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Abstract: Fractional stochastic differential equation (FSDE)-based random processes are used in
a wide spectrum of scientific disciplines. However, in the majority of cases, explicit solutions
for these FSDEs do not exist and approximation schemes have to be applied. In this paper, we
study one-dimensional stochastic differential equations (SDEs) driven by stochastic process with
Hölder continuous paths of order 1/2 < γ < 1. Using the Lamperti transformation, we construct
a backward approximation scheme for the transformed SDE. The inverse transformation provides
an approximation scheme for the original SDE which converges at the rate h2γ, where h is a time
step size of a uniform partition of the time interval under consideration. This approximation scheme
covers wider class of FSDEs and demonstrates higher convergence rate than previous schemes by
other authors in the field.

Keywords: stochastic differential equations; fractional Brownian motion; backward approximation;
Lamperti transformation
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1. Introduction

Stochastic differential equations (SDEs) are used as a modeling tool in many fields of
science. Currently, a lot of research is being conducted on models with fractional Brownian
motion (fBm) BH , 0 < H < 1, since fBm introduces a memory element, which provides new
and promising modeling possibilities. It should be noted that the definition of SDEs driven
by fBm differs substantially from the definition used by standard Brownian-motion-driven
SDEs. Furthermore, there is more than one way to define these SDEs (for example, in our
paper, we will use the Riemann–Stieltjes integral to achieve this). The general conditions
under which the fractional diffusion process has a unique solution were obtained in [1].
These conditions impose more strict restrictions on the coefficients than in the case of SDEs
driven by standard Brownian motion (sBm).

Classical financial models such as Chan–Karoli–Longstaff–Sanders (CKLS), Cox–Ingersoll–
Ross (CIR), and Ait–Sahalia are defined using SDEs driven by standard Brownian motion.
Replacing the standard Brownian motion with a fractional Brownian motion, we obtain a
fractional analogue of these classical models. In many of these models, the solution positivity is
a desirable property. The positivity of fractional CIR model was studied in [2,3]. The conditions
under which fractional CKLS, Ait–Sahalia and other models have positive solutions follow
from [4–6]. The above-mentioned financial models have a strictly positive diffusion coefficient.

In this paper, we shall consider a one-dimensional SDE driven by an arbitrary stochas-
tic process Z = (Zt)t>0, Z0 = 0, with Hölder continuous paths of order 1/2 < γ < 1

Xt = x0 +
∫ t

0
α(Xs) ds +

∫ t

0
σ(Xs) dZs, x0 ∈ R, t ∈ [0, T], (1)
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where x0 is a constant, and the coefficients α, σ : R → R are continuous functions. The
stochastic integral in Equation (1) is a pathwise Riemann–Stieltjes integral, and thus the
whole equation is understood as a pathwise Riemann–Stieltjes integral equation (special
case Z = BH). The conditions under which the Equation (1) has a unique solution X were
obtained in [7].

A lot of SDEs cannot be solved explicitly; thus, it is important to find their approxi-
mated solutions by applying some numerical methods. For SDEs driven by sBm, authors
usually consider the convergence rate of strong Itô–Taylor approximation schemes of the
SDEs solutions. From a strong convergence rate, one can obtain the pathwise conver-
gence rate (see [8,9] and the references therein), which provides the error of the actual
approximation.

For Equation (1) with Z = BH and rather smooth and bounded coefficients α and σ,
different explicit approximation schemes were considered in [10–13] (see also the references
therein). Particularly, in [10,12,13], Euler and other higher-order approximation schemes
were considered; [11] presents a new method that converges with weaker conditions
compared to the results in [12]; and in [14], less strict conditions for the coefficients were
used in the explicit Euler approximation.

The purpose of this work is to obtain an approximation scheme under weaker condi-
tions and of a higher order convergence rate than in the articles mentioned above. For this,
we require the diffusion coefficient to be strictly positive, i.e., infx∈R σ(x) > 0. Such re-
striction on a diffusion coefficient was used in [11,13]. Since the diffusion coefficient is
strictly positive, we can use the Lamperti transformation and transform a considerable
SDE into simpler SDE with constant diffusion coefficient. The transformed SDE can be
approximated accordingly to the chosen scheme, and the inverse transformation provides
an approximation scheme for the original SDE. This strategy has been successfully applied
to classical CIR, Heston-3/2 volatility, Ait–Sahalia, and other models using a backward
(also called drift-implicit) Euler–Maruyama scheme [15–17] to obtain a strong convergence
rate. This idea has also been successfully applied to fractional CIR model [18], fractional
CKLS, Ait–Sahalia, and other models (see [4–6]) when they have positive solutions.

The paper is organized in the following way. In Section 2, we present the main results
of the paper. Section 3 contains proofs of the main theorems. In Section 4, the fractional
Pearson diffusion process and the model from [11] are considered as modeling examples.
Finally, in Appendix A, we propose an approximation of the integrated fBm, which was
used for the simulation results. Moreover, some results on pathwise integration, fBm, and
almost sure convergence are listed in Appendices B and C as well.

