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Misfit simulation on implant prostheses with different
combinations of engaging and nonengaging titanium bases.
Part 1: Stereomicroscopic assessment of the active and

passive fit

Vygandas Rutkunas, DDS, PhD,a Julius Dirse, DDS, MDSc,b Daniel Kules, DDS,c and Tomas Simonaitis, BDScd
CT
of problem. Little is known about whether the misfit level of implant-supported screw-retained prostheses can be tolerated when
mbinations of engaging and nonengaging titanium bases are used.

he purpose of this in vitro study was to simulate prosthetic workflow distortions (horizontal and vertical) and to evaluate the fit
d active) of 2-implant-supported screw-retained zirconia frameworks with 3 different combinations of abutments: both engaging,
nd nonengaging, and both nonengaging.

nd methods. The fit of both engaging (n=10), engaging and nonengaging (n=10), and both nonengaging (n=10) 2-implant-
zirconia frameworks was evaluated on control and definitive casts simulating 50-, 100-, and 150-mm vertical and 35-, 70-, 100-
tal misfit levels. Stereomicroscopy was used to assess the passive fit (1 screw tightened) and active fit (both screws tightened)
onia frameworks. Vertical deviations in the implant and abutment connection (the implant-abutment gap measured vertically)
he implant platform and reference line on the titanium base were measured. The Kruskal-Wallis and Mann-Whitney U tests
re used to compare different implant-supported zirconia specimens on each definitive cast.

hen 1 screw was tightened, both engaging specimens had higher vertical deviations (ranging from 40.1 to 131.1 mm) in 35- and 70-
ntal misfit levels, as compared with engaging and nonengaging (19.8 to 85.1 mm) and both nonengaging (6.6 to 14.3 mm)
. Comparing medians of the 100-mm misfit in horizontal (engaging and nonengaging 140.4 mm; both nonengaging 151.6 mm)
l (engaging and nonengaging 49.8 mm; both nonengaging 42.6 mm) directions, the horizontal misfits caused larger vertical
When both screws were tightened in 50-, 100-, and 150-mm vertical misfit groups, the vertical gap increase in the engaging
gaging specimens was significantly higher than that in both the nonengaging specimens (P<.001).

s. As the level of simulated misfit increased, the vertical gap between the implant and abutment increased. Horizontal misfits
olerated than vertical ones and may be more detrimental. Both nonengaging 2-implant-supported zirconia frameworks were
olerate the different misfit levels better, followed by engaging and nonengaging and both engaging frameworks. (J Prosthet
;129:589-96)
Oral rehabilitation with implant-supported fixed partial
dentures (FPDs) has been considered a highly successful
therapeutic option for partially edentulous patients.1,2

The predictability and long-term success of this
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treatment method depend on the accuracy of the pros-
thodontic workflow and the 3-dimensional fit of the
prosthesis and prosthetic components.3-6 A misfit can
cause internal stresses in the prosthesis, implants, and
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Clinical Implications
Providing engaging abutments with implants as
part of a 2-implant-supported prosthesis increases
sensitivity to small distortions that occur during the
prosthetic workflow and can therefore lead to a
less-than-optimal fit.
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tissues surrounding the implant,7-11 which can contribute
to screw loosening and deformation; fracturing of the
screw, implant, or prosthesis; peri-implantitis; bone loss;
and other adverse effects.3,12-14 One of the main
differences between cement- and screw-retained
implant-supported FPDs is that cement-retained
implant-supported FPDs can compensate for some
misfit because of the cement layer.15 Thus, the detection
of any misfit in screw-retained FPDs is essential for the
prevention of biological and technical complications.

Although different definitions have been published,
the term “passive fit” is usually used to describe the ideal
fit of the prosthetic framework to the implant when the
opposing surfaces of the implants and the framework
intaglio are in maximal spatial congruency without the
generation of any stress.3 However, a completely passive
fit is almost impossible to achieve because of errors that
may occur in each clinical and laboratory step.16-21 The
term “active fit” refers to the fit of a prosthetic framework
at the definitive position, with all screws tightened.3

However, a threshold for a clinically acceptable misfit
has not been determined 3 although up to 150 mm of
misfit has been considered as clinically acceptable.22,23

While the degree of tolerable misfit remains unclear,
clinicians should aim to achieve the greatest accuracy
possible.

