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Abstract. This survey of piecewise polynomial surface constructions for fill-
ing multi-sided holes in a smooth spline complex focusses on a class of hybrid
constructions that, while heterogeneous, combines all the practical advantages of
state-of-the-art for modelling and analysis: good shape, easy implementation and
simple refinability up a pre-defined level.
After reviewing the three ingredients – subdivision, G-spline and guided surfaces
– the hybrid is defined to consist essentially of one macro-patch for each of n sec-
tors, leaving just a tiny n-sided central hole to be filled by a G-spline construction.
Here tiny means both geometrically small, e.g. two orders of magnitude smaller
than pieces of the spline complex, and small in its contribution to engineering
analysis, i.e. it is unlikely to require further refinement to express additional geo-
metric detail or resolve a function on the surface, such as the solution of a partial
differential equation.
Each macro-patch has the local structure of a subdivision surface near, but ex-
cluding the central, extraordinary point: all internal transitions are the identity
or scale according to contraction speed toward the extraordinary point. Both the
number of pieces of the macro-patches and the speed can be chosen application-
dependent and adaptively.

Keywords: free-form spline surface, subdivision surface, G-spline, guided sur-
face, accelerated subdivision, refinability

1 Introduction

A hybrid construction for filling an n-sided hole in a spline complex consists of two
parts: a main body formed by several nested surface rings and a tiny central n-sided cap,
see Fig. 1, b,h. Each ring consists of n L-shaped sectors that fit together smoothly at
their tips to form a curved annulus, called surface ring. The L-shape also joins smoothly
with a smaller L-shaped sector of the next ring, as illustrated in Fig. 2. The surface rings
form a nested sequence that contracts rapidly towards the center. Alternatively, one can
think of each L-shape as a 4-sided macro-patch with one quadrant punched out to leave
space for the next smaller L-shape, i.e. their union is a spline complex with a hole.
This is the setup of subdivision algorithms [82] near extraordinary points, except that
the process in the hybrid construction stops after a few steps, e.g. 2 or 3 nested surface
rings.
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(a) n = 7

spline complex

ring 1
ring 2tiny cap

(b) layout

(c) zoom to ring 2 (d) Gauss

(e) Mean (f) highlight lines

(g) n = 8 (h) layout (i) fine geometric edit, magnified

Fig. 1. Examples of high-valence hybrid surfaces. (a,g) Generalized control net (c-net). (b,h)
layout of surface rings with almost invisible tiny cap. (c–f) Shape interrogation of ring 2 and
the tiny cap: (d) Gauss curvature, (e) mean curvature. (i) Localized degrees of freedom used to
emboss a pattern [46].

Fig. 2. L-shaped sectors
forming a macro-patch
(fine lines form a bi-
quartic (bi-4) BB-net
[20].

The pieces join to form the main body of the surface with-
out change of variables, except possibly scaled derivatives as
we adjust the contraction ‘speed’ of the rings. The main body
of the surface is therefore amenable to refinement by knot in-
sertion to increase of degrees of freedom. The same holds for
functions on the surface, such as textures.

Only the tiny central n-sided cap is assembled by join-
ing pieces so that derivatives agree after a change of variables
(reparameterization), i.e. the cap isGk continuous. The cap can
be one of many in the literature, see Section 4. Typically the cap
is so small that it needs not be refined. If it needs to be refined,
[55] provides a refinable G2 tiny cap construction.

The hybrid structure seems to just delay the multi-sided
hole-filling challenge. The motivation for this seemingly more
complex approach is that, if the cap is chosen to be smaller than
the maximally anticipated refinement – for geometric modeling or computing on sur-
faces – then all surface pieces share a simple parameterization for refinement. On the
other hand, capping the rings avoids the infinite recursion and central singularity of sub-
division surfaces that necessitate smart data structures and special algorithms for proper
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integration over infinitely many polynomial pieces. By construction a hybrid surface is
therefore ‘analysis-suitable’, in the sense that it offers a uniform increase in degrees of
freedom by knot insertion – up to the refinement level of the tiny cap (and further, at
some cost in complexity, if the cap is chosen to be refinable).