2. Main Result

Assume that for some L > 0 and for any x, y ∈ R,

|α(x)|+ |σ(x)| 6 L(1 + |x|), |σ′(x)| 6 L, (2)

|α(x)− α(y)|+ |σ′(x)− σ′(y)| 6 L|x− y|, (3)

and the process Z has Hölder continuous paths of order 1/2 < γ < 1, i.e., there exists a
random variable Gγ,T = Gγ,T(ω) ∈ (0, ∞) such that∣∣Zt − Zs

∣∣ 6 Gγ,T |t− s|γ, s, t ∈ [0, T].

Under these conditions given in [7] (see also [1]), Equation (1) has a unique solution X
such that ‖X‖α,∞,T < ∞ a.s. for any α ∈ (1− γ, 1

2 ). The definitions of the norm ‖X‖α,∞,T
are given in Appendix B.

In addition to the conditions formulated in (2)–(3), we will require that the diffusion
term be such that

(H) inf
x∈R

σ(x) > 0.
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Note that condition (3) implies that the function 1/σ(x) is continuously differentiable
on R. Thus, under condition (H), the Lamperti transform

F(x) =
∫ x

0

1
σ(y)

dy, x ∈ R

has the inverse function F−1 : R→ R, which is strictly monotone and differentiable

(F−1)′(x) = σ(F−1(x)), x ∈ R. (4)

Set Yt = F(Xt). By chain rule, we obtain

Yt = Y0 +
∫ t

0
F′(Xs) dXs = Y0 +

∫ t

0

α(Xs)

σ(Xs)
ds + Zt = y0 +

∫ t

0
f (Ys) ds + Zt,

where y0 = F(x0),

f (x) = f̂ (F−1(x)), f̂ (x) =
α(x)
σ(x)

.

Since under conditions (2)–(3) there exists a unique solution of (1), the equation

Yt = y0 +
∫ t

0
f (Ys) ds + Zt (5)

has a unique solution under these same conditions.
To state our main results, we use the following requirements on function f :
(C0) f is continuously differentiable on R;
(C1) Assume that there exists a constant K ∈ R such that f ′(x) 6 K for all x ∈ R;
(C2) Assume that there exists a constant M > 0 such that g′(x) > −M for all x ∈ R,

where g(x) = f (x) f ′(x);
(C3) Assume that the function f on R is twice continuous differentiable and there

exists a constant N > 0 such that | f ′′(x)| 6 N for all x ∈ R.
Let π = {tn

k = k
n T, 1 6 k 6 n} be a sequence of uniform partitions of the interval [0, T],

and let h = tn
k − tn

k−1, 1 6 k 6 n. For the solution Y of the SDE (5), define the following
backward approximation scheme:

Yn,k+1 − f (Yn,k+1)h + f ′(Yn,k+1) f (Yn,k+1)
h2

2

= Yn,k +
(
Ztn

k+1
− Ztn

k

)
− f ′(Yn,k)

∫ tn
k+1

tn
k

(
Ztn

k+1
− Zs

)
ds,

Yn,0 = y0, 0 6 k 6 n− 1.

(6)

For the simplicity of notation, we introduce the symbol Oω. Let (ξn) be a sequence
of r.v.s, let ς be an a.s. nonnegative r.v., and let (an) ⊂ (0, ∞) be a vanishing sequence.
Then ξn = Oω(an) means that |ξn| ≤ ς · an for all n. In particular, ξn = Oω(1) means that
the sequence (ξn) is a.s. bounded.

Define

h0 :=

√
2M + (K+)2 − K+

M
(7)

where constants K and M are given in (C1) and (C2), K+ = max{0, K}.

Theorem 1. Suppose that the function f in (5) satisfies conditions (C0)–(C3). Assume that the
sequence of uniform partitions π of the interval [0, T] is such that h < h0. Then for γ ∈ ( 1

2 , 1),
it follows that

max
16k6n

∣∣Ytn
k
−Yn,k

∣∣ = Oω(h2γ).
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Remark 1. Note that this result is not applicable for CKLS, Heston-3/2 volatility, or Ait–Sahalia
models, since condition (C3) is not satisfied.

Theorem 2. Assume that SDE (1) has unique solution and conditions of Theorem 1 are satisfied.
Then for γ ∈ ( 1

2 , 1), it follows that

max
16k6n

∣∣Xtn
k
− F−1(Yn,k)

∣∣ = Oω(h2γ).

3. Proofs of Theorems

Firstly, we prove that the backward approximation (6) is well defined.

Lemma 1. Let the conditions (C1) and (C2) be satisfied. The function

H(x) = x− f (x)h + f ′(x) f (x)
h2

2
, x ∈ R,

is strictly monotone and limx→+∞ H(x) = +∞, limx→−∞ H(x) = −∞ for any h < h0.