Various techniques have been introduced to assess
prosthesis fit although no single method has been uni-
versally accepted.24 During the clinical evaluation, the
framework fit can be evaluated visually, tactilely, radio-
graphically, or with a specific test such as the 1-screw
(Sheffield) test or the screw resistance test.24 All
currently used clinical methods, however, are subjective,
have many variables, and are dependent on the opera-
tor’s skill.25,26 These limitations can be overcome by
combining available fit-assessment methods.

Internal connection implants can be used with
engaging or nonengaging abutments. Nonengaging
abutments of internal connection implants are indicated
for multiple-unit implant-supported screw-retained
FPDs because they can be used with nonparallel im-
plants.27,28 Engaging abutments are recommended for
single crowns but can also be used with FPDs when
implants are placed almost parallel.29 Engaging abut-
ments can also be combined with nonengaging
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abutments to increase the stability of FPDs.30,31 This
strategy might have a positive impact on the fit of the
prosthesis and may improve the long-term integrity of
the implant-abutment junction.27 Scientific evidence
supporting this approach is lacking, however, and further
clinical and laboratory investigations are needed.

The authors are unaware of a study investigating how
the engaging and nonengaging combinations of abut-
ments can tolerate different misfits. Therefore, the aim of
the present study was to simulate prosthetic workflow
distortions (horizontal and vertical) and to evaluate the fit
(passive and active) of 2-implant-supported screw-
retained zirconia frameworks with 3 different combina-
tions of abutments: both engaging, engaging and
nonengaging, and both nonengaging. The null hypoth-
esis was that the combination of abutments of 2-implant-
supported screw-retained frameworks would not affect
passive or active fit after simulating different vertical and
horizontal misfits.

MATERIAL AND METHODS

The sample size for the present study was determined
after a pilot study (n=5) from which a power analysis was
performed with a software program (G*Power 3.1.9.2;
Heinrich Heine-University). The effect size was 0.848 at
95% power; therefore, the minimum sample size for the
study was 27 frameworks. As such, 10 specimens were
used for each group.

A micromechanical custom-made stand (Standa
106263; Standa Ltd) (Fig. 1) containing 2 translation
platforms and handles was used to modify the positions
of the platforms in the vertical (y) and horizontal (x) di-
rections with a tracking accuracy of 2 mm. Each micro-
mechanical stand platform had a hole, which was used to
attach 2 dummy implants (Conelog Screw-Line; Camlog
Biotechnologies AG), Ø4.3×13 mm with 7.5-degree in-
ternal connection, with autopolymerizing acrylic resin
(Pattern Resin LS; GC Corp). To simulate a mandibular
second premolar-to-second molar restoration, implants
were fixed with a distance of 22 mm between the centers
of the top plane of the implants at 10 degrees to each
other.

After implant fixation, 2 scan bodies (Conelog;
Camlog Biotechnologies AG) were attached to the im-
plants. The situation was scanned with a laboratory
scanner (E4; 3Shape A/S). By using a computer-aided
design and computer-aided manufacturing (CAD-CAM)
standardized process, identical bar-shaped screw-
retained FPD frameworks (n=30) were fabricated as fol-
lows: 10 with 2 engaging titanium (Ti) bases (E-E group),
10 with 1 engaging and 1 nonengaging Ti bases (E-NE
group), and 10 with 2 nonengaging Ti bases (NE-NE
group). For all frameworks, Ø4.3×2-mm Ti bases (Con-
elog) were used. Zirconia (Katana Zirconia HT; Kuraray
Rutkunas et al



Figure 2. Zirconia framework cemented on titanium bases: top, E-E
group; middle, E-NE group; bottom, NE-NE group. A and B denote
different measurement sites. E, engaging; NE, nonengaging.

Figure 1. Micromechanical custom-made stand.
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Noritake Dental Inc) was used to fabricate the
frameworks according to the manufacturer’s
recommendations.

To create a control cast, 2 engaging Ti bases were
cemented to the first framework (“zero” framework)
without a cast (freehand) with the aid of a microscope
(Mobiloskop S; Renfert GmbH), ensuring the best fit
between the framework and the Ti bases (Fig. 2). Next, 2
dummy implants were attached to the “zero” framework
(20 Ncm), and a control cast was created by using Type
IV dental stone (GC Fujirock EP; GC Corp). The
remaining 29 frameworks were cemented to dedicated Ti
bases by using the same control cast to ensure an iden-
tical fit. The junctions between the zirconia and the Ti
bases for each of the 30 frameworks were cemented with
an adhesive luting system (Multilink Automix; Ivoclar
AG) and were then polished and cleaned according to
the recommendations of the cement manufacturer.

