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ABSTRACT
Let A be a d × dmatrix with rational entries which has no eigenvalue
λ ∈ C of absolute value |λ| < 1 and letZd[A] be the smallest nontriv-
ial A-invariant Z-module. We lay down a theoretical framework for
the construction of digit systems (A,D), whereD ⊂ Zd[A] finite, that
admit finite expansions of the form

x = d0 + Ad1 + · · · + A�−1d�−1 (� ∈ N, d0, . . . ,d�−1 ∈ D)

for every element x ∈ Zd[A]. We put special emphasis on the explicit
computation of small digit setsD that admit this property for a given
matrixA, using techniques frommatrix theory, convexgeometry, and
the SmithNormal Form.Moreover,weprovide anewproof of general
results on this finiteness property and recover analogous finiteness
results for digit systems in number fields a unified way.
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1. Introduction andmain results

LetA ∈ Qd×d be an invertible matrix with rational entries. It is easy to see that the smallest
nontrivialA-invariantZ-module containingZd is given by the setZd[A] of vectors x ∈ Qd

that can be written as

x = x0 + Ax1 + · · · + Ak−1xk−1, (1)

where k ∈ N and x0, . . . , xk−1 ∈ Zd, i.e.

Zd[A] :=
∞⋃
k=1

(
Zd + AZd + · · · + Ak−1Zd

)
.

Thus Zd[A] is the set of all vectors that can be expanded in terms of positive powers of A
with integer vectors as coefficients. Motivated by the existing vast theory and many prac-
tical applications of number systems, it is natural to ask the following question. Is there a
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finite setD ⊂ Zd[A], such that every vector x ∈ Zd[A] has an expansion of the form

x = d0 + Ad1 + · · · + A�−1d�−1, (2)

where � ∈ N and d0, . . . , d�−1 ∈ D. To put this in another way: can one find a finite digit
setD ⊂ Zd[A] such that

Zd[A] = D[A], (3)

where

D[A] :=
∞⋃

�=1

(
D + AD + · · · + A�−1D

)
. (4)

A lot of work related to this problem has been done in the context of number systems in
number fields (cf. [1–4]), polynomial rings (see [5–9] and the survey [10]), lattices (see
e.g. [11,12]), and rational bases (cf. [13]). Moreover, it is intimately related to the study of
self-affine tiles (see [14–16]) and the so-called height reducing property (cf. [17–20]). As
we will see below, the problem of the existence of such a set D can be restated in terms
of a so-called finiteness property of general digit systems. It is the aim of the present paper
to construct sets D that satisfy (3). Here we strive for very general theory on the one side
while paying attention to algorithmic issues on the other side.

The pair (A,D) is called a matrix digit system or simply a digit system. The matrix A
is then called the base of this digit system and the elements of D are called its digits. We
say that (A,D) has the finiteness property in Zd[A] (or Property (F) for short), if every
vector x ∈ Zd[A] has a finite expansion of the form (2), i.e. if (3) holds. It is easily seen
that the requirement thatD contains a complete system of residue class representatives of
Zd[A]/AZd[A] is a necessary, but in general not sufficient, condition for (A,D) to have the
finiteness property. One also says that (A,D) possesses the uniqueness property, or Prop-
erty (U), if two different finite radix expressions in (4) always yield different vectors of
Zd[A]. For the number systems that already possess Property (F), a necessary and sufficient
condition to have Property (U) is |D| = |Zd[A]/AZd[A]|.

Digit systems that possess both properties (F) and (U) are called standard. Frequently,
one additional requirement is imposed on standard digit systems: the zero vector 0d must
belong to D (which enables natural positional arithmetics). Standard digit systems in Zd

in integer matrix bases have been studied extensively in the literature.
Clearly, matrix digit systems are modeled after the usual number systems in Z (see [21]

for the negative case). Concerning rational matrices, in dimension d = 1 one recovers the
base A = p

q ∈ Q, with p ∈ Z, q ∈ N, gcd(p, q) = 1. In this case, Z[ pq ] = Z[ 1q ] is the set of
all rational fractions with denominators that divide some power of q, and the submodule
p
qZ[

p
q ] = pZ[ 1q ] represents fractionswith numerators divisible by p; so thatD{0, 1, . . . , p −

1} is a complete set of coset representatives of Z[ pq ] modulo p
qZ

d[ pq ]. The pair (
p
q ,D) then

is a rational matrix number system in Z[ 1q ]. Such systems have been studied in [13].
If A ∈ Zd×d is an integer matrix, the module Zd[A] reduces to the lattice Zd. Digit sys-

tems in lattices with expanding base matrices were introduced by Vince [12,22,23] and
studied extensively in connection with fractal tilings. Indeed, a tiling theory for the stan-
dard digit systemswith expanding integral basematrices wasworked out byGröchenig and
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Haas [24], and Lagarias andWang [15,25,26]. A corresponding theory for tilings produced
by rational algebraic number base systemswas developed by Steiner andThuswaldner [16].

When trying to study the finiteness property of digit systems (A,D) for large classes of
base matrices A and digits sets D, new challenges of geometrical and arithmetical nature
arise. First, if A is allowed to have eigenvalues λ ∈ C of absolute value |λ| = 1, then A−1

is no longer a contracting linear mapping. If such λ are not roots of unity, then there exist
points x ∈ Rn with infinite, non-periodic orbits (A−nx)∞n=1. Even worse, if A has a Jordan
block of order ≥ 2 corresponding to the eigenvalue λ on the complex unit circle in its
Jordan decomposition, then A−nx can diverge to ∞, as it is easily seen from the simple

2 × 2 example A =
(
1 1
0 1

)
by taking x =

(
0
1

)
. These situations require careful control

of vectors in certain directions when multiplication by A−1 is performed. Aside from the
issues of geometric nature, arithmetics in Zd[A] is also more difficult when A has rational
entries: even the computation of the residue class group for the expansions in base A is no
longer trivial and causes significant problems.

As a result of the aforementioned challenges, properties (F) and (U) no longer go well
together: we typically needmore than [Zd[A] : AZd[A]] digits to address all possible issues.
In this situation, one is forced to make a choice, which property, (F) or (U), must be
sacrificed to reinforce another. We make the choice in favour of Property (F): it is often
important to have multiple digital expressions for every x ∈ Zd[A], rather than leave some
x with no such expression whatsoever while trying to preserve (U).

The aim of the present paper is to ‘build up’ digit sets with Property (F) in an explicit
and algorithmic way.We reveal the dynamical systems underlying the digit systems (A,D)

and interpret the finiteness property in terms of their attractors. The properties of these
dynamical systems are investigated in Section 2. After that, we decompose a given rational
matrix A into ‘generalized Jordan blocks’, called the hypercompanion matrices, build dig-
its systems for each such block separately, and then patch them together (see Section 4).
In these building blocks, generalized rotation matrices play a crucial role in order to treat
the eigenvalues of modulus 1. These matrices and their digit sets are thoroughly studied
in Section 3. The decomposition of A has the advantage that we get much better hold on
the size and structure of the digit sets than in previous papers (like [18,20]). This can be
used to give new proofs of the main results of [18,20] which can easily be turned in algo-
rithms in order to construct convenient digit sets for any given matrix A (see Section 5).
The algorithmic nature of our approach is exploited in the discussion of various examples.
In particular, in Section 6 we use the Smith Normal Form in order to get results on the size
of certain residue class rings that are relevant for the construction of digit sets with finite-
ness property. In Section 7 these results are combined with our general theory in order to
construct examples of small digit sets for matrices with particularly interesting properties.

Summing up, in the present paper we lay down a comprehensive (and much simplified)
theory for the finiteness property in digit systems with rational matrix bases. Our con-
struction of the digit sets is based on the theory of matrices, convex geometry and Smith
Normal Form representations of lattice bases; these proofs are independent from the pre-
vious constructions of [18,20], that were based on digit systems in number fields. In fact,
we show that our finiteness result onmatrix-base digit systems implies the according result
on digit systems in number fields, thereby demonstrating that these two finiteness results
are of the same strength.
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2. Arithmetics of matrix digit systems

In this section,we discuss discrete dynamical systems associated that represent ’the remain-
der division’ in the module Zd[A]. If these dynamical systems have finite attractors, this
enables us to construct a digit system (A,D) with Property (F). We also consider certain
restrictions of these dynamical mappings to the integer lattice Zd and their subsequent
extensions to the whole module Zd[A] which appear to be very useful in the practical
computations.

2.1. Classical remainder division

Let A ∈ Qd×d be given and let D ⊂ Zd[A] be a digit set. We take a closer look at the
arithmetics of Zd[A]. Associated with the digit system (A,D) is the procedure of division
with remainder in Zd[A]. As usual, a mapping d : Zd[A] → D is called a digit function
if d(x) ≡ x (mod AZd[A]), i.e. if d(x) − x ∈ AZd[A]. Thus, using d we can define the
dynamical system

� : Zd[A] → Zd[A], �(x) := A−1(x − d(x)). (5)

As we allow A ∈ Qd×d to have non-integral coefficients, our first step is to show that divi-
sion with remainder works essentially in the same way, as in the classical case. In this
context, the following definition is of importance.

Definition 2.1 (Attractor of �): A setA ⊂ Zd[A] with the properties that:

(i) �(A) ⊂ A,
(ii) for every x ∈ Zd[A], there exists n = n(x) ∈ N, such that �n(x) ∈ A
(iii) no proper subset ofA satisfies properties (i − ii)

is called an attractor of � and will be denotedA�.

It should be noted that multiple variants of Definition 2.1 are used in the literature (cf.
[27, Section 1.13]). In general, the attractor might not exist, or be infinite. However, if the
attractorA� exits, Definition 2.1 implies it is unique. If the attractorA� of� is finite, then
one can construct a digit system (A,D) that satisfies Property (F).

Proposition 2.2: Suppose that the attractor A� of the quotient function � is a finite set.
Then, for every x ∈ Zd[A], the orbit (�n(x))∞n=1 is eventually periodic, with only a finite
number of possible periods. In particular, the digit system (A,D ∪ A�) has the finiteness
property.

