Grimes et al.,

2020). These metabolic alterations could be attributed to the

microenvironment or regional heterogeneity in tumor meta-

bolism. For instance, it has been demonstrated that forcedmeta-

bolic deterioration due to hypoxia significantly drives transcrip-

tional adaptation (Heiland et al., 2018) and genomic instability

(Bhandari et al., 2019). Increased focus has also been placed
640 Cancer Cell 40, 639–655, June 13, 2022
on the cellular interactions between tumor cells and the immune

system, with a recent study proving that epigenetic immunoedit-

ing drives an acquired immune-invasion program contributing to

the spatially heterogeneous landscape seen in glioblastoma

(Gangoso et al., 2021).

These studies further reinforce the need to comprehensively

interrogate the various transcriptional adaptations of glioma

due to the microenvironment in a spatially resolved context.

Our study aims to provide an atlas of spatially resolved transcrip-

tional programs and cellular interactions of glioblastoma with its

local microenvironment.

RESULTS

Atlas of spatially resolved transcriptomics in
glioblastoma
With the goal of characterizing the spatial architecture of glio-

blastoma (GBM), we curated an atlas of spatially resolved tran-

scriptomics (stRNA-seq-) of twenty-eight specimens (patients

n = 20) resulting in 88,793 individual transcriptomes across

different age groups and anatomic regions. We complemented

spatially resolved metabolomics (matrix-assisted laser desorp-

tion/ionization [MALDI], n = 6 from patients n = 6) and proteomics

(imaging mass cytometry, n = 14 regions of interest [ROIs] from

patients n = 6) from tissue sections subsequent to those used for

stRNA-seq to comprehensively integrate multiple molecular

layers (Figure 1A). A detailed report on the individual donors

and specimens including clinical characteristics and samplewise

analysis is provided in Table S1 and Figure S1. Mutual nearest

neighbor (MNN)-based horizonal integration and shared nearest

neighbor (SNN) clustering revealed that non-malignant speci-

mens (access cortex) demonstrated similarities across patients.

Malignant transcriptomes were marked by unique gene-expres-

sion profiles, which was further confirmed by the high Shannon

entropy of the sample diversity across clusters (Figures 1B and

S2A). Samples of malignant origin showed significant lower en-

tropy (adjusted p value [padj] = 3.23 3 10-24), indicating that the

clusters were composed of spots from individual patients

(Figures 1B and 1C). These findings are in line with recent

single-cell studies reporting that high numbers of individual

copy-number alterations andmutational profiles contribute to in-

terpatient heterogeneity, resulting in individual transcriptional

profiles (Neftel et al., 2019; Richards et al., 2021).

To explore transcriptional diversity in a spatial context, ad-

dressing and overcoming several methodological hurdles was

necessary. Since the array-based stRNA-seq technology (Vis-

ium 10X) is unable to resolve single cells, it requires inference

of the cellular composition of each spot. Our approach to

approximately deconvolute the cellular composition encom-

passed two steps: (1) a machine-learning-based segmentation

technique to predict the exact number of nuclei within each

spot (Figures S2D and S2E), and (2) an artificial neural network



Figure 1. Overview of the methods and cohort

(A) Illustration of the workflow and the cohort of spatial datasets (left) and an overview of analytical approaches used (right).

(B) t-stochastic neighbor embedding (tSNE) plot of all integrated spatially resolved transcriptomic spots. Color reflects individual specimens and patients.

Numbers indicate the anonymized patient sample ID. The letter indicates the anatomical origin of tissue. T, tumor; TI, tumor infiltrative; TC, tumor core; C, cortex.

(C) Overview of the workflow for prediction of tumor-cell content (top) and tSNE plot (bottom). Colors indicate the percentage of predicted tumor-cell content.

(D) Examples of the different resolutions of histologically defined regions.

(E) Dot plot of the percentage of malignant spots within the stRNA-seq data set based on ANN estimation. At the bottom, barplot illustration of the distribution of

histological regions within the samples.

See also Figures S1–S3 and Table S1.

ll
OPEN ACCESSArticle
(ANN) model trained to predict the number of tumor cells per

spot, based on a simulated dataset consisting of randomized

cellular assemblies from paired st-/scRNA-seq datasets

(n = 5) (Figures S2G and S2H). From the 88,793 spots from

all samples, 63,121 spots were from malignant specimens, of

which 46,459 spots contained a minimum of 95% tumor cells

(Figure 1C). This rigorous filtering approach leads to a bias in

the downstream analysis, as regions with lower tumor content

are not considered. This confounding factor contrasts with

the bias resulting from different healthy cell types in spots

with low tumor-cell content. Since the focus of this work is

on the architecture of tumor heterogeneity, spots with low tu-

mor content were excluded. To investigate infiltrative regions,

we followed a different workflow as indicated in Figures S3A–

S3F. To enable integration of our results with the prevailing

gold standard of the histological classification, we predicted

the spotwise histological phenotype in accordance with the

Ivy GAP histological classification system (Figures 1D, S3G,

and S3H; STAR Methods). Compared with histopathological

characteristics, samples with a low tumor-cell frequency
predominantly contained infiltrative regions where tumor

cells within the healthy cortex were poorly delineated

(Figure 1E).

Deciphering spatially resolved transcriptional
heterogeneity
We aimed to identify recurring transcriptional spatial patterns by

contextualizing them to existing transcriptional and histological

classifications. The spatial localization of GBM transcriptional

subgroups, as initially described using bulk RNA-seq (Phillips

et al., 2006; Verhaak et al., 2010) and further characterized in

depth using scRNA-seq (Neftel et al., 2019), remains unclear.

We and others (Li et al., 2020) hypothesize that transcriptional

subgroups are spatially segregated and engage in distinct tasks

within the tumor. To address the transcriptional diversity in a

spatial context, we first elucidated spatially separated transcrip-

tional patterns within individual patients, aggregating these re-

sults across the entire cohort (Figure S3I). To achieve this goal,

we sequentially eliminated confounders including inter-patient

variability, technical artifacts, and variability in sequencing
Cancer Cell 40, 639–655, June 13, 2022 641
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depth; an overview of filter parameters is provided in the STAR

Methods. Our analysis workflow was composed of three major

steps: (1) identification of patientwise robust regional transcrip-

tional programs, (2) horizontal integration across patients using

shared transcriptional programs as anchors and spatially

weighted correlation to explore colocalization of transcriptional

programs, and (3) characterization of the spatial organization

of shared programs (Figure S3I).

Unsupervised clustering was first carried out using five com-

plementary methods (STAR Methods) to maximize robustness

in cluster assignment (IDH1/2 wild-type GBM, n = 16 patients).

We then conservatively retained clusters from further analysis,

including partially overlapping clusters, clusters lacking

significant signature gene expression, or spots with ambig-

uous cluster assignments across methods (Galili, 2015)

(Figures S3J–S3L). This resulted in 38,872 spots across 99

clusters (of all patients), representing stable regional patterns.

To further determine recurring transcriptional programs, hori-

zontal integration of the assigned clusters was carried out

within transcriptional and cartesian space. Within the tran-

scriptional space, we uncovered five consistently expressed

transcriptional programs, later referred to as ‘‘spatially distinct

transcriptional programs,’’ distinguished by the presence of

each program in 90% of the surveyed tumors (Figure 2A). In

the cartesian space, we subsequently integrated patientwise

spatial-weighted correlation matrices (cluster by cluster) fol-

lowed by a hierarchical clustering, confirming the spatial

segregation of the five recurrent spatially distinct transcrip-

tional programs (Figure 2A). This approach allowed us to un-

derstand the biological significance of transcriptional

programs among patient-specific clusters that were robustly

expressed across the cohort. Exploring these distinct pro-

grams, we identified two spatially distinct transcriptional

programs that were associated with high expression of glial-

related genes (e.g., GFAP, AQP4, VIM, CD44). Although both

programs indicated glial lineage, one was associated with

increased expression of radial-glia-associated genes (HOPX,

PTPRZ1), and the other revealed functional enrichment of

inflammation-associated genes (e.g., HLA-DRA, C3, CCL4,

CCL3) and gene sets (interferon [INF]-gamma signaling, false

discovery rate [FDR] < 0.01, hypergeometric test). These pro-

grams that shared a common glial transcriptional profile will be

further referred to as ‘‘radial glia’’ and ‘‘reactive-immune,’’

respectively (Figures 2A, S4A, and S4B; Tables S2 and S3).

The term reactive is used since these transcription programs

are reminiscent of signature genes associated with the reac-

tive transformation of ACs (Figures S4B–S4G). The remaining

transcriptional programs demonstrated substantial concor-

dance with glial lineages and were named according to their

neural (termed ‘‘neural development’’) or oligodendrocytic

origin (termed ‘‘spatial OPC’’), coinciding with the recently

described ‘‘developmental’’ signature (Richards et al., 2021)

and the NPC- and OPC-like tumor-cell subgroups (Neftel

et al., 2019), respectively (Figures 2C and S4F). The fifth

spatially distinct transcriptional program, further referred to

as ‘‘reactive-hypoxia,’’ was identified to be associated with

hypoxia-response (e.g., VEGFR, HMOX1, GAPDH) and glyco-

lytic (e.g., LDHA, PGK1) genes, suggesting that metabolic al-

terations coupled with low concentrations of oxygen drive a
642 Cancer Cell 40, 639–655, June 13, 2022
transcriptionally distinct state in some regions (Figures 2A,

2B, and S4A). We hypothesize that this phenotype is charac-

terized by a dynamic adaptive response, consequently linked

to distinct alterations in the microenvironment.
Spatially distinct transcriptional states are independent
of cell-cycle states and are congruent with existing
classification systems
To determine if the detected spatially distinct transcriptional pro-

grams exist across all cell-cycle phases, we classified all spots

based on their transcriptional and cell-cycle programs. Akin to

the findings from scRNA-seq studies, a lower abundance of

spots classified as neuronal development and reactive-hypoxia

(ANOVA, p < 0.001) was detected in cycling cells (further analysis

in a later section). Other programs were equally distributed

across all cell-cycle states, highlighting the independence and

stability of the detected spatially distinct transcriptional pro-

grams (Figure 2A).

In order to further integrate our findings with existent classi-

fication systems, we performed spatial-weighted regression of

the established bulk- (Verhaak et al., 2010), single-cell (Neftel

et al., 2019; Richards et al., 2021), and our spatially distinct

transcriptional program classification to map spatial relation-

ships (Figures 2C and S4D–S4F). Bilateral integration of the

top-scoring gene signatures of the spatially distinct transcrip-

tional programs was carried out with the scRNAseq dataset

from Neftel et al., confirming that glial-related programs radial

glia, spatial OPC, and neuronal development demonstrated

strongest overlap with AC-, OPC-, and NPC-like, respectively

(Figure S4A). When compared with the data from Richards

et al., all the above programs demonstrated a strong overlap

with the neurodevelopmental phenotype (Figure 2C). The

reactive-hypoxia program demonstrated the strongest

overlap with the MES-like subtype, specifically the hypoxia-

dependent ‘‘MES2’’ state (Neftel et al., 2019) (Figures 2C,

S5A, and S5B).

So far, all states demonstrated overlap with exclusive tran-

scriptional programs from scRNA-seq data. However, Neftel

et al. pointed out the presence of a subset of cells that expressed

two distinct meta-modules or ‘‘hybrid’’ states. The spatially

unique reactive-immune program was found to be associated

with a distinct hybrid cell population, spanning between

AC- and MES-like states or containing cells from the AC- and

MES-like states in close proximity, suggesting that these hybrid

states (or interactions between AC- and MES-like states) may

reflect spatially segregated functions (Figures S5A and S5B).

To evaluate the spatial distribution of states and spatially distinct

transcriptional programs, we determined Moran’s I autocorrela-

tion (STAR Methods). We found that the spatially distinct tran-

scriptional programs were arranged in robust patterns within

the cartesian space (quantified by the Monte Carlo simulation

of Moran’s I across all samples, mean spatial classification:

0.62, mean cellular states: 0.38) (Figure S5C). Additionally, we

analyzed the spatial congruence between histological patterns

and spatial transcriptional clusters, and a significant enrichment

of the reactive hypoxia program was found around histologically

necrotic regions (ANOVA and Tukey’s honestly significant differ-

ence [TukeyHSD], FDR = 3.343 10-9) (Figures 2A and S5D–S5F).



Figure 2. Exploration of spatially distinct transcriptional programs

(A) Heatmap of spatially resolved transcriptomics of glioblastoma. Colors indicate the normalized regional program score. Heatmaps are arranged by major cell

phase (G1, S, or G2/M). Below the heatmap, patient samples and the histological origin of each spot are illustrated.

(B) Heatmap of the spatial-weighted correlation analysis of the 99 individual transcriptional programs. Hierarchical clustering (Ward.D2) confirmed 5 programs

(Calinski method, right) with large spatial congruence. The percentage of programs per patient contributing to each cluster is shown to the left.

(C) Spatially weighted correlation analysis of the enrichment scores and spatial overlap of current transcriptional signatures. By clustering all signatures, three

major branches appear: glia-like, neuronal-like, and stress-response reactive signatures. Signatures with high cross correlation are marked by lines.

(D) Heatmap of different CNAs across spatially distinct transcriptional subtypes. In the bar plot at the bottom, we quantified the relative numbers of exclusive

subclones that occur only in the defined spatially distinct subgroups. Violin plots represent the relative numbers of uniqueCNA events (subclones) across spatially

distinct transcriptional programs. Significance was determined using Mann-Whitney U test, and p values were corrected for multiple testing using the Bonferroni

method.

See also Figures S4–S6 and Tables S2 and S3.
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Spatially distinct transcriptional programs and
subclonal architecture
Copy-number alterations (CNAs), including focal amplification of

oncogenes or losses of tumor suppressors, are hallmarks of ma-

lignant cells that have been reported to drive therapy resistance

and tumor relapse (Smith and Sheltzer, 2018). In the known clas-

sifications of cellular states (Neftel et al., 2019; Richards et al.,

2021), unique CNAs have been linked to particular states, het-
erogeneously distributed across individual tumor cells. We

investigated the relationship between genomic alterations and

spatially distinct transcriptional programs, leveraging inferred

CNAs (Figures S6A–S6C). Since the inference of CNAs at the

transcriptional level provides only an approximation, we as-

sessed the accuracy of inference by a comparison between

spatially resolved DNA/RNA-seq from a recent published data-

set, demonstrating reasonable agreement amid the inferred
Cancer Cell 40, 639–655, June 13, 2022 643



Figure 3. Transcriptional subgroups are independent of the subclonal architecture

(A) Overview and illustration of the workflow (left) and an illustration of the concept of spatially shared and exclusive transcriptional programs within subclones.

