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STEADY STATE NON-NEWTONIAN FLOW WITH STRAIN RATE

DEPENDENT VISCOSITY IN THIN TUBE STRUCTURE WITH NO

SLIP BOUNDARY CONDITION

Grigory Panasenko1,*, Konstantin Pileckas2

and Bogdan Vernescu3

Abstract. The steady state non-Newtonian flow, with strain rate dependent viscosity in a thin tube
structure, with no slip boundary condition, is considered. Applying the Banach fixed point theorem
we prove the existence and uniqueness of a solution. An asymptotic approximation is constructed and
justified by an error estimate.
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1. Introduction

The asymptotic behavior of solutions of partial differential equations in thin domains is extensively studied
in a vast mathematical literature. In particular, the tube structures, introduced in [20], are considered as a
geometrical model of a blood vessels network. Viscous flows were studied in such domains and for the steady
state Navier-Stokes equations an asymptotic expansion of the solution was constructed. The non-stationary
Navier-Stokes equations in such a domain were studied in [24]. A non-Newtonian flow (Bingham flow) in a
network of thin pipes was studied mathematically in [4]. However the asymptotic behavior is described there
neglecting the boundary layer functions. The power-law rheology in a thin tube structures was studied in [16],
where the first order asymptotic approximation with boundary layers was constructed (see [15] for the existence
and uniqueness of a solutions to boundary layer problems). In the present paper we consider the flow with a
strain rate dependent viscosity, taking into consideration the boundary layers. We will construct an asymptotic
expansion of the solution by an iterative algorithm. The estimates are obtained for higher orders of asymptotic
approximations. The main application of these results is modeling for the blood flow in a network of thin vessels.

The leading term of asymptotic expansion of the pressure is described by a one-dimensional elliptic non-linear
problem on the graph. The pressure is a linear function on each edge of the graph. At the junctions (nodes) the
Kirchhoff like conditions are set. On the other hand, one-dimensional models derived from the conservation laws
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Figure 1. Graph B.

were introduced in [5]. These models differ from the problem on the graph: they are equations of hyperbolic
type. Below in the Conclusion we will discuss the limitations of both approaches, i.e. of the problem on the
graph and of the hyperbolic system of equations.

Let G be a bounded domain in Rn. By Lp(G) and Wm,p(G), 1 < p <∞,m ≥ 1, we denote the usual Lebesgue
and Sobolev spaces, respectively. The norms in Lp(G) and Wm,p(G) are indicated by ‖ · ‖Lp(G) and ‖ · ‖Wm,p(G),

respectively. Wm−1/2,2(∂G) is the space of traces on ∂G of functions from Wm,2(G).
By W̊m,p(G) we denote the closure of the set C∞0 (G) in the norm ‖ · ‖Wm,p(G), where C∞0 (G) is the set of

all infinitely differentiable functions with compact supports in G. More information about these spaces can be
found in [1]. Vector-valued functions are denoted by bold letters, and the spaces of scalar and vector-valued
functions are not distinguished in notation. More specific functions spaces are introduced in places where they
are used.

1.1. Thin tube structure

Let us recall the definitions of the tube structure and its graph given in [21].

Definition 1.1. Let O1, O2, . . . , ON be N different points in Rn, n = 2, 3, and e1, e2, . . . , eM be M closed
segments each connecting two of these points (i.e. each ej = OijOkj , where ij , kj ∈ {1, . . . , N}, ij 6= kj). All
points Oi are supposed to be the ends of some segments ej . The segments ej are called edges of the graph. A
point Oi is called a node, if it is the common end of at least two edges and Oi is called a vertex, if it is the
end of only one edge. Any two edges ej and ei can intersect only at the common node. The set of vertices is
supposed to be non-empty.

Denote B =
M⋃
j=1

ej the union of edges and assume that B is a connected set (see Fig. 1). The union of all

edges having the same end point Ol is called the bundle B(l).
Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems in Rn. The first one has the origin

in Oi and the axis Oix
(e)
1 has the direction of the ray [OiOj); the second one has the origin in Oj and the

opposite direction, i.e. Oix̃
(e)
1 is directed over the ray [OjOi).

Below in various situations we choose one or another coordinate system denoting the local variable in both
cases by x(e) and pointing out which end is taken as the origin of the coordinate system.

With every edge ej we associate a bounded domain σj ⊂ Rn−1 containing the origin O and having C4-

smooth boundary ∂σj , j = 1, . . . ,M . For every edge ej = e and associated σj = σ(e) we denote by Π
(e)
ε the

cylinder

Π(e)
ε =

{
x(e) ∈ Rn : x

(e)
1 ∈ (0, |e|), x

(e)′

ε
∈ σ(e)

}
,
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Figure 2. Thin tube structure Bε.

where x(e)′ = (x
(e)
2 , ..., x

(e)
n ), |e| is the length of the edge e and ε > 0 is a small parameter. Notice that the edges

ej and Cartesian coordinates of nodes and vertices Oj , as well as the domains σj , do not depend on ε. We will

define as well a semi-infinite dilated cylinder Π
(e)
∞ =

{
x(e) ∈ Rn : x

(e)
1 ∈ [0,∞), x(e)′ ∈ σ(e)

}
.

Let O1, . . . , ON1
be nodes and ON1+1, . . . , ON be vertices. Let ω1, . . . , ωN be bounded independent of ε

domains in Rn; introduce the nodal domains ωjε = {x ∈ Rn :
x−Oj
ε

∈ ωj}.
Every vertex Oj is the end of one and only one edge ek which will be re-denoted as eOj ; we will re-denote as

well the domain σk associated to this edge as σOj . Notice that the subscript k may be different from j.

Definition 1.2. By a tube structure (see Fig. 2) we call the following domain

Bε =
( M⋃
j=1

Π(ej)
ε

)⋃( N⋃
j=1

ωjε

)
.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C4-smooth.

Let r1 be the maximal diameter of domains ωi, i = 1, . . . , N , denote r = r1 + 1. Consider a node or a vertex
Ol and all edges ej having Ol as one of their end points. We call the union of all these edges a bundle of edges

and denote it Bl, i.e., Bl =
⋃

j:Ol∈ej
ej . By a bundle of cylinders BOl we call the union ωlε ∪

( ⋃
j:Ol∈ej

Π
(ej)
ε

)
, and

by Ωl = ωl ∪
( ⋃
j:Ol∈ej

Π
(ej)
∞

)
a bundle of dilated cylinders. Denote also Ωεl = {x ∈ Rn|x/ε ∈ Ωl}.

1.2. Formulation of the problem

Let ν0, λ > 0 be positive constants. Let ν be a bounded C3− smooth function Rn(n+1)/2 → R such that for
all y ∈ Rn(n+1)/2,

|ν(y)| ≤ A, |∇ν(y)| ≤ A, |∇2(ν(y))| ≤ A, |∇3(ν(y))| ≤ A. (1.1)

where A is a positive constant independent of y.
Consider in the tube structure Bε the steady state boundary value problem for the non-Newtonian fluid

motion equations  −div((ν0 + λν(γ̇(v))D(v)) +∇p = 0, x ∈ Bε,
divv = 0, x ∈ Bε,

v|∂Bε = εg,
(1.2)
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where D(v) is the strain rate matrix with the elements dij = 1
2 ( ∂vi∂xj

+
∂vj
∂xi

), γ̇(v) = (d12, d13, d23, d11, d22, d33) if

n = 3 and γ̇(v) = (d12, d11, d22) if n = 2.1

Assume that the fluid velocity g at the boundary ∂Bε has the following structure: g = 0 everywhere on ∂Bε
except for the set γN1+1

ε , . . . , γNε , where γjε = ∂Bε ∩ ∂ωjε, j = N1 + 1, . . . , N , i.e.,

g(x)|γjε = gj
(
x−Oj
ε

) ∣∣∣
γjε
, j = N1 + 1, . . . , N,

g(x, t)
∣∣∣
∂Bε\(

N⋃
j=N1+1

γjε)
= 0,

where gj ∈W 5/2,2(γj), γj = ε−1(γjε−Oj) are the corresponding dilated parts of the boundary, g ∈W 5/2,2(∂Bε).
Assume that

N∑
j=N1+1

∫
γjε

gj
(
x−Oj
ε

)
· n(x)dS = 0, (1.3)

where n is the unit outward (with respect to Bε) normal vector to γjε .

1.3. Main results

The first main result of the paper is the theorem on the existence and uniqueness of the solution: There
exists λ0 such that for all λ ∈ (0, λ0) problem (1.2) admits a unique weak solution

(
u, p

)
with u ∈ W 3,2(Bε),

∇p ∈W 1,2(Bε).
The second main result concerns the construction of the asymptotic approximations of the solution of problem

(1.2). Let us describe the algorithm.
First, let us recall the definition of a quasi-Poiseuille flow for equations (1.2). Let σ be a bounded domain

with Lipschitz boundary in Rn−1. Consider in the infinite cylinder Π = R × σ the Dirichlet boundary value
problem:  −div((ν0 + λν(γ̇(u))D(u)) +∇p = 0, x ∈ Π,

divu = 0, x ∈ Π,
u|∂Π = 0,

(1.4)

where γ̇(v) = (d12, d13, d23, 0, 0, 0) if n = 3 and γ̇(v) = (d12, 0, 0) if n = 2 (below we will see that for the
quasi-Poiseuille flow dii = 0).

Define a quasi-Poiseuille flow as a solution to the following problem: find the couple (VPα ,PPα) such that
VPα(x) = (vPα(x′), 0, ..., 0)T , and PPα(x) = −αx1 + β, α, β ∈ R, x′ = (x2, . . . , xn), where vPα is the solution of
the following problem {

− 1
2divx′((ν0 + λν(γ̇P (vPα)))∇x′vPα) = α, x′ ∈ σ,

vPα |∂σ = 0.
(1.5)

Here γ̇P (vPα) = ( 1
2∇x′vPα , 0, 0) if n = 2, γ̇P (vPα) = (1

2∇x′vPα , 0, 0, 0) if n = 3, and α is the given pressure slope.
Define Fσ(α) =

∫
σ

vPα(x′)dx′ the flux corresponding to the pressure slope −α. Note that in the case of the

steady Newtonian flow (the steady form of Navier-Stokes or Stokes equations) Fσ(α) is proportional to α. This

1In [27] the definition of γ̇(v) was introduced with forgotten n last components. However it should be read as above.
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case corresponds to the value of λ = 0 and so, Fσ(α) = κα, where κ =
∫
σ

ṽP (x′)dx′ and ṽP is a solution of the

Poisson equation {
−ν02 ∆x′ ṽP = 1, x′ ∈ σ,

ṽP = 0, x′ ∈ ∂σ. (1.6)

Consider the quasi-Poiseuille flow in a thin tube with the cross-section σε which is a contraction of σ 1/ε-
times. As the inflows/outflows have the velocity of order ε in L∞-norm, see (1.2)3, we consider the Poiseuille
velocity of the same order and it corresponds to the pressure slope of order 1/ε. So, for any α ∈ R we consider
the scaled problem (1.5) in z′ = εx′ variables: −

1
2divz′

(
(ν0 + λν(γ̇P (vεP,αε

)))∇z′vεP,αε
)

= α
ε , z′ ∈ σε ,

vεP,αε
= 0, z′ ∈ ∂σε .