Proof of Proposition 2.2: By Definition 2.1, for each x ∈ Zd[A], there is n0(x) ∈ N, such
that x = ε0 + Aε1 + · · · + An−1εn−1 + An�n(x), with ε1, . . . , εn−1 ∈ D and �n(x) ∈
A� holds for each n ≥ n0(x). Thus Zd[A] = (D ∪ A�)[A] and, hence, (A,D ∪ A�) has
the finiteness property. As the value of �n+1(x) depends only on �n(x), the statement on
the ultimate periodicity and periods follows from the finiteness ofA�. �
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Suppose that (A,D) is a digit system. Then we can use the dynamical system� in order
to generate expansions of x ∈ Zd[A]. Indeed, by the definition of � there are uniquely
defined elements d0, d1, . . . ∈ D satisfying

x = ε0 + Aε1 + · · · + An−1εn−1 + An�n(x) (n ∈ N).

If the attractor of � is {0d} this implies that for each x ∈ Zd[A] there is n ∈ N such that

x = ε0 + Aε1 + · · · + An−1εn−1. (6)

In this case we say that (6) is a finite expansion of x generated by �.
For number systems inZd with integer matrices as base it is well-known that the attrac-

tor of a number system (A,D)with an expandingmatrixA ∈ Zd×d and a digit setD ⊂ Zd

is a finite set (see e.g. [12, Section 5]). Our next goal is to show that the same result holds in
our more general context. Let A ∈ Qd×d be an invertible rational matrix. As the entries of
the vectors in Zd[A] may have arbitrarily large denominators, Zd[A], in general, does not
possess any finiteZ-basis. This entails that our proofs become a bit more complicated than
in the integer case. In particular we will frequently need the following sequence of rational
lattices. Starting with the latticeZd and repeatedlymultiplying its vectors byA, k = 1, 2, . . .
times, one defines

Zd
k[A] := Zd + AZd + · · · + Ak−1Zd.

Since Zd
k[A] ⊂ Zd

k+1[A], these rational lattices form a nested chain.
We need two preparatory lemmas.

Lemma 2.3: If A ∈ Qd×d is invertible, then Zd[A]/AZd[A] is a finite Abelian group.
Moreover, there exists k := kA ∈ N, such that

Zd ∩ AZd[A] = Zd ∩ AZd
k[A], and Zd[A]/AZd[A] = Zd/

(
Zd ∩ AZd

k[A]
)
. (7)

In particular, representatives for Zd[A]/AZd[A] can be chosen from Zd.

Proof of Lemma 2.3: As Zd[A] = Zd + AZd[A], the Second Isomorphism Theorem for
modules yields

Zd[A]/AZd[A] =
(
Zd + AZd[A]

)
/AZd[A] 
 Zd/

(
Zd ∩ AZd[A]

)
. (8)

Since A is invertible, Zd ∩ AZd[A] is a d-dimensional additive subgroup of Zd. Hence, it
is a lattice and has a finite index in Zd. Therefore, Zd[A]/AZd[A] is a finite Abelian group.
Now, consider the nested chain of lattices

Zd ∩ AZd
1[A] ⊂ · · · ⊂ Zd ∩ AZd

j [A] ⊂ Zd ∩ AZd
j+1[A] ⊂ · · · ⊂ Zd ∩ AZd[A] ⊂ Zd.

Since the index Zd ∩ AZd
j [A] in Zd cannot decrease indefinitely, the chain must eventu-

ally stabilize, hence, there is a constant k = kA such that Zd ∩ AZd
j+1[A] = Zd ∩ AZd

j [A]
holds for j ≥ k. This yields the first identity in (7). Thus in order to establish the
second identity it is sufficient to prove equality (instead of isomorphy) in (8). From
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Zd[A] = Zd + AZd[A] and Zd = R + Zd ∩ AZd[A], where R is a complete set of coset
representatives ofZd/(Zd ∩ AZd[A]), it follows thatZd[A] = R + AZd[A]. Thus,R con-
tains all coset representatives of Zd[A]/AZd[A]. |R| = |Zd[A]/AZd[A]| by (8), these
representatives also must be different modulo AZd[A]. Therefore, the isomorphism ‘
 ’
symbol in (8) can indeed be replaced with ‘= ’. �

Lemma 2.4: There exists l := l(A,D) ∈ N, such that, for every x ∈ Zd[A] and sufficiently
large n ≥ nx,�n(x) ∈ Zd

l [A].

Proof of Lemma 2.4: According to Lemma 2.3, there exists k = kA, such that Zd ∩
AZd[A] = Zd ∩ AZd

k[A]. Choose the smallest integer l ≥ kA, such that D ⊂ Zd
l [A].

Assume that x= x0 +Ax1 + · · · + Am−1xm−1 ∈ Zd
m[A], with x0, . . . , xm−1 ∈ Zd. Because

d(x) ∈ D there are ε0, . . . , εl−1 ∈ Zd such that d(x) = ε0 + Aε1 + · · · + Al−1εl−1.
Therefore we have x − d(x) ∈ (x0 − ε0 + AZd

i [A]) ∩ AZd[A], with i = max{l − 1,m −
1} fromwhichwe conclude that x0 − ε0 ∈ Zd ∩ AZd[A] = Zd ∩ AZd

k[A] ⊂ AZd
l [A]. This

implies that �(x) ∈ Zd
j [A], where j = max{l,m − 1}. By iteration, eventually �n(x) ∈

Zd
l [A]. �

We are now in a position to prove that expanding matrices lead to finite attractors.

Proposition 2.5: If A ∈ Qd×d is expanding and D is a digit set, then the quotient function
� of (A,D) has a finite attractorA� ⊂ Zd[A]. Consequently, the digit system (A,D ∪ A�)

has the finiteness property in Zd[A].

Proof of Proposition 2.5: By Lemma 2.4, there exists l ∈ N, such that �n(x) ∈ Zd
l [A]

for every n ≥ n1(x). From x = ε0 + Aε1 + · · · + An−1εn−1 + An�n(x), ε0, . . . , εn−1 ∈
D, one deduces �n(x) = A−nx − A−1εn−1 − A−2εn−2 − · · · − A−nε0. Since A is
expanding, the operator norm series

∑∞
n=0

∥∥A−n
∥∥∞ < CA < ∞. It means ‖�n(x)‖ ≤

CAmax{‖ε‖ : ε ∈ D}. As Zd
l [A] is a lattice, Zd

l [A] ∩ B(0d, r) must be finite. Therefore,
� has a finite attractorA� ⊂ Zd

l [A] ∩ B(0d, r). It remains to apply Proposition 2.2. �

2.2. Auxiliary lattice and divisionwith remainder with respect to it

Let (A,D) be a digit system. A necessary condition for (A,D) to have the finiteness prop-
erty is the fact thatD contains a complete set of residue class representatives of the group
Zd[A]/AZd[A]. Thus it is desirable to shed some light on this group. While in the case of
an integer matrix A we have | detA| = |Zd[A]/AZd[A]|, for a rational matrix A the group
Zd[A]/AZd[A] and its size is not so easy to. In order to get information onZd[A]/AZd[A],
one must obtain the base matrix L ∈ Qd×d for the rational lattice AZd

k[A] = LZd with
k = kA described in Lemma 2.3. Unfortunately, no satisfactory representation theory for
the nested lattices Zd

k[A] in Zd[A] is yet available for the determination of the required
index k = kA in Lemma 2.3 where the nested chain of lattices stabilizes. Another drawback
is that, in general, Zd is not be preserved when doing division with remainders modulo
AZd[A]. In order to deal with these issues, in this subsection, we introduce an auxiliary
lattice and a division with the remainder with respect to this lattice, that eventually can be
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used for the computation of digital expansions inZd[A]. Indeed, it turns out that complete
sets of residue classes are easy to deal with in this auxiliary lattice. Moreover, they contain
complete sets of residue classes of Zd[A]/AZd[A].

Definition 2.6: The lattice Zd ∩ AZd will be referred as the auxiliary lattice of the matrix
A ∈ Qd×d.

If A is invertible, Zd ∩ AZd is a full-rank sublattice of Zd, hence, in this case Zd/(Zd ∩
AZd) is a finite group. Furthermore, we have the following result.

Lemma 2.7: Let A ∈ Qd×d be given. Then Zd[A]/AZd[A] is isomorphic to a subgroup of
Zd/(Zd ∩ AZd).

Proof of Lemma 2.7: By applying the 3rd Isomorphism theorem to nested modules Zd ∩
AZd ⊂ Zd ∩ AZd[A] ⊂ Zd, we obtain

Zd/
(
Zd ∩ AZd)(

Zd ∩ AZd[A]
)
/
(
Zd ∩ AZd

) 
 Zd

Zd ∩ AZd[A]

 Zd[A]/AZd[A],

where the last isomorphism comes from Lemma 2.3. �

An advantage in using the auxiliary latticeZd ∩ AZd for arithmetics comes from the fact
that its base matrix can be computed directly from the base matrix A using its Smith Nor-
mal Form, see Section 6.Wewill now develop a special kind of division with the remainder
based on this auxiliary lattice and its residue group. The first step of this construction is to
restrict our division to Zd according to the following definition.

Definition 2.8: Let D ⊂ Zd be a finite digit set that contains a complete set of coset rep-
resentatives of Zd/(Zd ∩ AZd). A restricted digit function is a mapping dr : Zd → D with
the homomorphism property dr(x) ≡ x (mod Zd ∩ AZd). To this restricted setting we
associate the dynamical system �r : Zd → Zd given by �r(x) := A−1(x − dr(x)).

The attractor A�r ⊂ Zd of the dynamical system �r is defined analogously to the
attractor of �.

In the second step of our construction we extend this restricted division procedure to
the full module Zd[A]. For any x ∈ Zd[A], there always exists a smallest k ∈ N, such that
x ∈ Zd

k[A]. That is, there exists a shortest expansion of the form

x = x0 + Ax1 + · · · + Ak−1xk−1, (9)

with x0, . . . , xk−1 ∈ Zd. In general, such expressions (even the shortest ones) are not
unique: for instance, one canmodify x0 by adding any element v ∈ Zd ∩ AZd to it, and then
subtractingA−1v from x1. However, we re-impose the uniqueness by introducing arbitrary
(lexicographic) orderO on k-tuples of vectors fromZd, for k ∈ N, and then always picking
the expansion (9) whose set of vectors (x0, . . . , xk−1) is the smallest w.r.t. this order. Note
that the definition of such an order is always possible, since the set of of all such repre-
sentations (9) is set-isomorphic to the countable set

⋃∞
k=1 Zd×k. This order enables us to
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define a dynamical system � : Zd[A] → Zd[A]. Indeed, let (9) be the minimal expansion
of x ∈ Zd[A] w.r.t. the orderO. Then � is given by

�(x) := A−1(x − dr(x0)) = (�r(x0) + x1) + Ax2 + · · · + Ak−2xk−1. (10)

(We note that the expression on the right-hand side of (10) is not necessarily the shortest
possible expansion of �(x).)