Remark 2. Note that for K 6 0 and g′(x) > 0, there is no restriction on h.

Proof. Under the assumptions (C1) and (C2), the function H(x) is strictly monotone.
Indeed,

(x− y)
(

H(x)− H(y)
)
=(x− y)2 − (x− y)

(
f (x)− f (y)

)
h

+ (x− y)
(

f ′(x) f (x)− f ′(y) f (y)
)h2

2

>
(

1− K+h−M
h2

2

)
(x− y)2 > 0 (8)

for h < h0.
Now we find the limits of the function H(x) as x → ±∞. The proof is similar as in [17].

From (8), it follows that

H(x) 6 H(x0) +
(

1− K+h−M
h2

2

)
(x− x0)

for x < x0, which provides limx→−∞ H(x) = −∞. Inequality (8) implies

H(x) > H(x0) +
(

1− K+h−M
h2

2

)
(x− x0)

for x > x0 and thus limx→∞ H(x) = ∞.

From Lemma 1, it follows that for each b ∈ R, the equation F(x) = b has a unique
solution for 0 < h < h0. Consequently, the backward approximation scheme is well defined
if conditions (C1) and (C2) are satisfied and h < h0.
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3.1. Proof of Theorem 1

Applying the chain rule, we obtain that

f (Ytn
k+1

)− f (Ys)

=
∫ tn

k+1

s
f ′(Yu) dYu =

∫ tn
k+1

s
f ′(Yu) f (Yu) du +

∫ tn
k+1

s
f ′(Yu) dZu

= −
∫ tn

k+1

s
[ f ′(Ytn

k+1
) f (Ytn

k+1
)− f ′(Yu) f (Yu)]du + f ′(Ytn

k+1
) f (Ytn

k+1
)(tn

k+1 − s)

+
∫ tn

k+1

s
[ f ′(Yu)− f ′(Ys)] dZu + [ f ′(Ys)− f ′(Ytn

k
)]
(
Ztn

k+1
− Zs

)
+ f ′(Ytn

k
)
(
Ztn

k+1
− Zs

)
. (9)

From Equation (5), we obtain that

Ytn
k+1

=Ytn
k
+ f (Ytn

k+1
)h−

∫ tn
k+1

tn
k

[ f (Ytn
k+1

)− f (Ys)] ds +
(
Ztn

k+1
− Ztn

k

)
=Ytn

k
+ f (Ytn

k+1
)h +

(
Ztn

k+1
− Ztn

k

)
− f ′(Ytn

k+1
) f (Ytn

k+1
)
∫ tn

k+1

tn
k

(tn
k+1 − s) ds

− f ′(Ytn
k
)
∫ tn

k+1

tn
k

[
Ztn

k+1
− Zs

]
ds + Rn,k+1

=Ytn
k
+ f (Ytn

k+1
)h +

(
Ztn

k+1
− Ztn

k

)
− f ′(Ytn

k+1) f (Ytn
k+1)

h2

2

− f ′(Ytn
k
)
∫ tn

k+1

tn
k

[
Ztn

k+1
− Zs

]
ds + Rn,k+1,

where

Rn,k+1 =
∫ tn

k+1

tn
k

∫ tn
k+1

s
[ f ′(Ytn

k+1
) f (Ytn

k+1
)− f ′(Yu) f (Yu)] duds

−
∫ tn

k+1

tn
k

∫ tn
k+1

s
[ f ′(Yu)− f ′(Ys)] dZuds

−
∫ tn

k+1

tn
k

[ f ′(Ys)− f ′(Ytn
k
)]
(
Ztn

k+1
− Zs

)
ds (10)

is the remainder term.
For simplicity of notation, we introduce the following:

ζn,k+1 = f ′(Ytn
k+1

+ θ(Yn,k+1 −Ytn
k+1

)), where θ = θn,k+1 ∈ (0, 1),

ηn,k = f ′′(Ytn
k
+ ϑ(Yn,k −Ytn

k
)), where ϑ = ϑn,k ∈ (0, 1),

ρn,k+1 =g′(Ytn
k+1

+ κ(Yn,k+1 −Ytn
k+1

)), where κ = κn,k+1 ∈ (0, 1), g(x) = f ′(x) f (x).