(B) CNA heatmap of the sample #UKF 260_T showing 3 dominant subclones.

(C) Dot plot indicating the spatial overlap between transcriptional subgroups (as rows) and subclones (as columns [cols]) from the example #UKF 260_T as

illustrated in (B). Size and color show the percentage of overlap.

(D) Dot plot indicating the spatial overlap between transcriptional subgroups (as rows) and subclones (as cols) from all subclones. Colors at the bottom

demonstrate the patients. Size and color showed the percentage of overlap as demonstrated in (C).

ll
OPEN ACCESS Article
and real CNAs, and revealed important thresholds to increase

robustness of our inferred method (Figures S6E–S6M; STAR

Methods). In reactive-hypoxia-associated spots, we identified

a significant accumulation of CNAs that occurred as indepen-

dent subclonal events (p < 2.2 3 10-26) (Figure 2D).

Next, we aimed to investigate whether the spatially distinct

transcriptional diversity could directly reflect genetic subclones

within the tumor. We reconstructed clonal architecture by

patient-specific hierarchical clustering of CNAs. Fifty-seven ge-

netic subclones were identified, spanning between 2 to 6 sub-

clones per sample (Figure 3A). We then determined the distribu-

tion of individual, spatially distinct transcriptional programs

within each subclone (Figures 3B and 3C). Our analysis showed

that in 26.32% of all subclones, a single transcriptional program

dominated (more than 75% of spots per subclone). These find-

ings helped us conclude that clonal architecture has a limited

impact on the occurrence of spatially distinct transcriptional pro-

grams, although subclones are occasionally biased toward the

spatial OPC (8.77%) or reactive-hypoxia program (10.52%)

(Figure 3D).

Metabolic alterations associated with reactive-hypoxia
programs in GBM
To further explore the spatially distinct reactive-hypoxia pro-

gram, we carried out spatially resolved metabolomics using

MALDI Fourier-transform ion cyclotron resonance imaging

mass spectrometry (MALDI-FTICR-MSI) from tissue sections

consecutive to those used for stRNA-seq (patients, n = 6) (Fig-

ure 4A; Table S1). A workflow similar to that described for the
644 Cancer Cell 40, 639–655, June 13, 2022
stRNA-seq to decipher metabolic profiles was implemented,

encompassing three major steps: (1) alignment of metabolic

and transcriptomic data, (2) patientwise exploration, and (3)

reciprocal principal-component analysis (RPCA) integration.

Dimensional reduction revealed major variance within the first

two principal components, resulting in the identification of three

prominent metabolic subgroups post correction for cluster sta-

bility (Figures 4A, 4B, and S7). Functional metabolic analysis re-

vealed a significant enrichment of the pentose phosphate

pathway (FDR = 1.4 3 10-8, hypergeometric test) in the first

metabolic module (M-G1). The second metabolic subgroup

(M-G2) was characterized by an enrichment of phosphoadeny-

late metabolism (FDR = 3.3 3 10-7, hypergeometric test),

described as a hallmark of glioma metabolism (Li et al., 2018).

The final metabolic subgroup (M-G3) was strongly enriched for

glycolysis (FDR = 2.2 3 10-7, hypergeometric test) and amino

sugar metabolism (FDR = 4.2 3 10-8, hypergeometric test)

(Figure 4C).

Regions of reactive-hypoxia accumulate chromosomal
alterations
The spatially distinct transcriptional program reactive-hypoxia,

highlighted in this section, appeared as a unique cluster in our in-

tegrated analyses (WNN clustering) (Figure 4B). Histologically,

most spots assigned to the reactive-hypoxia program represent

the necrotic edge (Figure 4C). Although these results are largely

expected, and cell-state-specific CNAs have been described in

the literature (Neftel et al., 2019), the spatial co-occurrence of

metabolic alterations and distinct CNAs is unclear. We



Figure 4. Integration of spatially resolved metabolomic and transcriptional data

(A) Illustration of the workflow to integrate transcriptional and metabolomic data from 6 patients. Data analysis was performed by both samplewise comparison

and combined vertical and horizontal integration.

(B) Scatter plots of the horizontal integration of metabolic data across patients using reciprocal PCA (RPCA 1–2), and the horizontal integration of transcriptomic

data using mutual nearest neighbor (MNN) integration (MNN uniform manifold approximation and projection [UMAP] 1–2). Both data are integrated by the

weighted nearest neighbor (WNN) followed by dimensional reduction (WNN UMAP 1–2) indicated in the scatter plot. NA clusters are not further specified.

(C) Heatmap of spatially resolved transcriptomics of all integrated spots. Colors indicate the normalized regional program score. Below the heatmap, bar plots

show the individual distribution of characteristics within the spatial distinct subgroup.

(D) Surface plots of the integrated analysis in sample #UKF 275_T. At the top, hypoxic transcriptional activation is shown (left), and the metabolic activation (from

MALDI) is indicated at the right. At the bottom, hypoxia-associated spots are indicated in red and hypoxia core in green. Random spots are shown in blue. The

boxes connect the same spatial positions. At the bottom right, the enrichment score for cell cycle (G2M) is demonstrated.

(E) Copy-number heatmap across hypoxia phenotypes. A significant alteration was tested by Wilcoxon and corrected by FDR.

See also Figure S7.
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hypothesized that hypoxic metabolism leads to accumulation of

genomic instabilities in spatially segregated niches. These

‘‘reactive islands’’ represent potential sources of de novo

genomic alterations aiding in the evolution of therapy resistance

by the tumor cells. This is in line with reports on hypoxia-driven

genomic instabilities and epigenetic remodeling supporting tu-

mor evolution and therapy resistance in glioma (Garofano

et al., 2021; Johnson et al., 2021) and other cancer types (Bhan-

dari et al., 2020; Luoto et al., 2013; Sharma et al., 2010). Hypoxia

has been shown to result in altered expression of DNA-damage-

response and -repair genes, resulting in inhibition of recombina-

tion-mediated repair of DNA double-strand breaks, increasing

mutation rates and CNAs (Luoto et al., 2013).
To investigate our hypothesis, we explored areas enriched for

reactive-hypoxia signatures. Regions were defined as either hyp-

oxia-core (defined by bilateral hypoxia: MALDI and stRNA-seq)

or hypoxia-associated regions (unilateral-hypoxia MALDI or

stRNA-seq) with enrichment for glycolysis pathway (Figure 4D).

CNA mapping across both hypoxia-core and hypoxia-associated

regions versus randomly chosen control spots revealed a signifi-

cant loss of chromosome 15p (ANOVA, FDR = 4.15 3 10-17) and

14q (ANOVA, FDR = 2.34 3 10-25) and gain in chromosome 7 (-

ANOVA, FDR = 1.743 10-6) in hypoxia core regions. Some sam-

ples alsodisplayed singular lossesandgains acrossmultiple chro-

mosomes (8p, 9p, 13q, 19q, and 21q), the variability most likely

explained by single subclones within hypoxic core areas, lending
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Figure 5. TCGA and cell-culture validation of hypoxia-associated CNA alterations

(A) Overview and workflow of the TCGA data analysis.

(B) TCGA data validation. Patients were grouped by hypoxia score (from gene expression) and transcriptional subgroups (top left). Violin plots show the reactive

hypoxia score within the transcriptional subgroups: MES, mesenchymal; PN, proneural; CL, classical. Significance was tested by one-way ANOVA.

(C) Scatterplot of CNA frequency and hypoxia score. Point size indicates genomic instability, based on mutational load and CNAs.

(D) CNA mapping from TCGA data across the whole genome with overlapping hypoxia (indicated in red) and non-hypoxia (indicated in green) scores.

(E) Experimental validation of primary cell cultures of 4 patients cultured either in hypoxic or normoxic conditions. Illustration of the experimental workflow (top).

CNA mapping from 850,000 methylation data showed a stochastic accumulation of de novo CNAs under hypoxia.

(F) CpG islands at theMGMT TSS1500 – 1st exon. y axis shows themethylation beta values. The lollipop plot shows the differential methylation between hypoxia-

stress response at the MGMT promoter. Colors of the dots indicate the sample origin, hypoxia treatment (red) or normoxia (green). Colors of the boxes (bottom)

indicate the chromosomal region. The MGMT CpG islands (cg12434587 and cg12981137) were statistically tested using a one-way ANOVA.
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credence to thehypothesis thathypoxia-associatedmetabolism is

a potential driver of genomic instability (Figure 4E). In particular, a

chromosome 14q loss has been reported in other hypoxia-driven

cancers such as renal (Monzon et al., 2011) and pancreatic can-

cers (Tiwari et al., 2020). Both hypoxia-inducible factor (HIF1A)

and L-2-hydroxyglutarate dehydrogenase (L2HGDH) are located

on chromosome 14q, and its loss was linked to poorer survival in

patients suffering from renal cancer (Monzon et al., 2011). Also,

the lossofL2HGDHhasbeendemonstrated tobeapotential driver

of epigenetic remodeling in renal cancers (Shim et al., 2014). To

further validate our findings, we analyzed samples sourced from

theTCGAdatabase (patientsGBM IDH1/2wild-typen=357), clas-

sifying patients based on their hypoxia-gene expression score

(Figures 5A and 5B). Hypoxia-driven tumors showed a significant

increase in chromosomal alterations, confirming our initial obser-

vation and further strengthening the relationship between meta-

bolism and genomic instability (Figures 5C and 5D). The defined

loss of chromosome 15q/14q has not been demonstrated in the

TCGA data nor in the recently published single-cell studies in the

context of hypoxic activation, suggesting that our results are likely

confounded by the small number of investigated samples. Thus,

our results primarily indicate that hypoxic/oxidative stress en-

hancesgenomic instabilities, serving toenforcemicroevolution to-

wards resilience in GBM, supported by subclonal selection. To

experimentally validate our hypothesis, we cultured primary-pa-

tient-derived GBM cell lines under both normoxia and hypoxic
646 Cancer Cell 40, 639–655, June 13, 2022
conditions for 2–6weeks (patients n= 4) (Figure 5E). Copy-number

variations revealed differences in CNA profiles, with a significant

accumulation of CNA events under chronical hypoxia conditions

confirming the hypothesis of stress-induced CNA alterations (Fig-

ure 4E). A recent report by Johnson et al. demonstrated a link be-

tween metabolic-epigenetic and genetic changes and showed

that DNA-methylation disorders are associated with CNAs (John-

son et al., 2021). With this in mind, we explored the impact of hyp-

oxia metabolism on DNA methylation by analyzing O-6-

methylguanine-DNAmethyltransferase (MGMT) promotermethyl-

ation at CpG sites cg12434587 and cg12981137 under normoxia

and hypoxia conditions. Cell lines with an unmethylated MGMT

promoter under normoxia developed hypermethylation when

exposed to hypoxia (Figure 5F). These findings further strengthen

our hypothesis of metabolism-driven CNAs, where most de novo

rearrangementsmustbeconsideredasstochastic randomevents,

contributing to the subclonal evolution of the tumor.

Hypoxia metabolism regulates ‘‘go or grow’’ potential
in GBM
In our initial characterization of spatially resolved transcriptional

programs, we reported that the reactive-hypoxia program is

significantly enriched in non-cycling cells (Figure 2A). This is

consistent with recent reports, suggesting that hypoxic stress

triggers cell-cycle arrest, in particular an S-phase arrest (Seim

et al., 2003) (Figure 6A). This observation was pronounced in



Figure 6. Illustration of the hypoxia-stress concept and escape mechanism

(A) Concept and model of proliferation-hypoxia interdependence hypothesis. First, increasing proliferation causes metabolic imbalance of growth and regional

hypoxia. Hypoxia-induced termination of the cell cycle is associatedwith retention in the S phase and consecutive accumulation of CNAs. Second, cells acquiring

such a potential resistance advantage can gradually migrate out of the hypoxic areas.

(B) Model of vector-field calculations, which consist of the aligned gradients of spatial shifts in gene-expression levels and indicate the direction of migratory

activation.

(C) Surface plots of a spatial transcriptomic example (#UKF275_T). Arrows indicate the vector fields (illustrated as streamlines) from defined transcriptional

programs. For the illustration, we calculated vector fields consisting of the aligned gradients of spatial shifts in gene-expression levels. By placing the spots within

fixed spatial grids, we calculated an approximation of spatial trajectories.

(D) Surface plots (#UKF334_T) indicating the relationship between necrosis (left plot) and the enrichment of hypoxia (2nd from left), cell cycle (G2M 3rd from left),

and radial glia migration (last from left).
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the hypoxia-core spots, leading to the hypothesis that hypoxia-

driven S-phase arrest contributes to the accumulation of

genomic instabilities (Figure 6A), which is supported by previ-

ously reported findings that stress response and alterations in

mitotic checkpoints leads to aneuploidy (Zhu et al., 2018).

Combining recent evidence and our integrative analysis, we pro-

pose the following hypothetical model.

The baseline transcriptional state of GBM cells can be as-

signed to ‘‘developmental’’ (AC-, OPC-, or NPC-like) programs

(Bhaduri et al., 2020; Couturier et al., 2020; Richards et al.,

2021). Spatially, these programs are linked to lower cellular den-

sity, with metabolic profiling revealing an enrichment of the

pentose phosphate pathway (PPP). Due to proliferation and tu-

mor growth, increasing nutrient and oxygen deficiency occurs,

forcing the adoption of metabolic programs toward glycolysis.

This phenomenon, a reciprocal switch between PPP and glycol-

ysis, has been linked to the go or grow potential of tumor cells

(Kathagen et al., 2013), suggesting that the PPP dominates re-

gions consisting of growing tumor cells. When oxygen deficiency

occurs, this hypoxia-induced switch to glycolysis subsequently

leads to the induction of the go program, which facilitates the

escape/migration of cells to normoxic regions, (Kathagen

et al., 2013). Due to the downregulation of cell-cycle programs

that occurs under hypoxic conditions, an arrest in the S phase

occurs, leading to subsequent accumulation of de novo CNAs

(Seim et al., 2003). We hypothesize that a large percentage of

these hypoxia-affected cells then enter apoptosis, resulting in

the characteristic necrosis seen in GBM. Only a small fraction
of cells managing to escape by employing the upregulation of

migration-associated transcriptional programs (Kathagen et al.,

2013). Besides hypoxia, other stressors such as radiation or

chemotherapy have been reported to cause such stress-related

perturbations in GBM (Johnson et al., 2021) (Figure 6A).