Two new dummy implants were attached to the
“zero” framework and were then attached to the holes in
the platforms of the micromechanical stand with auto-
polymerizing acrylic resin (Pattern Resin LS; GC Corp).
This position represented a passive fit (control group).
After the “zero” framework was removed, the misfit was
simulated by 50 mm in the vertical (V) direction by using
the micromechanical stand. Then, 2 Ø4.3-mm open tray
impression transfers (engaging) (Conelog; Camlog Bio-
technologies AG) were fixed on the implants and con-
nected together with dental floss (Oral-B Essential Floss;
Procter & Gamble) and autopolymerizing resin. To
reduce shrinkage, the splint was sectioned with a thin
disk and reconnected with a small amount of resin after
30 minutes. Two actual implants (Conelog Screw-Line;
Camlog Biotechnologies AG), Ø4.3×13 mm, were
attached to the splinted transfers, and a definitive cast
simulating the vertical misfit of 50 mm (V50 group) was
fabricated with Type IV dental stone (GC Fujirock EP; GC
Corp) (Fig. 3). In this same manner, definitive casts
simulating 100- and 150-mm vertical (V100 and V150
Rutkunas et al
groups) and 35-, 70-, and 100-mm horizontal (H) misfits
(H35, H70, and H100 groups) were fabricated.

Scan bodies were placed on the definitive and control
casts and were scanned with a laboratory scanner (E4;
3Shape A/S) to verify the simulated level of misfit.
Standard tessellation language (STL) files of the defini-
tive casts were superimposed with the STL data of the
control cast by using a software program (Geomagic
Control X; 3D systems Inc), which confirmed that the
simulated misfit error for each definitive cast was less
than 10 mm.

Three types of zirconia specimens (E-E, E-NE, and
NE-NE) were evaluated blindly by an experienced
prosthodontist (V.R.) by using the control and definitive
casts according to the criteria of obvious imbalance and
incomplete seating, strong resistance felt during insertion
with or without clicking, or a steep increase in the screw
resistance felt from the beginning of the screw tight-
ening. Based on these criteria, it was decided to exclude
E-E specimens from the H100 and V50, V100, and V150
simulated misfit groups, as nonpassive fit was obvious in
these scenarios.

A stereo microscope (Crystal-45; Konus Corp) was
used to evaluate the active and passive fits of the zirconia
specimens. Images were obtained at ×20 magnification
with a camera (CMEX-10 Pro; Euromex Microscopen
BV), and an image analysis software program (Image-
Focus Alpha; Euromex Microscopen BV) was used for
measurements. A 1-screw (Sheffield) test was used to
evaluate the passive fit of the specimens in the control
THE JOURNAL OF PROSTHETIC DENTISTRY



Figure 4. Distance between 2 parallel lines measured with stereo
microscope.

Figure 3. Definitive cast made from Type IV dental stone.

592 Volume 129 Issue 4
and misfit groups. For all zirconia FPDs, the sides were
marked A and B on the left and right, respectively. For
each E-NE specimen, the engaging Ti base was on side
A, and the nonengaging base was on side B. The abut-
ment screw on side A was tightened to 10 Ncm, while
the abutment located on side B was left without a screw.
Images of the current position (passive fit) were obtained
from the buccal and lingual sides of the side B implant by
using a stereo microscope. After the 1-screw test, the
abutment screws were tightened to 20 Ncm on both
implants. The active fit was evaluated by capturing
microscopic images of the buccal and oral aspects of sides
A and B in this position. New screws were used for each
specimen.

A trained and blinded investigator (D.K.) analyzed all
the images captured and made measurements at 4 spe-
cific locations on each implant: mesiolingual (ML), dis-
tolingual (DL), mesiobuccal (MB), and distobuccal (DB).
Two lines were drawn, parallel to the implant platform
and titanium base-zirconia interface, and the distance
between the lines was measured (Fig. 4). Measurements
from the 4 specific locations on side B were used for the
passive fit assessment, whereas for the active fit assess-
ments, the measurements for all 8 locations, 4 from each
implant, were analyzed. Root mean squared (RMS)
values of the calculated differences between each defin-
itive (H35, H70, H100, V50, V100, V150) and control cast
for each point were used. The calculated vertical de-
viations were considered the vertical gaps between the
implants and the abutments.