Then the difference of Equation (9) and approximation (6) is
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Ytn
k+1
−Yn,k+1

= Ytn
k
−Yn,k + h

(
f (Ytn

k+1
− f (Yn,k+1)

)
−
(

f ′(Ytn
k+1

) f (Ytn
k+1

)

− f ′(Yn,k+1) f (Yn,k+1)
)h2

2
−
(

f ′(Ytn
k
)− f ′(Yn,k)

) ∫ tn
k+1

tn
k

[
Ztn

k+1
− Zs

]
ds + Rn,k+1

= Ytn
k
−Yn,k + ζn,k+1

(
Ytn

k+1
−Yn,k+1

)
h− ρn,k+1

(
Ytn

k+1
−Yn,k+1

) h2

2

− ηn,k
(
Ytn

k
−Yn,k

) ∫ tn
k+1

tn
k

[
Ztn

k+1
− Zs

]
ds + Rn,k+1

and

(Ytn
k+1
−Yn,k+1)

[
1− ζn,k+1h + ρn,k+1

h2

2

]
= (Ytn

k
−Yn,k)[1− λn,k] + Rn,k+1, (11)

where

λn,k+1 = ηn,k

∫ tn
k+1

tn
k

(
Ztn

k+1
− Zs

)
ds.

Applying assumptions (C1) and (C2), we transform equality (11) into a recursive
inequality. Indeed,

1− ζn,k+1h + ρn,k+1
h2

2
> 1− K+h−M

h2

2
> 0

for h < h0. Thus,

(Ytn
k+1
−Yn,k+1)

(
1− K+h−M

h2

2

)
6 (Ytn

k
−Yn,k)(1− λn,k+1) + Rn,k+1.

Further, by applying inequality 1 + x 6 ex, ∀x > 0, we obtain that

|yn,k+1| 6 |yn,k| exp{|λn,k+1|}ε−1
h + |Rn,k+1|ε−1

h , (12)

where yn,k = Ytn
k
−Yn,k and εh = 1− K+h−M h2

2 .
Now, recursively from (12), we obtain that

|yn,k+1| 6
k

∑
j=0

ε
−(k+1−j)
h exp

{ k

∑
i=j+1

|λn,i+1|
}
|Rn,j+1|.

We have ln 1
1−x 6 x

1−x , 0 6 x < 1; thus, we obtain that

ε
−(k+1−j)
h 6 exp

(
n ln

1
εh

)
6 exp

(
n

K+h + M h2

2
εh

)
6 exp

(
K+T + MT

εh

)
,

if h 6 2. Consequently,

|yn,k+1| 6 exp
(

K+T + MT
εh

) k

∑
j=0

exp
{ k

∑
i=j+1

|λn,i+1|
}
|Rn,j+1| 6 ψn

k

∑
j=0
|Rn,j+1|,



Mathematics 2022, 10, 669 7 of 16

where

ψn = exp
(

K+T + MT
εh

)
exp

{
n max

16i6n
|λn,i|

}
.

To finish the proof of Theorem 1, it remains to estimate max16j6n|Rn,j| and max16i6n|λn,i|.
From Lemmas 2 and 3 below, it follows that

ψn = exp
(

K+T + MT
εh

)
exp

{
nOω

(
h1+γ

)}
= Oω(1).

Thus,
max

16k6n
|yn,k| = Oω

(
h2γ

)
.

Lemma 2. Under the assumptions of Theorem 1

max
16j6n

|Rn,j| = Oω(h1+2γ).

Proof. We start by estimating the first term Rn,j in (10). Since the function g′(x) is con-
tinuous and the process Y is continuous, then sup06t6T |g′(Ys)| < ∞. From the Hölder
continuity of Z, we obtain

∣∣Yt −Ys
∣∣ 6 ∫ t

s
| f (Yu)| du +

∣∣Zt − Zs
∣∣

6(t− s) sup
06u6T

| f (Yu)|+ Gγ,T |t− s|γ = Oω

(
|t− s|γ

)
.

Thus, ∫ tn
k+1

tn
k

∫ tn
k+1

s

∣∣g(Yu)− g(Ys)
∣∣ du ds

6 sup
06t6T

|g′(Ys)| sup
tn
k6s6tn

k+1

sup
s6u6tn

k+1

∣∣Yu −Ys
∣∣h2 = Oω

(
h2+γ

)
.

From the Love–Young inequality, it follows that∣∣∣∣∫ tn
k+1

s
[ f ′(Yu)− f ′(Ys)] dZu

∣∣∣∣ 6 Cγ,γKYKZ sup
06t6T

| f ′′(Yt)|h2γ = Oω(h2γ). (13)

Therefore, the second term Rn,j in (10) has the following estimate:∣∣∣∣∫ tn
k+1

tn
k

∫ tn
k+1

s
[ f ′(Yu)− f ′(Ys)] dZuds

∣∣∣∣
6
∫ tn

k+1

tn
k

∣∣∣∣∫ tn
k+1

s
[ f ′(Yu)− f ′(Ys)] dZu

∣∣∣∣ds = Oω(h1+2γ).

Finally, for the third term Rn,j in (10), we obtain the estimate

∫ tn
k+1

tn
k

∣∣ f ′(Ys)− f ′(Ytn
k
)
∣∣ · ∣∣Ztn

k+1
− Zs

∣∣ ds

6 sup
06t6T

| f ′′(Yt)|
∫ tn

k+1

tn
k

|Ys −Ytn
k
| ·
∣∣Ztn

k+1
− Zs

∣∣ ds = Oω

(
h1+2γ

)
.