To ensure that the hybrid constructions are ‘geometry-suitable’, i.e. yield good
shape, a third technique is applied: both the main body and the cap follow a guide
surface. A guide surface need not match the surrounding spline complex but is sampled
ever closer to the central point to guarantee that subsequent rings and the tiny cap do
not freely oscillate but follow a consistent, structurally simpler shape.
Overview. Section 2 classifies constructions for filling n-sided holes and explains re-
quirements for geometric design and engineering analysis. Section 3 reviews subdivi-
sion algorithms, Section 4 reviews G-splines, and Section 5 reviews guided construc-
tions, the three ingredients from which subdivision-and-G-spline-hybrids are built in
Section 6.

SMOOTH

singular:
polar
subdivision
singular jet

singular

rational
rational:
transfinite
Gregory
barycentric
orbifold

Gk

Gk:
geom smooth

trimmed C−1

conforming C0

C1−ε

(a) Classification of constructions (b) quad-net obstacle course

Fig. 3. (a) Categories of surface parameterizations for irregular configurations from [80]. (b) Ex-
amples of meshes in the quad-net obstacle course [37] that serve as test control nets for the geo-
metric suitability of constructions analogous to the finite element obstacle course for engineering
analysis.

2 Categories of and requirements for surfaces with irregular
configurations

Fig. 3(a) proposes a partition of the universe of spline constructions for irregular config-
urations. The main irregular configurations are illustrated in Fig. 4: star-configurations,
multi-sided facets, T-junctions and polar configurations. The partition groups by smooth-
ness, polynomiality and singularity of the surface parameterization. The topmost entry,
trimmed NURBS surfaces, is the de facto industry standard. Trimming means restricting
the domain of surface pieces by curves in the domain. In styling software, polynomial
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(a) star-net (b) n-gon-net (c) τ0-net (d) τ1-net (e) polar-net

Fig. 4. Locally quad-dominant mesh patterns (see [54]). The valence in (a,b,e) is n = 5. The
pentagon in (d) is a T1-gon, the triangle in (c) is a T0-gon.

pieces are typically laid down to capture primary shape, cut back where they overlap
and blended by fillet transition surfaces. This approach preserves simple, elegant shape
in the large but ultimately forces stylists to devote ever more time to ever smaller blends
between the primary surfaces [105].

Conforming C0 surfaces, including curved triangulations, are ubiquitous and suf-
ficient for basic engineering analysis (volume, homogeneous material moments, linear
elasticity, etc.) and in computer graphics, where visual appearance trumps accurate ge-
ometry, [101, 64, 28]. Generalized barycentric patches, e.g. [65, 94], and non-4-sided
transfinite constructions, e.g. [15, 86, 99, 100, 88], cover multi-sided holes with single,
typically C∞ patches. Due to an underlying very high rational degree, exactly comput-
ing their higher-order derivatives is costly. Due to its focus on free-form surfaces, the
classification leaves out analysis-suitable functions and their graphs, e.g. [95, 33]. Sub-
division surfaces and Gk constructions will be discussed individually in the Section 3
and Section 4.

2.1 Requirements on the geometry

The quality of a surface is a subjective term. Two tools are commonly used to assess ge-
ometric quality: ‘curvature profiles’ superimpose the curvature function of planar cuts
orthogonal to the surface (Fig. 1d,e show the less common shading of the whole sur-
face by Gauss and Mean curvature); and ‘highlight lines’ [6] approximate the effect
of parallel arrangement of tube lights in a car show room. Unless explicitly intended
as a surface feature, artifacts such as abrupt changes in the distribution of curvature
or highlight lines are not wanted because they distort reflections and make the prod-
uct appear less well designed. When the surfaces generated from the obstacle course
quad-meshes (see Fig. 3(b)) avoid artifacts, the construction will be deemed geometry-
suitable. The automotive design industry also uses the term ‘Class A surface’ [104] to
describe spline surfaces with aesthetic, non-oscillating highlight lines. Class A surfaces
satisfy, depending on the application area and contractual agreement, certain hard ge-
ometric constraints [2]. Remarkably, they allow a mismatch of normals across curves
between two surface pieces up to one tenth of a degree, justifying the surface category
C1−ε in Fig. 3(a).
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2.2 The isogeometric approach

Higher orders of continuity of the solution space are required for correctly solving
higher-order differential equations such as the biharmonic equation, Kirchhoff-Love
shell formulations [9, 8, 58], the Cahn-Hilliard phase-field model [23] or simplified
Navier-Stokes-Korteweg equations. C1-continuous finite element spaces are needed
even when these problems are expressed in the weak formulation [103], e.g. via Galerkin’s
discretization for solving a partial differential equation [102, 75]. Where the partitions
deviate from regular lattices, classical finite elements join typically only C0. Ignoring
the required differentiability between elements and computing piecemeal in the larger
C0 space can give rise to extraneous solutions that do not correspond to physical solu-
tions. For other classes of differential equations, smoothness, while not formally neces-
sary, has been found to improve accuracy, stability or convergence (see e.g. for contact
problems [68, 97]).