The active and passive fit values were compared
among the specimens (E-E, E-NE, and NE-NE) of the
various misfit groups. The Shapiro-Wilk test was used to
determine whether the data were normally distributed.
As the variables did not show a normal distribution, the
median (Mdn), interquartile range (IQR), and minimum
and maximum values in mm were calculated for each
group. The Kruskal-Wallis test, with the post hoc Dunn
and Mann-Whitney U tests, was used to compare the
THE JOURNAL OF PROSTHETIC DENTISTRY
different implant-supported zirconia specimens (E-E, E-
NE, NE-NE) on each definitive cast (H35, H70, H100,
V50, V100, V150), except for the groups that were
excluded after the initial assessment (H100, V50, V100,
V150 groups with E-E FPDs). The Wilcoxon signed-rank
test was used to compare zirconia specimens at different
levels of misfit. A software package (R v.4.0.3; University
of Auckland) was used for statistical calculations (a=.05).

RESULTS

From the assessment of passive fit, the E-E specimens
had larger vertical deviations (increases in the vertical
implant-abutment gap) in the H35 and H70 groups than
in the E-NE and NE-NE specimens (Table 1, Fig. 5A).
Additionally, larger vertical deviations were observed in
the E-NE specimens than in the NE-NE specimens at all
levels of the simulated misfit, except for the H100 and
V150 misfit groups. Overall, an increase in the vertical
gap was observed with an increase in the simulated
misfit. Comparing the groups of 100-mm misfit in the
horizontal (Mdn E-NE=140.4 mm; Mdn NE-NE=151.6
mm) and vertical (Mdn E-NE=49.8 mm; Mdn NE-
NE=42.6 mm) directions, misfits in the horizontal direc-
tion were less tolerated. The Wilcoxon signed-rank test
indicated that this difference was statistically significant:
T(E-NE)=0, P<.001, T(NE-NE)=0, P<.001.

The results of the active fit (both screws tightened) are
presented in Table 2 and Figure 5B. Vertical deviations for
active fit were higher in the group with a 100-mm misfit
simulated in the vertical direction (Mdn E-NE=10.2 mm)
than in the group where it was simulated in the hori-
zontal direction (Mdn E-NE=7.0 mm). The Wilcoxon
signed-rank test indicated that this difference was sta-
tistically significant: T(E-NE)=2320, P<.001. In the V50,
V100, and V150 misfit groups, the increase in the vertical
gap of the E-NE specimens was significantly higher than
that of the NE-NE specimens (P<.001). When the misfit
Rutkunas et al



Table 1.Median, IQR, minimum, and maximum values (mm) of vertical gap increase in different groups (each group n=40, 10 frameworks measured at 4
locations each) when evaluating passive fit

Passive Fit

Median (IQR) Min-Max
Kruskal-Wallis/Mann-

Whitney U

E-E E-NE NE-NE E-E E-NE NE-NE H/W Value P

H35 40.1 (32.0-49.8)a 19.8 (13.7-23.9)b 6.6 (4.6-11.9)c 17.0-69.0 0.4-38.5 1.5-18.0 82.18 <.001

H70 131.1 (119.2-137.1)a 85.1 (81.6-88.6)b 14.3 (8.5-22.6)c 109.5-153.0 69.9-93.3 1.7-35.5 105.79 <.001

H100 d 140.4 (134.4-146.3) 151.6 (141.9-163.3) d 121.5-158.4 131.3-176.1 1247 <.001

V50 d 24.9 (21.7-26.3) 11.6 (8.3-17.5) d 12.4-30.1 0.2-23.7 117 <.001

V100 d 49.8 (46.8-52.3) 42.56 (36.4-52.0) d 37.7-55.5 26.5-63.5 502 .004

V150 d 66.8 (63.2-68.9) 86.55 (82.5-92.3) d 54.5-75.7 79.6-100.5 1600 <.001

E, engaging; H, horizontal; IQR, interquartile range; max, maximum; min, minimum; NE, nonengaging; V, vertical. Different superscript lowercase letters in same row indicate Dunn test
significant differences among different abutment combinations (P<.001).
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Figure 5. Fit comparisons (median and interquartile range) between groups with different abutment combinations (E-E, E-NE, NE-NE) and simulated
misfit levels (H35, H70, H100, V50, V100, V150). A, Passive fit. B, Active fit. E, engaging; H, horizontal; NE, nonengaging; NS, nonsignificant (P>.05)
differences; V, vertical.
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Table 2.Median, IQR, minimum, and maximum values (mm) of vertical gap increase in different groups (each group n=80, 10 frameworks measured at 8
locations each) when evaluating active fit