Based on our model, one should expect to see an inverse rela-

tionship between hypoxia metabolism and cellular migration. To

explore the enrichment of migratory gene-expression signatures

in metabolically altered regions, we determined the spatial orien-

tation of directed gradients between low and high enrichment of

specific gene-expression signatures. Simplified, the orientation

vector of each spot is based on the graded enrichment of the

investigated gene-expression signature in its local neighbor-

hood. These vector-field calculations allow us to approximate

spatial gene-expression trajectories, enabling the identification

of spatially opposing transcriptional pathways (Figure 6B).

Based on these vector-field calculations, we report that hypoxia

response and migration signatures show inversely directed

spatial trajectories (Figures 6C and 6D). In summary, our findings

provide evidence formetabolic changes and oxidative stress be-

ing potential reciprocal drivers of genomic diversity, resulting in

clonal evolution in GBM.

Exploration of tumor-host interdependence in the
reactive-immune regions
Besides hypoxia-associated environmental stressors leading to

spatially segregated niches, another major stressor of GBM is

the immune environment, the understanding of which is essential
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for the development of successful immunotherapy treatments.

Immunoediting within the tumor is a decidedly important trait

that ensures immune escape and leads to a lack of effective

immunotherapeutic options for GBM (Filley et al., 2017).

Recently, evidence has been presented on epigenetic reprog-

ramming of MES-like tumor cells reshaping the microenviron-

ment (Gangoso et al., 2021). Accordingly, enrichment of

dysfunctional (exhausted) T cells has been observed and re-

ported in MES regions of GBM (Hara et al., 2021; Mathewson

et al., 2021; Ravi et al., 2022). Initial exploration of the spatially

distinct transcriptional programs showed that the reactive-im-

mune classification was composed of cells enriched for both

the MES-like (MES1) and the astrocytic-like (AC) transcriptional

signatures, also described as the ‘‘MES-AC-hybrid’’ states

(Figure 2B).

In order to provide a holistic perspective of the tumor-immune

interdependence, we complemented our findings with imaging

mass cytometry (IMC)-based single-cell profiling. We carefully

selected ROIs within regions of reactive-immune and reactive-

hypoxia programs and control ROIs from regions classified as

neuronal differentiation. IMC data were acquired from tissue

sections consecutive to those used for stRNA-seq (n = 6 pa-

tients, 14 different 1,000 mm2ROIs), resulting in a comprehensive

proteomic map of 82,179 cells post segmentation (Figure 7A;

Table S4). Our analysis revealed a significant increase of myeloid

(padj < 0.01, multivariate ANOVA [MANOVA]) and lymphoid

cells (padj < 0.01, MANOVA) in the regions classified as reac-

tive-immune (Figure 7B, 7C, and S8A–S8C). To investigate the

tumor-cell differentiation in immune-enriched areas, we quanti-

fied the cellular diversity by subdividing cells into radial glia

(EGFR+HOPX+), reactive-immune (EGFR+CHI3L1+VIM+), spatial

OPC (EGFR+OLIG1+), neural development (EGFR+SNAP25+-

CALM2+), and reactive-hypoxia (EGFR+VEGFA+). An exclusive

enrichment of reactive-immune (EGFR+CHI3L1+VIM+) cells was

confirmed only in transcriptionally defined reactive-immune lo-

calizations (Figure 7B).

To complement our findings pertaining to the cellular relation-

ships between the immune systemandGBM,we aimed tomodel

cellular interdependence (STARMethods). We quantified cellular

connectivity between tumor cells and lymphoid or myeloid

cells based on their distance, confirming enhanced cellular

interactions between tumor cells and the immune compartment

in transcriptionally defined reactive-immune areas (Figure 7D,

bottom). Next, we explored the distribution of cell types

within the different ROIs. We confirmed the suspected enr-

ichment of AC- and MES-like cells in both reactive-immune

(padj = 1.32e-6) and hypoxia (padj = 2.61 3 10-9) ROIs.

OPC-like cells were mainly enriched in neural development

(padj = 3.15 3 10-12) ROIs (Figures 7E and 7F). Additionally,

both reactive-immune and hypoxia areasmrevealed a significant

enrichment of tumor-associatedmyeloid cells (TAMs) and T cells

(Figure 7G). Given that T cells are enriched in both reactive areas,

we investigated the mean PD-1 protein levels on T cells (CD3+),

which were significantly increased within reactive-immune areas

compared with reactive-hypoxia (p = 0.023) and neural dev-

elopment (p = 0.034) areas, suggesting a local enhanced immu-

nosuppression in reactive-immune ROIs (Figure S8A). These

findings were further supported by the observation of local

enrichment of CD163+ myeloid cells in reactive-immune areas,
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which was reported to support anti-cancer immunity (Ravi

et al., 2022) (Figures S8B and S8C). Additionally, spotwise pro-

jection of an scRNA-seq dataset representing the GBM immune

landscape (STAR Methods) confirmed the enrichment of both

memory and exhausted T cells in the reactive-immune areas of

the tumor (Figure 7H).

Environmental conditions contribute to a bidirectional
subtype shift
Our findings so far have shown that the microenvironment plays

an important role in the transcriptional plasticity exhibited within

GBM. Evidence of these findings has been previously reported

as well, with a multitude of studies showing that an inflammatory

environment drives transcriptional adaptation, leading to GBM

heterogeneity (Gangoso et al., 2021; Hara et al., 2021; Mathew-

son et al., 2021). Metabolic alterations such as hypoxia have

been implied to bias differentiation towards a MES-like state

(Heiland et al., 2018; Joseph et al., 2015); however, it is unclear

if this is reversible. A bidirectional shift between subclasses

was described based on alterations within the tumor (Rooj

et al., 2017), yet limited evidence has been presented on the

impact of the local microenvironment on the various transcrip-

tional programs. Our hypothesized model and results suggest

that a part of these metabolically or immunologically affected

cells, here described as the reactivephenotype, will escape

and migrate toward healthy parts of the brain. To follow our hy-

pothesis that the microenvironment causes defined transcrip-

tional reprogramming in tumor cells, we aimed to investigate to

what extent reactive-transformed cells will change when

exposed to healthybrain. Due to the limited spatial resolution of

the stRNA-seq technology, exploration of infiltrating cells is not

possible; therefore, we performed scRNA-seq in the last part

of our work.

At this stage, information about expressed transcriptional

programs was of priority; therefore, we simulated tissue infiltra-

tion by means of our previously established human organotypic

neocortical-tissue-based GBM model, devoid of both meta-

bolic and immune stress. To assess the impact of various mi-

croenvironments, we used cortical access tissue from multiple

human donors of different ages (2–85 years of age, patients n =

3; sections n = 48,16 per patient) and two murine donors from

2-week- and 2-year-old rats (n = 32 sections) (Figure 8A). The

tissue was cultured for 4 days as previously described (Maier

et al., 2021; Ravi et al., 2019), after which the same MES-like

primary-patient-derived cell line (characterized by RNA-seq

[Schneider et al., 2021]) was inoculated into all cultured tissue

sections (Figure 8A). After 7 days of culture in different host en-

vironments, the tissue was digested, and tumor cells were iso-

lated using FACS for transcriptional profiling using scRNA-seq

(15,034 cells). Computational identification of tumor cells was

carried out based on their characteristic gains in chromosome

7 (10,887 cells) using inferred CNAs (Figures 8C and 8D). To

explore the dynamic adaptation across different host environ-

ments, all malignant cells were aligned based on enrichments

of their corresponding cellular states (Figures 8E and 8F). The

baseline state (cells grown in two-dimensional [2D] cell culture)

revealed an MES-1/2-like phenotype (chi-squared test,

p < 2.2 3 10-16), with a low degree of transcriptional diversity

and plenty of cycling cells (Figure 8E). Developmental states



Figure 7. Integration of single-cell mass cytometry

(A) Illustration of the integration of imaging mass cytometry data within the spatial transcriptomic data. Based on the defined transcriptomic niches (see also

Figure 2), defined areas were selected for IMC. At the bottom is an illustration analysis pipeline for IMC data.

(B) Dimensional reduction of the cell-type diversity in different areas of dominating spatially resolved transcriptional patterns.

(C) Bar plots of the changes of lymphoid and myeloid cells across spatially resolved transcriptional patterns (top). Heatmap of tumor-cell diversity of our an-

notated spatially resolved subtypes (bottom).

(D) Illustration of theworkflow for the quantification of cellular relationships (top). Quantification of the cellular connectivity between tumor cells andmyeloid (cyan)

or lymphoid (purple) cells (bottom).

(E) An H&E of the #UKF275 is presented as an example. A colored mask indicates the distinct reactive immune (red) and hypoxia regions (green).

(F and G) Illustration of the cell counts per subregion and cell type. Counts and statistic for tumor cells are illustrated in (F) and non-malignant cells in (G). Statistics

were performed by ANOVA, and the p value is corrected (FDR) and illustrated as ***p <0.001, **p <0.01, *p <0.05.

(H) Deconvolution of the cellular position of myeloid cells (top right) and effector T cells as an example. At the top, a 2D representation of the glioblastoma immune

compartment is presented. The dataset is merged from three recently published datasets (STAR Methods). At the bottom is a heatmap of spatial enrichment

(spotlight score per region across all tumor samples) for CD4+ and CD8+ T cell subtypes. Teff, effector T cells; Tmem, central and effector memory T cells; Texh,

exhausted T cells; Tnaive, naive T cells. Blank fields illustrate no detectable enrichment of cell types.

See also Figure S8 and Table S4.
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(OPC-, AC-, and NPC-like) were significantly over-represented

in cells cultured in human donor tissue, primarily in the young-

and middle-aged donors (2/3 ) (MANOVA p < 2.2 3 10-16). GBM

cells cultured in the rodent neural environment exhibited

enrichment for MES-1/2- and AC-like transcriptional signatures

(MANOVA p < 2.2 3 10-16). Cycling cells of the developmental

states were only detectable in the OPC-like subgroup, which is

in line with recent reports (Neftel et al., 2019; Tirosh et al.,

2016a; Venteicher et al., 2017). In order to examine dynamic

adaptations, we annotated scRNA velocity according to the

first two principal components (Figure 8G). Macro states

including initial and terminal states were estimated by Markov

chains based on annotated RNA velocity and transcriptomic

similarity (CellRank [Lange et al., 2020]; Figure 8H). In general,

the estimated vector field from the in vitro cell-culture root
(Figures 8G and 8H, top) to the MES- and AC-like tail

(Figures 8G and 8H, bottom) represents a directional adapta-

tion driven by the neural environment. Protein tyrosine phos-

phatase receptor type Z1 (PTPRZ1), a common marker gene

of radial-glia-differentiated GBM cells (Bhaduri et al., 2020),

happened to be assigned to a high velocity in the MES-AC-

hybrid state based on its phase portrait (Figures 8G and 8H,

bottom, and 8I). Our data confirmed a bidirectional fate within

the OPC- and NPC-like branches. Genes such as those encod-

ing potassium channels (KCNH8) and metabotropic glutamate

receptors (GRM3) demonstrated high velocity within these tran-

scriptional modules, suggesting that the neuronal environment

promotes defined transcriptional programs, which is in line with

recent descriptions of neuronal-glioma interactions (Venkatara-

mani et al., 2019; Venkatesh et al., 2019).
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Figure 8. Ex vivo human cortical culture indicates the bidirectional shift through environmental impact

(A) Illustration of the workflow to test the impact of varying host environments on tumor cells.

(B) Overview of the host environments.

(C) Dimensional reduction UMAP 2D representation of scRNA-seq marked by AIF1 (myeloid cells) and gains in chromosome 7 (tumor cells).

(D) Dimensional reduction UMAP representation of all integrated scRNA-seq data. Colors indicate the host environment in which the cell was cultivated.

(E) Enrichment analysis of transcriptional subtypes, and the heatmap indicates the enrichment score of each cell. At the bottom, the percentage of cells per

subgroup and the environmental condition are illustrated.

(F) Volcano plot of the four major cellular states described by Neftel et al. (2019). Colors indicate the tissue-donor origin.

(G) Velocities derived from the dynamical model for the scRNA-seq data are demonstrated as PCA dimensional reduction. The main gene-averaged flow

visualized by velocity streamlines corresponds to the tumor cell differentiation after injection within different tissue donors.

(H) Estimation of initial and terminal states using CellRank in a representation similar to (G).

(I) Scatter plots of unspliced gene expression (y axis) and spliced gene expression (x axis) demonstrate transcriptional dynamics of splicing kinetics within

different clusters. PTPRZ1 shows upregulation in the MES-like 2 cell state and KCNH8 within the OPC-state as indicated by the PCA plot at the top right corner.

See also Figure S8.
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Estimation of the velocity length confirmed the accentuated

speed of differentiation in cells from tissue sections compared

with cell-culture conditions, highlighting the transcriptional

plasticity of GBM cells (Figures S8D and S8E). Of note, we

found a significant enrichment of MES-like/reactive cell

types in neural environment of elderly donors (human and

rat, chi-squared test p < 2.2 3 10-16), whereas cells from

phylogenetic lineage-differentiated origins were predomi-

nantly enriched in younger donors (chi-squared test
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p < 2.2 3 10-16). This observation showed a considerable cor-

relation of age-associated effects, potentially based on the

enhanced baseline inflammatory state found in the aged brain

(Sankowski et al., 2019). Still, the causality of the impact of

age on tumor differentiation has not been described. Our

data provide clear evidence that the host environment, in

addition to known factors such as the mutational and epige-

netic landscape, has a significant impact on the plasticity of

transcriptional heterogeneity.
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DISCUSSION

Over the last few years, numerous discoveries made through

technological advancements in single-cell profiling have revolu-

tionized the understanding of tumor heterogeneity and plasticity

and potential therapeutic options (Darmanis et al., 2017; Neftel

et al., 2019; Richards et al., 2021; Tirosh et al., 2016a; Venteicher

et al., 2017). However, the significance of the spatial organization

of brain tumors has not been investigated. Here, we uncovered

insights into the bi- and unidirectional interactions between the

microenvironment and the spatio-temporal alterations in tran-

scriptional heterogeneity of GBM. We exposed the existence

of five spatially distinct transcriptional programs marked by

shared transcriptional signatures and exclusive genomic alter-

ations. Although there are prior descriptions of CNAs in GBM,

neither the regional pattern nor the association with transcrip-

tional programs has been previously reported. To allow for an

overall comparison between the cellular states, histological

patterns, and spatially exclusive transcriptional programs, we

subsequently contextualized our results within established

classifications, revealing a large overlap, although significant dif-

ferences were found in the context of transcriptionally reactive/

MES cells.