Fig. 5. Atlas x and analysis functions uα in the formulation of the fundamental theorem: elements
on manifolds bi(xα) := uα ◦ x−1

α built with geometric continuity across an interface E with the
corresponding edges of the domains �1 and �2 related by the change of variable ρ.

For a grid-like layout of quadrilateral surface pieces, the practice of using bi-variate
splines both for modeling the geometry of the domain and for computing functions on
this domain goes back at least to the 1980s [13]. To emphasize the use of B-splines
for both geometry and engineering analysis, the term iso-geometric analysis (IGA) was
coined in the 2005 publication [29]. Publications that developed the isogeometric ap-
proach in the 1980s and 1990s used the less specific and less memorable terms ‘higher-
order’, ’isoparametric’ or ‘finite elements using NURBS’ [93, 3, 4, 91].

A fundamental theorem, [26], asserts that generalized splines whose irregular lay-
out captures free-form shape of surfaces, e.g. G-splines, can directly serve to define
isogeometric finite elements. The composition of maps (where x−1α is the pull back of
xα) that define the finite elements is illustrated in Fig. 5. G-spline implementations in
[72, 35, 73, 74, 89] have confirmed this fact by solving problems of the classical ‘finite
element obstacle course’ [7].

2.3 Requirements for analysis: flexibility-increasing refinability

Examples of functions on surfaces are textures in graphics and deformation stress in en-
gineering analysis. Both may need to have increased resolution, even when the surface
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remains the same. [16] shows that C2-connected bi-cubics have a sub-optimal approx-
imation order in the presence of extraordinary points and, more generally, that refine-
ment of the domain (h-refinement) in the presence of non-trivial reparameterizations
fuses the refined polynomial surface pieces of degree p when the continuity is Cp−1.
Similarly, in the context of geometric modeling, [79] proved that for bi-3 (bicubic)
spline patches the interdependence of partial derivatives forces a minimum separation
of the extraordinary points when polynomial pieces are joined G1 or else they fuse.
([16] uses the term ‘locking’ for the artificial algebraic stiffness; while evocative this
term already has a fixed meaning in the thin-shell community). An alternative term for
flexibility-increasing refinability is analysis-suitability, hence the title of this paper.

To formalize flexibility-increasing refinability, we follow the exposition of [55] and
define smoothness between non-overlapping pieces of manifolds as follows.

Definition 1 (Gκ constraints). Two regular and sufficiently smooth surface pieces f̃ , f :
(u, v) ∈ R2 → Rd that share a boundary curve e join Gκ along e if there exists a
suitably oriented and non-singular reparameterization ρ : R2 → R2 so that the partial
derivatives ∂k f̃ and ∂k(f ◦ ρ), k = 0, 1, . . . , κ, agree along e.

Let, according to the focus of this survey, the surface pieces be sufficiently smooth
piecewise polynomials, e.g. tensor-product splines, and fix the reparameterization ρe
for every edge e. Then the splines joined with these reparameterizations form a space
Gρ linear in the unconstrained polynomial coefficients. That is, any linear combination
of elements in Gρ associated with these free coefficients (set to 1 and all others to 0) is
again in Gρ.

The space Gρ is (binarily) refinable to a space Ġρ̇ in the following sense, see Fig. 6.
For each piece f ∈ Gρ restricted to � := [0..1]2, the space Ġρ̇ has four polynomial
pieces fr, r = 1, 2, 3, 4 (wlog. of the same degree as f ) defined on the four quarters of
� and joined by the following reparameterizations ρ̇:

ρ̇e0(u, v) = ρe(
u

2
,
v

2
), ρ̇e1(u, v) = ρe(

1

2
+
u

2
,
v

2
).

Then there is a choice of fr, namely applying de Casteljau’s algorithm to f at u =
v = 1/2, so that any element f ∈ Gρ can be represented in Ġρ̇. That is, Ġρ̇ refines
Gρ. However, Ġρ̇ is a larger space than Gρ since many other choices of macro-patches
fr are allowable. Ġρ̇ can therefore be expected to provide more flexibility than Gρ.
The additional degrees of freedom are new coefficients not constrained by enforcing
smoothness.