The attractor A� of the dynamical systems � , respectively, is defined analogously to
the attractor of �.

LetA ∈ Qd×d be given. The following lemma shows that it suffices to look at the dynam-
ical system �r acting on Zd in order to construct a digit system in the larger space Zd[A]
that enjoys the finiteness property.

Lemma2.9: Let A ∈ Qd×d and letD ⊂ Zd be a finite set that contains a complete set of coset
representatives of Zd/(Zd ∩ AZd). If �r in Zd has a finite attractorA�r , thenA�r = A� .
In particular, if �r is ultimately zero in Zd, then � is ultimately zero in Zd[A] and the digit
system (A,Dr ∪ A�r) has the finiteness property.

Proof of Lemma 2.9: As � maps Zd
j [A] to Zd

j−1[A], for every x ∈ Zd[A], there exists
k = k(x), such that �k(x) ∈ Zd. Thus, by the definition of � in (10) we gain �n+k(x) =
�n

r (�
k(x)) for each n ≥ 0. Thus, one eventually ends up with an expansion of an integral

vector �k(x) ∈ Zd. This proves that A�r = A� . The remaining assertions immediately
follow from this identity. �

By using Zd,�r,Dr, and Zd ∩ AZd in place of Zd[A],�,D, and AZd[A] in the proof
of Proposition 2.5 we obtain immediately that, for every expanding matrix A ∈ Qd×d,
dynamical system �r has a finite attractor A�r in Zd. By Lemma 2.9, the same set A�r

then is a finite attractor of the extended remainder division � in Zd[A]. In a similar way,
one can replace � with � in Proposition 2.5 and prove that the periodicity and finiteness
properties of � are completely analogous to those of �. Thus, in most cases � can replace
the classical remainder division � when performing arithmetics in Zd[A].

In the same way as in (6) we define finite expansions of Zd generated by �r as well as
finite expansions of Zd[A] generated by � . Using this terminology we get the following
corollary.

Corollary 2.10: If A ∈ Qd×d is expanding, then one can always find a digit set D ⊂ Zd,
such that the following assertions hold.

(a) every x ∈ Zd has a finite expansion inD[A] generated by �r.
(b) every x ∈ Zd[A] has a finite expansion generated by�. This implies that (A,D) has the

finiteness property.

Thus, the dynamical system� allows to do radix expansions inZd[A], while preserving
Zd. This feature is extremely handy in constructing ‘twisted sums’ of digit systems in a way
that avoids ‘mixing’ the arithmetics of Zd[A] and Zd[B], for different matrices A 
= B. We
will come back to this in Section 4.
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3. The finiteness property for generalized rotations

Amatrix in Rd×d that is similar to some orthogonal matrix in Rd×d is called a generalized
rotation. These matrices will be of importance when we have to deal with eigenvalues of
modulus one in general matrices. In this section, we will show how to get small digit sets
that ensure the finiteness property for the rational matrices that are generalized rotations.

3.1. Compactness criterion for solutions to a norm inequality

Equip the space Rd with the usual Euclidean norm ‖·‖ and let S = {v1, v2, . . . , vs} be a
finite subset of Rd. Recall that the cone generated by vectors from S is defined as

Cone (S) = {
t1v1 + t2v2 + · · · + tsvs : tj ≥ 0, 1 ≤ j ≤ s

}
.

It will turn out that the condition Cone (S) = Rd will be an important property of certain
collections of digits S for systems whose bases are generalized rotations. One can show
that Cone (S) = Rd is equivalent to the fact that 0d is an inner point of the convex hull of
S , which is defined as

Conv (S) = {
t1v1 + t2v2 + · · · + tsvs : tj ≥ 0, t1 + · · · + ts ≤ 1, 1 ≤ j ≤ s

}
.

We will give two simple examples of sets that satisfy this property. These examples will be
useful latter.

Example 3.1: Let e1, . . . , ed be a standard basis of Rd. Define the set S = {v1, . . . , vd+1}
by

vj :=
{
ej, for 1 ≤ j ≤ d
−e1 − · · · − ed, for j = d + 1.

Since {vj, 1 ≤ j ≤ d} is the standard basis of Rd, and

−vk =
d+1∑
j=1
j
=k

vj,

one sees immediately that Cone (S) = Rd.

Example 3.2: Let S ⊂ Rd be finite, v ∈ Rd arbitrary fixed vector and suppose that the
matrix M ∈ Rd×d is invertible. If Cone (S) = Rd, then, for every sufficiently large λ >

0, Cone (λMS + v) = Rd.

We need to restate previous definitions in terms of matrices. Recall that, for any two
vectors v,w with real entries and equal dimensions, one writes v ≤ w if every coordinate
of v is less or equal than the corresponding coordinate ofw: vk ≤ wk. In particular,w ≥ 0d
means that all coordinates of w are non-negative. LetM ∈ Rs×d be the matrix whose rows
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consist of vectors from S , that isMT := (v1 v2 · · · vs). Then one can rewrite the definition
of the cone as

Cone (S) = {MTu : u ∈ Rs,u ≥ 0s}.
Now we can prove an important criterion on the compactness of the set solutions to the
matrix inequality in terms of the dual condition onMT .

Lemma 3.3: Let M ∈ Rs×d be a real matrix with row vectors S = {v1, . . . , vs} ∈ Rd and
fix a vector b ∈ Rs, with b ≥ 0s. Then the subset V := {x ∈ Rd : Mx ≤ b} of Rd is compact
if and only if Cone (S) = Rd (equivalently 0d ∈ Int(Conv (S)).

Proof of Lemma 3.3: ‘⇐’: Suppose that Cone (S) = Rd. Obviously, V is closed in Rd

and 0d ∈ V . Let x ∈ V be arbitrary. Since Cone (S) = Rd, for each standard basis vector
ej ∈ Rd, 1 ≤ j ≤ d, one can find vectors yj ≥ 0s, zj ≥ 0s inRs, such that yTj M = eTj , z

T
j M =

−eTj . The left-multiplication on left and right sides ofMx ≤ b by yj and by zj, respectively,
yields

xj := eTj x = (yTj M)x ≤ yTj b, and − xj = eTj (−x) = (zTj M)x ≤ zTj b.

As the coordinates xj of x are bounded by −zTj b ≤ xj ≤ yTj b, the set V must be compact.
‘⇒’: By contradiction, suppose that V is compact but S has no proper enclosure. Since

Cone (S) 
= Rd, there exists c ∈ Rd, such that the linear problemMTy = c has no solution
y ∈ Rs with y ≥ 0s. Then, by Farkas lemma (named after [28], in modern form, stated
in [29, Lemma 1 on p. 318]), the dual linear problem Mx ≥ 0s has a non-zero solution
x = n ∈ Rd, such that nTc < 0, (geometrically, a hyper-plane with the normal vector n ∈
Rd through the origin separates c from Cone (S)). Since b ≥ 0s, this means one can find
arbitrarily large solutions to the system Mx ≤ b by taking x = −λn ∈ V and arbitrarily
large λ > 0. This contradicts the compactness of V . �

An easy consequence of Lemma 3.3 is the following:

Remark 3.4: If the set of solutions V := {x ∈ Rd : Mx ≤ b} is compact, then the set S =
Columns(MT) ⊂ Rd contains at least s ≥ d + 1 vectors, and some d of these are linearly
independent among each other.

Lemma 3.3 is themain ingredient of the following result, whichwill have very important
application later.

Corollary 3.5: Suppose thatS ⊂ Rd is finite. Then the set of vectors x ∈ Rd which, for every
v ∈ S , satisfy

‖x − v‖ ≥ ‖x‖
is compact if and only if Cone (S) = Rd.

Proof of Corollary 3.5: The inequality is equivalent to ‖x‖2 − 2vTx + ‖v‖2 ≥ ‖x‖2, or,
vTx ≤ 1

2 ‖v‖2, for each v ∈ S . Suppose that S = {v1, . . . , vs} and let M ∈ Rs×d be the
matrix whose rows consist of vectors from S , that is MT := (v1 v2 · · · vs). One obtains
a system of linear inequalitiesMx ≤ b where the non-negative vector b ∈ Rs is defined by
bj := 1/2

∥∥vj∥∥2. Now apply Lemma 3.3. �
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3.2. Generalized rotation and its invariant norm

We now give the formal definition of the main objects of the present section.

Definition 3.6 (Generalized rotation): A real square matrixM ∈ Rd×d is called general-
ized rotation, ifM is similar to some orthogonal matrix R.

It is known that matrices M ∈ Rd×d that are diagonalizable over C, with all eigenval-
ues λ ∈ C of absolute value |λ| = 1 are general rotations; see, for instance [30, Chapter 9,
Section 13, Equations (102)–(106)]. For a general rotationM there always exists an invert-
ible real transformation T ∈ Rd×d, such that M := TRT−1 takes a block-diagonal form
with 1 × 1 blocks (±1) or 2 × 2 blocks(

cos θ − sin θ

sin θ cos θ

)
, θ ∈ [0, 2π)

that correspond to eigenvalues λ = eiθ . Such R is a composition of mutually orthogonal
rotations and is itself an orthogonal matrix, i.e. RTR = 1d. Details of such decomposition
are outlined in [30, Chapter 9, Section 13]), equations (112)–(113) therein. Furthermore,
orthogonal matrices R can be parametrized using Cayley formulas [30, Chapter 9, equa-
tions (123)–(126)] (cf. [31,32]). Explicit parametrization formulas in small dimensions
d = 3, 4 are available [33–37].