This comprehensive characterization of GBM at various

molecular levels in a spatially resolved manner facilitates the

discovery of dynamic adaptations of cellular states and their

spatial relationships within the tumor microenvironment. Our

data suggests that metabolic alterations such as severe hypoxia

results in impaired proliferation, following a halt in the S phase,

that leads to a significant accumulation of CNAs. This phenom-

enon has been reported in other cancer types, and sufficient ev-

idence exists detailing the increase in genomic instability under

hypoxia (Jing et al., 2018; Sieber et al., 2003). Our results and val-

idations in 2D cell culture and TCGA data indicate that regional

hypoxia metabolism represents a potential reservoir of genomic

instability and represent drivers of microevolution that enable the

evolution of therapy-resistant phenotypes. Our results are not

able to prove causal relationships but provide a basis for the

development of hypothetical models that require mechanistic

validation.

A unique spatially exclusive transcriptional programwas found

in regions of increased immune infiltration by myeloid and

lymphoid cells. This defined response of glioma cells has been

recently described, indicating that tumor cells undergo epige-

netic regulation to express MES-associated genes (Gangoso

et al., 2021). Model systems for investigating tumor-host interac-

tions are naturally limited due to the restricted accessibility of hu-

man tissue. However, to approximate physiological conditions,

we used human neocortical tissue sections that preserve all

spatial and cellular architecture of the neural environment. Inoc-

ulation of patient-derived primary glioma stem-like cells into

different human and rodent host environments confirmed the

impact of the microenvironment on tumor-cell differentiation.

Within ourmodel, we found a strong association between inflam-

matory response and the age of the donor, suggesting that aging

may have an impact on tumor differentiation, analogous to the

reactive transformation of glial cells with age (Senatorov et al.,

2019). Several neurological diseases such as Alzheimer’s dis-

ease (AD) and multiple sclerosis (MS) cause a general inflamma-
tory environment, driving inflammatory transformation of glia

cells (Liddelow and Barres, 2017; Liddelow et al., 2017; Yun

et al., 2018). An increase in inflammatory transformation was

also reported in the aging brain, which could be caused by dam-

age to the blood-brain barrier (Habib et al., 2020). In the present

setting, the model suggests a correlation between aging and

inflammation in GBM without proving the causality.

In conclusion, we have elucidated the spectrum of regional

transcriptional programs of GBM and mapped their microenvi-

ronmental landscape including metabolic and tumor-host

cellular interactions. By demonstrating that the host environment

plays an important role in reshaping the genetic and transcrip-

tional heterogeneity, we provide insight into inter-patient hetero-

geneity and, consequently, for early GBM relapse and therapy

resistance. We conclude that tailored therapeutic approaches

are required, highlighting the significance of personalized

approaches in neuro-oncology.
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Microenvironment-derived regulation of HIF signaling drives transcriptional

heterogeneity in glioblastoma multiforme. Mol. Cancer Res. 16, 655–668.

https://doi.org/10.1158/1541-7786.MCR-17-0680.

Henrik Heiland, D., Ravi, V.M., Behringer, S.P., Frenking, J.H., Wurm, J.,

Joseph, K., Garrelfs, N.W.C., Str€ahle, J., Heynckes, S., Grauvogel, J., et al.

(2019). Tumor-associated reactive astrocytes aid the evolution of immunosup-

pressive environment in glioblastoma. Nat. Commun. 10, 2541. https://doi.

org/10.1038/s41467-019-10493-6.

Hovestadt, V., and Zapatka, M. (2015). conumee: Enhanced copy-number

variation analysis using Illumina DNA methylation arrays (R package version

1.9.0). http://bioconductor.org/packages/conumee/.

Jing, A., Vizeacoumar, F.S., Parameswaran, S., Haave, B., Cunningham, C.E.,

Wu, Y., Arnold, R., Bonham, K., Freywald, A., Han, J., et al. (2018). Expression-

based analyses indicate a central role for hypoxia in driving tumor plasticity

through microenvironment remodeling and chromosomal instability. NPJ

Syst. Biol. Appl. 4, 38. https://doi.org/10.1038/s41540-018-0074-z.

Johnson, K.C., Anderson, K.J., Courtois, E.T., Gujar, A.D., Barthel, F.P., Varn,

F.S., Luo, D., Seignon, M., Yi, E., Kim, H., et al. (2021). Single-cell multimodal

glioma analyses identify epigenetic regulators of cellular plasticity and environ-

mental stress response. Nat. Genet. 53, 1456–1468. https://doi.org/10.1038/

s41588-021-00926-8.

Joseph, J.V., Conroy, S., Pavlov, K., Sontakke, P., Tomar, T., Eggens-Meijer,

E., Balasubramaniyan, V., Wagemakers, M., den Dunnen, W.F.A., and Kruyt,

F.A.E. (2015). Hypoxia enhances migration and invasion in glioblastoma by

promoting a mesenchymal shift mediated by the HIF1a-ZEB1 axis. Cancer

Lett. 359, 107–116. https://doi.org/10.1016/j.canlet.2015.01.010.

Kathagen, A., Schulte, A., Balcke, G., Phillips, H.S., Martens, T., Matschke, J.,

G€unther, H.S., Soriano, R., Modrusan, Z., Sandmann, T., et al. (2013). Hypoxia

and oxygenation induce a metabolic switch between pentose phosphate

pathway and glycolysis in glioma stem-like cells. Acta Neuropathol. 126,

763–780. https://doi.org/10.1007/s00401-013-1173-y.

Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T.,

Lomakin, A., Kedlian, V., Jain, M.S., Park, J.S., et al. (2020). Comprehensive

mapping of tissue cell architecture via integrated single cell and spatial tran-

scriptomics. Preprint at bioRxiv. https://doi.org/10.1101/2020.11.15.378125.

Koch, S.E., and DesJardins, M. (1983). An interactive Barnes objective map

analysis scheme for use with satellite and conventional data. J. Applied

Meteorol. 22, 1487–1503.

LaManno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,

Lidschreiber, K., Kastriti, M.E., Lönnerberg, P., Furlan, A., et al. (2018). RNA ve-

locity of single cells. Nature 560, 494–498. https://doi.org/10.1038/s41586-

018-0414-6.

Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H.,

Ansari, M., Schniering, J., Schiller, H.B., et al. (2020). CellRank for directed sin-

gle-cell fate mapping. Preprint at bioRxiv. https://doi.org/10.1101/2020.10.19.

345983.

Li, W., Jia, H., Li, Q., Cui, J., Li, R., Zou, Z., and Hong, X. (2018).

Glycerophosphatidylcholine PC(36:1) absence and 3’-phosphoadenylate

(pAp) accumulation are hallmarks of the human glioma metabolome. Sci.

Rep. 8, 14783. https://doi.org/10.1038/s41598-018-32847-8.

Li, Y., Li, B., Li, W., Wang, Y., Akg€ul, S., Treisman, D.M., Heist, K.A., Pierce,

B.R., Hoff, B., Ho, C.-Y., et al. (2020). Murine models of IDH-wild-type glioblas-

toma exhibit spatial segregation of tumor initiation and manifestation during

evolution. Nat. Commun. 11, 3669. https://doi.org/10.1038/s41467-020-

17382-3.

Liddelow, S.A., and Barres, B.A. (2017). Reactive astrocytes: production, func-

tion, and therapeutic potential. Immunity 46, 957–967. https://doi.org/10.

1016/j.immuni.2017.06.006.

Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J.,

Schirmer, L., Bennett, M.L., M€unch, A.E., Chung, W.-S., Peterson, T.C.,
Cancer Cell 40, 639–655, June 13, 2022 653

https://doi.org/10.1038/s41467-020-17186-5
https://doi.org/10.1016/j.celrep.2017.10.030
https://doi.org/10.1016/j.celrep.2017.10.030
https://doi.org/10.1073/pnas.1507125112
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref18
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref18
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref18
https://doi.org/10.18632/oncotarget.21586
https://doi.org/10.1093/bioinformatics/btv428
https://doi.org/10.1016/j.cell.2021.03.023
https://doi.org/10.1038/s43018-020-00159-4
https://doi.org/10.1093/bioinformatics/bts447
https://doi.org/10.1093/bioinformatics/bts447
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref24
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref24
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref24
https://doi.org/10.1038/s41416-020-1021-5
https://doi.org/10.1101/628347
https://doi.org/10.1101/628347
https://doi.org/10.1038/s41593-020-0624-8
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.ccell.2021.05.002
https://doi.org/10.1158/1541-7786.MCR-17-0680
https://doi.org/10.1038/s41467-019-10493-6
https://doi.org/10.1038/s41467-019-10493-6
http://bioconductor.org/packages/conumee/
https://doi.org/10.1038/s41540-018-0074-z
https://doi.org/10.1038/s41588-021-00926-8
https://doi.org/10.1038/s41588-021-00926-8
https://doi.org/10.1016/j.canlet.2015.01.010
https://doi.org/10.1007/s00401-013-1173-y
https://doi.org/10.1101/2020.11.15.378125
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref42
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref42
http://refhub.elsevier.com/S1535-6108(22)00220-3/sref42
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1101/2020.10.19.345983
https://doi.org/10.1101/2020.10.19.345983
https://doi.org/10.1038/s41598-018-32847-8
https://doi.org/10.1038/s41467-020-17382-3
https://doi.org/10.1038/s41467-020-17382-3
https://doi.org/10.1016/j.immuni.2017.06.006
https://doi.org/10.1016/j.immuni.2017.06.006


ll
OPEN ACCESS Article
et al. (2017). Neurotoxic reactive astrocytes are induced by activated micro-

glia. Nature 541, 481–487. https://doi.org/10.1038/nature21029.

Lu, B., Harris, P., Charlton, M., and Brunsdon, C. (2014). The GWmodel R

package: further topics for exploring spatial heterogeneity using geographi-

cally weighted models. Geo Spatial Inf. Sci. 17, 85–101.

Lun, A.T.L., McCarthy, D.J., and Marioni, J.C. (2016). A step-by-step workflow

for low-level analysis of single-cell RNA-seq data with Bioconductor. 5, 2122.

https://doi.org/10.12688/f1000research.9501.2.

Luoto, K.R., Kumareswaran, R., and Bristow, R.G. (2013). Tumor hypoxia as a

driving force in genetic instability. Genome Integr. 4, 5. https://doi.org/10.

1186/2041-9414-4-5.

Maier, J.P., Ravi, V.M., Kueckelhaus, J., Behringer, S.P., Garrelfs, N., Will, P.,

Sun, N., von Ehr, J., Goeldner, J.M., Pfeifer, D., et al. (2021). Inhibition of me-

tabotropic glutamate receptor III facilitates sensitization to alkylating chemo-

therapeutics in glioblastoma. Cell Death Dis. 12, 723. https://doi.org/10.

1038/s41419-021-03937-9.

Maire, C.L., Fuh, M.M., Kaulich, K., Fita, K.D., Stevic, I., Heiland, D.H., Welsh,

J.A., Jones, J.C., Görgens, A., Ricklefs, T., et al. (2021). Genome-wide methyl-

ation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tu-

mor classification. Neuro Oncol. 23, 1087–1099.

Mathewson, N.D., Ashenberg, O., Tirosh, I., Gritsch, S., Perez, E.M., Marx, S.,

Jerby-Arnon, L., Chanoch-Myers, R., Hara, T., Richman, A.R., et al. (2021).

Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-

cell analysis. Cell 184, 1281–1298.e26. https://doi.org/10.1016/j.cell.2021.

01.022.

Monzon, F.A., Alvarez, K., Peterson, L., Truong, L., Amato, R.J., Hernandez-

McClain, J., Tannir, N., Parwani, A.V., and Jonasch, E. (2011). Chromosome

14q loss defines a molecular subtype of clear-cell renal cell carcinoma asso-

ciated with poor prognosis. Mod. Pathol. 24, 1470–1479. https://doi.org/10.

1038/modpathol.2011.107.

Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman,

A.R., Silverbush, D., Shaw, M.L., Hebert, C.M., et al. (2019). An integrative

model of cellular states, plasticity, and genetics for glioblastoma. Cell 178,

835–849.e21. https://doi.org/10.1016/j.cell.2019.06.024.

Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J.,

Weil, S., Horstmann, H., Wiestler, B., Syed, M., et al. (2015). Brain tumour cells

interconnect to a functional and resistant network. Nature 528, 93–98. https://

doi.org/10.1038/nature16071.

Palmer, A., Phapale, P., Chernyavsky, I., Lavigne, R., Fay, D., Tarasov, A.,

Kovalev, V., Fuchser, J., Nikolenko, S., Pineau, C., et al. (2017). FDR-controlled

metabolite annotation for high-resolution imaging mass spectrometry. Nat.

Methods 14, 57–60. https://doi.org/10.1038/nmeth.4072.

Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto,

H., Cahill, D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-

cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.

Science 344, 1396–1401. https://doi.org/10.1126/science.1254257.

Phillips, H.S., Kharbanda, S., Chen, R., Forrest, W.F., Soriano, R.H., Wu, T.D.,

Misra, A., Nigro, J.M., Colman, H., Soroceanu, L., et al. (2006). Molecular sub-

classes of high-grade glioma predict prognosis, delineate a pattern of disease

progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173.

https://doi.org/10.1016/j.ccr.2006.02.019.

Pombo Antunes, A.R., Scheyltjens, I., Lodi, F., Messiaen, J., Antoranz, A.,

Duerinck, J., Kancheva, D., Martens, L., De Vlaminck, K., and Van Hove, H.

(2021). Single-cell profiling of myeloid cells in glioblastoma across species

and disease stage reveals macrophage competition and specialization. Nat.

Neurosci. 24, 595–610. https://doi.org/10.1038/s41593-020-00789-y.

Ravi, V.M., Joseph, K., Wurm, J., Behringer, S., Garrelfs, N., d’Errico, P.,

Naseri, Y., Franco, P., Meyer-Luehmann, M., Sankowski, R., et al. (2019).

Human organotypic brain slice culture: a novel framework for environmental

research in neuro-oncology. Life Sci. Alliance 2. e201900305. https://doi.

org/10.26508/lsa.201900305.