(1.7)

Evidently, the solution of this problem is related to the solution of problem (1.5) as follows:

vεP,αε (z′) = εvPα(
z′

ε
). (1.8)

Denote the corresponding flux

Fσε(
α

ε
) =

∫
σε

vεP,αε (z′)dz′ =

∫
σε

εvPα(
z′

ε
)dz′.

After the change of variables x′ = z′

ε we see that

Fσε(
α

ε
) = εn

∫
σ

vPα(x′)dx′ = εnFσ(α), (1.9)

i.e.

Fσε(β) = εnFσ(εβ). (1.10)

These two last formulae give the scaling rule for the operator (function in stationary case) relating the pressure
slope and the flux.2

In the same way one can introduce κε = εn+1κ the Newtonian flux in a contracted 1/ε-times cylinder
corresponding to the pressure slope 1. Putting Gσε(β) = Fσε(β)− κεβ, we get the relation

Gσε(β) = εnGσ(εβ). (1.11)

Consider now the problem on the graph corresponding to the data of problem (1.2): the cross-sections σjε
and the given fluxes

2Note that the pressure slope in these problems is −α (or −α/ε) but in the name of the operator we skip the sign “minus”.
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F εl =
∫
γlε

εgl(x−Olε ) · n(x)dS = εnF l,



− ∂

∂x
(ej)
1

(
Fσjε
( ∂pε

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσjε
( ∂pε

∂x
(ej)
1

(0)
)

= 0, l = 1, . . . , N1,

−Fσjε
( ∂pε

∂x
(ej)
1

(0)
)

= −F εl , l = N1 + 1, . . . , N, Ol ∈ ej ,

pε(x
(ej)
1 = 0)− pε(x(es)

1 = 0) = 0, ej : Ol ∈ ej , l = 1, . . . , N1,
pε(ON ) = 0,

(1.12)

where es is one of the edges with an end point Ol called the selected edge of the node Ol. It can be rescaled
using the scalings of the pressure slope - flux relation:

− ∂

∂x
(ej)
1

(
Fσj
(
ε
∂pε

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj
(
ε
∂pε

∂x
(ej)
1

(0)
)

= 0, l = 1, . . . , N1,

−Fσj
(
ε
∂pε

∂x
(ej)
1

(0)
)

= −F l, l = N1 + 1, . . . , N, Ol ∈ ej ,

εpε(x
(ej)
1 = 0)− εpε(x(es)

1 = 0) = 0, ej : Ol ∈ ej , l = 1, . . . , N1,
εpε(ON ) = 0.

(1.13)

Notice that the operator Fσj (β) is a nonlinear operator relating the pressure slope and the flux. Now making
the change p = εpε, we get a problem which does not depend on ε. If p is an affine function, then

pε(x
(ej)
1 ) = −sjx

(ej)
1 /ε+ aj/ε. (1.14)

Let us describe the leading term of the asymptotic expansion of the solution of problem (1.2). The pressure

slope αεj = − ∂pε

∂x
(ej)

1

in every edge ej generates the quasi-Poiseuille velocity in the associated cylinder which is

vεP,αεj
(x(ej)′). The functions vεP,αεj

(x(ej)′) (velocity) and pε(x
(ej)
1 )− pε(x(es)

1 = 0) (difference of the pressure value

at x
(ej)
1 and of the pressure at the node Ol for the end of the selected edge) are multiplied by a cut-off function

ζ(
x
(ej)

1

3rε ), where ζ is a C2 smooth function equal to zero in the interval [0, 1] and equal to one in the interval
[2,∞). So, the regular part of the leading term is the couple va0 , p

a
0 :

va0 = vεP,αεj
(x(ej)′)ζ(

x
(ej)

1

3rε )ej ;

pa0 = (pε(x
(ej)
1 )− pε(x(es)

1 = 0)ζ(
x
(ej)

1

3rε ) + pε(x
(es)
1 = 0),

x
(ej)
1 ∈ (0, |ej |/2).

(1.15)

where ej is the director vector of the edge ej . This formula holds in the half of the edge ej . For the other half
we may use the analogous formula associated to the second end of the edge ej .

This regular part of the leading term is completed with the boundary layer corrector also considered in the

part Bε corresponding to x
(ej)
1 ∈ (0, |ej |/2). We say that the function q ∈ L2

loc(Ω) exponentially stabilizes to
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constants q1, q2, . . . , qJ at infinity if∫
Ωj

exp (2βx
(j)
1 )|q(x)− qj |2dx <∞, j = 1, 2, . . . , J,

for some β > 0. The space of such functions we denote L̃2
loc(Ω). Let N0 ∈ W̊ 1,2(Ωl) and P0 ∈ L̃2

loc(Ωl) be solution
of the following problem in dilated variables ξ = x−Ol

ε in the unbounded domain Ωl:

−divξ((ν0 + λν(γ̇ξ(N0(ξ) + V0
ζ(ξ)))Dξ(N0(ξ) + V0

ζ(ξ)))

+∇ξ(P0(ξ) + P 0
ζ (ξ)) = 0, ξ ∈ Ωl ,

divξ(N0(ξ) + V0
ζ(ξ)) = 0, ξ ∈ Ωl ,

N0(ξ) = 0, ξ ∈ ∂Ωl ,

(1.16)

where

V0
ζ(ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)vP,sj (ξ

(ej)′)ej , P
0
ζ (ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)sjξ

(ej)
1 ,

divξ, γ̇ξ, Dξ,∇ξ are operators written for ξ variable. Notice that this problem is independent of ε. Here and
below for vertices Ol condition Nk = 0 on γl is replaced by Nk = gl.

So, the leading term with the boundary layer corrector has the form:

ṽa0 = vεP,αεj
(x(ej)′)ζ(

x
(ej)

1

3rε )ej + εN0(x−Olε );

p̃a0 = (pε(x
(ej)
1 )− pε(x(es)

1 = 0)ζ(
x
(ej)

1

3rε ) + pε(x
(es)
1 = 0) + P 0(x−Olε ),

x
(ej)
1 ∈ (0, |ej |/2).

(1.17)

For the construction of high order asymptotic approximations of the solution we use a non-standard approach:
instead of construction of asymptotic series as in [21] or [24] we construct a chain of successive iterations. Namely,
in [26] it is proved that the pressure P0 in (1.16) tends to some constants in the outlets. Taking into consideration

that the pressure is defined up to an additive constant, we can assume that P0 tends to zero at the outlet Π
(es)
∞

corresponding to the selected edge es of the bundle Bl. Denote by c̃0lj the constants which are the limits of P0

in the outlets Π
(ej)
∞ , j 6= s. Then we define the first iteration of the problem on the graph (1.12) where the

condition

pε(x
(ej)
1 = 0)− pε(x(es)

1 = 0) = 0, ej : Ol ∈ ej , l = 1, . . . , N1

is replaced by

pε(x
(ej)
1 = 0)− pε(x(es)

1 = 0) = c̃0lj , ej : Ol ∈ ej , l = 1, . . . , N1. (1.18)

The first iteration of the boundary layer corrector is the solution of problem (1.16) where in the expressions
V0
ζ and P 0

ζ the constant sj is the slope of the solution of the problem on the graph pε of the first iteration.

In turn, the pressure of this boundary layer problem tends to constants c̃1lj and these constants appear as the
right-hand side in of(1.18). This iterative procedure is continued. For the J-th iteration we get the estimate
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of the error of order O(εJ−2| ln ε|2J+2) in W 1,2(Bε)-norm for the velocity and of order O(εJ−3| ln ε|2J+2) in
L2(Bε)-norm for the pressure.

The stucture of the paper is as follows. In Section 2 the auxiliary domains are introduced: a covering of
the tube structure and domains with cylindrical outlets to infinity. In Section 3 several embedding inequalities
are proved for thin tube structures as well as a priori estimates for solutions of the divergence equation and
Stokes problem posed in thin structure. Section 3 contains a generalized formulation of the Banach fixed point
theorem used further for improving the regularity of solutions. Section 4 is devoted to the proof of the theorem
on existence and uniqueness of a solution of the main problem for non-Newtonian flow and of a priori estimates
for this solution. Sections 5-7 recall the results obtained in [25] and [26] on the steady non-Newtonian Poiseuille
flow, on the problem on the graph, on the boundary layer problem in domains with cylindrical outlets. Finally,
Section 8 is devoted to the construction of high order asymptotic approximations of the solution and the proof
of the error estimates.

2. Definitions of auxiliary domains

2.1. Covering of the domain Bε

Let us construct a covering of the domain Bε. Take domains A
(ej)
ε,k = {x ∈ Π

(ej)
ε : x

(ej)
n ∈ ε(k− 2, k+ 2)}, j =

1, . . . , N, k = 2, . . . , Ljε, L
j
ε ∼ |e|ε−1, and define A

(j)
ε,k = ωjε ∪ {x ∈ Π

(ej)
ε : x

(ej)
n ∈ (0, 2ε)}, j = N1 + 1, . . . , N (i.e.,

when Oj are vertices), and A
(j)
ε,k = ωjε ∪

⋃
kj

{x ∈ Π
(ekj )
ε : x

(ekj )
n ∈ (0, 2ε)}, j = 1, . . . , N1 (i.e., when Oj are nodes),

where the union over kj is taken over all edges of the bundle B(j) associated with the node Oj . Obviously,

Bε =

 N⋃
j=1

Ljε⋃
k=2

A
(ej)
ε,k

⋃ N⋃
j=1

A
(j)
ε,k

 .

We denote this covering by Aε.
In parallel with the covering Aε we take the covering Ãε containing larger domains

Bε =

 N⋃
j=1

L̃jε⋃
k=2

Ã
(ej)
ε,k

⋃ N⋃
j=1

Ã
(j)
ε,k

 ,

where Ã
(ej)
ε,k = {x ∈ Π

(ej)
ε : x

(ej)
n ∈ ε(k − 3, k + 3)}, j = 1, . . . , N, k = 3, . . . , L̃jε, L̃

j
ε ∼ |e|ε−1. Then we define

A
(j)
ε,k = ωjε ∪ {x ∈ Π

(ej)
ε : x

(ej)
n ∈ (0, 3ε)}, j = N1 + 1, . . . , N , and A

(j)
ε,k = ωjε ∪

⋃
kj

{x ∈ Π
(ekj )
ε : x

(ekj )
n ∈

(0, 3ε)}, j = 1, . . . , N1.
Obviously,

A
(ej)
ε,k ⊂ Ã

(ej)
ε,k , A

(j)
ε,k ⊂ Ã

(j)
ε,k. (2.1)

2.2. Domains with cylindrical outlets to infinity

Consider the domain Ω ⊂ Rn with J cylindrical outlets to infinity which will be used in the construction of
the boundary layer correctors for the asymptotic expansion of a solution of problem (1.2).