The proof is complete.
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Lemma 3. Assume that condition (C3) is satisfied. Then

max
16k6n

|λn,k| = Oω

(
h1+γ

)
.

Proof. Applying condition (C3), we obtain

|ηn,k| 6 N.

Since ∫ tn
k+1

tn
k

∣∣Ztn
k+1
− Zs

∣∣ ds = Oω

(
h1+γ

)
,

then the proof is complete.

3.2. Proof of Theorem 2

Note that∣∣Xtn
k
− F−1(Yn,k)

∣∣ =∣∣F−1(Ytn
k
)− F−1(Yn,k)

∣∣
=
∣∣(F−1(Ytn

k
+ θn,k(Ytn

k
−Yn,k)

))′∣∣ · ∣∣Ytn
k
−Yn,k

∣∣ (14)

=
∣∣σ(F−1(Ytn

k
+ θn,k(Ytn

k
−Yn,k)

))∣∣ · ∣∣Ytn
k
−Yn,k

∣∣
where θ = θn,k ∈ (0, 1), and

max
16k6n

∣∣Ytn
k
+ θn,k(Ytn

k
−Yn,k)

∣∣ 6 sup
06t6T

|Yt|+ Oω(h2γ) = Oω(1). (15)

Since the function σ(x) satisfies condition (2), then∣∣σ(F−1(x)
)∣∣ 6 L

(
1 +

∣∣F−1(x)
∣∣).

In addition, as the function F−1(x) increases and (15) is satisfied, then there exists a
random variable 0 < ζ < ∞ such that

max
16k6n

∣∣F−1(Ytn
k
+ θn,k(Ytn

k
−Yn,k)

)∣∣ 6 max{
∣∣F−1(−ζ)

∣∣, ∣∣F−1(ζ)
∣∣} = Oω(1).

Thus, the required result follows from Theorem 1.

4. Modeling

In this section, we will apply obtained theoretical results for concrete SDEs. In particu-
lar, the Pearson fractional diffusion process and the model from [11] based on trigonometric
functions satisfy the conditions of Theorem 1. We chose to investigate the fractional Pear-
son diffusion process as it is better known and more widely used. However, the same
simulation and investigation methodology can be applied to the second model as well.

4.1. Pearson Diffusion

Consider the Pearson diffusion process

dXt = α(Xt) dt + σ(Xt) dBH
t (16)

with
α(x) = b− ax, σ(x) =

√
σ0 + σ1x + σ2x2.

Assume that infx∈R σ(x) > 0. Then the diffusion coefficient σ(x) has bounded first-
and second-order derivatives, and Equation (16) has a unique solution since the drift and
diffusion coefficients satisfy conditions (2)–(3).
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Then Equation (16) after Lamperti transform has the form

Yt = Y0 +
∫ t

0
f (Ys) ds + BH

t , (17)

where

f (x) = f̂ (F−1(x)), f̂ (x) =
α(x)
σ(x)

.

To check the conditions (C0)–(C3), we have to find the expressions of the functions
f ′(x), ( f f ′)′(x), f ′′(x).

Note that

f ′(x) =
(

f̂ (F−1(x))
)′

= f̂ ′(F−1(x))
(

F−1)′(x) = f̂ ′(F−1(x))σ(F−1(x))

=
(

α′ − ασ′

σ

)
(F−1(x)), (18)

where

f̂ ′(x) =
(α′σ− ασ′

σ2

)
(x).

Since

( f̂ f̂ ′)(x) =
(αα′σ− α2σ′

σ3

)
(x) =

(αα′

σ2 −
α2σ′

σ3

)
(x)

and

( f̂ f̂ ′)′(x) =
[(α′(x))2 + α(x)α′′(x)]σ(x)− 2α(x)α′(x)σ′(x)

σ3(x)

− [2α(x)α′(x)σ′(x) + α2(x)σ′′(x)]σ(x)− 3α2(x)(σ′(x))2

σ4(x)
,

then

( f f ′)′(x) =( f̂ f̂ ′)′(F−1(x))σ(F−1(x))

=

(
[(α′)2 + αα′′]σ− 2αα′σ′

σ2

)
(F−1(x))

−
(
[2αα′σ′ + α2σ′′]σ− 3α2(σ′)2

σ3

)
(F−1(x)).

Further,

( f̂ ′)′(x) =
α′′(x)σ(x)− α′(x)σ′(x)

σ2(x)

− [α′(x)σ′(x) + α(x)σ′′(x)]σ2(x)− 2α(x)σ(x)(σ′(x))2

σ4(x)
.

Thus,

f ′′(x) = f̂ ′′(F−1(x))σ(F−1(x))

=
(α′′σ− α′σ′

σ

)
(F−1(x))−

( [α′σ′ + ασ′′]σ2 − 2ασ(σ′)2

σ3

)
(F−1(x)).