Ravi, V.M., Neidert, N., Will, P., Joseph, K., Maier, J.P., K€uckelhaus, J.,

Vollmer, L., Goeldner, J.M., Behringer, S.P., Scherer, F., et al. (2022). T-cell

dysfunction in the glioblastoma microenvironment is mediated by myeloid
654 Cancer Cell 40, 639–655, June 13, 2022
cells releasing interleukin-10. Nat. Commun. 13, 925. https://doi.org/10.

1038/s41467-022-28523-1.

Reuter, B., Weber, M., Fackeldey, K., Röblitz, S., and Garcia, M.E. (2018).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Imaging mass cytometry antibody panel See Table S4

Chemicals, peptides, and recombinant proteins

Tissue-Tek� O.C.T.� Compound Sakura Cat#4583

TriZOl Invitrogen Cat#15596026

SPRIselect reagent Beckman Coulter Cat#B23318

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat#A3059

9-aminoacridine hydrochloride

monohydrate (9-AA)

Sigma-Aldrich Cat#A38401

40,6-diamidino-2-phenylindole (DAPI) Merck KGaA Cat#32670-5MG

89-Yttrium (III) nitrate tetrahydrate Sigma-Aldrich Cat#217239-10G

157-Gadolinium (III) chloride Trace Sciences Int.

Super Block (TBS) Blocking Buffer ThermoFisher Scientific Cat#37581

Iridium Cell-ID intercalator Fluidigm Cat#201192B

GlutaMaxTM Gibco Cat#13462629

HibernateTM -A Medium Gibco Cat#12087586

N-methyl-D-Glucamin (NMDG) Sigma-Aldrich Cat#M2004

Antibiotic-Antimycotic (100X) Gibco Cat#15240062

NeurobasalTM Medium Gibco Cat#11570556

L-Glutamine Gibco Cat# 25030149

B-27 Supplement, serum-free (50X) Gibco Cat#11530536

MgSO4 Sigma-Aldrich Cat#M3409

HEPES Sigma-Aldrich Cat#H0887

D-Glucose Sigma-Aldrich Cat#RNBG7039

Critical commercial assays

Visium Spatial Tissue Optimization

Slide & Reagent Kit

10x Genomics Cat#PN-1000193

Visium Spatial Gene Expression

Slide and Reagent Kit

10x Genomics Cat#PN-1000184

Visium Accessory Kit 10x Genomics Cat#PN-1000194

KAPA SYBR FAST qPCR Master Mix Roche Cat#KK4600

Dual Index Kit TT Set A 10x Genomics Cat#PN-1000215

Chromium Next GEM Single Cell 3ʹ GEM,

Library & Gel Bead Kit v3.1

10x Genomics Cat#PN-1000121

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat#PN-1000120

Single Index Kit T Set A 10x Genomics Cat#PN-1000213

Pico Pure RNA Isolation Kit ThermoFisher Scientific Cat#KIT0204

Fragment Analyzer 5200 RNA Kit Agilent Cat#DNF-471

Fragment Analyzer 5200 HS NGS Kit Agilent Cat#DNF-474

Qubit 1X dsDNA HS Kit ThermoFisher Scientific Cat#Q33231

NextSeq 500/550 High Output

Kit v2.5 (150 cycles)

Illumina Cat#20024907

NextSeq 500/550 High Output

kit v2.5 (75 cycles)

Illumina Cat#20024906

Neural Tissue Dissociation Kit (T) Miltenyi Biotech Cat#130-093-231

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maxpar X8 antibody labelling Kits Fluidigm Cat#201149A

Biological samples

BTSC#233 UK Freiburg Primary Cell Line

BTSC#168 UK Freiburg Primary Cell Line

GS10 UKE Hamburg Primary Cell Line

GS11 UKE Hamburg Primary Cell Line

GS12 UKE Hamburg Primary Cell Line

GS13 UKE Hamburg Primary Cell Line

Human Cortex Donor 1 UK Freiburg N/A

Human Cortex Donor 2 UK Freiburg N/A

Human Cortex Donor 3 UK Freiburg N/A

Rat Cortex 3 weeks old Charles River Wistar (003)

Rat Cortex 2 Years old Charles River Wistar (003)

Deposited data

Spatial Transcriptomic Data (raw) Datadryad https://doi.org/10.5061/dryad.h70rxwdmj

Spatial Transcriptomic Data (processed) SPATAData (GitHub) https://github.com/theMILOlab/SPATAData

MALDI Data (raw and processed) Datadryad https://doi.org/10.5061/dryad.h70rxwdmj

IMC Data (raw and processed) Datadryad https://doi.org/10.5061/dryad.h70rxwdmj

850k Methylation EPIC Data: Datadryad https://doi.org/10.5061/dryad.h70rxwdmj

TCGA data GLIOVIS http://gliovis.bioinfo.cnio.es

Single Cell Data (Neftel et al., 2019) GEO GSE131928

Single Cell Data (Darmanis et al., 2017) GEO GSE84465

Single Cell Data (Ravi et al., 2022) OSF database https://osf.io/4q32e/ https://doi.org/

10.17605/OSF.IO/4Q32E

Single Cell Data (Pombo Antunes et al., 2021) GEO GSE163120

Single Cell Data (Mathewson et al., 2021) GEO GSE163108

Software and algorithms

SPATA https://github.com/theMILOlab/SPATA

SPATA2 https://github.com/theMILOlab/SPATA2

Cell Profiler https://cellprofiler.org

Ilastik https://www.illastik.org

For MALDI: R-Script: https://github.com/theMILOlab/Code_

Request/blob/main/MALDI.R

SPATAWrapper https://github.com/heilandd/SPATAWrappers

METASPACE, https://metaspace2020.eu

Human Metabolome Database https://www.hmdb.ca

MSigDBv7.2 https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp

Bodenmiller Pipeline for Segmentation https://github.com/Bodenmiller-Group/

ImcSegmentationPipeline

Other

Indium-tin-oxide coated conductive slides Bruker Daltonics Cat#MFPRM7462243

C-Tubes Miltenyi Biotech Cat#130-093-237

SuperFrost plus slides R. Langenbrinck GmbH Cat#03-0060

PAP pen ImmEdge Cat#H-4000
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Materials availability
This study did not generate new unique reagents.

Data and code availability
All data including spatial transcriptomic data, MALDI data, IMC data, single-cell RNA-seq and 850k methylation that were generated

in this study have been deposited at Datadryad (https://doi.org/10.5061/dryad.h70rxwdmj) and are publicly available. Accession

links and DOI’s are listed in the key resources table. For validation analysis were performed from publicly deposited data. Single

cell RNA-seq data from GEO (GSE131928, GSE84465, GSE163120, GSE163108) and OSF (https://osf.io/4q32e/ https://doi.org/

10.17605/OSF.IO/4Q32E) was used. All original code has been deposited at GitHub and is publicly available as of the date of pub-

lication. The software tool SPATA and SPATA2 (https://github.com/theMILOlab/SPATA2) was generated for this study. Links of all

used tools are listed in the key resources table

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples
The local ethics committee of the University of Freiburg approved the data evaluation, imaging procedures and experimental design

(protocol 100020/09 and 472/15_160880). The methods were carried out in accordance with the approved guidelines, with written

informed consent obtained from all subjects. Patients at the Department of Neurosurgery of the Medical Center, University of Frei-

burg (Freiburg, Germany) provided preoperative informed consent to take part in the study in all cases. Clinical characteristics are

summarized in Table S1. If the anatomical location and constitution of the access cortex facilitated its utilization at the time of surgery,

spatial transcriptomics and tissue culture experiments were performed on the tumor and the (healthy) access cortex.

Cell lines
Patient derived primary cultures (BTSC#233 [gender: male] and BTSC#168 [gender: female]) were grown inMEM (GIBCO, 11095080)

supplemented with 10% FCS (Pan-Biotech, P30-3306) and 1% Penicillin/Streptomycin (Pan-Biotech, P0607100).

Rat tissue samples
All protocols were approved by the responsible Animal Care Committee of the Regierungspr€asidium Freiburg (Permit X21/02A), Male

Wistar rats (3 weeks old and 24 months old, Charles River), were housed under standard lighting (12 h light-dark cycle), at 22�C and

40% humidity and were allowed access to food and water ad libitum. On the experimental day, rats were decapitated after an over-

dose of inhalation anesthetic (Forene, Baxter, USA), and the brains were quickly extracted and submerged in oxygenated ice-cold

‘‘Preparationmedium’’. Tissue sections (300mm)were prepared using a vibratome (VT 1200, Leica, Germany) as previously described

and were processed similarly to the human tissue sections (Ravi et al., 2019).

METHOD DETAILS

Spatial transcriptomics
Spatial transcriptomics experiments were performed using the 10X Visium Spatial Gene Expression kit (https://www.10xgenomics.

com/spatial-gene-expression). All the instructions for Tissue Optimization and Library preparation were followed according to man-

ufacturer’s protocol. Here, we briefly describe the methods followed using the library preparation protocol.

Tissue collection and RNA quality control
Fresh tissue, collected immediately post resection, was quickly embedded in Tissue-Tek� O.C.T.� Compound (Sakura, 4583) and

snap frozen in isopentane, pre-chilled in liquid nitrogen. Embedded tissue was stored at�80�C until further processing. A total of 10

sections (10mmeach) per sample were lysed using TriZOl (Invitrogen, 15596026) and used to determine RNA integrity. Total RNAwas

extracted using PicoPure RNA Isolation Kit (Thermo Fisher, KIT0204) according to the manufacturer’s protocol. RIN values were

determined using a Fragment Analyzer 5200 (RNA kit, Agilent, DNF-471) according to the manufacturer’s protocol. Only samples

with an RNA integrity value > 7 was used.

Spatial gene expression protocol
10 mm thick sections were mounted onto spatially barcoded glass slides with poly-T reverse transcription primers, one section per

array. Slides were fixed in 100%methanol andH&E staining was performed. Brightfield imaging was carried out at 103magnification

with a Zeiss Axio Imager 2 Microscope, and post-processing was performed using ImageJ software. Following imaging, permeabi-

lization was carried out for a pre-determined time to release and capture mRNA from the tissue onto primers on the slide. Template

switch oligos were introduced in order to generate a second strand in a reverse transcription reaction and produced second strand

was cleaved off by denaturation. Next, generated cDNA was amplified according to qPCR results using KAPA SYBR FAST qPCR

Master Mix (Roche, KK4600) and fragments in the size of interest were selected using SPRIselect reagent (Beckman Coulter,

B23318). Quality check was performed using a Fragment Analyzer (HS NGS Fragment kit, Agilent, DNF-474). Further, fragmentation

and double-sided size selection using SPRIselect reagent was carried out in order to optimize cDNA fragments for Illumina NextSeq
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Sequencing System. Unique indexes as well as P5 and P7 Illumina primers were added to the libraries. The average length of the final

libraries was quantified using a Fragment Analyzer (HS NGS Fragment kit, Agilent, DNF-474) and the concentration of libraries was

determined using a Qubit 1X dsDNA HS kit (Thermo Fisher, Q33231). Final libraries were diluted to 4nM, pooled, and denatured

before sequencing on the Illumina NextSeq 550 platform using paired-end sequencing. We used 28 cycles for read 1, 10 cycles

per index and 120 cycles for read 2 on a NextSeq 500/550 High Output Kit v2.5 (Illumina, 20024907).

MALDI-FTICR-MSI
Tissue preparation steps for MALDI imaging mass spectrometry (MALDI-MSI) analysis was performed as previously described

(Aichler et al., 2017; Sun et al., 2018). Frozen tissues were cryo-sectioned at 10 mm from the same tissue block as used for spatial

transcriptomics and thaw mounted onto indium-tin-oxide coated conductive slides (Bruker Daltonik, Bremen, Germany). The matrix

solution consisted of 10 mg/mL 9-aminoacridine hydrochloride monohydrate (9-AA) (Sigma-Aldrich, Germany) in water/methanol

30:70 (v/v). SunCollectTM automatic sprayer (Sunchrom, Friedrichsdorf, Germany) was used for matrix application. The MALDI-

MSImeasurement was performed on a Bruker Solarix 7T FT-ICR-MS (Bruker Daltonik, Bremen, Germany) in negative ionmode using

100 laser shots at a frequency of 1,000 Hz. TheMALDI-MSI data were acquired over a mass range of m/z 75–1,000 with 50 mm lateral

resolution. Following the MALDI imaging experiments, the tissue sections were stained with hematoxylin and eosin (H&E) and

scanned with an AxioScan.Z1 digital slide scanner (Zeiss, Jena, Germany) equipped with a 203 magnification objective. After the

MALDI-MSI measurement, the acquired data underwent spectra processing in FlexImaging v. 5.0 (Bruker Daltonics, Germany)

and SCiLS Lab v. 2020 (Bruker Daltonik GmbH). MS peak annotation was performed using Human Metabolome Database

(HMDB, https://www.hmdb.ca/) (Wishart et al., 2018) and METASPACE (https://metaspace2020.eu/) (Palmer et al., 2017).

Human organotypic slice culture
Human neocortical slices were prepared as recently described (Henrik Heiland et al., 2019; Ravi et al., 2019). Resected cortical tissue

(assessed by EEG and MRI) was immediately brought to the lab in the ‘‘Preparation medium’’ (Gibco HibernateTM media supple-

mented with 1 mM Gibco GlutaMaxTM, 13 mM Glucose, 30 mM NMDG and 1% Anti-Anti) saturated with carbogen (95% O2 and

5% CO2). Capillaries and damaged tissue were dissected away from the tissue block. The combination of GlutaMax and NMDG

in the collection medium has provided us with best tissue recovery post resection. 300 mm thick cortical slices were obtained using

a vibratome (VT1200, Leica Germany) and incubated in preparation medium for 10 min before plating to avoid any variability due to

tissue trauma. Tissue blocks (1 3 2 cm) typically permits preparation of 18–20 sections. One to three sections were gathered per

insert, with care to maintain adequate spacing between the sections. The transfer of the slices was facilitated by a polished wide

mouth glass pipette. Slice were maintained in growth medium containing Neurobasal L-Glutamine (Lot No. 1984948; Gibco) supple-

mented with 2% serum-free B-27 (Lot No. 175040001; Gibco), 2% Anti-Anti (Lot No. 15240-062; Gibco), 13 mM d-glucose (Lot No.

RNBG7039; Sigma-Aldrich), 1mMMgSO4 (M3409; Sigma-Aldrich), 15mMHEPES (H0887; Sigma-Aldrich), and 2mMGlutaMAX (Lot

No. 1978435; Gibco). The entire medium was replaced with fresh medium 24 h post plating and every 48 h thereafter.