Let Ω = Ω0
⋃( J⋃

j=1

Ωj
)
, where Ω0 is a bounded domain, Ω0

⋂
Ωj = ∅ for j ∈ {1, . . . , J}, Ωj ∩ Ωl = ∅ for

j 6= l, j, l ∈ {1, . . . , J}, and the outlets to infinity Ωj in some coordinate systems x(j) = (x
(j)
1 , x(j)′), having the
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origins within the boundary of domain Ω0, are given by the relations

Ωj = {x(j) ∈ Rn, x(j)′ ∈ σj , x(j)
1 ≥ 0},

where σj are some bounded domains in Rn−1, cross-sections of the cylinders. Assume that for any k ∈ {1, . . . , J}
there exists a δj > 0 such that the cylinder {x(j) ∈ Rn, x(j)′ ∈ σj ,−δj < x

(j)
1 < 0} ⊂ Ω0. Denote dσ the maximal

diameter of the cross-sections σj . We assume that the boundary ∂Ω is C4-regular and that ∂Ω ∩ ∂Ω0 6= ∅ has
a positive measure. In particular, Ω can be just a semi-infinite cylinder: Ω = {x ∈ Rn, x′ ∈ σ ⊂ Rn−1, x1 > 0}.
Evidently there exists a positive real number R > dσ such that the ball BR = {x ∈ Rn, |x| < R} contains Ω0.

Note that Ωj = Π
(e)
∞ for one of the edges of the bundle.

We also introduce the following notations:

Ωjk = {x ∈ Ωj : x
(j)
1 < k}, Ω(k) = Ω0

⋃( J⋃
j=1

Ωjk

)
, (2.2)

where k ≥ 0 is an integer.
Let Ω ⊂ Rn, n = 2, 3, be domain with J outlets to infinity. We define in Ω weighted function spaces. Denote

βββ = (β, . . . , β) and define by φβββ(x) a smooth function

φβββ(x) =

{
0, x ∈ Ω0,

βx
(j)
1 , x ∈ Ωj , x

(j)
1 > 2, j = 1, . . . .J.

(2.3)

We also set Eβββ(x) = exp 2φβββ(x).

Denote by W l,2
βββ (Ω), l ≥ 0, the space of functions obtained as the closure of C∞0 (Ω) in the norm

‖u‖Wl,2
βββ

(Ω) =
( l∑
|α|=0

∫
Ω

Eβββ(x)|Dαu(x)|2 dx
)1/2

and setW0,2
βββ (Ω) = L2

βββ(Ω). Notice that for β > 0 elements of the spaceW l,2
βββ (Ω) exponentially vanish as x

(j)
1 →∞.

3. Auxiliary results

3.1. Embedding inequalities in tube structure Bε

Lemma 3.1. (Poincaré inequality) There the inequality holds

||u||L2(Bε) ≤ cε||∇u||L2(Bε) ∀u ∈ W̊
1,2(Bε), (3.1)

where the constant c is independent of ε.

The proof of this lemma is obvious.

Let G be a bounded, Lipschitz domain in Rn. Let us introduce in the Sobolev space W l,2(G) the equivalent
(for the fixed ε) norm

|||u|||2l,α,G =

l∑
k=0

ε−2(l−k)+2α‖∇ku‖2L2(G).
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Obviously,

|||u|||2l,α,G = ε2α|||u|||2l,0,G .

Lemma 3.2. Let Bε ⊂ Rn, n = 2, 3, u ∈W 1,2(Bε). Then

‖u‖4L4(Aε)
≤ cε−n+4|||u|||41,0,Aε , (3.2)

where Aε is arbitrary domain from the covering Aε, and

‖u‖4L4(Bε)
≤ cε−n+4|||u|||41,0,Bε . (3.3)

Proof. In any bounded Lipschitz domain G the inequality holds (see [13])

‖u‖4L4(G) ≤ c(G)
(
‖u‖2L2(G) + ‖∇u‖2L2(G)

)2

.

By scaling, it is easy to see that in any Aε the estimate holds

‖u‖4L4(Aε)
≤ cε−n+4

(
ε−2‖u‖2L2(Aε)

+ ‖∇u‖2L2(Aε)

)2

= cε−n+4|||u|||41,0,Aε

with the constant c independent of ε. From this it follows that

‖u‖4L4(Aε)
≤ cε−n+4|||u|||21,0,Bε |||u|||

2
1,0,Aε

and summing the last inequalities over all domains Aε from the covering Aε we get (3.2).

By same token using the continuous embedding W 2,2(Ω) into L∞(Ω) we get the following

Lemma 3.3. Let Bε ⊂ Rn, u ∈W 2,2(Bε). Then the following inequalities

‖u‖L∞(Aε) ≤ cε−(n−4)/2|||u|||2,0,Aε ,
‖u‖L∞(Bε) ≤ cε−(n−4)/2|||u|||2,0,Bε

(3.4)

hold with the constant c independent of ε.

Proof. In a bounded Lipschitz domain G the inequality holds (see [13])

‖u‖2L∞(G) ≤ c(G)
(
‖u‖2L2(G) + ‖∇u‖2L2(G) + ‖∇2u‖2L2(G)

)
.

Then, by scaling, we obtain the estimate

‖u‖2L∞(Aε)
≤ cε−n+4|||u|||22,0,Aε

with the constant c independent of ε. From this it follows that

‖u‖L∞(Bε) ≤ sup
Aε∈Aε

‖u‖L∞(Aε) ≤ cε
−(n−4)/2|||u|||2,0,Bε .

From Lemmas 3.2 and 3.3 follows
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Lemma 3.4. Let u ∈W 3,2(Bε). Then

‖∇u‖L∞(Bε) ≤ cε
−(n−4)/2|||u|||3,0,Bε , (3.5)

‖∇u‖L4(Bε) ≤ cε
−(n−8)/4|||u|||3,0,Bε , (3.6)

‖∇2u‖L4(Bε) ≤ cε
−(n−4)/4|||u|||3,0,Bε . (3.7)

The same inequalities hold for functions u ∈W 3,2(Aε).

3.2. Divergence equation

Let G ⊂ Rn be a bounded domain with Lipschitz boundary. Consider in G the following problem:
For given h ∈ L2(G) with

∫
G
h(x)dx = 0 find a vector field w ∈ W̊ 1,2(G) satisfying the equation

divw = h in G, (3.8)

and the estimate

‖∇w‖L2(G) ≤ c‖h‖L2(G). (3.9)

Lemma 3.5. Problem (3.8), (3.9) admits a solution. The constant c in (3.9) depends only on the domain G.

Lemma 3.5 is proved in [12].

Consider now problem (3.8), (3.9) in the tube structure Bε. The following result is obtained in [22].

Lemma 3.6. There exists a solution w ∈ W̊ 1,2(Bε) of problem (3.8), (3.9) in Bε. There the estimate holds

‖∇w‖L2(Bε) ≤ cε
−1‖h‖L2(Bε). (3.10)

with the constant c independent of ε.

Let us assume that ∂Bε ∈ C4 and introduce the notation Υ
(ej)
ε = Π

(ej)
ε ∩

{
x(ej) : x

(ej)
1 ∈ ( 1

6 |ej |,
1
3 |ej |)

}
,

Υ̂
(ej)
ε = Π

(ej)
ε ∩

{
x(ej) : x

(ej)
1 ∈ ( 1

8 |ej |,
1
2 |ej |)

}
.

Lemma 3.7. Let h ∈ W 2,2(Υ̂
(ej)
ε ), supph ⊂ Υ

(ej)
ε and

∫
Υ̂

(ej)
ε

h(x)dx = 0. Then there exists a solution w ∈

W̊ 1,2(Υ̂
(ej)
ε ) ∩W 3,2(Υ̂

(ej)
ε ) of the divergence equation (3.8). There the estimate holds

‖w‖W 3,2(Υ̂j)
≤ c ε−3‖h‖W 2,2(Υ̂j) (3.11)

with the constant c independent of ε.

Moreover, supp w ⊂
{
x : x1 ∈ ( 1

7 |ej |,
2
5 |ej |), x′ ∈ σj

}
.

Proof. First consider the divergence equation in the domain Ξ̂j =
{
y : y1 ∈ ( 1

8 |ej |,
1
2 |ej |), y

′ ∈ σj
}

assuming

that h ∈W 2,2(Ξ̂j), supph ⊂ Ξj =
{
y : y1 ∈ ( 1

6 |ej |,
1
3 |ej |), y

′ ∈ σj
}

and
∫̂
Ξj

h(x)dx = 0.
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The lateral boundary of Ξ̂j is C4-regular, supph ⊂ Ξj , Ξj ⊂ Ξ̂j and Ξj 6= Ξ̂j . So, by results in [8], there exits

a vector field w̃ ∈ W̊ 1,2(Ξ̂j) ∩W 3,2(Ξ̂j) such that divyw̃(y) = h̃(y), and

‖w̃‖W 3,2(Ξ̂j)
≤ c ‖h̃‖W 2,2(Ξ̂j)

. (3.12)

Moreover, w̃(y) can be constructed such that

supp w̃ ⊂
{
y : y1 ∈ ( 1

7 |ej |,
2
5 |ej |), y′ ∈ σj

}
.

Here h̃(y) = h(x)|x=X (y), and X (y) is defined by x1 = y1, x
′ = εy′.

Define the vector field w with components w1(x) = w̃1(y)|X−1(x), wi(x) = εw̃i(y)|X−1(x), i = 2, . . . , n. It is
straightforward to show that divxw(x) = h(x), w|

Υ̂
(ej)
ε

= 0. Passing in (3.12) to coordinates x we obtain the

inequality

∫
Υ̂

(ej)
ε

( 3∑
l=0

ε2l|∇′lxw̃|2 +
3∑
l=0

|∂
lw̃
∂xl1
|2
)

dx ≤ c
∫

Υ̂
(ej)
ε

( 2∑
l=0

ε2l|∇′lxh|2 +
2∑
l=0

| ∂
lh
∂xl1
|2
)

dx

which implies

3∑
l=0

(
εl−1‖∇′lw′‖

L2(Υ̂
(ej)
ε )

+ εl‖∇′lw1‖
L2(Υ̂

(ej)
ε )

+ ε−1‖∂
lw′

∂xl1
‖
L2(Υ̂

(ej)
ε )

+‖∂
lw1

∂xl1
‖
L2(Υ̂

(ej)
ε )

)
≤ c

3∑
l=0

(
εl‖∇′lh‖

L2(Υ̂
(ej)
ε )

+ ‖ ∂
lh
∂xl1
‖
L2(Υ̂

(ej)
ε )

)
,

from which we obtain (3.12).

3.3. Stokes problem

Denote by H(Bε) the subspace of divergence free functions from W̊ 1,2(Bε).
Consider in Bε the Dirichlet problem for the Stokes system −ν∆v +∇p = f , x ∈ Bε,

divv = 0, x ∈ Bε,
v|∂Bε = 0.

(3.13)

The weak solution v ∈ H(Bε) to (3.13) satisfies the integral identity

ν

∫
Bε

∇v · ∇ηηηdx =

∫
Bε

f · ηηηdx ∀ηηη ∈ H(Bε),

and hence the estimate

‖∇v‖2L2(Bε)
≤ cε2‖f‖2L2(Bε)

. (3.14)

Lemma 3.8. Let ∂Bε ∈ Cl+2, f ∈W l,2(Bε). Then v ∈W l+2,2(Bε), ∇p ∈W l,2(Bε) and

|||v|||2l+2,α,Bε
+ |||∇p|||2l,α,Bε ≤ c|||f |||

2
l,α,Bε

. (3.15)
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with the constant c independent of ε.