To simplify the analysis of derivatives and to allow the simulation itself, we take
specific expressions of coefficients. Let

σ(x) =
√

x2 + 2x + 2, a = 1, b = 2. (19)
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The Lamperti transformation of σ and its inverse are defined as follows:

F(x) =
∫ x

0

dy√
y2 + 2y + 2

= ln
(
x +

√
(x + 1)2 + 1 + 1

)
= sinh−1(x + 1),

F−1(x) =
1
2
(
− e−x + ex − 2

)
= sinh x− 1.

Note that
(F−1)′(x) =

1
2
(
e−x + ex) 6 e|x|.

Thus, from (15), it follows that(
F−1(Ytn

k
+ θn,k(Ytn

k
−Yn,k)

))′
= Oω(1).

This is enough for Theorem 2 to be true (see equality (14)) if the conditions of
Theorem 1 are satisfied.

Now we verify conditions (C0)–(C3). Condition (C0) is satisfied (see (18)). By insert-
ing the expressions of coefficients a and b, we obtain

∣∣ f̂ ′(x)σ(x)
∣∣ =∣∣∣∣− 3x + 4

x2 + 2x + 2

∣∣∣∣ < 2.09

∣∣ f̂ ′′(x)σ(x)
∣∣ =∣∣∣∣3(2x2 + 5x + 2)

(x2 + 2x + 2)2

∣∣∣∣ < 1.56∣∣∣∣( f̂ f̂ ′)′(x)σ(x)
∣∣∣∣ =∣∣∣∣−6x3 + 6x2 + 48x + 28

(x2 + 2x + 2)5/2

∣∣∣∣ < 9.63.

Since the function F−1(x) is continuous and increasing then from above, it follows
that the functions f ′(x), f ′′(x), and ( f f ′)′(x) are bounded. Thus, conditions (C1)–(C3)
are satisfied.

4.2. Numerical Simulation

Notice that the approximation Scheme (6) is not final. In order to obtain the original
process Xt approximation, the inverse Lamperti transform has to be applied. However,
Scheme (6) is implicit and both the number of calculations needed and the general com-
plexity of the approximation can be reduced by combining the Scheme (6) and Lamperti
transform simultaneously:

F(Xn,k+1)− f̂ (Xn,k+1)h + f̂ ′(Xn,k+1) f̂ (Xn,k+1)
h2

2

= F(Xn,k) +
(

BH
tn
k+1
− BH

tn
k

)
− f̂ ′(Xn,k)

∫ tn
k+1

tn
k

(
BH

tn
k+1
− BH

s
)
ds,

Xn,0 = x0, 0 6 k 6 n− 1.

(20)

Now, using this finalized Scheme (20) we can generate trajectories of any process satisfying
conditions of Theorem 1 (see Figure 1).
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Figure 1. Approximation trajectories of Pearson process for conditions (19).

To compare the theoretical and empirical convergence rates of the Pearson process
(19), we simulate the “exact” solution trajectories by using an approximation scheme (20)
for a comparatively much smaller step size h = 2× 10−3. Since the object of the numerical
experiment is investigation of the convergence rate, which is not dependent on the values
of constants, the most basic set of values for (16) is sufficient (i.e., X0 = a = σ2 = 1, b =
σ0 = σ1 = 2). We see from Figure 2 that the empirical maximum error coincides with the
theoretical result in Theorem 2 (reference slope).

Figure 2. Maximum error of several approximation trajectories of Pearson process for conditions (19)
in comparison to reference slope.

Of course, it should be noted that we assume fBm values BH
t provided by Wolfram

Mathematica programming language function FractionalBrownianMotionProcess to be not
approximate but "true" values of fractional Brownian motion and that the same assumption
is being made about the approximation of integrated fBm too.

5. Conclusions

We introduced an improved type of approximation scheme for certain SDEs. In com-
parison with the previous research in the field, due to less strict conditions, this approxima-
tion covers a wider class of stochastic processes and is proven to have a higher convergence
rate. These theoretical results were supported by numerical experiments. Furthermore, we
proposed a simple and direct approximation scheme with estimated convergence rate for
integrated fractional Brownian motion, which can be applied by other authors modelling
their own approximation schemes.
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dation, K.K. and A.M.; formal analysis, K.K. and A.M.; investigation, K.K. and A.M; writing—original
draft preparation, K.K. and A.M.; writing—review and editing, K.K. and A.M.; visualization, A.M.;
supervision, K.K.; project administration, K.K. All authors have read and agreed to the published
version of the manuscript.