IfM is a general rotation, then there exist anM-invariant norm on Rd. Indeed, let T be
the aforementioned transformation that bringsM to its rotational form R. Define ‖x‖M :=∥∥T−1x

∥∥, where ‖·‖ is the usual Euclidean norm in Rd. Then

‖Mx‖M = ∥∥T−1Mx
∥∥ = ∥∥(T−1MT)T−1x)

∥∥ = ∥∥RT−1x
∥∥ = ∥∥T−1x

∥∥ = ‖x‖M ,

since R is orthogonal, and
∥∥Ry∥∥ = ∥∥y∥∥ for any y ∈ Rd.

One important fact that we will need in the sequel: Corollary 3.5 of previous Section 3.1
still holds true if one replaces the Euclidean norm ‖·‖ by this new norm ‖·‖M .

Corollary 3.7: Let S ⊂ Rd be a finite set and suppose that M ∈ Rd×d is a generalized rota-
tion. Then the set of vectors x ∈ Rd which, for every v ∈ S , satisfy ‖x − v‖M ≥ ‖x‖M in
M-invariant norm ‖·‖M of Rd is compact if and only if Cone (S) = Rd.

Proof of Corollary 3.7: The M-invariant norm inequality reads
∥∥T−1x − T−1v

∥∥ ≥∥∥T−1x
∥∥ in Euclidean norm, where T ∈ Rd×d is invertible. By continuity, T−1 and T both

preserve the open inclusion of 0d betweenS and T−1S , as well as the compactness. Hence,
Corollary 3.5 applies. �

3.3. Finiteness property for generalized rotations

In this section, we assume that A ∈ Qd×d is a generalized rotation, characterized in
Definition 3.6 of Section 3.2. Generalized rotations serve as a fundamental building block
to construct digit systems with the finiteness property for a general rational matrix with
eigenvalues of absolute value = 1. For general rotation bases, we introduce digit sets with
special geometric properties.
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Definition3.8 (Goodenclosure): Thedigit setD ⊂ Zd[A] is said to have a good enclosure,
if, for each coset representative x ∈ Zd[A]/AZd[A], the subset

D(x) :=
{
d ∈ D : d ≡ x (mod AZd[A])

}
satisfies Cone (D(x)) = Rn, or, equivalently: the origin 0d always lies in the interior of the
convex hull ofD(x) for any given residue class modulo (mod AZd[A]).

If A is general rotation, then A−1 is also general rotation. Pick an A−1-invariant norm
‖·‖A−1 inRd, defined in Section 3.2. Enumerate the digitsD = {d1, . . . , dk} and define the
digit function d : Zd[A] → D by

d(x) := dj ∈ D, such that

⎧⎪⎨⎪⎩
dj ≡ x (mod AZd[A]),
dj minimizes

∥∥x − dj
∥∥
A−1 inD,

the index j is the smallest possible.
(11)

The smallest index condition is to impose uniqueness in cases where the norm-minimum
is achieved for several dj ∈ D(x). The quotient function � : Zd[A] → Zd[A] used in the
division with remainder for the digit sets with good enclosures is defined as in (5).

Now comes the most important result of this section.

Theorem 3.9: Let A ∈ Qd×d be a generalized rotation. If D has a good enclosure, then the
remainder division� : Zd[A] → Zd[A]with the digit function from (11) has a finite attrac-
tor setA� ⊂ Zd[A]. In particular, � is ultimately periodic mapping with a finite number of
possible smallest periods.

Proof of Theorem 3.9: First we show that the set V := {x ∈ Zd[A] : ‖�(x)‖A−1 ≥
‖x‖A−1} is bounded in Rd. By A−1-invariance, ‖�(x)‖A−1 = ‖x − d(x)‖A−1 . For each x ∈
V ,D(x) 
= ∅ by Definition 3.8 and

∥∥x − dj
∥∥
A−1 ≥ ‖x‖A−1 holds for each digit dj ∈ D(x)

by (11). Since D(x) has good enclosure, by Corollary 3.7, the set of vectors x ∈ Rd that
satisfy the last stated norm inequality for each dj ∈ D(x) must be compact. Therefore V
must be bounded, and we can define the critical radius r := r(V ,D) := supx∈V ‖x‖A−1 +
maxd∈D ‖d‖A−1 .

By Lemma 2.4, there exists l ∈ N, such that the orbit {xn := �n(x)}∞n=1 of every point
x ∈ Zd[A] eventually reaches and then stays in the lattice Zd

l [A]. Since Zd
l [A] is a lat-

tice, one cannot have ‖xn+1‖ < ‖xn‖ for every n > n0. Therefore, ‖xn+1‖ ≥ ‖xn‖ occurs
infinitely many times. For such n, one must have xn ∈ V ∩ Zd

l [A]. At the next step after
such occurrence, we have

‖xn+1‖A−1 = ‖�(xn)‖A−1 = ‖xn − d(xn)‖A−1 ≤ ‖xn‖A−1 + ‖d(xn)‖A−1 ≤ r(V ,D).

In subsequent iterations, we have either xj+1 ∈ V again, or the
∥∥xj+1

∥∥
A−1 <

∥∥xj∥∥A−1 .
Therefore, �n(x) ultimately enters the ball BA−1(0, r) and then never leaves it. Since
Zd
l [A] is a lattice, BA−1(0, r) ∩ Zd

l [A] must be finite. Hence, � has a finite attractor set
A� ⊂ BA−1(0, r) ∩ Zd

l [A]. The last statement of Theorem 3.9 follows from the fact that
�n+1(x) is uniquely determined by �n(x). �
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Corollary 3.10: For every general rotation A ∈ Qd×d, there exists a digit set D ⊂ Zd[A]
of the size #D = (d + 1)[Zd[A] : AZd[A]], such that the division mapping � : Zd[A] →
Zd[A] is ultimately periodic and has finite attractor. In particular, one can find such digit sets
in Zd.

Proof of Corollary 3.10: Let R be a complete set of residue class representatives of the
residue class ring Zd/(Zd ∩ AZd

k[A]) and take S = {e1, . . . , ed,−e1 − · · · − ed} from
Example 3.1 of Section 3.1. For every sufficiently large integer s ∈ N, that is divisible by
all denominators of the rational entries of the matrix A, the digit setD := sAS + R ⊂ Zd

contains all residue classes (mod AZd[A]) and satisfies the conditions of Theorem 3.9, as
explained in Example 3.2 of Section 3.1. Now apply Theorem 3.9. �

Corollary 3.11: For every generalized rotation A ∈ Qd×d, there exist digit setsD ⊂ Zd[A]
(and evenD ⊂ Zd), such that the digit system (A,D) has the finiteness property in Zd[A].

Proof of Corollary 3.11: Consider the digit set D′ used in Corollary 3.10 and apply the
second part of Proposition 2.2 toD := D′ ∪ A�. �

Remark 3.12: All results of Section 3 for generalized rotations A ∈ Qd×d remain true for
�r in Zd with respect to auxiliary lattice Zd ∩ AZd, provided that one defines the good
arithmetical enclosure property in Zd (mod Zd ∩ AZd) instead of (mod AZd[A]) in
Definition 3.8 and Equation (11), and substitutes Zd in place of Zd[A] where appropriate.

4. Twisted digits systems for hypercompanionmatrices

In the present section, we show how we can build up number systems with property (F)
from simple building blocks. We develop a certain version of a direct sum that generalizes
the notion of simultaneous digit systems previously considered by Kóvacs [38–40]; see also
[8, Section 3] and [9] for related products of number systems in polynomial rings. This will
enable us to construct digit sets with Property (F) for the hypercompanion block matrices.

First, let us recall the notations of ’the direct sum’ of vectors and matrices. For two vec-

tors x ∈ Qm and y ∈ Qn, their direct sum is a block vector x ⊕ y :=
(
x
y

)
∈ Qm+n. This

notation extends to the sets of vectors S ⊂ Qm,T ⊂ Qn by

S ⊕ T := {x ⊕ y : x ∈ S , y ∈ Y},
for instance,Qm ⊕ Qn = Qm+n. Secondly, the direct sum of twomatrices, say,A ∈ Qm×m

and B ∈ Qn×n is defined as the block matrix

A ⊕ B =
(
A O
O B.

)

4.1. Semi–direct (twisted) sums of digit systems

Let A, B be two invertible rational matrices of dimensions m × m, n × n, respectively, let
O be the m × n zero-matrix, and C be an n × m integer matrix. By block multiplication,
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we see that the partitioned matrices

M =
(
A O
C B

)
, M−1 =

(
A−1 O

−B−1CA−1 B−1

)
,

are inverse to each other.Wewill call the partionedmatrixM the sumof A and B, twisted by
C (a semi–direct sum, or a twisted sum for short). This will be abbreviated asM := A ⊕C B.

Suppose that DA ∈ Zm and DB ∈ Zn are the digit sets satisfying Zm/(Zm ∩ AZm) ⊂
DA and Zn/(Zm ∩ BZm) ⊂ DB. This containment can be strict: digit sets are allowed to
be larger than residue sets.

Associated with (A,DA) and (B,DB) are the corresponding restricted digit functions
together with the dynamical systems

dr,A : Zm → DA, dr,A(x) ≡ x (mod Zd ∩ AZd), (12)

�r,A : Zm → Zm, �r,A(x) = A−1(x − dr,A(x)), (13)

dr,B : Zn �→ DB, dr,B(y) ≡ y (mod Zd ∩ BZd), (14)

�r,B : Zn �→ Zn, �r,B(y) = B−1(y − dr,B(y)), (15)

for x ∈ Zm and y ∈ Zn. They perform division with remainder in the lattices Zm and Zn,
respectively; see Definition 2.8 in Section 2.

We will build the corresponding digit set and restricted remainder division by M in
Zm ⊕ Zn = Zm+n modulo the sublattice Zm+n ∩ MZm+n.

To account for the carry from the first component to the second, we first set up a
modified digit function d̃r,B : Zm+n → DB and an associated dynamical system �̃r,B :
Zm+n �→ Zn for the division with remainder (mod Zn ∩ BZn) on the second component
of z = x ⊕ y by

d̃r,B(z) := dr,B
(
y − C · �r,A(x)

)
, �̃r,B(z) := B−1 (

y − C · �r,A(x) − d̃r,B(z)
)
.

The function d̃r,B(z) is well-defined, since C is integral and its dimensions n × m match
with the dimensions m × 1 of �r,A(x). The function �̃r,B(z) is also well-defined, since
y − C · �r,A(x) − d̃r,B(z) ≡ 0 (mod Zn ∩ BZn), so the multiplication by B−1 produces a
vector in Zn.