Human ex-vivo glioblastoma model
ZsGreen tagged BTSC#233 was cultured and prepared as described previously (Henrik Heiland et al., 2019; Schneider et al., 2021).

Briefly, post trypsinization, a centrifugation step was performed, following which the cells were harvested and re-suspended in PBS

for 20,000 cells/mL. Cells were then used immediately for inoculation into tissue sections. A 10 mL Hamilton syringe was used to inject

1 mL of GBM cells onto the white matter part of the section. Inoculated tissue sections cells were incubated at 37�C for a week and

culture medium was refreshed every 48h. Tumor proliferation was monitored by fluorescence imaging by means of an inverted mi-

croscope (Observer D.1; Zeiss). After the appropriate culture duration, sections were either fixed and used for immunostaining or for

single cell sequencing.

Single cell suspension from cultured slices
Nine sections per condition were processed using C-Tubes (Miltenyi Biotech, 130-093-237) with a shortened protocol for the Neural

Tissue Dissociation Kit (T) (Miltenyi Biotech, 130-093-231). Briefly, the tissue as well as the first enzymemix, containing enzyme T and

buffer X, were transferred to a C-tube, and incubated at 37�C for 5 min, followed by a dissociation for 2 min. Next, second enzyme

mix, containing enzyme A and buffer Y, was added, and incubated for 5 min, followed by another dissociation for 2 min. The final

sample was then filtered and centrifuged in a 50mL falcon and cell pellet was further used for cell sorting.

Cell sorting for scRNA-seq
Freshly prepared cell suspensions were washed with FACS buffer containing 2% FCS and 1mMEDTA in PBS and stained with DAPI.

Cells were sorted on the BD FACSAria� Fusion flow cytometer at the core facility, University of Freiburg. To gather viable tumor cells,

ZsGreen positive, DAPI negative populations were collected in BSA-coated tubes containing 2% FCS in PBS and prepared for later

droplet-based single cell RNA-Sequencing.

Single cell RNA-sequencing
Single cell RNA-sequencing was performed according to the ChromiumNext GEMSingle Cell 30v3.1 protocol (10xGenomics), based

on a droplet scRNA-sequencing approach. In brief, collected cells were added to a prepared master mix containing reagents for a
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reverse transcription reaction and loaded onto separate lanes of a Chromium Next GEM Chip G. After running the chip on a Chro-

mium Controller, generated GEMs were transferred to a tube strip. Following reverse transcription, GEMs were broken, and cDNA

was purified from leftover reagents. Amplified cDNAwas fragmented and size-selected using SPRIselect reagent (Beckman Coulter,

B23318). i7 indexes as well as P5 and P7 Illumina primers were added to the libraries. The average length of final libraries was quan-

tified using a Fragment Analyzer (HS NGS Fragment kit, Agilent, DNF-474) and the concentration of libraries was determined using a

Qubit 1X dsDNA HS kit (Thermo Fisher, Q33231). Final libraries were diluted to 4nM, pooled, and denatured before sequencing on an

Illumina NextSeq 550 Sequencing System (Illumina, San Diego, CA, USA) using NextSeq 500/550 High Output kit v2.5 (Illumina,

20024906) with 28 cycles for read 1, 8 cycles for i7 index and 56 cycles for read 2.

Imaging mass cytometry antibody panel
A 39-marker IMC panel (Table S4) was designed including structural and tumor markers as well as markers to assess several innate

and adaptive immune cells (Table S4). Metal-labeled antibodies were either obtained pre-conjugated (Fluidigm) or labeled in-house

by conjugating purified antibodies to lanthanide metals using the Maxpar X8 antibody labelling kit (Fluidigm) according to the man-

ufacturer’s instructions. In addition, 89-Yttrium (III) nitrate tetrahydrate (Sigma Aldrich, cat. # 217239-10G) and 157-Gadolinium (III)

chloride (Trace Sciences Int.) were diluted in L-buffer to a 1M stock solution and further diluted to a 50 mMworking solution for sub-

sequent antibody labelling with theMaxpar X8 labelling kit. Metal-conjugated antibodies were titrated and validated on glioblastoma,

brain, liver, and tonsil tissue.

Sample preparation and staining for imaging mass cytometry
10 mm thick tissue sections on SuperFrost plus slides (R. Langenbrinck GmbH, 03-0060) were dried at 37�C for one minute and fixed

in 100% methanol for 30 min at �20�C. Slides were rinsed three times in TBS for 5 min each. Tissue sections were encircled with a

PAP pen (ImmEdge, Vector laboratories, H-4000) and blocked for 45 min at room temperature using SuperBlock (TBS) Blocking

Buffer (ThermoFisher Scientific, 37581). The sections were then stained with a mix of metal-labeled primary antibodies diluted in

TBS with 0.5%BSA as well as 10% FBS and incubated at room temperature for 1 h. Slides were rinsed in TBS-T (TBS supplemented

with 0.2% Tween-20) twice and twice in TBS for 5 min each. Tissue sections were then stained with Iridium Cell-ID intercalator

(500 mM, Fluidigm, 201192B) diluted 1:2000 in TBS for 30 min at room temperature. Slides were rinsed three times for 5 min in

TBS, dipped in ddH2O for 5 s and air-dried. Slides were stored at room temperature until image acquisition.

Image acquisition
Two to three 1,000 mm2 ROI’s per patient sample were acquired using a Hyperion Imaging System (Fluidigm). Tissue sections were

laser ablated spot-by-spot at 200 Hz resulting in a pixel size/resolution of 1 mm2. Preprocessing of the raw data was conducted using

the CyTOF software v7.0 (Fluidigm, CA, USA) and image acquisition control was performed using MCD Viewer v1.0.560.6 (Fluidigm,

CA, USA).

Hypoxia treatment and methylome analysis
The investigated cell lines were treated in long-term hypoxia and normoxia conditions, respectively. We performed 850k EPIC

methylation analysis (as described previously, Neuropathology Hamburg, Ulrich Sch€uller (Maire et al., 2021), from the published

paired samples: GS-10H, GS-10N, GS-11H, GS-11N, GS-12H, GS-12N, GS-13H, GS-13N, treatment and conditions were described

previously (Kathagen et al., 2013).

Data import, preprocessing, filtering, and normalization for spatial data analysis
Data were analyzed and quality controlled by the cell ranger pipeline provided by 10X Genomics. For further analysis we developed a

framework for spatial data analysis. The cell ranger output can be imported into SPATA by either a direct import function (SPATA:

initiateSpataObject_10X) or manually imported using count matrix and barcode-coordinate matrix along with the H&E staining.

The routine import applies following steps via the Seuratv4.0 package: To normalize gene expression, values of each spot were

divided by the estimated total number of transcripts and multiplied by 10,000, followed by natural-log transformation. As described

for scRNA sequencing, we removed batch effects and scaled data using a regression model including sample batch and percentage

of ribosomal and mitochondrial gene expression. A detailed description is provided in the supplementary methods and results.

Detection of cell number per spot
In a first step, we trained a pixel-wise classifier for automated segmentation of each nucleus (ilastik, (Berg et al., 2019)). The output

contained a grayscale probability map for the ilastik prediction values per pixel, in .tif format. We then loaded the probability map into

CellProfiler (Carpenter et al., 2006) to identify nuclei as primary objects. The following Parameters were chosen to optimize the object

identification: (1) Object diameter min: �3 max: �15 (adjusted based on the input image resolution) (2) Thresholding method: Two-

class Otsu with a smoothing scale of 1.33, lower bounds: 0.3 upper bounds: 1.0, (3) Threshold strategy ‘‘Adaptive’’ with a window of

50. The identified objects were then exported as .csv files. For accurate determination of cells/spot, we imported the space ranger file

(./outs/) into SPATA2, using the command SPATA2::initiateSpataObject_10X(). Next, we removed spots not ‘‘under tissue’’, as
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observed from the histology image (see our tutorial: https://themilolab.github.io/-SPATA2/articles/spata-v2-object-initiation-and-

manipulation.html). We then counted the number of cells within the boundaries of each spot using a wrapper function (*Cellnumber_-

pred.R). The script is available at github.com/theMILOlab/

In detail, the following steps were performed to quantify the cell/spot measurement:

(1) Compute scaling factors between high-resolution image (used for segmentation) and the low-resolution image (used to anno-

tate the spots in the image). The scale factors are saved in the ‘‘scalefactors_json.json’’ output of the space ranger.

(2) Co-register spots and segmented nuclei using the point.in.poly function of the sp package (Bivand et al., 2013).
Algorithm R:

for all Sn do

for all Sp do

Spot.segment ) swfscMisc::circle.polygon(x = Sp.x, y = Sp.x, radius = adaptive.r)

cell.spot ) sp::point.in.polygon (Spot.segment[.x, .y], Nuclei[.x, .y, Nn])

return(cell.spot)

output ) data.frame( barcode(Sn) ,Sn.x, Sn.y,cell.spotn))

Variables:

Sn=Vector of samples

Sp = Vector of spots

adaptive.r = Radius of spot multiplied by scaling factor

Nn = Total number of nuclei
To validate the segmentation, we compared manual segmentation of 15 Images with cell profiler (object identification), illastik (ob-

ject identification) and a combination of Ilastik (probability map, Method3) and the object identification with cell profiler. The manual

segmentations were used as ground truth to compare and evaluate the respective algorithms. Two strategies were used to validate

the accuracy of each segmentation algorithm. First, wemeasured the overlap of the images by CellProfiler (Modul:MeasureImageO-

verlap, Test: F-Score-Measurment) resulting in a mean f-Score for CellProfiler (object identification): 0.548, illastik (object identifica-

tion): 0.633, and Ilastik + CellProfiler: 0.841. Next, we validated the numbers of cells per spot across the different method resulting in

accuracy of 93.2% for Ilastik + CellProfiler, 83.1% illastik and 67.3% CellProfiler. Our validation suggested that the combination of

Ilastik + CellProfiler was superior and was therefore implemented in our analysis pipeline.

CNA estimation
For CNA analysis we implemented a CNA pipeline into our SPATA R tool available in the development branch, https://github.com/

theMILOlab/SPATA. Copy number variations (CNVs) were estimated by aligning genes to their chromosomal location and applying a

moving average to the relative expression values, with a slidingwindow of 100 geneswithin each chromosome, as described recently

(Patel et al., 2014). First, genes were arranged in accordance with their respective genomic localization using the InferCNV package

(R-software)8. As a reference set of non-malignant cells, we used a spatial transcriptomic dataset from a non-malignant cortex sam-

ple. To increase speed and computational power, down-sampling is optional. To avoid considerable impacts of any particular gene

on the moving average, we limited the relative expression values to a range of [-2.6,2.6], replacing all values above/below to exp(i) = |

2.6|, using the InferCNV package (R-software). This was performed only in the context of CNA estimation as previous reported (Tirosh

et al., 2016b). The exported .RDS output files were then reimported and grouped by chromosomal averages of estimated CNA and

aligned to their spatial position using the fdata slot of the SPATA object. Using the SPATA::joinWithFeatures() function, we then ex-

tracted cluster-wise comparisons. CNA analysis of spatial data is implemented in SPATA2 through the SPATA2::runCnvAnalysis()

command. In a next step, we rearranged the estimated CNA values to defined chromosomal bins. These bins are created by the

SPATAwrappers function Create.ref.bins(), with the SPATA object and the size of the given bins as input. In this manuscript, we

used a bin size of 1Mbp, resulting in 3847 chromosomal bins with a mean coverage of 5.5 genes per bin. Rescaling and interpolation

were carried out using a 10kbp sliding window. For normalization, we used a loess regression model, built to determine the copy-

number values from the InferCNV output. Interpolation and normalization were performed using the SPATAwrappers:: run-

CNV.Normalization() function.

CNA subclone analysis
To determine subclones based on the CNA data, we performed PCA analysis followed by KMeans clustering of the first 30 compo-

nents as recently described (Zhao et al., 2022). To determine the optimal tree cut, we estimated the Calinski-Harabasz index and

used the first peak of the k�CH index curve (CH index vs Number of clusters). The next aim was to quantify the spatial correlation

and overlap of spatially distinct transcriptional programs with the subclonal architecture. First, we estimated the distance (Sdist) of

each spot (S1, S2;.; Sk ) of a given CNA subclone to the KMeans centroid (c) through the fitted values (fðckÞ) as follows:
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Sdist =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i = 1

ðc � fðckÞÞ2
vuut

Spots with a low distance were removed (Sdist < quantilðSdist;0:9Þ) from further analysis. We then estimated the dominating spatially

distinct transcriptional program of all given spots and quantified the percentage of expression of each transcriptional program in a

given subclone.

Prediction of tumor cell content
Analyses and algorithms that have been established for single cell sequencing studies are not necessarily suitable to the analysis of

spatially resolved transcriptomic data. This is mainly due to the unclear cellular composition within each spot and an advantage in

analyzing this data would be to approximate the true composition of each spot. The integration of single-cell data and spatial tran-

scriptomics already allows for the prediction of the probability of residence of some cell types, but in tumors, such a prediction is

difficult due to the enormous heterogeneity within and between samples. In contrast to highly variable gene expression, chromo-

somal alterations are a rather robust and suitable parameters for the evaluation of the tumor cell content of each spot. To train

and validate a prediction model, we performed single-cell sequencing and corresponding spatially resolved transcriptomics from

the same donor. We inferred copy-number alterations of the scRNA-seq dataset and extracted signatures of both tumor and

non-malignant cells which showed a large similarity as shown in Figures S6I and S6J. Next, we validated the extent to which the in-

ferred CNAs called fromRNA-seq data reflect CNAs that were detected in DNA sequencing. Therefore, we used the recent published

slide-RNA-seq and slide-DNA-seq dataset and compared the CNAs detected by both spatial sequencing approaches, Figures S6B–

S6I. Both validation methods revealed that inferred CNAs obtained from spatial transcriptomics reflect actual chromosomal gains

and losses in spatially resolved transcriptomics obtained using the 10X Visium platform. Given the fact that CNA’s can be utilized

to detect tumor content, we trained a model from simulated data to predict the percentage of tumor cells per spot. The following

approach encompasses three steps:

(1) Simulation of a spatial training data set: To simulate spatially resolved transcriptomic data with different ratios of healthy and

malignant cells, we created a training and test dataset for various models. The composition of each spot Sn with a given number

at cells per spot n was defined as follows:

Sn = tnt
n
+ hnh

n

where t : tumor cells from the scRNA-seq data set, h : non-malignant cells, with the frequency of nh. The expression of a gene g was

determined as follows:

gs =

Pat
i = 1gi +

Pan
i = 1gi

n

For the CNA dataset,CNVs of each spot consisted of averaged chromosomal alterations gsfChr1; .; Chr21g obtained by varying

the numbers of cells per spot n = f2; .; 20g. The final training dataset included 2000 training spots with 19 different cell numbers,

resulting in a total of 38,000 spots. For internal validation a test dataset was simulated using the same parameters.