Proof. Let Aε ⊂ Ãε be domains from the covering Aε and Ãε of Bε. Consider (3.13) in Ãε. Making the change

of variables y = ε−1x we transform Aε and Ãε into the fixed (independent of ε) domains A0 and Ã0. The Stokes
problem in coordinates y takes the form

−ν∆yv +∇y(εp) = ε2f in Ã0

divyv = 0 in Ã0,
v|∂Bε∩∂Ã0

= 0.

(3.16)

ADN local estimates for elliptic problems (see [2]) yield the inequality

l+2∑
m=0
‖∇mv‖2L2(A0) +

l+1∑
m=1
‖∇mq‖2L2(A0)

≤ c
(
ε4

l∑
m=0
‖∇mf‖2

L2(Ã0)
+ ‖v‖2

L2(Ã0)
+ ‖q − q‖2

L2(Ã0)

)
,

(3.17)

where q(y) = εp(y), q = 1

|Ã0|

∫̃
A0

q(y)dy. Since
∫̃
A0

(q(y)− q)dy = 0, there exists w ∈ W̊ 1,2(Ã0) such that divw =

q(y)− q in Ã0 and

‖∇w‖L2(Ã0) ≤ c‖q − q‖L2(Ã0).

Multiplying (3.16) by w and integrating by parts we obtain

‖q − q‖2
L2(Ã0)

=
∫̃
A0

q(y)(q(y)− q)dy =
∫̃
A0

q(y)divwdy

= ν
∫̃
A0

∇v · ∇wdy − ε2
∫̃
A0

f ·wdy

≤ ‖∇v‖L2(Ã0)‖∇w‖L2(Ã0) + ε2‖f‖L2(Ã0)‖w‖L2(Ã0)

≤ c‖∇v‖L2(Ã0)‖q − q‖L2(Ã0) + cε2‖f‖L2(Ã0)‖q − q‖L2(Ã0).

Therefore,

‖q − q‖L2(Ã0) ≤ c(‖∇v‖L2(Ã0) + ε2‖f‖L2(Ã0)). (3.18)

From (3.17), using (3.18) and the Poincaré inequality, we derive

l+2∑
m=0
‖∇mv‖2L2(A0) +

l+1∑
m=1
‖∇mq‖2L2(A0)

≤ c
(
ε4

l∑
m=0
‖∇mf‖2

L2(Ã0)
+ ‖∇yv‖2L2(Ã0)

)
.

(3.19)

Returning to coordinates x we obtain

l+2∑
m=0

ε2m‖∇mx v‖2L2(Aε)
+ ε2

l+1∑
m=1

ε2m‖∇mx p‖2L2(Aε)

≤ c
(
ε4

l∑
m=0

ε2m‖f‖2
L2(Ãε)

+ ε2‖∇v‖2
L2(Ãε)

)
.

(3.20)
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Summing up (3.20) over all domains Aε ⊂ Ãε and estimating the last term in the right hand side by (3.14)
yields

l+2∑
m=0

ε2m‖∇mx v‖2L2(Bε)
+ ε2

l+1∑
m=1

ε2m‖∇mx p‖2L2(Bε)

≤ c
(
ε4

l∑
m=0

ε2m‖f‖2L2(Bε)
+ ε2‖∇xv‖2L2(Bε)

)
≤ cε4

l∑
m=0

ε2m‖f‖2L2(Bε)
.

(3.21)

Multiplying the last inequality by ε−2(l+2)+2α we obtain (3.15).

Consider now the Stokes problem in the domain Ω with J outlets to infinity: −ν∆v +∇p = f , x ∈ Ω,
divv = 0, x ∈ Ω,

v|∂Ω = 0.
(3.22)

We have the weak solution v ∈ H(Ω) to (3.22) which satisfies the integral identity

ν

∫
Ω

∇v · ∇ηηηdx =

∫
Ω

f · ηηηdx ∀ηηη ∈ H(Ω),

and the estimate

‖∇v‖2L2(Ω) ≤ c‖f‖
2
L2(Ω). (3.23)

The following theorem was proved in [30] (see also [28], Thm. III.3.2).

Theorem 3.9. Let ∂Ω ∈ Cl+2 and let f ∈ W l
2,β(Ω), β ≥ 0. Suppose that the number 0 ≤ β ≤ β∗. If β∗ is

sufficiently small, then the weak solution u belongs to the space W l+2
2,β (Ω) and there exists a pressure function p

with ∇p ∈ W l
2,β(Ω) such that the pair

(
u(x), p(x)

)
satisfies equations (3.1) almost everywhere in Ω. There the

estimate holds

‖u‖Wl+2
2,β (Ω) + ‖∇p‖Wl

2,β(Ω) ≤ c ‖f‖Wl
2,β(Ω). (3.24)

3.4. Weak Banach contraction principle

Theorem 3.10. Let X and Y be reflexive Banach spaces, X ⊂ Y ,

‖x‖Y ≤ ‖x‖X ∀x ∈ X. (3.25)

Suppose that M ⊂ X is closed, bounded set, M 6= ∅, and the mapping T : M 7−→M satisfies the inequality

‖Tx− Ty‖Y ≤ k‖x− y‖Y , k < 1. (3.26)

Then T admits exactly one fixed point x∗ ∈M :

Tx∗ = x∗.

This result is well known and widely used in the mathematical community. For the proof of it see, for example,
[26].
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4. Existence and uniqueness of the solution of the main problem

Since divv = 0, the problem (1.2) can be written in the form
−ν02 ∆v +∇p = −λdiv

(
ν(γ̇(v))D(v))

)
,

divv = 0, x ∈ Bε
v|∂Bε = εg,

(4.1)

Let e = eOj be the edge with the end Oj and let x(e) be the Cartesian coordinates corresponding to the

origin Oj and the edge e, i.e., x(e) = P(e)(x−Oj), P(e) is the orthogonal matrix relating the global coordinates

x with the local ones x(e), σjε = {x :
x(e)′

ε
∈ σ, x(e)

1 = 0}. Denote g(e) = P(e)gj .

Let

F̃ j = ε
∫
γjε

g(x) · n(x)dS = ε
∫
γjε

gj
(
x−Oj
ε

)
· n(x)dS

= εn
∫
γj
ĝjn(y(e)′)dy(e)′ ≡ εnF j , j = N1 + 1, . . . , N,

(4.2)

where n is the unit outward (with respect to Bε) normal vector to γjε , y
(e) =

x(e)

ε
, ĝj(y(e)) = gj((P(e))∗y(e)),

F j does not depend on ε. Assume that for the flow rates F j the compatibility condition

N∑
j=N1+1

F j = 0 (4.3)

is valid.
Let g be the divergence free extension of the boundary function g (which we denote by the same symbol

g, g ∈W 3,2(Bε)) satisfying the following asymptotic estimates

‖∇lg‖L2(Aε) ≤ cG0ε
n−2l

2 , l = 0, 1, 2, 3, (4.4)

for any domain Aε from the covering Aε. Using Lemma 3.3 we see that

sup
x∈Bε

|g(x)| ≤ cG0, sup
x∈Bε

|∇g(x)| ≤ cG0ε
−1,

‖∇lg‖L2(Bε) ≤ cG0ε
n−(2l+1)

2 , l = 0, 1, 2, 3,
(4.5)

where the constant c is independent of ε and g and G0 is independent of ε.
Representing v as the sum v = u + εg we obtain the following problem

−ν02 ∆u +∇p = λdiv
(
ν(γ̇(u + εg))D(u + εg)

)
−λdiv

(
ν(γ̇(εg))D(εg)

)
+ f ,

divu = 0, x ∈ Bε,
u|∂Bε = 0,

(4.6)

where f = εν0
2 ∆g + λdiv

(
ν(γ̇(εg))D(εg)

)
. Below we consider problem (4.6) with arbitrary f ∈W 1,2(Bε).
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Theorem 4.1. Let f be a vector-valued function from W 1,2(Bε) and g ∈ W 3,2(Bε) be a described above
extension.

(i) There exists λ0 such that for all λ ∈ (0, λ0) problem (4.6) admits a unique in some ball solution
(
u, p

)
with u ∈W 3,2(Bε), ∇p ∈W 1,2(Bε). There holds the estimate

|||u|||23,0,Bε + |||∇p|||21,0,Bε ≤ c|||f |||
2
1,0,Bε

. (4.7)

Here and below constants c with or without subscripts are independent of ε.
(ii) The pressure p is unique up to an additive constant. Being normalized by the condition of the zero mean

value
∫
Bε

pdx = 0, the pressure satisfies the estimate

‖p‖2L2(Bε)
≤ cε2|||f |||21,0,Bε . (4.8)

Proof. (i) Let M be the operator H(Bε) ∩W 3,2(Bε) → H(Bε) ∩W 3,2(Bε), such that for any U ∈ H(Bε) ∩
W 3,2(Bε), (MU, P ) is a solution of the problem −

ν0
2 ∆MU +∇P = h(U + εg) + f , x ∈ Bε

divMU = 0, x ∈ Bε
MU|∂Bε = 0,

(4.9)

where

h(U + εg) = λdiv
(
ν(γ̇(U + εg))D(U + εg)

)
− λdiv

(
ν(γ̇(εg))D(εg)

)

= λdiv
[
ν(γ̇(U + εg))D(U) +

(
ν(γ̇(U + εg))− ν(γ̇(εg))

)
D(εg)

]

= λ∇T ν(γ̇(U + εg)) ·D(U) + λν(γ̇(U + εg))divD(U)

+λ
(
∇T ν(γ̇(U + εg))−∇T ν(γ̇(εg))

)
·D(εg) + λ

(
ν(γ̇(U + εg))− ν(γ̇(εg))

)
divD(εg).

Here and below the gradient ∇ is a column vector.
Note that

∇ν(γ̇(U + εg)) = (∇yν(y)|y=γ̇(U+εg))
T∇γ̇(U + εg)

and

∇ν(γ̇(εg)) = (∇yν(y)|y=γ̇(εg))
T∇γ̇(εg),

where ∇γ̇ is the Jacobian matrix of γ̇. Let us subtract and add in the term λ
(
∇T ν(γ̇(U + εg))−∇T ν(γ̇(εg))

)
the expression

λ(∇yν(y)|y=γ̇(U+εg))
T∇T γ̇(εg)
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and notice that

|λ(∇yν(y)|y=γ̇(U+εg))
T∇T γ̇(U + εg))− λ(∇yν(y)|y=γ̇(U+εg))

T∇T γ̇(εg)|

≤ cλ supy |∇yν(y)||∇2U |

and

|λ(∇yν(y)|y=γ̇(U+εg))
T∇T γ̇(εg))− λ(∇yν(y)|y=γ̇(εg))

T∇T γ̇(εg)|

≤ cλ supy |∇2
yν(y)||∇γ̇(εg)||∇U |.