Active Fit

Median (IQR) Min-Max
Kruskal-Wallis/Mann-

Whitney U

E-E E-NE NE-NE E-E E-NE NE-NE H/W Value P

H35 6.8 (3.3-10.2)a 5.4 (2.7-8.8)a 5.9 (2.5-8.5)a 0-19.9 0.1-20.8 0-18.3 1.67 .43

H70 6.6 (3.5-11.8)a 6.1 (2.3-10.8)a 4.8 (1.7-8.2)a 0-17.6 0-23.6 0-22.9 5.81 .055

H100 d 7.0 (3.2-12.7) 5.8 (2.6-9.7) d 0-21.7 0.1-18.6 2789 .16

V50 d 8.4 (6.2-10.5) 4.8 (1.8-7.8) d 1.4-20.1 0.1-15.6 1666 <.001

V100 d 10.2 (7.5-13.3) 3.5 (1.4-5.7) d 1.9-23.7 0-16.7 849 <.001

V150 d 15.1 (11.8-19.0) 3.9 (1.4-7.6) d 5.8-37.1 0.2-15.1 383 <.001

E, engaging; H, horizontal; IQR, interquartile range; max, maximum; min, minimum; NE, nonengaging; V, vertical. Different superscript lowercase letters in same row indicate Dunn test
significant differences among different abutment combinations (P<.001).
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was simulated in the horizontal direction, no significant
difference was observed between the zirconia specimen
groups.
DISCUSSION

The results of the present study showed that the abut-
ment combination (E-E, E-NE, and NE-NE) can affect
the passive and active fits differently when distortions
occur in the horizontal and vertical directions. Therefore,
the null hypothesis was rejected. Of the tested abutment
combinations, NE-NE specimens were least affected by
the vertical and horizontal misfits tested, while the most
affected were E-E specimens, for which the nonpassive fit
was clear. Therefore, the H100 and V50/100/150 misfit
groups for the E-E specimen group were not evaluated.
The lack of nonpassive fit can be explained by the fact
that engaging abutments are inserted deeper into the
internal connection of the implant. Additionally, the
presented study simulated a 10-degree angle between
the implants, a discrepancy that could further complicate
the seating of this type of abutment. The authors are
unaware of a previous study that compared the tolerance
of different abutment types to a variety of misfit levels.
Therefore, a direct comparison with other studies was not
possible.

Few studies have evaluated the effects of using
different abutment combinations with internal connec-
tion implant FPDs (E-E, E-NE, and NE-NE) on the
passive fit.29-31 Even though in the present study 2-
implant-supported frameworks with NE-NE abutments
showed the highest tolerance to a simulated misfit, this
particular abutment combination has been reported to
cause higher stress and strain in the implant-abutment
interface and cortical bone, followed by frameworks
with E-NE and E-E abutments.29,31 This difference may
be attributed to the decreased extension of NE abutments
into the internal connection of the implant.31 These
studies29,31 investigated different types of abutment
combinations in the complete passive fit situation, but, in
clinical situations, a completely passive fit of the
THE JOURNAL OF PROSTHETIC DENTISTRY
prosthetic framework is almost impossible to achieve.16,17

Also previous studies investigated framework fit on
parallel implants, or on implants angled up to 5 de-
grees.29-31 Different implant angles should be investi-
gated, as it is difficult to place implants completely
parallel in clinical practice.20

Microscopy has been used to evaluate the fit of partial
or complete arch implant-supported fixed prostheses
connected to external connection implants or multiunit
abutments.4-6,18,19,21 Under standardized conditions,
microscopy measurements can be comparable and
moderately accurate.24 The mean vertical gap has been
reported to be reduced from 100 to 120 mm to 5 to 10 mm
if the 1-screw test is replaced with the definitive fit (active
fit) test for misfit assessment.6,18,19 Unfortunately, studies
that evaluated the fit of FPDs on internal conical
connection implants by using this technique are lacking.
A decrease, however, in the vertical gap was also
observed during active fit testing in the current study.
Moreover, frameworks with NE-NE abutments were able
to adapt better than the frameworks with E-NE and E-E
abutments, since the vertical gaps were reduced from 150
mm to 5 mm after tightening all screws. This phenomenon
of mimicking the accurate framework may depend on the
implant-abutment interface and/or machining tolerances
of the components 14,27 or may be from micro-
deformations of the screws, abutments, implants,
framework, and/or model representing bone.18,29