We are now in the position to define the twisted restricted division with remainder by M.
Let the twisted digit function dr,M : Zm+n → DA ⊕ DB be given by

dr,M(z) := (
(dr,A ◦ πA)) ⊕ d̃r,B

)
(z) =

(
dr,A(x)
d̃r,B(z)

)
=

(
dr,A(x)

dr,B
(
y − C · �r,A(x)

)) , (16)

where πA : Zm+n �→ Zm is simply a projection of the first component πA

(
x
y

)
= x. It will

be abbreviated as dr,M = dr,A ⊕C dr,B.
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Then we define the associated dynamical system in the usual way by setting

�r,M : Zm+n → Zm+n, �r,M(z) := M−1(z − dr,M(z)).

This construction will be abbreviated as �r,M := �r,A ⊕C �r,B. One verifies easily that

�r,M(z) =
(

A−1 O
−B−1CA−1 B−1

) (
x − dr,A(x)
y − d̃r,B(z)

)
=

(
A−1(x − dr,A(x))

B−1 (−CA−1(x − dr,A(x)) + y − d̃r,B(z)
))

=
(

�r,A(x)
�̃r,B(z)

)
= (

(�r,A ◦ πA) ⊕ �̃r,B
)
(z).

Thus,�r,M is defined correctly. Since z = dr,M(z) + M�r,M(z), we obtain that z ≡ dr,M(z)
(mod Zm+n ∩ MZm+n). This last congruence implies that the mapping z �→ dr,M(z)
(mod Zm+n/(Zm+n ∩ MZm+n)) is a homomorphism from Zm+n to Zm+n/(Zm+n ∩
MZm+n). In particular, DA ⊕ DB must contain all the representatives of Zm+n/(Zm+n ∩
MZm+n). By (16), dr,M(z) attain all possible values in DA ⊕ DB as x and y run through
Zm/(Zm ∩ AZm) and Zn/(Zm ∩ BZm), respectively.

Lemma 4.1: If 0m ∈ DA, 0n ∈ DB and attractors of �r,A and �r,B consist only of the zero
vectors inZm andZn, respectively, then�r,M = �r,A ⊕C �r,B has attractor {0m+n} inZm+n.
In this case, the digit system (M,DA ⊕ DB) in Zm+n[M], where M = A ⊕C B, has the
finiteness property.

Proof of Lemma 4.1: Notice that

�k
r,M(z) =

(
�k

r,A(x)
�̃r,B(�

k−1
r,M (z))

)
=

(
0m

�̃r,B(�
k−1
r,M (z))

)

for k ≥ k0 = k0(x). When the first component x of z is 0m, then �r,M reduces to �r,B, i.e.
dr,M(z) = dr,B(y) and �̃r,B(z) = �r,B(y). Thus,

�k
r,M(z) =

(
0m

�
k−k0
r,B (πB ◦ �

k0
r,M(z))

)
=

(
0m
0n

)
, for k ≥ k0 + k1, k1 = k1(z).

Thus, �r,M is ultimately zero in Zm+n. To show that (M,DA ⊕ DB) has the finiteness
property inZn+m[M], apply Lemma 2.9 with�M (which is defined in terms of�r,M). �

4.2. Hypercompanion bases

Equipped with the twisted sums of digit systems we can establish the finiteness result for
generalized Jordan blocks matrices. Recall that the companion matrix C(f ) ∈ Qd×d of a
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monic polynomial

f (x) = xd + ad−1xd−1 + · · · + a1x + a0 ∈ Q[x]

of degree d := deg f ≥ 1 is defined by

C(f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 −a0
1 0 . . . 0 0 −a1
0 1 . . . 0 0 −a2
...

...
. . .

...
...

...
0 0 . . . 1 0 −ad−2
0 0 . . . 0 1 −ad−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Following the notation in [41, Section 8.9, pp. 161–163], we define the the hypercompanion
matrix Hk := Hk(f ) of f (x) of order k. For k = 1, it is simply equal to H1 := C(f ), while,
for k ≥ 2, it is defined by k × k block structure

Hk(f ) :=

⎛⎜⎜⎜⎜⎜⎜⎝

C(f ) O · · · O O
N C(f ) · · · O O

O N
. . . O O

...
...

. . . C(f ) O
O O · · · N C(f )

⎞⎟⎟⎟⎟⎟⎟⎠ . (17)

Here,N ∈ Zd×d has 1 in its top–right corner and all other entries 0. Clearly,Hk ∈ Qkd×kd.
In our paper, we use the transposed form of [41], due to our choice of matrix-vector multi-
plication. An alternative form of hypercompanion matrices, whereNt would appear above
the principal diagonal is used in Jacobson [42, p. 72]. In the literature, the hypercompanion
matrices also appear under the names of the (primary) rational canonical form [43], or the
generalized Jordan block [44]: in the special case d = 1,Hk is simply the classical Jordan
block with a rational eigenvalue of multiplicity k.

Lemma 4.2: Let f ∈ Q[x] of degree d be monic and irreducible over Q, with the associ-
ated hypercompanion matrix Hk = Hk(f ) ∈ Qn×n of order k and dimension dk. If all the
zeros of f (x) in C are of absolute value ≥ 1, then there exists a digit set DHk, containing the
zero vector, a restricted digit function dr,Hk : Z

dk → DHk with associated dynamical system
�r,Hk : Z

dk → Zdk, such that �r,Hk has attractor {0dk}.

Proof of Lemma 4.2: Consider the case k = 1. ThenH = H1(f ) is the companion matrix
of f. Since f is irreducible overQ, there are two possibilities: either f has all roots of absolute
value > 1, or all roots of absolute value = 1. In the first case,H−1 is a contraction, and we
can take the digit set D′

H which is a complete set of coset representatives of the residue
class ring Zd/(Zd ∩ HZd) which leads to a finite attractor of �r,H1 . In the second case, H
is a generalized rotation, so according to the Remark 3.4, there exists a digit set D′

H that
contains all coset representatives ofZd/(Zd ∩ HZd) and that has a good enclosure. In both
cases, the divisionmapping�r,H(x) = H−1(x − dr,H(x)), where dr,H : Zd → D′

H satisfies
dr,H(x) ≡ x (mod Zd ∩ HZd) is ultimately periodic byRemark 2.10 andRemark 3.4.Now
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takeDH to be the union ofD′
H , the zero digit 0d and the points from the attractor of�r,H in

Zd, andmodify the digit function dr,H so that it dr,H(x) = x for x = 0d or x in the attractor.
Clearly, �r,H has attractor {0d}. Hence, (H,DH) now has Property (F) in Zd[H].

Assume that the lemma is true for all hypercompanion matrices of order ≤ k, and that
we already have the digit sets DHk and functions dr,Hk ,�r,Hk with the required proper-
ties. Notice that, by denoting the d × d(k + 1) blockmatrixG = (O . . . O N)with integer
entries, one canwriteHk+1 is a twisted sumHk+1 = Hk ⊕G H1. By Lemma 4.1, the dynam-
ical system�r,Hk+1 := �r,Hk ⊕G �r,H1 with the digit setDHk ⊕ DH1 and the digit function
dr,Hk+1 := dr,Hk ⊕G dr,H1 has attractor {0d(k+1)} and, hence, (Hk+1,DHk ⊕ DH1) has the
finiteness property in Zd(k+1)[Hk+1]. �

5. Applications to the general theory

In this section, we use our theory in order to give new proofs of some general characteri-
zation results of Property (F) established in [18] and [20]. The advantage of these proofs is
the fact that they are more algorithmic and allow good control on the size of the digit sets.

In [20], we have proved the following result.

Theorem 5.1 (Jankauskas and Thuswaldner [20]): Let A be an d × d matrix with ratio-
nal entries. There is a digit set D ⊂ Zd[A] that makes (A,D) a digit system in Zd[A] with
finiteness property if and only if A has no eigenvalue λ with |λ| < 1. The digit setD can even
be chosen to be a subset of Zd.

The proof Theorem 5.1 in [20] essentially builds on the following theorem.

Theorem 5.2 (Akiyama et al. [18]): Let α ∈ C. Then, there is a finite subset F of Z, such
that Z[α] = F[α], if and only if α is an algebraic number whose conjugates, over Q, are all
of modulus one, or all of modulus greater than one.

In order to prove Theorem 5.1 in [20], the main result of [18], Theorem 5.2, was trans-
lated into the polynomial ring setting and formulated in terms of a finiteness property for
the representations of polynomials in the quotient ring Z[x]/(f ), where f = f (x) ∈ Z[x].
Then, it was shown that this finiteness property can be transferred from these intermediate
polynomial rings to companion matrices of powers of irreducible factors of f (x). The last
step was to ‘assemble’ the finite representations together through the Frobenius normal
form of A. While our approach in [20] resulted in a very concise proof of Theorem 5.1,
the introduction of intermediate algebraic structures make the practical computation of
the radix expansions extremely complicated. First key moment – the control on the orbit
of A−nx in the directions of eigenvectors with |λ| = 1 – is achieved through the embed-
ding into a more complicated representation space Rd × ∏

p Qp (an open subset of an
adèle ring) in the proof of Theorem 5.2 in [18]. The second key moment – control over
the behaviour of A−nx in the directions that correspond to Jordan blocks of order m ≥ 2
– is performed in [20] by convolving the finite representations in the intermediate rings
Z[x]/(f m). This obscures the dynamics of the radix expansion process. Another side effect
is, that the introduction of the intermediate structures and the subsequent process of
assembling the finite representations typically blows out the sizes of the digit sets. All fac-
tors combined, the proof of Theorem 5.1 in [20] does not translate in a straightforward



18 J. JANKAUSKAS AND J. M. THUSWALDNER

way into a practical algorithm and makes the computation of radix expansions in (A,D)

rather complicated. These drawbacks are no longer there in the proofs of these theorems
we will now provide.

Proof of Theorem 5.1: We first prove the sufficiency: if all the eigenvalues of A are of
absolute value ≥ 1, there exists (A,D) with the finiteness property in Zd[A].