Mathematics 2022, 10, 669 12 of 16

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CEV Constant elasticity of variance model
CIR Cox–Ingersoll–Ross model
CKLS Chan–Karolyi–Longstaff–Sanders model
FSDE Fractional stochastic differential equation
fBm Fractional Brownian motion
sBm Standard Brownian motion
SDE Stochastic differential equation

Appendix A. Approximation of Integrated fBm

For the modelling of process Y using approximation (20), we need to calculate the
integral ∫ tn

m+1

tn
m

BH
s ds. (A1)

Analogously to the approximation of standard Riemann integral, we propose that the
integral (A1) can be replaced by the sum T

n2 ∑n
k=1 BH

sk,m
, where tn

m = mT
n , 0 6 m 6 n and

sn
k,m = tn

m + kT
n2 , 0 6 k 6 n. For simplicity of notation, tm = tn

m. This method enables simple
and direct use of fractional Brownian motion simulation packages provided in the most
mathematical programming languages (Wolfram Mathematica was used for our simulations).

Now, to prove the correctness of this approximation, we estimate

E
( ∫ tm+1

tm
BH

s ds− T
n2

n

∑
k=1

BH
sk,m

)2

.

After that, applying Lemma A1 (see Appendix C), we will obtain the rate of a. s.
convergence of the difference

∫ tm+1

tm
BH

s ds− T
n2

n

∑
k=1

BH
sk,m

.

First, we shall introduce the concept of generalized harmonic numbers (GHN). We
define

H(r)
n :=

n

∑
k=1

1
kr ,

where r = σ + it is a complex variable as generalized harmonic numbers.
Here are some important properties of GHN sums [19].

Proposition A1. The following identity is true

n

∑
i=1

i−a H(b)
i +

n

∑
i=1

i−bH(a)
i = H(a)

n H(b)
n + H(a+b)

n , (A2)

where a, b ∈ R.
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Proposition A2. The following identity is true

n−1

∑
i=1

H(a)
i = nH(a)

n − H(a−1)
n , (A3)

where a ∈ R.

Using these properties, the following result can be proven.

Theorem A1. These equalities are true:

1. Integral expectation

E
(∫ tm+1

tm
BH

s ds
)2

=
T2H+2

(2H + 1)n2H+2

[
(m + 1)2H+1 −m2H+1 − 1

2H + 2

]
2. Product sum expectation

E
n

∑
k=1

n

∑
l=1

BH
sk,m

BH
sl,m

=
T2H

n4H H(−2H−1)
n +

T2H

n4H−1

[
H(−2H)

n(m+1) − H(−2H)
nm − H(−2H)

n

]
.

3. Mixed products

2E
n

∑
k=1

BH
sk,m

∫ tm+1

tm
BH

s ds =
T2H+1

(2H + 1)n2H

[
(m + 1)2H+1 −m2H+1 + n−1

]
+

T2H+1

n4H+1

[
H(−2H)

n(m+1) − H(−2H)
nm

]
− 2T2H+1

(2H + 1)n4H+2 H(−2H−1)
n .

Proof. Using the covariance properties fBm as in [20], we obtain for integrals

E
(∫ tm+1

tm
BH

s ds
∫ tm+1

tm
BH

u du
)
=(tm+1 − tm)

∫ tm+1

tm
u2Hdu− 1

2H + 1

∫ tm+1−tm

0
u2H+1du.

and for sums

E
n

∑
k=1

n

∑
l=1

BH
sk,m

BH
sl,m

=
T2H

2n4H

n

∑
k=1

n

∑
l=1

[
(mn + k)2H + (mn + l)2H − |k− l|2H

]
=

T2H

n4H−1

[
H(−2H)

n(m+1) − H(−2H)
nm

]
− T2H

n4H

n−1

∑
k=1

H(−2H)
k .

Now, applying Proposition A2 provides us the result.
The mixed product of integral and sum is estimated the following way:

2E
n

∑
k=1

BH
sk,m

∫ tm+1

tm
BH

s ds =
n

∑
k=1

∫ tm+1

tm

(
s2H

k,m + s2H − |s− sk,m|2H
)

ds

=
T2H+1

n4H+1

[
H(−2H)

n(m+1) − H(−2H)
nm

]
+

T2H+1

(2H + 1)n2H

[
(m + 1)2H+1 −m2H

]
− T2H+1

(2H + 1)n4H+2

n

∑
k=1

[
(n− k)2H+1 + k2H+1

]
=

T2H+1

n4H+1

[
H(−2H)

n(m+1) − H(−2H)
nm

]
+

T2H+1

(2H + 1)n2H

[
(m + 1)2H+1 −m2H

]
− T2H+1

(2H + 1)n4H+2

[
2H(−2H−1)

n − n2H+1
]
.
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For further reasoning, we are going to need one elementary theorem from mathemati-
cal analysis.

Theorem A2. Let f : R+ → R+ be a non-decreasing continuous function and let

S =
n

∑
i=1

f (i), I =
∫ n

1
f (x)dx.

Then
I + f (1) ≤ S ≤ I + f (n).