Definition 2 (flexibility-increasing refinable). A construction is flexibility-increasing
refinable if, for each domain piece �, Ġρ̇ ) Gρ has more degrees of freedom than Gρ,
both along map boundaries and in the interior.

Since all new internal transitions arising from refinement must be parametricallyC2

to reproduce the original polynomial pieces by the finer construction, macro-patches
are internally Ck rather than Gk, see the black transitions in Fig. 6 are Ck. Having
covered the requirements, we now survey in more detail the three ingredients of hybrid
constructions: subdivision, G-spline and guide surfaces.
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Fig. 6. Illustrating flexibility-increasing refinement of a macro-patch. To be flexibility-increasing,
new degrees of freedom must appear both in the interior and along the red sector-separating curve
boundaries and the darkgreen boundaries that connect the cap to the remaining surface. Second
superscripts in (b) enumerate the (second) splitting of the original edges into parts 0 and 1.

3 Subdivision surfaces

More than 40 years ago Catmull and Clark [14] suggested a simple way to smoothly ap-
proximate quad meshes by an infinite sequence of nested rings of bi-3 splines; and Doo
and Sabin [19] independently generalized bi-2 splines while deriving important math-
ematical machinery to analyze the resulting surfaces. Following the landmark papers
[18, 96] that demonstrated industry support, Catmull-Clark surfaces are nowadays the
tool of choice for computer animation. More recently, an efficient set of open source
libraries for subdivision on massively parallel CPU and GPU architectures has been
agreed upon by Pixar and Microsoft [83] and used by Pixar’s proprietary animation
system.

Closer mathematical analysis shows that Catmull-Clark surfaces have systemic shape
deficiencies that preclude their use in high-end modeling for manufacturing [56, 49]:
limits of convex meshes become hyperbolic surfaces, transitions at T-junctions are un-
duly flat and saddle-like configurations result in undesirable pinched highlight lines.
Indeed, distortion of highlight lines for higher valences is a challenge for two members
of the category ‘singular’ in Fig. 3(a): subdivision surfaces and singular jet surfaces.
(Only polar surfaces, where one edge is collapsed into a pole, thrive on high valence.
Subdivision surfaces can be thought of as collapsing patch size and singular jet surfaces
as collapsing the Taylor expansion at a vertex[77, 84, 85, 74, 98]) Indeed, the mono-
graph on the mathematics of subdivision surfaces characterizes subdivision surfaces
near irregularities as spline surfaces with singularities [82].

Optimizations of parameters and prescription of the expansion at the extraordinary
central point [34, 5, 61, 69] have improved shape outcomes by making the subdivision
matrix less sparse. (The subdivision matrix maps control nets surrounding an irregu-
lar node to a contracted control net, each of which defines a surface ring, see Fig. 7.)
Guided subdivision [38, 50] stabilizes the shape at the cost of a yet denser subdivision
matrix. This enables accelerated contraction towards the extraordinary point without no-
ticeable harm to the shape [48]. For example, one high speed contraction step can shrink
the remaining hole by more than two steps of Catmull-Clark subdivision as illustrated
in Fig. 11. Accelerated, guided subdivision is a key ingredient of hybrid constructions.
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Fig. 7. ( left) Subdivision surface (from [38]) built from ( right) a sequence of contracting surface
rings.

4 G-splines

While early publications [10, 87, 30, 17, 62, 11, 21] hint at the potential of polynomial
pieces joined by a change of variables to fill multi-sided holes in a spline complex, it
is arguably Hahn’s use of geometric continuity [27] that set the standard for the first
generation of G-spline constructions in the 1990s. The focus of the early constructions
was on varying the parameterization ρ of Eq. (1) to allow different relations between
patch derivatives at irregular non-4-valent points versus regular ones. Expansion by
the chain rule of differentiation yields for example G1 and G2 constraints in terms of
univariate scalar maps a, b, d, e : u ∈ R→ R (partial derivatives of the two coordinates
of ρ evaluated on the edge parameterized by (u, 0)) and the vector-valued functions f ,
f̃ evaluated at (u, 0):

∂v f̃ = a ∂vf + b ∂uf , (1)

∂2vv f̃ = a2 ∂2vvf + 2a b ∂u∂vf + b2 ∂2uuf + d ∂vf + e ∂uf . (2)