These estimates will be used below.
Let us estimate the right hand side of equation (4.9). By (1.1) and (4.5), we have

|h| ≤ cλ sup
y
|∇yν(y)||∇U||∇2(U + εg)|+ cλ sup

y
|ν(y)||∇2U|

+cλ sup
y
|∇yν(y)||∇U||ε∇2g|+ cλ sup

y
|∇yν(y)||∇2U||ε∇g|

+cλ sup
y
|∇2

yν(y)||∇U||ε∇2g||ε∇g|

≤ cλA
(
|∇U||∇2U|+ |∇U||ε∇2g|+ |∇2U|+ |∇2U||ε∇g|+ |∇U||ε∇2g||ε∇g|

)
.

Using (3.5) we obtain∫
Bε

|∇2U|2|∇U|2dx ≤ sup
x∈Bε

|∇U(x)|2
∫
Bε

|∇2U|2dx ≤ cε2α1+2|||U|||43,0,Bε ,

where α1 = 1 for n = 2 and α1 = 1/2 for n = 3. Further, applying (4.5) we get

ε2

∫
Bε

|∇g|2|∇2U|2dx ≤ sup
x∈Bε

|∇g(x)|2
∫
Bε

|∇2U|2 ≤ cG2
0ε

2|||U|||23,0,Bε .

Let us estimate the integral containing the term ε2|∇2g|2|∇U|2. First consider this integral over the domain
Aε, where Aε is an arbitrary domain from the covering Aε. Inequalities (3.5), (4.4) yield

ε2

∫
Aε

|∇2g|2|∇U|2dx ≤ cε2 sup
x∈Aε

|∇U(x)|2
∫
Aε

|∇2g|2dx

≤ cε2+2α1 |||U|||23,0,AεG
2
0ε
n−4 ≤ cG2

0ε
2|||U|||23,0,Aε ;
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ε4

∫
Aε

|∇g|2||∇2g|2|∇U|2dx ≤ cε4 sup
x∈Aε

|∇g(x)|2
∫
Aε

|∇2g|2|∇U|2dx

≤ cε4 sup
x∈Bε

|∇g(x)|2
∫
Aε

|∇2g|2|∇U|2dx ≤ cG4
0ε

2|||U|||23,0,Aε .

Summing these inequalities over all Aε ∈ Aε, we derive

ε2

∫
Bε

|∇2g|2|∇U|2dx+ ε4

∫
Bε

|∇2g|2||∇2g|2|∇U|2dx

≤ cG2
0(1 +G2

0)ε2|||U|||23,0,Bε .

Collecting the above estimates we get

1
ε2 ‖h‖

2
L2(Bε)

≤ cλ2A2
((

1 +G2
0(1 +G2

0)
)
|||U|||23,0,Bε

+ε2α1 |||U|||43,0,Bε
)
.

(4.10)

Analogously, we have

|∇h| ≤ cλA
((
|∇3U|+ |∇2U|2 + ε|∇3U||∇g|

)(
1 + |∇U|

)

+
(
ε|∇2U||∇2g|+ ε|∇2U|2|∇g|

)(
1 + |∇U|

)
+ ε2|∇2U||∇2g||∇g|

+|∇U|
(
ε|∇3g|+ ε2|∇2g|2

)(
1 + ε|∇g|

))
.

The L2 norm of this expression is evaluated according to the following scheme: in each product of gradients
the first order terms |∇U| and ε|∇g| are evaluated by supx∈Bε |∇U(x)| and supx∈Bε ε|∇g|, the second order
terms |∇2U| and ε|∇g| are evaluated in the L4 norm, finally the third order terms |∇3U| and ε|∇g| are evaluated
in the L2 norm. Then we apply the embedding inequalities of Lemma 3.4. So, for the gradient of h using (1.1),
(4.4), (4.5), (3.5)–(3.7) we obtain the estimate3

‖∇h‖2L2(Bε)

≤ cλ2A2(1 +G2
0 +G4

0)
(
|||U|||63,0,Bε + |||U|||43,0,Bε + |||U|||23,0,Bε

)
.

(4.11)

Let us define in W 3,2(Bε) a closed bounded set BR0
= {u ∈ W 3,2(Bε) : |||u|||3,0,Bε ≤ R0}. Assume that

U ∈ BR0
. Then (4.10) and (4.11) yield the estimate

|||h + f |||21,0,Bε ≤ cλ
2A2R2

0(1 +G2
0 +G4

0)(1 +R2
0 +R4

0)

+2|||f |||21,0,Bε
(4.12)

3Without loss of generality we suppose that ε ≤ 1.
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and, by (3.15), we obtain

|||Mu|||23,0,Bε + |||∇P |||21,0,Bε

≤ c1λ2A2R2
0(1 +G2

0 +G4
0)(1 +R2

0 +R4
0) + c2|||f |||21,0,Bε .

(4.13)

Put M2
0 = c2|||f |||21,0,Bε and R2

0 = 2M2
0 . Suppose that

λ2 ≤ 1

2c1A2(1+G2
0 +G4

0)(1 + 2c2|||f |||21,0,Bε + 4c22|||f |||41,0,Bε)
= λ2

∗. (4.14)

Then from (4.13) it follows that

|||Mu|||23,0,Bε ≤ R
2
0.

The last inequality implies that the operator L maps the closed bounded set BR0
⊂W 3,2(Bε) into itself.

Let us show that L is a contraction in H(Bε). Multiplying equations (4.9) by an arbitrary ηηη ∈ H(Bε) and
integrating by parts we get

ν0
2

∫
Bε

∇(MU) · ∇ηηηdx = −λ
∫
Bε

ν(γ̇(U + εg))D(U + εg) · ∇ηηηdx

+λ
∫
Bε

ν(γ̇(εg))D(εg) · ∇ηηηdx+
∫
Bε

f · ηηη dx.
(4.15)

From (4.15) it follows that for any U1,U2 ∈ BR0 the equality holds

ν0
2

∫
Bε

∇(MU1 −MU2) · ∇ηηηdx

= −λ
∫
Bε

ν(γ̇(U1 + εg))
(
D(U1)−D(U2)

)
· ∇ηηηdx

−λ
∫
Bε

(
ν(γ̇(U1 + εg))− ν(γ̇(U2 + εg)

)
D(U2 + εg) · ∇ηηηdx

= J1 + J2.

(4.16)

Since by (1.1),

|ν(γ̇(U1 + εg))− ν(γ̇(U2 + εg)|2 ≤ sup
y
|∇yν(y)|2|D(U1)−D(U2)|2

≤ A2|D(U1)−D(U2)|2 ≤ cA2|∇U1 −∇U2|2,

we have

|J2| ≤
ν0

8

∫
Bε

|∇ηηη|2dx+
2cλ2A2

ν0

∫
Bε

|∇U1 −∇U2|2|∇(U2 + εg)|2dx

≤ ν0

8

∫
Bε

|∇ηηη|2dx+
2cλ2A2

ν0
sup
x∈Bε

|∇(U2 + εg)|2
∫
Bε

|∇U1 −∇U2|2dx
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≤ ν0

8

∫
Bε

|∇ηηη|2dx+
2cλ2A2

ν0

(
ε2α1 |||U2|||23,0,Bε +G2

0)
) ∫
Bε

|∇U1 −∇U2|2dx

≤ ν0

8

∫
Bε

|∇ηηη|2dx+
2cλ2A2

ν0

(
R2

0 +G2
0

) ∫
Bε

|∇U1 −∇U2|2dx;

|J1| ≤
ν0

8

∫
Bε

|∇ηηη|2dx+
2cλ2A2

ν0

∫
Bε

|∇U1 −∇U2|2dx

Taking in (4.16) ηηη =MU1 −MU2 we derive the inequality

ν0

2
‖∇(MU1 −MU2)‖2L2(Bε)

≤ ν0

4
‖∇(MU1 −MU2)‖2L2(Bε)

+λ2 c3A
2
[
1 +R2

0 +G2
0

]
ν0

‖∇(U1 −U2)‖2L2(Bε)
.

Therefore,

‖∇(MU1 −MU2)‖2L2(Bε)
≤ λ2 4c3A

2
[
1 +R2

0 +G2
0

]
ν2

0

‖∇(U1 −U2)‖2L2(Bε)
.

Let

λ2
0 = min

{
λ2
∗,

ν2
0

4c3A2
[
1 +R2

0 +G2
0

]}. (4.17)

Then for any λ ∈ (0, λ0) the operator M is a contraction with the contraction factor

q = λ2 4c3A
2
[
1 +R2

0 +G2
0

]
ν2

0

< 1

and, by Theorem 3.10, there exists a unique fixed point u of the operatorM which is a solution (together with
the corresponding pressure function p) of problem (4.6). Estimate (4.7) for the fixed point u and the pressure
p follows from the fact that u ∈ BR and inequality (4.13).

(ii) If the pressure p satisfies the condition
∫
Bε

p(x)dx = 0, it can be represented in the form p = divw, where

w ∈ W̊ 1,2(Bε) and

‖∇w‖L2(Bε) ≤ cε
−1‖p‖L2(Bε).
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(see Lemma 3.6). Multiplying equations (4.6) by w and integrating by parts we derive

ν0
2

∫
Bε

∇u · ∇wdx+ λ
∫
Bε

(
ν(γ̇(u + εg))D(u + εg)− ν(γ̇(εg))D(εg)

)
· ∇wdx

−
∫
Bε

f ·wdx =
∫
Bε

pdivwdx =
∫
Bε

|p|2dx.

Therefore, ∫
Bε

|p|2dx ≤ ‖f‖L2(Bε)‖w‖L2(Bε) + ν0
2 ‖∇u‖L2(Bε)‖∇w‖L2(Bε)

+λ
( ∫
Bε

|ν(γ̇(u + εg))D(u + εg)− ν(γ̇(εg))D(εg)|2dx
)1/2

‖∇w‖L2(Bε)

≤ cε‖f‖L2(Bε)‖∇w‖L2(Bε) + ν0
2 ‖∇u‖L2(Bε)‖∇w‖L2(Bε)

+cA(1 +G0)1/2‖∇u‖L2(Bε)‖∇w‖L2(Bε)

≤ c
(
‖f‖L2(Bε) + ε−1‖∇u‖L2(Bε)

)
‖p‖L2(Bε),

and we obtain

‖p‖2L2(Bε)
≤ c
(
‖f‖2L2(Bε)

+ ε−2‖∇u‖2L2(Bε)

)
.

From the last inequality it follows that

‖p‖2L2(Bε)
≤ cε2

(
|||f |||21,0,Bε + |||u|||23,0,Bε

)
≤ cε2|||f |||21,0,Bε .

5. Non-Newtonian Poiseuille flow

5.1. Existence of non-Newtonian Poiseuille flow with prescribed pressure slope

The non-Newtonian Poiseuille flow with the strain rate dependent viscosity was studied in the book [6] and
recently in [27]. We will need below some extended versions of theorems proved there. Namely we will use the
results on the regularity of this flow obtained in [26].