(2) Linear models used for quantification of tumor-cell content: To approximate the relation between chromosomal alterations in

healthy and tumor spots, we trained a loess model to predict the tumor cell content based on gain of Chr7, which is a hallmark of

GBM that appeared in most samples. First, we centered the estimated CNA gain and fitted the gain of CNV � nt
nh
by loess fit. nt rep-

resents the number of tumor cells per spot.

nCNVi =
ACNVi � minðACNVÞ

maxðACNVÞ � minðACNVÞ
bfhðCNViÞ =
1

n

Xn

i = 1

KhðCNV � CNViÞ

K is the kernel and 0:8>h> 0:2 was used to adjust the estimator. As illustrated in the Figure S2G, the amplification of Chr7 showed

a robust correlation to the tumor cell content in our simulated dataset ranging from 2 to 20 cells per spot, compared to non-altered

chromosomal regions (noise), Figure S1G. Although, alterations in Chr7 alone provides a significant correlation to the tumor cell con-

tent, the low signal-to-noise ratio hampered accurate prediction, Figure S1G.

(3) Implementation of neural network for quantification of tumor-cell content: To provide improved quantification, we considered

the above-mentioned biases in spatially resolved datasets and created simulated spots that were predominantly composed of sub-

clones to avoid this source of bias. Our parameters were defined as follows: The defined training data setCNV = fcnvk1g; i = 1; ::;N

and the number of cellsN = fnkg; i = 1;.N, which result in the prediction of Y � wo +wixi. For themodel, we trained a sequential

neural network consisting of 3 hidden layers (64, 32, 16). In order to avoid overfitting, the dropout rate was set to 0.1. The model was

then compiled using a mean square error (MSE) loss function with a RMSprop optimizer. To account for the different number of cells
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per spot, we followed our above-mentioned approach, training 19 different models ranging from 2 to 20 cells per spot. We validated

our model using multiple simulated data sets from different patients, with an overall accuracy of 95% and significant correlation be-

tween training and validation datasets (R2 = 0.93, IQR: 0.87–0.96, p < 0.0001), Figures 2B and S1H. This was true for spots with more

than 5 cells, with the classifier only able to predict tumor or non-tumor state of spots with <5 cells.

Determination and prediction of the histological context
The H&E staining’s were classified based on their histological morphology. We started by created a dataset of defined histological

classification from cropped 500 3 500 pixel images at random positions across samples from all patients. The images were then

classified by experienced neuropathologists in accordancewith the classification system of the Ivy-gap database into the categories:

‘‘Infiltrating’’, ‘‘Necrosis’’, ‘‘Necrotic Edge’’, ‘‘Cellular’’, ‘‘Vascular’’ and for normal brain white matter and cortex. These images were

used as a ground truth to train a pretrained Convnet Architecture (VGG16 architecture keras::application_vgg16). The training and

prediction were performed using the keras:: and tensorflow:: package, Figures S1D and S1E. We estimated the likelihood of the his-

tology of a given spot based on the prediction values of the neural network. Additionally, we used the transcriptional data for an inte-

grative estimation of histology. Spots with a total UMI count under the 10th percentile and a high likelihood of necrosis (>0.5) were

classified as necrosis. This optimization was performed to improve the spatial resolution of histology in areas with a sharp border

between necrosis and necrotic edge. To validate the classification, we performed segmentation of the histological images (n = 4)

using the SPATA2::createSegmentation(),revealing large overlap with predicted histology (F-score = 0.893).

Sample-wise cluster analysis for spatially resolved transcriptomics
To identify recurrent spatially distinct transcriptional programs, we started clustering our spatially resolved transcriptomic dataset on

a patient by patient basis due to the large interpatient heterogeneity recently as described (Neftel et al., 2019). First, we transformed

our spata-object into seurat-objects (SPATA2:: transformSpataToSeurat()) and removed all spots with predicted tumor content

below 90%, spots with low UMI counts (<1,000), low number of detected genes (<400) and high percentage of mitochondrial genes

(>50%). Next, we estimated the cell phase using theCellCycleScoring() function in Seurat. Normalization, scaling, and regressionwas

performed using the SCTransform() function with vars.to.regress < - c("percent.mt", "S.Score", "G2M.Score"). We used the 2000

most variable expressed genes to decomposed eigenvalue frequencies of the first 30 principal components. We used either the

PCA analysis implemented in Seuratv4.0 (Hao et al., 2021a) or a generalized principal component analysis (GLM-PCA) for non-normal

distributions (Townes et al., 2019) due to the fact that our UMI counts follow multinomial sampling. For further analysis we used the

first 30 non-trivial estimated eigenvectors. Based on the PCA analysis, we performed clustering using 5 different cluster algorithms

and estimated the optimal number of clusters or cluster resolution as follows: For graph-based clustering, a Euclidean distance ma-

trix was computed to identify pairs of cells with shared neighbors similar to the SNN-Cliq approach (Louvain-, and smart local moving

(SLM) clustering). We iterated the cluster resolution res = f0; .; 1:5g (step size = 0.025). Cluster integrity was estimated by the high-

est modularity of each cluster from a graph, based on random connections between nodes (Lun et al., 2016). We then computed the

cluster stability using the clustree package (Zappia and Oshlack, 2018) to determine the optimal resolution for final clustering. This

approach is embedded in the SPATAwrappers package in the function runFullclustervalidation(). For kMeans, Partitioning Around

Medoids (PAM) and hierarchical clustering, the optimal k was determined using gap statistics. We then validated the cluster recall

and precision by f-statistics, excluding clustering approaches with a f-score<0.7. We next integrated the cluster algorithms using

the clustree package (clustree::clustree_overlay) and estimated the cluster architecture with the highest overlap of all methods, re-

sulting in coherent clusters reflecting robust cluster assignments, further referred to as ‘‘consensus clusters’’. Next, we estimated

differential expressed genes of the consensus clusters using the Wilcox method of the FindAllMarkers() function in Seurat. We sub-

sequently removed clusters with redundant marker genes (>20% overlap of significant marker genes with FDR<0.001), clusters with

fewer than 50 significant genes (logFC > 0.25 and padj<0.001). P value adjustment was carried out using the Benjamini-Hochberg

method. The remaining gene signatures were integrated across all clusters to identify recurring transcriptional programs.

Horizontal integration and identification of spatially distinct transcriptional programs
To compute the recurring transcriptional programs, we performed data integration in both the transcriptional and cartesian space. (1)

Transcriptional space: Using the above identified common regulator genes as anchors, we performed reciprocal PCA to integrate all

stRNA-seq datasets. This method was able to integrate all preprocessed tumor samples into a single reference PCA space. This

merged projection was further processed by cluster analysis of the five different algorithms described in STAR Methods: ‘‘Sam-

ple-wise cluster analysis for spatially resolved transcriptomics’’. The resulting cluster overlay analysis (clustree package) revealed

five distinct programs. Next, we performed differential expressed genes of the distinct programs using the Wilcox method in the Fin-

dAllMarkers() function in Seurat. Themost significant and unique classified genes (logFC > 0.25 and padj<0.001) were summarized to

build the transcriptional signature of the ‘‘spatially distinct transcriptional programs’’. (2) Cartesian space: To evaluate the spatial

overlap of all determined patient individual consensus clusters (n = 99), we used the most significant marker genes (logFC >0.25

and padj<0.001) to build consensus cluster signatures. We then performed spatially weighed correlation analysis of the consensus

cluster signatures (STAR Methods: Spatially weighted regression analysis), individually for each sample. The resulting correlation

array with the shape [c,c,n] (c = consensus cluster signatures and n = number of samples 16) was reduced by mean to a c x c cor-

relation matrix. Hierarchical clustering of the correlation matrix was then carried out, estimating the optimal number of k using the
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Calinski-Harabasz index, resulting in 5 clusters. Both methods, the cluster analysis in transcriptional and cartesian space showed a

high similarity (Jaccard-Index 0.746, based on the genes of the consensus cluster signatures).

Pathway analysis of gene sets
We performed pathway analysis using three different methods all implemented into our SPATA toolbox. As presented in our figures

we used gene set variation analysis (GSVA) or z-scored enrichment of gene sets. The analysis was performed through the GSVA

package (H€anzelmann et al., 2013). For GO-term enrichment we used the DOSE package and cluster profiler (Yu et al., 2012).

Spatial gene expression
The visualization of spatial gene expression is implemented in the SPATA software SPATA:: plotSurfaceInteractive. For spatial

expression plots, we used either normalized and scaled gene expression values (to plot single genes) or enrichment scores of a

defined genesets, using the 0.5 quantile of a probability distribution fitting. The x-axis and y-axis coordinates are given by the input

file based on the localization to the H&E staining. We computed amatrix based on themaximum andminimum extension of the spots

used (32x33) containing gene expression or computed scores. Spots without overlaid tissue were set to zero. Next, we transformed

the matrix, using the squared distance between two points divided by a given threshold, implemented in the fields package (https://

github.com/dnychka/fieldsRPackage, R-software) and adapted the input values by increasing the contrast between uncovered

spots. The data are illustrated as surface plots (plotly package R-software) or as images (graphics package, R-software).

Spatial autocorrelation Moran’s I
Spatial autocorrelation determines the spatial dependencies of spots to its neighbors based on feature locations and attribute values

using Moran’s I-statistics values. This allows to evaluate whether a defined gene expression or feature is grouped, distributed or

random. If the Z-score or p-value indicates statistical significance, a positive Moran’s I-index value indicates a tendency to cluster

and a negative Moran’s I-index value indicates a tendency to scatter. The autocorrelation is defined as:

I =
N

W

P
x

P
ywxyðexpx � expÞ�expy � exp

�
P

xðexpx � expÞ2

whereN defines the number of spatial spots with the index x and y and thematrix of spatial weights aswxy. The feature is indicated by

exp and exp the mean value of neighboring features. The spatial weights were defined as a distance matrix of the cartesian space.W

is defined as the sum of allwxy. We embedded the autocorrelation into the SPATAwrappers package by the function inferSpatial.ac().

Spatially weighted regression analysis
Correlation coefficient in spatially resolved data needs to be addressed differently compared to data where every datapoint can be

assumed to be independent. In the context of spatial weighted correlation measurements, the model needs to be corrected for ef-

fects of local neighbor dependencies. For example, if the same cell drives similar activation of two adjacent spots, it cannot be

considered non-stationary in the spatial context. To address this issue, geographically weighted models are used. The spatial tran-

scriptomic data have the particularity that the neighborhoods correspond to a fixed distance and do not vary in their distance. We

have used the following models within our analyses: (1) Spatially weighted correlation based on geographical weighted correlation,

allowing to test for non-stationarity. We performed Monte Carlo testing as following: (i) Computation of the true correlation based on

all spots within the area or sample under study. (ii) This is followed by a random selection of a permutation of the spots, preserving the

spatial coordinates of the same parameters. (iii) Determination of a simulated correlation at all spots using randomized data from the

step (ii). (iv) Repeating steps (ii) and (iii) n times, 299 iterations in our case. (v) At each spot, the rank of the one true correlation within

the distribution of the simulated correlations was determined. To be considered significant, the true correlation needs to be in the

upper or lower 2nd 5% tail of the ranked distribution.

The secondmodel was used to determine local regression. The secondmodel was used to explore local variations in data relation-

ships via local regression coefficients and associated estimates using a ‘‘geographic weighted regression model’’, adopted and opti-

mized to the spatial transcriptomic context. The basic model is defined as

yi = bi0 +
Xm
k = 1

bikxik + εi

Where yi is the dependent variable at location i; xik is the value of the k th independent variable at location i; m is the number of

independent variables; bi0 is the intercept parameter at location i; bik the local regression coefficient for the k th independent variable

at location i; and εi is the random error at location i. This basic model does not account for varying relationships between stationary

and non-stationary coefficients. A semi-parametric mixed geographic weighted regression model was introduced and implemented

in GWmodel (Gollini et al., 2015; Lu et al., 2014) . A non-adaptive approach was adopted since the distance within spots is assumed

constant. The weighted matrix wij was calculated by either a Gaussian wij = expð�d2
ij =h

2Þ or bi-square kernel: wij = 1 � ðd2
ij =h

2Þ2,
where dij is determined as the distance between the spot i and j. h is defined as the bandwidth. The optimal bandwidth was

determined by cross-validation. In R language, the GWR was computed as follows:
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Algorithm R:

for all P do

Optimal.h < - spgwr:gwr.sel(Pa � Pb, adapt = F)

CV =
X
i

�
yi � y^siðbÞ

�2

gwr.model < � spgwr:gwr(Pa � Pb

bandwidth = Optimal.h,

gweight = gwr.bisquare)

Variable:

P= Vector of variables
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Analysis of spatially defined trajectories
A given trajectory includes multiple spots summarized into predefined bins along the directed trajectory. In order to model the gene

expression of single genes or genesets, we created a set of mathematical models representing defined biological behaviors,

including linear, logarithmic, or gradient ascending/descending expression patterns, one-, or multiple peak expression, detailed in-

formation in the package description. The analysis is implemented into the function assessTrajectoryTrends(). Further, if a defined

pattern is requested, we allow the possibility to add a vector containing the requested model that the algorithm will screen for.

Next, we fitted the summarized expression values of each bin using a non-parametric kernel estimation (Gaussian or Cauchy-Kernel),

input vectors were normalized and z-scored:

nexp i =
Aexp i � minðAexpÞ

maxðAexpÞ � minðAexpÞ
bfhðnexp iÞ =
1

n

Xn

i = 1

Khðnexp � nexp iÞ

Where K is the kernel and 0.7 > h > 0.3 is used to adjust the estimator. Next, we computed residuals for each input vector (gene

expression) and estimated area under the curve (AUC) using the trapezoidal numerical integration.

Za
b

fðresÞ dx z
Xn

k = 1

fðresk� 1Þ+ fðreskÞ
2

Dresk

The distance and direction are defined by [a,b] a = x0 < x1<, .,< xn-1 <xn = b. We use the AUC to rank the estimated models and

predict genes that follow our predefined behavior. The implemented function plotTrajectoryFit() shows the model fit with respect to

the given residuals.