By [41, Chapter 8, p. 162, Theorem 8.10] there exists an invertible matrix T ∈ Qd×d,
such that B = T−1AT takes a block diagonal form B = ⊕r

j=1Hj, where each block Hj =
Hkj(fj) ∈ Qdj×dj , 1 ≤ j ≤ r, 1 ≤ dj ≤ d, d1 + · · · + dr = d, is a hypercompanion matrix of
order kj of a monic irreducible polynomial fj(x) ∈ Q[x] that divides the characteristic
polynomial �r(x) of A. Since for any t ∈ Z, (tT)A(tT)−1 = TAT−1, we can assume that
T ∈ Zd×d. First, we will construct the digit system with the finiteness property for the
module Zd[B].

By assumption, A ∈ Qd×d has no eigenvalues λ ∈ C of absolute value |λ| < 1. By the
irreducibly of fj, all eigenvalues ofHj are of absolute value> 1, or all of them are of absolute
value= 1. We consider two possibilities: a) everyHj either is expanding, or has order kj =
1; b) someHj of order kj ≥ 2 are not expanding, that is, have only unimodular eigenvalues.

Case (a) according to Proposition 2.5 (for expandingmatricesHj) and by Corollary 3.11
(for generalized rotation matricesHj), there exists digit setsDj ⊂ Zdj[Hj] (and evenDj ⊂
Zdj), such that each digit system (Hj,Dj) has the finiteness property in Zdj[Hj]; each such
digit system is equippedwith the dynamical system�j : Zdj[Hj] → Zdj[Hj], each of which
has attractor {0dj} in Zdj[Hj]. In order to compensate for the different lengths of radix
expansions across all blocks, we need 0dj ∈ Dj (or simply adjoin the zero vectors to the digit
sets). Then we take their cartesian product D := ⊕r

j=1Dj. Since B = ⊕r
j=1Hj, one readily

verifies Zd[B] = ⊕r
j=1Z

dj[Hj]. By the finiteness property of (Hj,Dj), for each j, 1 ≤ j ≤
r,Zdj[Hj] = Dj[Hj]. By collecting terms with equal powers of matrices Hn

j in the same
vectors and using padding with zero vectors in each factor, if necessary, when exchanging
⊕ and the

∑
in radix expansions (see [20, (5),(6)]), one obtains

Zd[B] = ⊕r
j=1Dj[Hj] = (⊕r

j=1Dj)[⊕r
j=1Hj] = D[B]. (18)

In other words, the digit system (⊕r
j=1Hj,⊕r

j=1Dj) = (B,D), and it has the finiteness
property in Zd[B]. The dynamical system � = ⊕r

j=1�j then performs the division with
remainder by B in Zd[B].

Case (b) is more subtle. By Corollary 2.10 and Lemma 4.2, for each (expanding or non-
expanding)Hj of order kj ≥ 2 and dimension dj × dj, there exists an integer digit setDj ⊂
Zdj containing 0dj , and a restricted dynamical system�r,Hj : Z

dj → Zdj , that has attractor
{0dj} in Zdj . Then, one constructs the extended division function �j in Zdj[Hj], as in (10),
that performs division with remainder by Hj in Zdj[Hj] with respect to Dj. Then �j has
attractor {0dj} in Zdj[Hj], and Dj[Hj] = Zdj[Hj] by Lemma 2.9. From that point on, one
takes the direct sum (18) over everyDj[Hj] as in case (a), only using the extended division
�j in Zdj[Hj] in the place of �j, whenever kj ≥ 2 and Hj is not expanding.

Thus, in both cases (a) or (b), one arrives to the situationZd[B] = D[B], for some finite
digit setD ⊂ Zd[A], which can be also be selected fromZd, if necessary. The last step is the
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same as in the proof of [20, Theorem 2, p. 357], after conjugating withT ∈ Zd×d, and using
TBT−1 = A, one obtains (TZd)[A] = D′[A], withD′ = TD. As TZd ⊂ Zd is a sublattice,
a set of residue class representativesR of Zd/TZd is finite, and Zd = TZd + R. This gives

Zd[A] = (TZd + R)[A] = (TZd)[A] + R[A] = D′[A] + R[A] = D′′[A],

for the finite digit setD′′ := D′ + R.
For the converse part of the Theorem 5.1, we proceed as in [22], [45], or [20]. Assume

that (A,D) has the finiteness property. Pick arbitrary z = d0 + Ad1 + · · · + Akdk ∈ D[A]
and let v ∈ Cd satisfy vtA = λvt . If |λ| < 1, then vtz = vtd0 + λvtd1 + · · · λkvtdk, As D
is finite, pick C>0, such that

∣∣vtd∣∣ < C, for every d ∈ D. Then,

(�v)tz = �(vtz) ≤ ∣∣vtz∣∣ < C(1 + |λ| + · · · + |λ|k) < C/(1 − |λ|).
In particular, this means that all integer vectors Zd ⊂ D[A] lie in a half-plane, as Zd[A] =
D[A], but that is impossible. Therefore, every eigenvalue λ of Amust be |λ| ≥ 1. �

We now derive Theorem 5.2 from Theorem 5.1.

Proof of Theorem 5.2: Assume that no algebraic conjugate of α overQ is of absolute value
< 1. Let A = C(f ) ∈ Qd×d be the companion matrix of the minimal polynomial f ∈ Z[x]
of α. As the eigenvalues of A are all ≥ 1 in absolute value then, according to Theorem 5.1,
one can find a finite setD ⊂ Zd, such that

Z[A]e1 ⊆ Zd[A] = D[A], (19)

whereZ[A] is the set of matrix polynomials inAwith integer coefficients and the standard
basis ej ∈ Zd, 1 ≤ j ≤ d satisfy Aej = ej+1, for 1 ≤ j ≤ d − 1. Let D ⊂ Zd denote the set
of the integer coordinate vectors of the digits di = ∑d

j=1 dijej ∈ D w.r.t. the standard basis.
Define the finite set F := D + D + · · · + D︸ ︷︷ ︸

d−times

. Write di = ∑d
j=1 dijA

j−1e1. For arbitrary z ∈

D[A],

z =
k∑

j=0
Aidi =

k∑
i=0

Ai

⎛⎝ d∑
j=1

dijAj−1e1

⎞⎠ =
k+d∑
i=1

Ai−1

⎛⎝min{d,i}∑
j=1

di−j,je1

⎞⎠ =
k+d∑
j=1

fiAi−1e1,

where fi :=
∑min{d,i}

j=1 di−j,j ∈ F. Hence, D[A] ⊂ F[A]e1. In view of (19), Z[A]e1 ⊆
F[A]e1 ⊆ Z[A]e1, since F ⊂ Z. Therefore, Z[A]e1 = F[A]e1. Now pick the right eigen-
vector v ∈ Cd of A, such that vte1 
= 0 (such v exists, because the companion matrix A of
theminimal polynomial ofα 
= 0 is diagonalizable overC and invertible). Then vtA = α′v,
where α′ is algebraically conjugate to α over Q. Since vtZ[A]e1 = Z[α′]vte1, vtF[A]e1 =
F[α′]vte1, vte1 
= 0, we obtainZ[α′] = F[α′]. By applying the Galois automorphism α′ �→
α, we find that Z[α] = F[α].

Conversely, assume that Z[α] = F[α] for some finite set F ∈ C. Then, F is a subset
of Z[α] itself. Suppose that α has an algebraic conjugate over Q of absolute value < 1.
We proceed in the same way as in the lattice digit system case. By taking Galois auto-
morphism α �→ α′, we see that Z[α′] = F′[α′], for some finite set F′ ⊂ Z[α′]. Therefore,
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we can assume that α itself is of the absolute value < 1. Then, an arbitrary element of
β ∈ F[α],β = f0 + f1α + · · · + fnαn, fj ∈ F is of absolute value at most

|β| ≤ C(1 + |α| + · · · + ∣∣αn∣∣) < C/(1 − |α|),

whereC = maxf∈F
∣∣f ∣∣. This shows that F[α] is a bounded subset ofC, which is impossible,

because it contains Z, if F[α] = Z[α]. �

6. Maximal integral sublattice of a rational lattice

For practical computations in Section 7, the auxiliary lattice of the form L = Zd ∩ AZd

(that is, ‘the integral part’ of AZd), where A is an invertible rational matrix, and the group
of its coset representatives Zd/L) play very important roles. In particular, Zd/L can be
viewed as ’the approximation of the first order’ to the groupAZd[A]/Zd[A], hypothetically
the smallest necessary subset of digits needed to represent elements of Zd[A]. Since it is
desirable to control the size of a digit set we will need a formula for the basis matrix and
the coset representatives of this auxiliary lattice L in Zd.

6.1. Review of lattices

We recall basic facts on lattices. An additive subgroup L ⊂ Rd is called a lattice, if L is a
uniformly discrete and relatively dense subset of Rd. In this case, L is a free Z- module
of rank d and there exists a set {v1, v2, . . . , vd} of d linearly independent (over R) vectors
inRd that generateL overZ, so thatL = Zv1 + Zv2 + · · · + Zvd ([46, Proposition 4.2 of
Section 4]). This can be also written asL = LZd, where L ∈ Rd×d denotes the basis matrix
with columns v1, . . . , vd. In particular, if L ∈ Qd×d or L ∈ Zd×d, then L is called rational,
or integral lattice, respectively. The matrix L is not unique and depends on the choice of
the basis for L. Two lattices L = LZd and M = MZd, L,M ∈ Rd, are nested L ⊂ M if
and only if L is left divisible by M in Zd×d, i.e. if there exist an integer matrix Q ∈ Zd×d,
such that L = MQ. In particular, L = M if and only if Q is a unimodular matrix, that is,
det(Q) = ±1; in that case M = LQ−1. In particular, for any unimodular Q ∈ Zd×d, one
has QZd = Zd.

From the theory of the Smith Normal Form (SNF) [47,48], for an arbitrary invertible
matrix B ∈ Zd×d there exist unimodular matrices P,Q ∈ Zd×d, such that B = PDQ−1,
where D = SNF(B) is the unique diagonal matrix,

D =

⎛⎜⎜⎜⎝
n1 0 . . . 0
0 n2 . . . 0
...

...
. . .