Since neither f (the rules for constructing the polynomial pieces) nor ρ (the reparame-
terization) are known a priori, the constraints define a large non-linear space to explore.
Considering ρ free to choose increases the space of possible construction. However all
sufficiently smooth constructions have to obey a constraint that arises from the circular
arrangement of patches surrounding a point, the vertex enclosure constraint [76]. More-
over, the degree of ρ is bounded by the degree of the surface pieces [76] due to what is
now understood to be a syzygy relation, see e.g. [70]. Moreover, to create a manifold,
the composition of n copies of ρ (across each of the sector-separating curves around an
interior point) has to form the identity map, up to the degree of smoothness [78].

Choosing ρ to Hermite interpolate and so separate the computation at either end of
an edge between two patches, simplifies solving the system of equations in the poly-
nomial coefficients of Eqs. (1) and (2) but results in many unconstrained coefficients:
Hahn and Gregory’s early G2 construction used pieces of degree 18 in u and in v (bi-
18) [24] and [106, 57] of degree bi-9. Modern G-splines include G2 constructions of
degree as low as bi-5. Throughout the 1990s work focused on optimizing ρ to minimize
the polynomial degree of the surface. Although compatible with the NURBS standard
adopted by the manufacturing industries, the shape of early G-spline constructions was
often worse than that of subdivision surfaces.
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The first decade of this millennium saw improved shape, e.g. [63, 66] still of de-
gree bi-7. Also the distinction between smoothness in the large, assessed via highlight
lines, and infinitesimal smoothness, measured as matching derivatives came into focus:
a formally only G1 construction of degree bi-5 or bi-4 [42, 49] showed better curva-
ture distribution than higher degree curvature continuous constructions; and, remark-
ably, C1−ε construction in [41] trades a slight mismatch in the normal (still within the
bounds of class A surfaces) for good highlight line distributions over the multi-sided
patch constructed from a finite number of bi-3 patches; the quality of the highlight line
distributions could not be matched by the subdivision surfaces of the time (except of
the guided variety, see e.g. [47] and Section 5). Additionally, the degree of formally G2

surfaces with a single patch per sector was reduced to bi-6 [44]. and to degree bi-5 for
2 × 2 macro-patches [40]. Special scaffold- and sphere-like configurations even allow
for curvature continuous bi-4 constructions [43].

A next step forward for G-splines was to allow not only irregular points but also
T-junctions as part of a generalized B-spline control net for free-form modeling [36].
T-junctions occur where two quads on one side meet one facet on the other and serve in
polyhedral modeling to start or stop quad-strips and so increase or decrease the number
of free points to be set. T-junctions prominently feature in quad-dominant remeshing
(see e.g. [1, 60, 31, 90]) where they allow to side-step the otherwise stringent global
quad-meshing constraints (see e.g. [32, 12, 71]). Also popular in this context are (iso-
lated) triangles that merge and so reduce the number of quad-strips, see Fig. 8. The
novelty is that all mesh nodes act as coefficients of linear combinations of piecewise
polynomials, i.e. as B-spline-like control points.

(a) T0-gon (b) T1-gon (c) T2-gon

(d) τ0-net (e) τ1-net (f) τ2-net

Fig. 8. T-gons and τ -configurations. The subscript counts the number of T-junctions.

While G-splines for multi-sided holes or generalized subdivision can, in princi-
ple, convert quad-dominant meshes with T-junctions into smooth surfaces, they do not
preserve the two preferred directions and so cause visible shape artifacts. Hierarchical
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and T-splines such as [59, 92, 22] need to carefully coordinate knot intervals to admit
meshes with T-gons as control nets. For many meshes a globally consistent choice of
intervals is impossible [36]. That is, these approaches excel at refining tensor-product
patches, but may not be able to produce a smooth surface from a given polyhedral mesh
including T-junctions.

The G1 constructions [51, 53, 52] differ in their polynomial degree, their flexibility-
increasing refinability and how close their τ -nets can be placed to each other and
to irregular nodes. Built from pieces of degree 3 × 5, [51] is suitable for modeling
class A surfaces. And by complementing the existing G-spline constructions for multi-
sided facets, splines for the τ -configurations of Fig. 8 allow interpreting locally quad-
dominant meshes as spline control nets.

o

ms

ms−1

cs

=⇒

(a) initial 2× 2 bi-6 G2

o

ms

ms−1

cs

(b) once-refined bi-6 G2

Fig. 9. Internal degrees of freedom of refinement of [55] marked as •.