Proposition A3. The following asymptotics occur

E(Ym,k,T)
2 =O(n−2H−3),

where

Ym,k,T =
∫ tm+1

tm
BH

s ds− T
n2

n

∑
k=1

BH
sk,m

.

Proof. First, note that from Theorem A1, we obtain

EY2
m,k,T =E

(∫ tm+1

tm
BH

s ds
)2

+ E

(
T
n2

n

∑
k=1

BH
sk,m

)2

− 2E

(∫ tm+1

tm
BH

s ds
T
n2

n

∑
k=1

BH
sk,m

)

=− T2H+2

(2H + 1)(2H + 2)n2H+2 −
T2H+2

(2H + 1)n2H+3

− T2H+2

n4H+3 H(−2H)
n +

(2H + 3)T2H+2

(2H + 1)n4H+4 H(−2H−1)
n

6− T2H+2

(2H + 1)(2H + 2)n2H+2 −
T2H+2

(2H + 1)n2H+3 −
T2H+2

n4H+3

[
n2H+1

2H + 1
+

2H
2H + 1

]
+

(2H + 3)T2H+2

(2H + 1)n4H+4

[
n2H+2

2H + 2
− 1

2H + 2
+ n2H+1

]
≤Cn−2H−3.

Appendix B. Pathwise Integration and fBm

For any 0 < λ 6 1, denote Cλ([0, T]) the space of λ-Hölder continuous functions
f : [0, T]→ R equipped with the norm

‖ f ‖λ := ‖ f ‖∞ + sup
s,t∈[0,T]

s 6=t

| f (t)− f (s)|
|s− t|λ

, ‖ f ‖∞ = sup
t∈[0,T]

| f (t)|.

Let 1/2 < γ < 1, α ∈ (1− γ, 1/2). Denote Wα
∞([0, T]), the space of real-valued measurable

functions f : [0, T]→ R such that

‖ f ‖∞,α;T = sup
s∈[0,T]

(
| f (s)|+

∫ s

0
| f (s)− f (u)|(s− u)−1−αdu

)
< ∞.
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Theorem A3 (Love–Young inequality ([21], p. 10)). Let f ∈ Cλ([0, T]) and g ∈ Cµ([0, T])
with λ + µ > 1 and

K f = sup
s,t∈[0,T]

s 6=t

| f (t)− f (s)|
|s− t|λ

, Kg = sup
s,t∈[0,T]

s 6=t

|g(t)− g(s)|
|s− t|µ ,

Love–Young inequality has the form, for any y ∈ [0, T],∣∣∣∣ ∫ T

0
f dg− f (y)

[
g(T)− g(0)

]∣∣∣∣ 6 Cλ,µK f KgTλ+µ. (A4)

where Cλ,µ = ζ(λ + µ), ζ(s) denotes the Riemann zeta function, i.e., ζ(s) = ∑n>1 n−s.

Corollary 3. Let F be a continuous differentiable function, y ∈ Cλ([0, T], h ∈ Cµ([0, T], λ + µ >
1. Then ∣∣∣∣∫ T

0
[F(ys)− F(ya)] dhs

∣∣∣∣ 6 sup
06s6T

F′(ys)Cλ,µKyKhTλ+µ.

Proof. Note that F(y) ∈ Cλ([0, T]). In fact, note that

|F(yt)− F(ys)| 6 sup
06u6T

F′(yu)|yt − ys| 6 sup
06u6T

F′(yu)Ky|t− s|λ.

Theorem A4 (Chain rule (see [21], p. 10)). Let f = ( f1, . . . , fd) : [0, T] → Rd be a function
such that for each k = 1, . . . , d, fk ∈ Cλ([0, T]), λ ∈ (1/2, 1]. Let g : Rd → R be a differentiable
function with locally Lipschitz partial derivatives g′k, k = 1, . . . , d. Then each g′l ◦ f is Riemann–
Stieltjes integrable with respect to fk and

(g ◦ f )(T)− (g ◦ f )(0) =
d

∑
k=1

∫ T

0
(g′k ◦ f ) d fk.

Theorem A5 (Hölder continuity of BH (see [21], p. 4)). It is known that almost all sample
paths of an fBm BH are locally Hölder of order strictly less than H ∈ (0, 1). To be more precise,
for all T > 0, there exists a nonnegative random variable Gγ,T such that E(|Gγ,T |p) < ∞ for all
p > 1, and

|BH
t − BH

s | 6 Gγ,T |t− s|γ a.s.

for all s, t ∈ [0, T], where γ ∈ (0, H).

Appendix C. Almost sure convergence

Lemma A1 ([8]). Let α > 0 and K(p) ∈ (0, ∞) for p > 1. In addition, let Zn, n ∈ N, be a
sequence of random variables such that

(E|Zn|p)1/p 6 K(p) · n−α

for all p > 1 and all n ∈ N. Then for all ε > 0, there exists a random variable ηε such that

|Zn| 6 ηε · n−α+ε almost surely

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p > 1.
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