Theorem 5.1. (i) Let ∂σ ∈ C3. For any α0 > 0 there exists λ0 = λ0(α0) such that for all λ ∈ (0, λ0] and
any |α| ≤ α0 problem (1.5) admits a unique4 solution vPα ∈ W̊ 1,2(σ) ∩W 3,2(σ). The solution vPα satisfies the
estimate

‖vPα‖W 3,2(σ) ≤ c|α|,
∣∣∣ ∫
σ

vPα(x′)dx′
∣∣∣ ≤ c|α|, (5.1)

where the constant c depends only on σ, ν0, A.
(ii) For any F0 > 0 there exists λ1 = λ1(F0) such that for all λ ∈ (0, λ1] and every F ∈ (−F0, F0)

problem (1.5) admits a unique solution (vPα , α) with Fσ(α) =
∫
σ

vPα(x′)dx′ = F . Moreover, the following

estimates

‖vPα‖W 3,2(σ) ≤ C|F |, |α| ≤ c|F |. (5.2)

4Here and below the uniqueness takes place only in some ball where the contraction principle is applied.
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hold.
(iii) Let α1, α2 be two real numbers such that |αi| ≤ α0, i = 1, 2, let vPα1

, vPα2
be two solutions of problem

(1.5). There exists λ3 = λ3(α0) such that for all λ ∈ (0, λ3] the following estimates hold

∣∣∣ ∫
σ

(vPα1
− vPα2

)dx′
∣∣∣ ≤ c|α1 − α2|, ‖vPα1

− vPα2
‖W 2,2(σ) ≤ c|α1 − α2|, (5.3)

where the constant c depends only on σ, ν0, A.

The proof is given in [26]

5.2. Operator relating the pressure slope and the flux

Let us recall the notations from the Introduction: Fσ(α) =
∫
σ

vPα(x′)dx′ is the flux corresponding to the

pressure slope −α, and G(α) = Fσ(α)− κα.

Lemma 5.2. For any α0 > 0 there exists a number λ2 = λ2(α0) ≤ λ1(α0) such that for all λ ∈ (0, λ2] the
operator κ−1G(α) is a contraction on the interval [−α0, α0].

Remark 5.3. If the constant κ−1 is replaced by another constant K−1 > 0 then for any α0 > 0 there exists
a number λ′2 = λ′2(α0) ≤ λ1(α0) such that for all λ ∈ (0, λ′2] the operator K−1G(α) is a contraction on the
interval [−α0, α0].

6. Equation on the graph

Consider the following problem on the graph B: given constants Fl, l = N1 + 1, . . . , N , such that
N∑

l=N1+1

Fl = 0

and constants clj , l = 1, . . . , N1 (here for any l subscript j is such that the edges ej have an end point Ol), find

a function p which is affine with respect to x
(ej)
1 ,

p(x
(ej)
1 ) = −sjx

(ej)
1 + aj , (6.1)

and such that 

− ∂

∂x
(ej)
1

(
Fσj
( ∂p

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj
( ∂p

∂x
(ej)
1

(0)
)

= 0, l = 1, . . . , N1,

−Fσj
( ∂p

∂x
(ej)
1

(0)
)

= −Fl, l = N1 + 1, . . . , N, Ol ∈ ej ,

p(x
(ej)
1 = 0)− p(x(es)

1 = 0) = clj , ej : Ol ∈ ej , l = 1, . . . , N1,
p(ON ) = 0,

(6.2)

where es is a selected and fixed edge of the bundle.
This problem can be generalized as follows. Denote by H(B) the space of functions defined on the graph and

belonging to W 1,2(ej) on every edge ej of the graph and vanishing at ON . The norm in H(B) is defined by

‖p‖2H(B) =

M∑
j=1

‖p‖2W 1,2(ej)
.
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Given Fl ∈ R, l = 1, . . . , N , f (ej) ∈ L2(ej), j = 1, . . . ,M , clj ∈ R , l = 1, . . . , N1, (for j such that the edges

ej have an end point Ol), and such that
N∑
l=1

Fl = 0 find a function p ∈ H(B) satisfying the equations



− ∂

∂x
(ej)
1

(
Fσj
( ∂p

∂x
(ej)
1

(x
(ej)
1 )

))
= f (ej)(x

(ej)
1 ), x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj
( ∂p

∂x
(ej)
1

(0)
)

= −Fl, l = 1, . . . , N1,

−Fσj
( ∂p

∂x
(ej)
1

(0)
)

= −Fl, l = N1 + 1, . . . , N, Ol ∈ ej ,

p(x
(ej)
1 = 0)− p(x(es)

1 = 0) = clj , ej : Ol ∈ ej , l = 1, . . . , N1,
p(ON ) = 0.

(6.3)

in the sense of the following weak formulation:

M∑
j=1

|ej |∫
0

Fσj
( ∂p

∂x
(ej)
1

(x
(ej)
1 )

) ∂q

∂x
(ej)
1

dx
(ej)
1 +

N∑
l=1

Flq(Ol)

=
M∑
j=1

|ej |∫
0

f (ej)(x
(ej)
1 )q(x

(ej)
1 )dx

(ej)
1

(6.4)

for all q ∈W 1,2(B) equal to 0 at ON .

Theorem 6.1. There exists λ1 such that ∀λ ∈ [0, λ1) problem (6.3) admits a unique weak solution from H(B).

Let f (ej)(m) ∈ L2(ej), j = 1, . . . ,M , F
(m)
l , c

(m)
lj ∈ R,m = 1, 2, be two sets of data and let p(m) be solutions of

problem (6.3) corresponding to these data sets. Then there exists a constant C depending on λ, σj ,B, such that

‖p(1) − p(2)‖2H(B) ≤ C
( M∑
j=1

‖f (ej)(1) − f (ej)(2)‖2L2(ej)

+
N∑
l=1

|F (1)
l − F (2)

l |2 +
N1∑
l=1

∑
ej :Ol∈ej

|c(1)
lj − c

(2)
lj |2

)
.

(6.5)

Proof is given in [25].

Corollary 6.2. There exists λ1 such that for all λ ∈ [0, λ1) problem (6.2) admits a unique solution from H(B).

Let F
(m)
l ∈ R, l = N1 + 1, . . . , N, c

(m)
lj ∈ R, l = 1, . . . , N1,m = 1, 2, be two sets of data and let p(m) be solutions

of problem (6.2) corresponding to these data sets. Then there exists a constant Cp depending on λ, σj ,B, such
that

‖p(1) − p(2)‖2H(B) ≤ C(

N∑
l=N1+1

|F (1)
l − F (2)

l |
2 +

N1∑
l=1

∑
ej :Ol∈ej

|c(1)
lj − c

(2)
lj |

2). (6.6)

7. Scaling of the Non-Newtonian quasi-Poiseuille flow in a thin
tube of the tube structure. Scaling of the equation on the

graph

In the introduction we have found the relations between the fluxes and Poiseuille velocities in the tubes with
the section σ and σε:
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vεP,αε (z′) = εvPα(
z′

ε
), (7.1)

Fσε(β) = εnFσ(εβ). (7.2)

Consider now the problem on the graph corresponding to the data of problem (1.2): the cross-sections σjε
and the given fluxes F εl =

∫
γlε

εgl(x−Olε ) · n(x)dS = εnF l,



− ∂

∂x
(ej)
1

(
Fσjε
( ∂pε

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσjε
( ∂pε

∂x
(ej)
1

(0)
)

= 0, l = 1, . . . , N1,

−Fσjε
( ∂pε

∂x
(ej)
1

(0)
)

= −F εl , l = N1 + 1, . . . , N, Ol ∈ ej ,

pε(x
(ej)
1 = 0)− pε(x(es)

1 = 0) = clj , ej : Ol ∈ ej , l = 1, . . . , N1,
pε(ON ) = 0.

(7.3)

and it can be rescaled using the scalings of the pressure slope - flux relation:



− ∂

∂x
(ej)
1

(
Fσj
(
ε
∂pε

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj
(
ε
∂pε

∂x
(ej)
1

(0)
)

= 0, l = 1, . . . , N1,

−Fσj
(
ε
∂pε

∂x
(ej)
1

(0)
)

= −F l, l = N1 + 1, . . . , N, Ol ∈ ej ,

εpε(x
(ej)
1 = 0)− εpε(x(es)

1 = 0) = εclj , ej : Ol ∈ ej , l = 1, . . . , N1,
εpε(ON ) = 0.

(7.4)

Notice that the operator Fσj (β) is a nonlinear operator relating the pressure slope and the flux. Now making
the change p = εpε, we get a problem of (6.2) type where the left hand side does not depend on ε. If p is an
affine function, then

pε(x
(ej)
1 ) = −sjx

(ej)
1 /ε+ aj/ε. (7.5)

8. Existence, uniqueness and stabilization of a solution to the
Non-Newtonian flow equations in an unbounded domain with

cylindrical outlets to infinity

In this section we will recall the theorems from [26] which will be used in the construction of the boundary
layer correctors for the asymptotic expansion of a solution of problem (1.2).
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Consider in the domain Ω the steady state boundary value problem for the non-Newtonian fluid motion
equations  −div((ν0 + λν(γ̇(v))D(v)) +∇p = 0, x ∈ Ω,

divv = 0, x ∈ Ω,
v|∂Ω = 0.

(8.1)

We look for the solution v having prescribed fluxes Fj over the cross sections σj of outlets to infinity:∫
σj

v · ndS = Fj , j = 1, 2, . . . , J, (8.2)

where

J∑
j=1

Fj = 0. (8.3)

8.1. Existence and uniqueness of a solution

Consider the domain Ω ⊂ Rn with J cylindrical outlets to infinity. We assume that the boundary ∂Ω is C4-

regular. Consider in Ω the problem (8.1), (8.2), (8.3). Denote F =

√
J∑
j=1

F 2
j . By Theorem 5.1, for any set of fluxes

(F1, . . . , FJ) such that F ≤ F0, there is a number λ00 depending on F0, such that for every λ ∈ (0, λ00) there
exist J pressure slopes αj and corresponding J quasi-Poiseuille flows VPαj

(x) = (vPαj (x′), 0, ..., 0)T ∈W 3,2(σj),

defined in cylinders {x(j) ∈ Rn, x(j)′ ∈ σj , x(j)
1 ∈ R}, j = 1, . . . , J , such that Fσj (αj) = Fj .

We define the cut-off functions χj associated to each outlet Ωj as C4-smooth functions vanishing everywhere

in Ω except for the outlet Ωj , where they depend on the local longitudinal variable x
(j)
1 only, are equal to zero

if x
(j)
1 < 1 and equal to one if x

(k)
1 > 2. Put

Vχ =

J∑
j=1

χjVPαj , Pχ = −
J∑
j=1

χjαjx
(ej)
1 .