Since the majority of high-end surface constructions now are G-splines, their flexibility-
increasing refinability has come under scrutiny. The detailed analysis of flexibility-
increasing-refinement of [42] showed that, unlike for tensor-product splines, the result-
ing unconstrained new coefficients (degrees of freedom) are not convenient geometric
handles due to their irregular distribution and support [45]. Indeed the full characteriza-
tion of G2 flexibility-increasing refinability in [55] proves that multi-sided refinement
of G-splines can not be flexibility-increasing when the construction uses bi-5 macro-
patches, regardless of the number of N × N pieces. Conversely, [55] exhibits a bi-6
construction with 2× 2 pieces per sector that is G2 flexibility-increasing refinable, see
Fig. 9. (A bi-4 publication, currently under review, presents parallel results for the con-
struction of multi-sided G1 surfaces.)

5 Guided surfaces

Guided Subdivision [38] is an effective tool to overcome the defects of standard subdivi-
sion algorithms. Moreover, unlike standard subdivision, guided subdivision can easily
define curvature continuous subdivision surfaces with controllable polynomial repro-
duction at the limit point. Fig. 10 illustrates the underlying principle: the control mesh
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(a) c-net (b) guide surface (c) regular ring (d) mismatch

(e) guided rings

Fig. 10. Guided Subdivision. At each step, the preceding ring provides a Hermite prolongation to
set the outer coefficients of the next, nested ring while sampling the guide shape yields the inner
coefficients.

(a) defines a guide surface (b) and the Hermite prolongation of the surrounding regular
ring (c). Since the guide surface and the surrounding surface frame do not fit together
as illustrated in (d), the subdivision step retains the outer part of the ring that fits its
predecessor ring and determines its new inner part by sampling the guide. The result is
shown in (e). We note that the guide surface can have a different structure, smoothness
and polynomial degree than the final surface. For example, it can consist of 3-sided
patches, whereas the final surface consists of 4-sided patches. Remarkably the over-
all process is linear and stationary and can so be interpreted as subdivision with large
stencil, i.e. with a denser subdivision matrix than Catmull-Clark subdivision. While
the rules become more complex, the mathematical analysis of the limit becomes much
simpler – and the shape is far better [49].

(a) CC (b) n = 7 (c) Guided (d) 6 rings (e) shared (f) 3 rings

Fig. 11. Guided Subdivision and Accelerated Guided Subdivision. The highlight line distributions
for input c-net (b) for (a) Catmull Clark subdivision and (c) Guided Subdivision. For a different
input n = 6, surfaces (d) and (f) have visually the same highlight line distribution shown in (e).

Moreover, since guided subdivision stabilizes the shape, an additional technique can
be leveraged: accelerated guided subdivision [81, Sect 5], [48] widens the surface rings
and so achieves a more rapid contraction of the remaining gap, see Fig. 11. When the
surface rings and final cap follow a guiding shape, good highlight line distributions are
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obtained for the shape obstacle course Fig. 3(a), already when the accelerated sequence
of Ck-joined surface rings is G1 completed after 2 or 3 rings, see Fig. 11d, e.

We note that guides can equally well be applied to finite constructions in order to
harness excess free parameters. In hybrid surfaces, the same guide surface is applied
both to accelerated subdivision rings and the final tiny cap.

6 Hybrid surfaces

While guided subdivision improves shape, it does not address the problem of infinite
recursion. Stopping the recursion after a few steps and filling the remaining hole with a
triangulated multi-sided facet leads to noticeable flaws in the highlight line rendering.
A better solution is to fit a multi-sided G1-cap. Since the resulting surface consists of a
fixed number of surface pieces, it is industry compatible. To combine the best features
of subdivision and geometrically continuous surface constructions, we observe that in
practice, design and analysis can often predict a maximal level of refinement. When
the maximal anticipated refinement level at the irregularity suffices, the cap need not be
refined and refinement in the surrounding finite coarser surface requires only standard
spline knot insertion [46]. If the anticipated level does not suffice, it is easy to recon-
struct with additional surface rings – or once can use a more complex geometrically
smooth flexibility-increasing-refinable construction such as Fig. 9.