...
0 0 . . . nd

⎞⎟⎟⎟⎠ , (20)

whose entries n1, . . . , nd, called the elementary divisors, are positive integers satisfying the
divisibility propertiesn1 | n2, n2 | n3, . . . , nd−1 | nd. ThematricesP,Q, andD can be found
by reducing the rows and columns of B through the integer divisionwith remainder (which
corresponds to invertible base transformations in Zd and L = BZd). A few other facts on
SNF that we will need further are summarized in Proposition 6.1.
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Proposition 6.1: Let L = LZd, L ∈ Zd×d be a lattice that has a SNF factorization L =
PDQ−1. Then Zd = LZd + R, where theR is the full set of coset representatives

S :=
{ d∑

i=1
jiPei, 0 ≤ ji ≤ ni − 1

}
. (21)

Here, ei, i = 1, . . . , d is the standard basis of Zd and ni are the elementary divisors from
D = SNF(L). Consequently, [Zd : L] = |R| = n1 · · · nd = |det(D)| = |det(L)|.

Proof of Proposition 6.1: As D is diagonal, Zd/DZd 
 Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znd with the
set of representatives T := {∑d

i=1 jiei, 0 ≤ j ≤ ni − 1}. Hence, Zd = DZd + T . By the
unimodularity of P and Q,Zd = PZd = PDZd + PT = PDQ−1Zd + PT . Setting S :=
PT we obtain Zd = PDQ−1Zd + PT = LZd + S . Notice that Px ∈ Zd belongs to LZd =
PDQ−1Zd = PDZd if and only if x ∈ DZd, thereforeZd/DZd andZd/LZd are isomorphic.
The last statement follows. �

6.2. A result on rational lattices

We turn our attention to rational lattices L = AZd, where A ∈ Qd×d is invertible. Let
q ∈ N be a common denominator to the fractions that appear in the entries of A (not nec-
essary the smallest one). ThenA = q−1B, where B ∈ Zd×d. We are interested in the largest
integral sub-lattice Zd ∩ L = Zd ∩ (q−1B)Zd.

Theorem 6.2: Let B ∈ Zd×d have SNF factorization B = PDQ−1, with elementary divisors
n1, . . . , nd, and let q ∈ N. Then the matrices L = PN and L′ = LQ−1 = PNQ−1, with

N =

⎛⎜⎜⎜⎝
n1/ gcd(q, n1) 0 . . . 0

0 n2/ gcd(q, n2) . . . 0
...

...
. . .

...
0 0 . . . nd/ gcd(q, nd)

⎞⎟⎟⎟⎠
where n1, n2, . . . , nd stands for the elementary divisors of D = SNF(B), are two possible basis
matrices for the maximal integral sub-lattice Zd ∩ L of the rational lattice L := q−1BZd ⊂
Qd. The set

S =
{ d∑

i=1
jiPei, 0 ≤ ji < ni/ gcd(ni, q)

}
consists of all distinct coset representatives of Zd/(Zd ∩ L).

Proof of Theorem 6.2: Consider the scaled lattice M := q · (Zd ∩ L) = qZd ∩ BZd.
Then

M′ := P−1M = (qP−1)Zd ∩ (P−1B)Zd = (qP−1Zd) ∩ (P−1B)Zd = qZd ∩ (P−1B)Zd,

since P−1Zd = Zd. Also, (P−1B)Zd = P−1BQZd = DZd. Therefore, M′ = qZd ∩ DZd.
As qZd consists of vectors whose entries are divisible by q and DZd consists of vectors



22 J. JANKAUSKAS AND J. M. THUSWALDNER

whose ith entry is divisible by ni by (20), 1 ≤ i ≤ d, qZd ∩ DZd consists of vectors whose
ith entry is divisible by lcm(q, ni). In other wordsM′ = CZd, where C is

C =

⎛⎜⎜⎜⎝
lcm(q, n1) 0 . . . 0

0 lcm(q, n2) . . . 0
...

...
. . .

...
0 0 . . . lcm(q, nd)

⎞⎟⎟⎟⎠ .

Scaling back, Zd ∩ L = q−1M = P(q−1C)Zd = PNZd = PNQ−1Zd. Therefore, one can
take L: = PN orL′ = PNQ−1 to be the basis matrix of Zd ∩ L. Coset representatives are
obtained from (21) in Proposition 6.1. �

In order to state the next result, recall that the content [49] of the polynomial f (x) =
adxd + · · · + a1x + a0 ∈ Z[x] is defined by c(f ) := gcd(|a0| , |a1| , . . . , |an|). By the Gauss
Lemma [49], for any two polynomials f , g ∈ Z[x], one has C(f · g) = C(f ) · C(g).

Theorem 6.3: Let B ∈ Zd×d be invertible and q ∈ N. The index of the maximal integral
sublattice Zd ∩ L of L = q−1BZdin Zd is

[Zd :
(
Zd ∩ L

)
] = |det(B)|

C
(
ϕD(qx)

) ,
where and ϕD(x) is the characteristic polynomial of D = SNF(B).

Proof of Theorem 6.3: By Theorem 6.2,

[Zd : (Zd ∩ L)] = detN =
d∏

j=1

nj
gcd(q, nj)

= |det(B)|∏d
j=1 gcd(q, nj)

.

The content of nj − qx is exactly gcd(q, nj). Since ϕD(x) = ∏d
j=1(nj − x), one has∏d

j=1 gcd(q, nj) = ∏d
j=1 C(nj − qx) = C(ϕD(qx)). �

7. Numerical examples

We illustrate the main features of the theory of digit systems developed so far with
examples.

7.1. Rotation digit system associated to smallest Pythagorean triple.

Consider the 2 × 2 matrix

A =
(
3/5 −4/5
4/5 3/5

)
,

that corresponds to the Pythagorean triple 32 + 42 = 52. This is a rotation by the angle
θ = 53.1301023542 . . .◦. We shall construct a small digit setD, such that (A,D) in Z2[A]
has the finiteness property.
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First, we determine the basis for the auxiliary lattice L := Z2 ∩ AZ2. Let

B := 5A =
(
3 −4
4 3

)
.

Then, L = Z2 ∩ AZ2 = 1
5 (5Z

2 ∩ BZ2). The SNF decomposition yields B = PDQ−1 with

D =
(
1 0
0 25

)
, P =

(
7 1
1 0

)
, Q =

(
1 3

−1 −4

)
.

with detP = detQ = −1. According to Theorem 6.2, L = LZd with the basis matrix

L = PN =
(
7 1
1 0

)
·
(
1/gcd(5, 1) 0

0 25/gcd(5, 25)

)
=

(
7 1
1 0

)
·
(
1 0
0 5

)
=

(
7 5
1 0

)
.

One possible set of coset representatives of Z2 modulo L (equivalent to the one given in
Theorem 6.2) is

S = Z2/L = {0Pe1 + 0Pe2, 0Pe1 + 1Pe2, 0Pe1 + 2Pe2, 0Pe1 + 3Pe2, 0Pe1 + 4Pe2} =

=
{(

0
0

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
,
(
4
0

)}
=

After translating S by −2e1, we obtain an equivalent set of representatives with reduced
coordinates:

R := S − 2e1 = U−1 =
{(−2

0

)
,
(−1

0

)
,
(
0
0

)
,
(
1
0

)
,
(
2
0

)}
=

= {−2e1,−e1, 0, e1, 2e1}.

Next, we construct a pre-periodic digit setD′
r that has a good convex enclosure with respect

toR as depicted as points in Figure 1.
Notice that the residues e1 and 2e1 are the inner points of a triangle with vertices

T1 =
{(

0
0

)
,
(
2
1

)
,
(

3
−1

)}
⊂ L.

Likewise, −e1,−2e1 are the inner points of the triangle with vertices in −T1. The last
residue 02 is an inner point of the triangle with vertices

T2 =
{(−2

−1

)
,
(−1

2

)
,
(

3
−1

)}
⊂ L.
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Figure 1. Points from L = Z2 ∩ AZ2 (blue) and from R = Z2/L (green). Two dark grey triangles,
namely, T1 and−T1 and one light grey triangle T2 with vertices inL enclose elements ofR.

Define the sets

D(0) := 0 − T2 =
{(

2
1

)
,
(

1
−2

)
,
(−3

1

)}
,

D(e1) := e1 − T1 =
{(−1

−1

)
,
(
1
0

)
,
(−2

1

)}
,

D(−e1) := −e1 + T1 =
{(−1

0

)
,
(

2
−1

)
,
(
1
1

)}
.

D(2e1) := 2e1 − T1 =
{(

0
−1

)
,
(
2
0

)
,
(−1

1

)}
,

D(−2e1) := −2e1 + T1 = T
{(−2

0

)
,
(

1
−1

)
,
(
0
1

)}
.

As 02 is an inner point of these sets, their union

D′ =
⋃
x∈R

D(x)

has good enclosure with respect to R. By Theorem 3.9 and Remark 3.12, the division
mapping �r(x) = A−1(x − dr(x)) with the digit dr(x) ∈ D′, restricted to Z2, has a finite
attractor A�r in Z2. To compute the set A�r , first notice that our matrix A is orthog-
onal (it is a rotation matrix): by taking the identity matrix T = �2 in the definition of
A–invariant norm form on p.11, one obtains that the usual Euclidean norm ‖. . .‖2 isA and
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A−1–invariant. To determine the attractor set A�r , one needs to find the repeller points
x ∈ Z2, such that ‖�r(x)‖A−1 ≥ ‖x‖A−1 and then determine their orbits. In our case, we
need to compute all the integral points in the feasible regions

⋃
x∈R V(x), such that

V(x) := {y ∈ Rn : ‖x − d‖ ≥ ‖x‖ ,∀d ∈ D′(x)}.
By Corollary 3.7 the feasible regions V(x) are compact since D′ has good enclosure with
respect toR. For each x ∈ R, wewrite down and solve the linear program that corresponds
to V(x), as in the proof of Corollary 3.7. We use SAGE [50] Polyhedron and Mixed
Integer Linear Programming (MILP) modules in a combination with PPL
solver to explicitly solve for the feasible regions and enumerate the sets of contained integer
points

Rep�r
(x) := V(x) ∩ (x + L),

refer to Figure 2. Our calculations yield:

Rep�r
(−2e1) =

{(−1
−2

)}
, Rep�r

(2e1) =
{(

1
2

)}
,

Rep�r
(−e1) =

{(
0

−2

)}
, Rep�r

(e1) =
{(

0
2

)}
,

and

Rep�r
(0) =

{(−1
2

)
,
(
0
0

)
,
(−2

−1

)}
.