The results of the present study indicated that the
vertical gap increased with an increase in misfit level. The
same trend was observed in finite element analysis (FEA)
studies of internal conical connection implants,7-9 where,
with increased levels of misfit, the stress levels in the
peri-implant bone and prosthesis increased in the di-
rection of the misfit. When comparing equivalent hori-
zontal and vertical misfits in the present study, horizontal
misfits caused a larger vertical gap than vertical misfits,
suggesting that horizontal misfits may be more detri-
mental. Although no direct comparisons can be made,
other FEA studies, which tested different misfits on 2
external connection implants, also reported that vertical
Rutkunas et al



April 2023 595
misfit may be less detrimental than horizontal.10,12,13

Moreover, Winter et al10 reported that an angular misfit
was the most detrimental, although Manzella et al11 re-
ported that vertical misfits were more detrimental than
horizontal misfits on 4- to 6-implant multiunit abut-
ments, suggesting that the horizontal displacement of
each multiunit was within the range of the machining
tolerances.

The present study design included horizontal (50, 100,
150 mm) and vertical (50, 100, 150 mm) distortions. These
displacement values have been used previously to assess
the impact on passive fit.7,11 During the pilot study, it was
not possible, however, to place the zirconia FPDs on a
cast simulating a horizontal 150-mm misfit. Therefore,
horizontal misfits were only simulated up to 100 mm. The
effects of a simulated horizontal 200-mm misfit on FPDs
with internal conical connection implants have been re-
ported.9 The ability to insert a prosthesis with such a high
misfit can be explained by the fact that Astra Tech im-
plants with an 11-degree conical connection were used,
whereas, in the present study, Conelog implants with a
7.5-degree conical connection were used. Additionally,
titanium fixed prosthesis-type frameworks (Atlantis Su-
perstructures; Dentsply Sirona) were evaluated in the
previous study, which allowed more freedom in the
implant abutment connection than in the original
abutments.5,32

Marginal gaps ranging from 10 mm to 150 mm have
been reported to be clinically acceptable in the long
term.22,23 However, the degree of tolerable misfit remains
unclear because of the lack of clinical studies.3 In a recent
review, a gap less than 25 mm at the interface (vertical or
horizontal) was proposed to be clinically acceptable for 3-
unit FPDs after assessment with the 1-screw test.3 Ac-
cording to this threshold of clinical acceptance and the
results of the present study, horizontal and vertical dis-
tortions in the prosthetic workflow for the NE-NE 3-unit
framework should be less than 70 mm and 50 mm,
respectively, while for the E-NE 3-unit framework, they
should be 35 mm and 50 mm, respectively. For the E-E 3-
unit framework, no acceptable threshold of prosthetic
workflow distortion was determined, so they are less
recommended for use with FPDs supported by 2 or more
moderately angled implants.

Limitations of the present study included that an
implant system (Conelog Screw-Line) with a 7.5-degree
conical connection was used, while other implant sys-
tems may have a larger or smaller conical connection.
Higher degree of conical connection may increase toler-
ance for various misfits. Furthermore, the present study
investigated frameworks’ fit on implants angled at 10
degrees to each other, while in clinical practice, the
angulation between implants could be smaller or larger.
Another limitation was that the present study investi-
gated horizontal and vertical misfits separately, while in
Rutkunas et al
clinical practice, usually 3D misfit error occurs. In this
study, the same zirconia frameworks and casts were used
for all 3 groups (E-E, E-NE, NE-NE specimens), and a
possible limitation could be wear of the titanium bases
and implants. This potential limitation is, however, not
considered to have any significant effect on the results, as
the situation was the same in all 3 groups. Further
research is needed to estimate the effects of implant
angulation and number, connection, and abutment type
on the level of misfit that can be tolerated to prevent
biological and technical complications.

CONCLUSIONS

Based on the findings of this in vitro study, the following
conclusions were drawn:

1. With an increased level of simulated misfit, there is
a subsequent increase in the vertical gap between
the implant and abutment.

2. Horizontal misfits caused larger vertical gaps than
vertical misfits and should, therefore, be regarded as
more detrimental.

3. Both nonengaging abutment combination tolerated
different misfit levels best, followed by engaging
and nonengaging and both engaging combinations,
as a result of which the both engaging combination
is less recommended for 2-implant-supported FPDs
because of extreme sensitivity to the small distor-
tions occurring with that prosthetic workflow.
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