The earliest hybrid construction, [41], addressed whether bi-cubic surfaces can be
class A. The construction, of a main body and cap of degree bi-3, is formally only C0,
with empirically less than a 0.1◦ normal mismatch between the surrounding surface
and the main body. The default uses just three pieces per L-shape and one piece for the
limit. The results, summarized visually in [41, Fig. 1] show the hybrid to noticeably
improve on methods that yield a formally smoother result [14, 25, 67]. The focus of
[47] is on improving the shape of subdivision surfaces by constructing both a C2 sub-
division algorithm generating surfaces of polynomial degree bi-6. An appendix adds
G1 parameterized tiny cap. The full concept of a hybrid construction, including accel-
eration to obtain few pieces, is realized in [46] (see Fig. 1). In [48] the degree of the
C2 main body is reduced to bi-5. In [49], see Fig. 2, the degree is bi-4 using macro-
patches. The approaches use guide surfaces built from n three-sided patches with high
smoothness at the central point. Finally [55] proves that the central caps of [46, 48, 49]
are not flexibility-increasing refinable and presents a bi-6 tiny cap that both completes
the surface G2 to be is flexibility-increasing refinable. For practical purposes the latter
may be more than needed:G1 suffices up to fourth order differential operators and good
geometric shape can be guaranteed by tiny G1 caps whose refinement is much simpler,
pointing to [48] as the method of choice.

The key ingredient of hybrid constructions is the guide surface and the sampling, via
characteristic maps Fig. 12, of Hermite data along the sequences of boundary curves
of the patches. Presented in BB-form these Hermite data are called tensor-borders. For
details on the characteristic maps see [48]. The rapid contraction of the guided rings
means that the resulting macro-patches consist of few pieces per sector, e.g. of seven
pieces: three for each of two polynomial L-shapes and one for the central G-spline
patch. This yields smooth surfaces consisting of a finite number of pieces whose for-
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Fig. 12. A sector of the characteristic map for n = 5 and speeds 1
4
, 1
2
, 2
3
, 3
4
, 7
8

from [39].

mulas derive linearly from the input control net, hence can be implemented, for fixed
contraction speed and valence, as a single matrix multiplication applied to the local
control net. In practice, for [48], one splits the matrix into a 21× 31 matrix for creating
a sector of the guide, a 21 × 21 matrix for the de Casteljau steps that re-represent the
guide for a contracted domain, a 27× 21 matrix defining one sector of the prolongation
of the L-shape and 36× 21 matrix for one sector of the tiny cap.

7 Conclusion

In order to advertise a useful class of piecewise polynomial surface constructions for
filling multi-sided holes in a smooth spline complex, we surveyed subdivision, G-spline
and guided surfaces. Combining accelerated guided subdivision with a tiny G-spline cap
yields a number of advantages for modelling and analysis: good shape, easy implemen-
tation and simple refinability up to a pre-defined level.
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73. Thien Nguyen, Kȩstutis Karčiauskas, and Jörg Peters. C1 finite elements on non-tensor-
product 2d and 3d manifolds. Applied Mathematics and Computation, 272(1):148–158,
2016. PMC4652325.

74. Thien Nguyen and Jörg Peters. Refinable C1 spline elements for irregular quad layout.
Computer Aided Geometric Design, 43:123–130, March 29 2016. PMC4834718.

75. Encyclopedia of Mathematics. Galerkin method, accessed Dec 2020.
https://encyclopediaofmath.org/wiki/Galerkin method.

76. J. Peters. Fitting smooth parametric surfaces to 3D data. PhD thesis, University of Wis-
consin, 1990. PhD thesis; see also CMS Technical Report 91-2.



Subdivision G-spline Hybrid 17

77. J. Peters. Parametrizing singularly to enclose vertices by a smooth parametric surface. In
S. MacKay and E. M. Kidd, editors, Graphics Interface ’91, Calgary, Alberta, 3–7 June
1991: proceedings, pages 1–7, 243 College St, 5th Floor, Toronto, Ontario M5T 2Y1,
Canada, 1991. Canadian Information Processing Society.

78. J. Peters. A characterization of connecting maps as roots of the identity. Curves and
Surfaces in Geometric Design, pages 369–376, 1994.

79. J. Peters and Jianhua Fan. On the complexity of smooth spline surfaces from quad meshes.
Computer-Aided Geometric Design, 27:96–105, 2009.

80. Jörg Peters. Splines for meshes with irregularities. The SMAI journal of computational
mathematics, S5:161–183, 2019.
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