It is easy to see that for h given by the formula

h(x) = div Vχ(x) =

J∑
j=1

χ′j(x
(j)
1 ) vPαj (x(j)′),

supph ⊂ Ω(2) \ Ω(1). (8.4)

Moreover, from the condition
J∑
j=1

Fj = 0 it follows that

∫
Ω(2)

h(x) dx = 0.
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Finally, estimates (5.1) and (5.2) yield

‖h‖W 2,2(Ω(3)) ≤ c
J∑
j=1

‖vPαj ‖W 2,2(σj) ≤ cF (8.5)

Since h ∈W 2,2(Ω(3)), by results in [8], there exits a vector field W ∈ W̊ 1,2(Ω(3)) ∩W 3,2(Ω(3)) such that

div W(x) = h(x),

and

‖W‖W 3,2(Ω(3)) ≤ c ‖h‖W 2,2(Ω(3)) ≤ cF. (8.6)

Moreover, since supph ⊂ Ω
(2)

, W can be constructed such that

supp W ⊂ Ω
(3)
. (8.7)

Extend the functions W and Vχ by zero into the whole Ω and set

V̂χ(x) = W(x) + Vχ(x). (8.8)

Then,

div V̂(x) = 0, V̂(x)
∣∣
∂Ω

= 0,

∫
σj

V̂(x) · n(x) ds = Fj , j = 1, . . . , J,

and for x ∈ Ωj \ Ω(3) the vector–field V̂(x) coincides with the velocity part VPαj
(x(j)′) of the corresponding

Poiseuille flow.
By denoting in (1.2)

v = u + V̂χ, p = q + Pχ, (8.9)

where Pχ =
J∑
j=1

χjαjx
j
1, we obtain the following problem



−div
[(
ν0 + λν(

·
γ(u + V̂χ)

)
D(u + V̂χ)

]
+∇(q + Pχ) = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,∫
σj

u · ndS = 0, j = 1, . . . , J.

(8.10)

Theorem 8.1. For any f0 > 0 and F0 > 0 there exist numbers Λ0 = Λ0(F0, f0) > 0 and β∗ > 0 such that
∀λ ∈ (0,Λ0], ∀β ∈ (0, β∗] and for any f ∈ W1,2

β (Ω) satisfying ‖f‖W1,2
βββ

(Ω) ≤ f0 and any set (F1, . . . , FJ) with
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F2 =
J∑
j=1

F 2
j ≤ F 2

0 the problem (8.1), (8.2), (8.3) has a unique solution (v, p)5 admitting the representation (8.9)

with u ∈ W3,2
βββ (Ω), ∇q ∈ W1,2

βββ (Ω),
∫

Ω(3)

q(x)dx = 0. The following estimate

‖u‖2W3,2
βββ

(Ω)
+ ‖∇q‖2W1,2

βββ
(Ω)
≤ c
(
‖f‖2W1,2

βββ
(Ω)

+ F2
)

(8.11)

holds. Moreover, there exist constants q1, q2, . . . , qJ such that

∫
Ω0

|q(x)|2dx+
J∑
j=1

∫
Ωj

exp (2βx
(j)
1 )|q(x)− qj |2dx

≤ c
∫
Ω

Eβββ(x)|∇q(x)|2dx ≤ c
(
‖f‖2W1,2

βββ
(Ω)

+ F2
)
.

(8.12)

The proof is given in [26].

Below we will say that the function q ∈ L2
loc(Ω) exponentially stabilizes to constants q1, q2, . . . , qJ at infinity

if ∫
Ωj

exp (2βx
(j)
1 )|q(x)− qj |2dx <∞, j = 1, 2, . . . , J,

for some β > 0. The space of such functions we denote L̃2
loc(Ω).

8.2. Continuity of the solution with respect to data of the problem

Assume that we have two sets of fluxes (F
(1)
1 , . . . , F

(1)
J ) and (F

(2)
1 , . . . , F

(2)
J ) satisfying the condition (8.3), and

two functions f (1), f (2) ∈ W1,2
βββ (Ω). Let V̂

(1)
χ and V̂

(2)
χ be flux carriers corresponding to fluxes (F

(1)
1 , . . . , F

(1)
J ) and

(F
(2)
1 , . . . , F

(2)
J ), respectively (see formula (8.8)). Denote by (u(1), q(1)) and (u(2), q(2)) the solutions of problem

(8.10) corresponding to the flux carriers V̂
(1)
χ , V̂

(2)
χ and the right hand sides f (1), f (2). Assume that

F(i) ≤ F0, ‖f (i)‖W1,2
βββ

(Ω) ≤ f0, i = 1, 2. (8.13)

Denote

Q =

J∑
j=1

|F (1)
j − F (2)

j |
2 + ‖f (1) − f (2)‖2W1,2

βββ
(Ω)
.

Theorem 8.2. There exists Λ = Λ1(F0, f0) and β∗ such that for ∀λ ∈ (0,Λ1], ∀β ∈ (0, β∗] and sufficiently

small Q for arbitrary f (i) and (F
(i)
1 , . . . , F

(i)
J ), i = 1, 2, satisfying (8.13), the following estimate holds:

‖u(1) − u(2)‖2W 2,2(Ω) + ‖∇(q(1) − q(2))‖2L2(Ω) ≤ cQ| lnQ|
2. (8.14)

5The uniqueness takes place only in some ball where the contraction principle is applied and we have in mind the uniqueness
only for solutions admitting the representation (8.9). Moreover, as usual, the pressure p is unique up to an additive constant.
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Moreover, there exist constants (q
(1)
1 , . . . , q

(1)
J ) and (q

(2)
1 , . . . , q

(2)
J ) such that if q(1) and q(2) are normalized by

the conditions
∫

Ω(3)

q(1)(x)dx =
∫

Ω(3)

q(2)(x)dx = 0, then

J∑
j=1

∫
Ωj

exp (2βx
(j)
1 )|q(m)(x)− q(m)

j |2dx ≤ c(F0 + f0), m = 1, 2, (8.15)

and

J∑
j=1

|q(1)
j − q

(2)
j |

2 ≤ cQ| lnQ|2. (8.16)

The proof is given in [26].

9. Construction of an asymptotic approximation of the solution

The algorithm of the construction of an asymptotic approximation is a sequence of iterations where at each
step we solve a problem on the graph and a set of boundary layer problems (see [21]). Namely, the asymptotic
expansion consists of two addends. The first addend is a quasi-Poiseuille flow multiplied by a cut-off function
vanishing within some neighbourhood of the the nodes/vertices Ol. Substituting this first addend in problem
(1.2), we deriveN boundary layer problems which are obtained by scaling of problem (8.10) in the neighbourhood
of nodes and vertices. These two addends are matched via the constants clj in the problem on the graph (7.3)
and the constants c̃lj to which stabilizes at infinity the pressure in (8.10). Constants clj and c̃lj should be the
same. By an iterative process this condition will be achieved with the accuracy O(εJ).
Step 0.1. Given Fl, l = N1 + 1, . . . , N , we first solve on the graph the problem of order zero

− ∂

∂x
(ej)
1

(
Fσj
( ∂p0

∂x
(ej)
1

(x
(ej)
1 )

))
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj (

∂p0

∂x
(ej)
1

(0)) = 0, l = 1, . . . , N1,

−Fσj (
∂p0

∂x
(ej)
1

(0)) = −F l, l = N1 + 1, . . . , N, Ol ∈ ej ,

p0(x
(ej)
1 = 0)− p0(x

(es)
1 = 0) = 0, ej : Ol ∈ ej , l = 1, . . . , N1,

p0(ON ) = 0.

(9.1)

and define pε0 = ε−1p0,

pε0(x
(ej)
1 ) = −sj,0x

(ej)
1 /ε+ aj,0/ε, vεP,αεj,0(x(ej)′) = εvP,sj,0(x(ej)′/ε). (9.2)

Multiplying by a cut-off function we introduce for x
(ej)
1 ∈ (0, |ej |/2) the functions

va0 = vεP,αεj,0
(x(ej)′)ζ(

x
(ej)

1

3rε )ej ;

pa0 = (pε0(x
(ej)
1 )− pε0(x

(es)
1 = 0)ζ(

x
(ej)

1

3rε ) + pε0(x
(es)
1 = 0),

(9.3)

where ζ(t) = 0 if |t| ≤ 1, ζ(t) = 1 if |t| ≥ 2, and ζ ∈ C3(R) and ej is the direction vector of the edge ej .
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Step 0.2. Denote x̄ = x−Ol , Vε
ζ(x̄) =

∑
j:Ol∈ej

ζ(
x
(ej)

1

3rε )vε0,P,αεj,0
(x(ej)′)ej , P

ε
ζ (x̄) =

∑
j:Ol∈ej

ζ(
x
(ej)

1

3rε )sjx
(ej)
1 /ε. Sub-

stituting (9.3) into (1.2) and formally extending the branches to infinity, we get for each Ol the following problem

posed in Ωεl : find Nε
0 ∈ W̊ 1,2(Ωεl ) and P ε0 ∈ L̃2

loc(Ω
ε
l ), such that



−div((ν0 + λν(γ̇(Nε
0(x̄) + Vε

ζ(x̄)))D(Nε(x̄) + Vε
ζ(x̄)))

+∇(P ε0 − P εζ (x̄)) = 0, x̄ ∈ Ωεl ,

div(Nε
0(x̄) + Vε

ζ(x̄)) = 0, x̄ ∈ Ωεl ,

N0
ε = 0, x̄ ∈ ∂Ωεl ,

(9.4)

and so in dilated variables ξ = x−Ol
ε in the unbounded domain Ωl: find N0 ∈ W̊ 1,2(Ωl) and P0 ∈ L̃2

loc(Ωl), such
that 

−divξ((ν0 + λν(γ̇ξ(N0(ξ) + V0
ζ(ξ)))Dξ(N0(ξ) + V0

ζ(ξ)))

+∇ξ(P0(ξ)− P 0
ζ (ξ)) = 0, ξ ∈ Ωl ,

divξ(N0(ξ) + V0
ζ(ξ)) = 0, ξ ∈ Ωl ,

N0(ξ) = 0, ξ ∈ ∂Ωl ,

(9.5)

where

V0
ζ(ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)vP,sj,0(ξ(ej)′)ej , P

0
ζ (ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)sj,0ξ

(ej)
1 ,

divξ, γ̇ξ, Dξ,∇ξ are operators written for ξ variable. Notice that this problem is independent of ε, Nε
0(x−Ol) =

εN0(x−Olε ), P ε0 (x−Ol) = P0(x−Olε ). Let P0 tends to zero at the outlet Π
(es)
∞ corresponding to the selected edge

es of the bundle Bl, and denote by c̃0lj the constants which are the limits of P0 in the outlets Π
(ej)
∞ , j 6= s. Here

and below for vertices Ol condition Nk = 0 on γl is replaced by Nk = gl; in this case there is only one outlet
and the pressure tends there to zero. Then we pass to the order one.
Step 1.1. Given Fl, l = N1 + 1, . . . , N and constants c̃0lj (all constants are independent of ε) we solve again
problem on the graph of the first order, that is

− ∂

∂x
(ej)
1

(
Fσj (

∂p1

∂x
(ej)
1

(x
(ej)
1 ))

)
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj (

∂p1

∂x
(ej)
1

(0)) = 0, l = 1, . . . , N1,

−Fσj (
∂p1

∂x
(ej)

1

(0)) = −F l, l = N1 + 1, . . . , N, Ol ∈ ej ,

p1(x
(ej)
1 = 0)− p1(x

(es)
1 = 0) = εc̃0lj , ej : Ol ∈ ej , l = 1, . . . , N1,

p1(ON ) = 0.