Estimation of regional gene expression variance by local vector field estimation
Within a spatially determined dynamic system, the state of each point can be represented as a vector (x) in a multidimensional space

whose elements represent the transcriptional and metabolic space. Metabolic differences in space are often associated with spatial

gradients. To identify and compare these gradients, we determine the spatial changes as a vector within the vector field f, composed

of the coordinates x in the d-dimensional space of all spots resulting in a vector v in the same space, i.e., v = fðxÞ. We started by

transforming the gene or metabolic space by a biweight kernel KðuÞ = 15
16ð1 � u2Þ2 juj%1. The following 2D kernel density estimator

(KDE) was used:

fðpÞ =
1

p

Xp
i = 1

Khðdp � dpiÞ

K is the kernel and 0.3 > h > 0.1 is used to adjust the estimator. In the next step, we estimated the vector field based on local var-

iances in the cartesian space (dimension: x;y ) and gene expression space (dimension z1;z2; .zn). We calculated a distancematrix of

all spots and determined the nearest neighbors (within a 200mm distance). The vector was determined by fðx;yÞ = ðx;yÞi + ðxmaxðdÞ;
ymaxðdÞÞj. Each spot S = fS1;.; Sn� 1; Sng with its coordinates x; y a vector field in R2 based on the feature d = fd1;.; dp� 1; dpg
whereby

d

�
if p = 1/d = d1
if p > 1 /d = fðpÞ
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for multiple genes. We embedded the analysis in the SPATAwrappers package available on GitHub (https://github.com/heilandd/

SPATA-wrappers) under the function SPATAwrappers::inferVectorFields(). In the next step, we visualized the vector fields either by

arrow plots (SPATAwrappers::plotVectorFields()) or streamline plots. To generate the streamline plots, we utilized the ggplot based

package metR (https://github.com/eliocamp/metR) in the SPATAwrappers::plotStreamlines function. The function estimates

streamline as follows:

Output of the vector field estimation is a data.frame with the vector x, y, t.x, t.y of each given barcode.
Algorithm R:

1. Estimate a grid:

sf::st_make_grid(n = grid) # grid < - c(50,50)

2. Estimate median vectors in grid

for all grid(x,y) do median(x.t); median(y.t)

3. Barnes interpolation (Koch and DesJardins, 1983):

x.tinter <- oce::interpBarnes( grid$x , grid$y , z = meangrid(x.t), gamma = 0.2)

y.tinter <- oce::interpBarnes( grid$x , grid$y , z = meangrid(y.t), gamma = 0.2)

4. ggplot integration

p + metR::geom_streamline(data , aes(x = grid$x, y = grid$y, dx = x.tinter, dy = y.tinter)
Identification of cycling cells
We used the set of genes published by Neftel et al. to calculate proliferation scores based on the GSVA package implemented in

R-software. The analysis was based on a non-parametric unsupervised approach, transforming a classical gene matrix (gene-by-

sample) into a gene set by samplematrix, resulting in an enrichment score for each sample and pathway. From the output enrichment

scores, we set a threshold based on distribution fitting to define cycling cells.

CNA analysis from EPIC data
For copy number variation (CNV) analysis fromEPIC data, raw signal intensities were obtained from IDAT files using theminfi package

(Aryee et al., 2014). CNV analysis frommethylation array data was performed using the conumee::cnv.fit and conumee::cnv.bin func-

tions of the conumee package (version 1.22.0) (Hovestadt and Zapatka, 2015). For genome segmentation, a custom script was used,

calculating running means from 12 bins in + and - directions and combining adjacent bins with similar running means with a cutoff at

0.05. A control set of non-tumorous brain was used (n = 6) as a reference data set to determine the baseline copy number state, as

recently described (Maire et al., 2021).

Methylation analysis of the MGMT promotor
To evaluate the MGMT promotor methylation, we filtered the 850k data by the TSS1500, TSS100, 5’URT and first exome of the

MGMT from chromosomal position Chr10:1312640000 to Chr10:1312645500, resulting in 22 CpG islands. To determine the

MGMTmethylation status, the twoCpG islands are of superior importance: cg12434587 and cg12981137 accordingly to a previously

published study (Bady et al., 2012). Comparison between hypoxia treatment and normoxia condition was performed by Wilcox-

ranked statistics.

MALDI data analysis
We imported the files into R using the readImzML function from the cardinal package (Bemis et al., 2015). We reshaped the pixelwise

data matrix into an intensity matrix and a matrix of coordinates for each tumor separately. We filtered the m/z matrix to annotated

peaks (METASPACE database) using the match.closest function from the MALDIquant package, resulting in a metabolic intensity

matrix (Gibb and Strimmer, 2012). The intensity matrix and the corresponding spatial coordinates were imported into a SPATA object

for further spatial data analysis using the SPATA::initiateSpataObject_MALDI.

Alignment of metabolic and stRNA-seq data
Matrix embedding techniques differ between stRNA-seq and metabolic imaging, with the reference H&E staining’s from each

modality revealing significant differences. In order to approximate image alignment, we performed feature-based alignment and

dynamic transformation. We utilized the image.dlib a C library for image analysis and computed image features by the function

image_surf. The SURFmethod is based on the sum of the Haar wavelet response around the point of interest as previously described

(Bay et al., 2008). Next, we estimated the affine transformation parameters using the minimized cost function as described recently

(Abuzneid and Mahmood, 2017). Through this approach, we were able to map the metabolic data to the reference stRNA-seq data-

set, Figure S7A. After both images were approximately merged, non-correlating sections (especially edge or artefact areas) were

excluded from further analysis, Figure S7A. Due to the different resolution across data modalities, spot-wise fusion of metabolic
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and transcriptomic data was necessary. To estimate the metabolic intensities at a given spot S = fs1kg; i = 1;.S, with the co-

ordinates ðx; yÞ we determined the metabolic intensities m˛S with n metabolic intensities and averaged them

Sm

Pk
i = 1mi WS

n

Data integration and clustering of metabolic data
Analogous to the methods used for transcriptomic data analysis, we used reciprocal PCA for horizontal integration, with metabolite

intensities acting as anchors for the metabolic data (described in STARMethods: Horizontal integration and identification of spatially

distinct transcriptional programs). Next, we use the cluster analysis methods mentioned above, including iterative determination of

resolution and

Cluster stability. Because of the difference in the number of clusters between stRNA-seq and metabolic data, the f-score was

determined by increasing number of clusters (k). This resulted in the spatial organization showing a high degree of agreement,

especially in areas of low k values. In order to vertically integrate both metabolic and transcriptional data, we performed the weighted

nearest neighbor integration (Hao et al., 2021b) with the FindMultiModalNeighbors() function from the Seurat package. The following

parameters were used: dims.list = list(1:8, 1:30), smooth = F, k.nn = 15. Next, we performed dimensional reduction from the resulting

k-nearest neighbor (kNN) using the RunUMAP function from the Seurat package. Shared nearest neighbor clustering was performed

from the weighted shared nearest neighbor (wsNN) with iterative cluster resolutions to determine optimal resolution.

Determination of hypoxia subgroups
In our analysis, we differentiate between hypoxia-core and hypoxia associated spots. Based on the weighted nearest neighbor inte-

gration, we found two clusters highly associated with the ‘‘reactive hypoxia program’’. We classified these spots based on themutual

metabolic and transcriptional activation of hypoxia or transcriptional/metabolic activation alone. For metabolic data, we estimated

the enrichment score of Lactate metabolism and glycolysis and for transcriptional data the ‘‘HALLMARK HYPOXIA’’ enrichment. We

rescored the data from mutual activation enrichment score (ES) = 1. No enrichment was determined as ES = 0. We defined the

hypoxia core as ES > 0.6, the hypoxia associated as 0.4 < ES < 0.6. Random control spots were defined as ES < 0.4.

Integrative cell cycle analysis and hypoxia metabolism
To estimate the relationship between cell cycle phases and hypoxia metabolism, we estimated the cell cycle parameters G1, S and

G2M phase by the Seurat function CellCycleScoring(). Next, we used the joinWith() function of the SPATA2 package to estimate the

hypoxia gene set enrichment score. The comparison was visualized by a scatterplot (x: hypoxia signature, y: G2M score).

TCGA data analysis
For the TCGA data analysis, we downloaded the CNV and transcriptional data along with clinical information. First, we filtered the

data for IDH wild-type glioblastoma. The Verhaak subtype was given in the clinical data information downloaded at: http://gliovis.

bioinfo.cnio.es (Bowman et al., 2017). To determine the enrichment of the hypoxia signature, we estimated themean gene expression

of the hypoxia signature across the proneural, mesenchymal and classical subgroup. Next, we reclassified the samples as hypoxia

(upper 0.2 quantil) and non-hypoxia (lower 0.2 quantil). We compared the patients of hypoxia and non-hypoxia using the CNA data

revealing a larger variance in CNA’s from the hypoxia group. The numbers of pathological losses and gains per sample was

summarized as the genomic instability score and correlated to the hypoxia signature across all subgroups. Regression analysis

was performed by a generalized linear model (glm) model glm(hypoxia � genomic.instability).

Analysis of scRNA-seq
Single cell RNA-seq were processed by 10x Genomics Cell Ranger 3.1.0 (Zheng et al., 2017). Postprocessing was performed using

the MILO-pipeline for scRNA-seq (https://github.com/theMILOlab-/scPipelines). Single cell analysis was performed by the Seur-

atv4.0 package andSPATA 1.0 package.We used the Seurat wrapper for scVelo (Bergen et al., 2020) to perform pseudotime analysis

and Cell Rank (Lange et al., 2020) for cell fate estimation. After preprocessing of the data through Seurat, we imported the data into

SPATA. Further analysis was performed as explained in the sections above.

RNA velocity estimation (single-cell data)
We used the CellRanger BAM file to separate expression matrices of spliced and unspliced reads through the ready-to-use pipeline

from the velocyto package(La Manno et al., 2018). The resulting .loom file was read into the scVelo Seurat wrapper (https://github.

com/satijalab/seurat-wrappers). We merged the Seurat objects and performed batch effect removal as explained above. After data

integration, Seurat objects with exonic and intronic gene-level UMI counts were converted into h5ad format (https://github.com/

mojaveazure/seurat-disk). We then imported the h5ad files to an AnnData object. Next we performed normalization and selected

the 2,000 most variable expressed genes by the scVelo package (v0.2.3)(Bergen et al., 2020). We excluded all genes with less

than 20 assigned reads across the exonic and intronic components and estimated RNA velocity and latent time using a dynamic

model. Data was exported as .csv files and integrated into the SPATA object for further visualization. This pipeline is implemented

into a SPATA wrapper for scVelo (SPATA::getRNAvelocity, in the development branch).
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Infer lineage differentiation by CellRank (single-cell data)
After generating the dynamic model, we estimatedmacrostates that represent initial, terminal as well as transient intermediate states

using the CellRank package (v1.1.0, https://github.com/-theislab/cellrank)(Bergen et al., 2020; Lange et al., 2020). We constructed a

transition matrix using the connectivity kernel which was analyzed by Generalized Perron Cluster Cluster Analysis (GPCCA)(Reuter

et al., 2018) after computing a Schur triangulation.We estimated the probability of all identifiedmacro state (initial and terminal states)

in each spot. The probability vectors were integrated into the fdata slot of the corresponding SPATA object. Lineage driver genes of

each estimated macrostate were identified by the compute_lineage_drivers function of CellRank. Additionally, we used the partition-

based graph abstraction (PAGA) to simplify state transition in space.

IMC preprocessing
Raw data was processed by the Bodenmiller Pipline (Zanotelli and Bodenmiller, 2022). For single-cell analysis we segmented the

cells based on the nucleus (DNA-staining) using 6 random crops of each image for training. Training was performed by pixel-wise

classification using ilastik (Berg et al., 2019). We imported the classification trained images into cell profiler to extract single cell in-

tensities of segmented cells. We analyzed the spatially resolved single-cell matrix by SPATA. For import, we used the SPATA::initia-

teSpataObject_MALDI() function and performed batch effect removal between images by matching mutual nearest neighbors

(Haghverdi et al., 2018).

IMC data integration
Horizonal data integration of IMC data was performed by mutual nearest neighbor analysis using fastMNN() from the batchelor pack-

age (Haghverdi et al., 2018). Data from each patient and localization (total n = 16) was load into a seurat object and the MNN was

performed using the SeuratWrappers function (fastMNN()). The resulting MNN components were used for UMAP dimensional

reduction and shared nearest neighbor clustering. To reduce data noise and batch effects across patients, we estimated an internal

reference dataset of various cell types including inclusion and exclusion markers. The following cell types were defined Neurons:

(NeuN+, SNAP25+ & CD45�, GFAP�, EGFR�) Myeloid cells (CD45+, CD68+), T cells (CD3+, CD45� and CD68�, CD3�), tumor cells

(EGFR+). We then performed rPCA analysis, aligning the whole data to its reference dataset.

IMC neighborhood analysis
In order to compute spatial dependencies of a given cell to its neighborhood in the cartesian space, we integrated the single-cell

position into a graph using the igraph package. Each cell represents a node with connections to the surrounding cells defined as

edges, weighted by its cartesian distance. Next, we adapted the weights using a power function (bn) to reach scale-free topology

in our network: PðkÞfk� c where c is any number and k the connections. Based on our model, we hypothesized that different cell

types with high connectivity (numbers of connections) at short distance represent highly interacting cells, and cells with low connec-

tivity in the neighborhood representing cells without interactions or random interactions. We used this model to estimate the

interaction of immune cells (myeloid and T cells) to different subgroups (spatially distinct transcriptional programs).

Integration of single-cell sequencing data into spatial transcriptomics
To integrate scRNA-seq and spatially resolved transcriptomic to define the position of immune cell populations, we used the pub-

lished data from (Ravi et al., 2022). We estimated the likelihood of the spatial position or each cell type cluster using the spotlight

algorithm, embedded into the SPATAwrapper package, function: inferSpotlight (Elosua-Bayes et al., 2021).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size. For cell-based and tissue culture experiments, biological triplicates

were performed (tissue culture n = 6) in each single experiment in general, unless otherwise stated.

Statistical analysis was performed using R software 4.01 software. Two tailed t-test andMann-Whitney test were used to compare

condition vs. control. ANOVA models were used to compare continuous outcomes across multiple groups/conditions, unless other-

wise indicated in each figure legend. Spatial data statistics and analysis workflows are states in the METHOD DETAILS.
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