The last step is to optimize the digit set by picking up the minimal possible number of
representatives from the periods in orbits of points in Rep�r

(x). To find this minimal set,
we compute the images

�r

(
0
0

)
= �r

(
0
2

)
=

(
1
2

)
, �r

(
0

−2

)
= �r

(−2
−1

)
=

(−1
−2

)
,

�r

(−1
2

)
=

(
2

−1

)
, �r

(
2

−1

)
=

(
0
0

)
and,

�r

(
1
2

)
=

(
1
2

)
, �r

(−1
−2

)
=

(−1
−2

)
.

Therefore, any orbit of a point x ∈ Z2 eventually hits the set

P =
{(

1
2

)
,
(−1

−2

)}
.

For the final digit set, we take

D = D′ ∪ P .

It consists of 17 digits, all depicted in Figure 3. Any Z2 vector has a finite radix expansion
in base A with digitsD. For instance, the radix expansion of (6,−7)t ∈ Z2 is(

6
−7

)
=

(
1

−2

)
+ A

(
1

−1

)
+ A2

(−2
0

)
+ A3

(−1
1

)
+ A4

(
0
1

)
+ A5

(
1
2

)
∈ D[A].
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Figure 2. Repeller points Rep�r
(x) (in red) inside the regions of repelling action of�r (in grey), for each

residue class x ∈ Z2/L. Green coloured are the remaining points from the same residue class x + L. (A)
x = (−2, 0)T , (B) x = (2, 0)T , (C) x = (−1, 0)T , (D) x = (1, 0)T , (E) x = (0, 0)T .
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Figure 3. The digit set D: the initial digits D′ (violet) and additional points from A�r (orange) that
represent periods; notice that 02 
∈ D.

It is remarkable that non-trivial rotational digit systems that possess the finiteness prop-
erty in principle do not require zero digit 0d ∈ D. In the present example, the zero vector
02 is represented inD[A] as (

0
0

)
=

(
2
1

)
+ A

(−2
1

)
.

In some situations (like taking the twisted sums of the rotational digit systems), the artificial
inclusion of 0d inD might be necessary, see Section 7.2.

The finite digital expansions of vectors from lattice from Z2 in the digit system (A,D)

yield the finite expansions of vectors from module Z2[A]. Let us illustrate the expansion
process for the vector

v =
(−156/25

−8/25

)
=

(−3
0

)
+ A ·

(
0
2

)
+ A2

(−1
2

)
∈ Z2[A].

By applying the mappings dr,�r, one expresses
(−3

0

)
=

(−1
1

)
+ A

(−2
1

)
and then

carrying
(−2

1

)
forward and adding to

(
0
2

)
yields

v =
(−1

1

)
+ A ·

(−2
3

)
+ A2

(−1
2

)

Similarly,
(−2

3

)
=

(−1
1

)
+ A

(
1
2

)
gives

v =
(−1

1

)
+ A ·

(−1
1

)
+ A2

(
0
4

)
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By replacing
(
0
4

)
in Z2 with its expansion inD[A], one finds

(−156/25
−8/25

)
=

(−1
1

)
+ A ·

(−1
1

)
+ A2

(−1
1

)
+ A3

(
1
0

)
+ A4

(
2

−1

)
∈ D[A].

It should be noted that, for this process to work, one must know at least one arbitrary (not
necessarily the shortest one) representation of the form

∑k−1
j=0 Ajzj, zj ∈ Z2[A] of the vector

v ∈ Z2[A] to perform the subsequent digital expansion.

7.2. Twisted sum of a rotational digit systemwith itself.

Consider the matrix

A =
(
0 −1
1 −1/2

)
,

that is a companionmatrix to its characteristic polynomial ϕA(x) = x2 + x/2 + 1. It is easy
to see this is a generalized rotation: it is similar to a rotation matrix via the transformation

T =
(
4 0
1

√
15

)
, T−1AT =

⎛⎝ −1/4 −√
15/4√

15/4 −1/4
.

⎞⎠
TheR2 norm ‖x‖A−1 = ∥∥T−1x

∥∥
euclidean is thenA

−1 invariant. Calculations similar to those
in Section 7.1 yield the residue group with respect of the lattice

L = Z2 ∩ AZ2 = LZ2, L =
(
2 2
1 0

)
is

R = Z2/L =
{(

0
0

)
,
(
1
0

)}
.

By enclosing these residue vectors inside the triangles with vertices

T1 :=
{(−2

0

)
,
(
2
1

)
,
(

2
−1

)}
, T2 :=

{(
0
0

)
,
(
2
1

)
,
(

2
−1

)}
,

as depicted in Figure 4, one finds the pre–periodic digit set

D
(
0
0

)
:=

(
0
0

)
− T1, D

(
1
0

)
:=

(
1
0

)
− T2,

D′ = D
(
0
0

) ⋃
D

(
1
0

)
=

{(
2
0

)
,
(−2

−1

)
,
(−2

1

)
,
(
1
0

)
,
(−1

−1

)
,
(−1

1

)}
.

Then�r,A(x) = A−1(x − dr,A(x)) is ultimately periodic in Z2. The subsequent analysis of
the repeller points, similar to the one in Section 7.1 carried out by solving corresponding
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Figure 4. Points from L = Z2 ∩ AZ2 (blue) and from R = Z2/L (green). Two triangles, namely, T1
(dark grey) and T2 (light grey) enclose (0, 0)T and (0, 1)T , the elements ofR.

linear programs yields 11 integral repeller points

Rep�r,A

:=
{(

0
−4

)
,
(

0
−3

)
,
(

0
−2

)
,
(

0
−1

)
,
(
0
0

)
,
(
0
1

)
,
(
0
2

)
,
(
2
4

)
,
(
2
5

)
,
(−1

0

)
,
(
1
2

)}
,

as illustrated in Figure 5, (A) and (B). It turns out, the orbits of each repeller point already
contains at least one digit of D′ that is depicted in Figure 6. Therefore, the digit system
(A,D′) with 6 digits already has the finiteness property in Z2[A].

Next we append the zero vector D = D′ ∪
{(

0
0

)}
. in order to construct the twisted

sum of this digit system with itself. Consider the twisted sumM = A ⊕N A, where

N =
(
0 1
0 0

)
, M = A ⊕N A =

(
A O2×2
N A

)
=

⎛⎜⎜⎝
0 −1 0 0
1 −1/2 0 0
0 1 0 −1
0 0 1 −1/2

⎞⎟⎟⎠ .

The matrixM = H2(ϕA) is an order–2 hypercompanion matrix to the polynomial ϕA(x).
Then the digit system (M,D ⊕ D) has the finiteness property in Z4 by Lemma 4.1:
the radix expansions in Z4 are done using the twisted mapping �r,M = �r,A ⊕N �r,A
described in Section 4.1. For instance,⎛⎜⎜⎝

1
2

−3
4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
0

−1
1

⎞⎟⎟⎠ + M

⎛⎜⎜⎝
2
0
2
0

⎞⎟⎟⎠ + M2

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ + M3

⎛⎜⎜⎝
0
0

−2
−1

⎞⎟⎟⎠ + M4

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠
The finiteness property of (M,D ⊕ D) extends to the whole module Z4[M] through the
mapping �M (10) by Corollary 2.10.
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Figure 5. Repeller points Rep�r,A
(x) (in red) inside the regions of repelling action of �r,A (in grey),

for each residue class x ∈ Z2/L. Remaining points x + L are coloured green. (A) x = (0, 0)T , (B) x =
(1, 0)T .

Figure 6. The digit setD′ for which (A,D′) has finiteness property inZ2[A]. Notice again that 02 
∈ D′.

The digit setD ⊕ D is not the smallest possible digit set for which the digit system that
has M as its base matrix retains the finiteness property. It can be shown that it is possible
to minimize the digit set size further in the following way. Use the digit setD1 = D′ ⊕ R
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for vectors x ⊕ y ∈ Z4 as long as x 
= 02 and switch to the digit setD2 =
{(

0
0

)}
⊕ D′ as

soon as x becomes = 02 in the dynamical system �r,M . Such a digit system (M,D′′) with
the digit setD′′ = D1 ∪ Dr2 consists of 18 digits and has the finiteness porperty inZ4[M].
It’s highly likely 18 is the minimal possible digit set size for which the finiteness property
still holds in this particular baseM.

The code for the examples provided in Section 7.1 and 7.2 is available to download
online from [51].

8. Concluding remarks

We would like to conclude this paper by adding two open problems to the list of questions
posed in [20] on the arithmetics of module Zd[A].

Problem 8.1: Let x ∈ Qd be such that every prime factor p ∈ N of the least common denom-
inator of its coordinates divide the least common denominator of the entries in the matrix A.
Is it true that such x ∈ Zd[A]?

Note that if there exists a prime number p ∈ N, such that p divides the least common
denominator of the coordinates of x and p does not divide the denominator of any entry
of A ∈ Qd×d then it is clear that x 
∈ Zd[A].

Problem 8.2: Let A ∈ Qd×d be non–degenerate. How to compute the stabilization index kA
in Lemma 2.3, namely, the smallest integer k := kA, such that

Zd ∩ AZd[A] = Zd ∩ Zd
k[A] = Zd ∩

(
Zd + AZd + · · · + Ak−1Zd

)
?

We know how to find such kA for certain classes of matrices A, but the general case
seems to be tied deeply to the representations of lattices (i.e. discrete subgroups) in locally
compact groups.

Let us conclude with one final remark. If (A,D) is the classical standard digit system
in Zd for some expanding base matrix A ∈ Zd×d and some digit set D ⊂ Zd, then the
knowledge of the number of digits in the set D (which can be determined by observ-
ing the number of different symbols used in strings corresponding to radix expansions of
random vectors) immediately yields the value of |detA|. Thus, it determines the possible
conjugacy classes of A in the group GL(d,Z). In contrast, for the rotational digit systems
(A,D),A ∈ Qd×d with Property (F), described in Section 3, the size of the digit set depends
on the attractor set A�r , which in turn depends (in a complicated way) on the choice of
the coset representatives and their convex enclosures. Therefore, the size of D alone does
not reveal somuch information about the basematrixA or its main characteristics, like the
determinant or the dimension of A. It would be interesting to know if this could be useful
in cryptography applications (in particular, for scrambling themessages and encoding data
streams, cf. [7]).
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