(9.6)

and define pε1 = ε−1p1,

pε1(x
(ej)
1 ) = −sj,1x

(ej)
1 /ε+ aj,1/ε, (9.7)
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and vεP,αεj,1
(x(ej)′) = εvP,sj,1(x(ej)′/ε). Consider the functions

va1 = V εP,αεj,1
(x(ej)′)ζ(

x
(ej)

1

3rε )ej ;

pa1 =
(
pε1(x

(ej)
1 )− pε1(x

(es)
1 = 0)

)
ζ(
x
(ej)

1

3rε ) + pε1(x
(es)
1 = 0),

x
(ej)
1 ∈ (0, |ej |/2).

(9.8)

Applying the estimates of Theorem 5.1, Corollary 6.2 and Theorem 8.2, we get the estimates for the differences
p1 − p0, sj,1 − sj,0, vεP,sεj,1

− vεP,sεj,0 :

‖p1 − p0‖2H(B) ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(c1lj − c0lj)|2,

M∑
j=1

|sj,1 − sj,0|2 ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(c1lj − c0lj)|2,

M∑
j=1

‖vP,sj,1 − vP,sj,0‖2H1(σj) ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(c1lj − c0lj)|2,

(9.9)

where C is a constant independent of ε and c0lj = 0, c1lj = c̃0lj .

Step 1.2. Solve the following problem in dilated variables ξ = x−Ol
ε in the unbounded domain Ωl: find N1 ∈

H1(Ωl) and P1 ∈ L̃2
loc(Ωl), such that

−divξ((ν0 + λν(γ̇ξ(N1(ξ) + V1
ζ(ξ)))Dξ(N1(ξ) + V1

ζ(ξ)))

+∇ξ(P1(ξ)− P 1
ζ (ξ)) = 0, ξ ∈ Ωl ,

divξ(N1(ξ) + V1
ζ(ξ)) = 0, ξ ∈ Ωl ,

N1(ξ) = 0, ξ ∈ ∂Ωl .

(9.10)

Here and below

V1
ζ(ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)v0,P,sj,1(ξ(ej)′)ej

and

P 1
ζ (ξ) =

∑
j:Ol∈ej

ζ(
ξ

(ej)
1

3r
)sj,1ξ

(ej)
1 , k = 1, . . . , J.

As in the previous step we assume that P1 tend to zero in the selected outlet Π
(es)
∞ , and by c̃1lj are denoted the

constants which are the limits of P1 at the outlets Π
(ej)
∞ .

Applying the estimates of Theorem 8.2, we get that

|c̃1lj − c̃0lj | ≤ Cε| ln ε|2.

Assume that we have constructed functions pk, constants sj,k, aj,k, functions vP,sj,k and for all l = 1, . . . , N ,

functions Nk, Pk and constants cklj = c̃k−1
lj such that

|cklj − ck−1
lj | ≤ Cε

k−1| ln ε|2(k−1)
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and

‖pk − pk−1‖2H(B) ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(cklj − c
k−1
lj )|2,

M∑
j=1

|sj,k − sj,k−1|2 ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(cklj − c
k−1
lj )|2,

M∑
j=1

‖vP,sj,k − vP,sj,k−1
‖2W 1,2(σj) ≤ C

N1∑
l=1

∑
ej :Ol∈ej

|ε(cklj − c
k−1
lj )|2,

(9.11)

where

√
N1∑
l=1

∑
ej :Ol∈ej

|ε(cklj − c
k−1
lj )|2 = O(εk| ln ε|2(k−1)). Define

Qk =

N1∑
l=1

∑
ej :Ol∈ej

|ε(cklj − ck−1
lj )|2 = O(ε2k| ln ε|4(k−1)).

Then

‖Nk −Nk−1‖2W 1,2(Ω) ≤ CQk| lnQk| = O(ε2k| ln ε|4k−3),

‖Pk − Pk−1 −
∑

j:Ol∈ej
ζ(
ξ
(ej)

1

3r )(c̃klj − c̃
k−1
lj )‖2L2(Ω) ≤ CQk| lnQk|

= O(ε2k| ln ε|4k−3),

|c̃klj − c̃
k−1
lj |2 ≤ CQk| lnQk|2 = O(ε2k| ln ε|4k−2).

(9.12)

Define now ck+1
lj = c̃klj . So,

|ck+1
lj − cklj | = O(εk| ln ε|2k−1) = O(εk| ln ε|2k).

Step k+1.1. Given Fl, l = N1 + 1, . . . , N and constants c̃klj (these constants are uniformly bounded with
respect to ε), we solve the problem on the graph of the (k + 1) order, that is



− ∂

∂x
(ej)
1

(
Fσj (

∂pk+1

∂x
(ej)
1

(x
(ej)
1 ))

)
= 0, x

(ej)
1 ∈ (0, |ej |),

−
∑

ej :Ol∈ej
Fσj (

∂pk+1

∂x
(ej)
1

(0)) = 0, l = 1, . . . , N1,

−Fσj (
∂pk+1

∂x
(ej)
1

(0)) = −F l, l = N1 + 1, . . . , N, Ol ∈ ej ,

pk+1(x
(ej)
1 = 0)− pk+1(x

(es)
1 = 0) = εc̃klj , Ol ∈ ej , l = 1, . . . , N1,

pk+1(ON ) = 0.

(9.13)

and define pεk+1 = ε−1pk+1,

pεk+1(x
(ej)
1 ) = −sj,k+1x

(ej)
1 /ε+ aj,k+1/ε,

vε0,P,αεj,k+1
(x(ej)′) = εv0,P,sj,k+1

(x(ej)′/ε).
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Applying Theorem 5.1, Theorem 6.1 and Theorem 8.2, we get the estimates for the differences pk+1 − pk,
sj,k+1 − sj,k, vεP,sεj,k+1

− vεP,sεj,k :

‖pk+1 − pk‖2H(B) ≤ C
N1∑
l=1

∑
ej :Ol∈ej

|ε(c̃klj − c̃
k−1
lj )|2

≤ Cε2Qk| lnQk| = O(ε2(k+1)| ln ε|4k),
M∑
j=1

|sj,k+1 − sj,k|2 = O(ε2(k+1)| ln ε|4k),

M∑
j=1

‖vP,sj,k+1
− vP,sj,k‖2W 1,2(σj) = O(ε2(k+1)| ln ε|4k).

(9.14)

Define now ck+1
lj = c̃klj .

Step k+1.2. Solve problem in dilated variables ξ = x−Ol
ε in the unbounded domain Ωl: find Nk+1 ∈W 1,2(Ωl)

and Pk+1 ∈ L̃2
loc(Ωl), such that

−divξ((ν0 + λν(γ̇ξ(Nk+1(ξ) + Vk+1
ζ (ξ)))Dξ(Nk+1(ξ) + Vk+1

ζ (ξ)))

+∇ξ(Pk+1(ξ)− P k+1
ζ (ξ)) = 0, ξ ∈ Ωl ,

divξ(Nk+1(ξ) + Vk+1
ζ (ξ)) = 0, ξ ∈ Ωl ,

Nk+1(ξ) = 0, ξ ∈ ∂Ωl .

(9.15)

Let c̃k+1
lj be the constants which are the limits of Pk+1(ξ) at the outlets Π

(ej)
∞ for the edges of the bundle Bl.

Applying Theorem 8.2, we get the estimates

‖Nk+1 −Nk‖2W 1,2(Ω) ≤ CQk+1| lnQk+1| = O(ε2k+2| ln ε|4k+1),

‖Pk+1 − Pk −
∑

j:Ol∈ej
ζ(
ξ
(ej)

1

3r )(c̃k+1
lj − c̃klj)‖2L2(Ω)

≤ CQk+1| lnQk+1| = O(ε2k+2| ln ε|4k+1),

|c̃k+1
lj − c̃klj |2 ≤ CQk+1| lnQk+1|2 = O(ε2k+2| ln ε|4k+2).

(9.16)

So, the algorithm is based on the fact that if the difference cklj − c
k−1
lj is of order εk−1| ln ε|2(k−1), then ‖pk −

pk−1‖H(B) is of order εk| ln ε|2(k−1) due to the scaling between pεk and pk = εpεk; then ‖vp,sj ,k− vp,sj ,k−1‖W 1,2(σj)

is of the same order as the pressure, then c̃klj − c̃
k−1
lj is of order εk| ln ε|2k. So, ck+1

lj − cklj = O(εk| ln ε|2k).
Let us define the asymptotic expansion of the solution in each part of the domain Bε corresponding to the

bundle BOl truncated at the distance |ej |/2 for every edge of the bundle ej :

vaJ = vεP,αεj,J
(x(ej)′)ζ(

x
(ej)

1

3rε )ejXj + εNJ(x−Olε )(1− ζ(
6x

(ej)

1

|ej | )Xj)
+Φej (x)Xj ;

paJ = (pεJ(x
(ej)
1 )− pεJ(x

(es)
1 = 0))ζ(

x
(ej)

1

3rε )Xj + pεJ(x
(es)
1 = 0)

+(PJ(x−Olε )− c̃Jljζ(
x
(ej)

1

3rε )Xj)(1− ζ(
6x

(ej)

1

|ej | )Xj)

+(c̃Jlj − cJlj)ζ(
x
(ej)

1

3rε )(1− ζ(
6x

(ej)

1

|ej | ))Xj , x ∈ BOl , x
(ej)
1 ∈ (0, |ej |/2),

(9.17)

where Xj is the characteristic function of Π
(ej)
ε , Φej is a vector valued function with the support in{

x(ej) : x
(ej)
1 ∈ ( 1

7 |ej |,
2
5 |ej |), x′(ej) ∈ σj

}
, vanishing at the lateral boundary of the cylinder Π

(ej)
ε and such that
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within the domain Υ̂
(ej)
ε = Π

(ej)
ε ∩ {x(ej) : x

(ej)
1 ∈ ( 1

8 |ej |,
1
2 |ej |), x

′(ej) ∈ σj},

divΦej = −div
{
εNJ(

x−Ol
ε

)(1− ζ(
6x

(ej)
1

|ej |
))
}
Xj

(see Lem. 3.7). The factor 1− ζ(
6x

(ej)

1

|ej | ) is introduced to remove the tails of NJ far from the nodes. Notice that

near the note the divergence is equal zero due to the construction of NJ (see the second equation in (9.15)).
Note that vaJ satisfies exactly the boundary condition and div vaJ = 0. Let us calculate the discrepancy in the

equations (1.2). The couple (vεP,αεj,J
(x(ej)′)ej , p

ε
J(x

(ej)
1 )) is an exact solution of the equations within the cylinders

Π
(ej)
ε , the couple

(
vεP,αεj,J (x(ej)′)ζ(

x
(ej)
1

3rε
)ej + εNJ(

x−Ol
ε

),

(pεJ(x
(ej)
1 )− pεJ(x

(ej)
1 = 0))ζ(

x
(ej)
1

3rε
) + pεJ(x

(es)
1 = 0) + PJ(

x−Ol
ε

)
)

is an exact solution of the equations within the bundle BOl . This pressure term can be rewritten as

(pεJ(x
(ej)
1 )− pεJ(x

(es)
1 = 0)− cJlj)ζ(

x
(ej)
1

3rε
) + pεJ(x

(es)
1 = 0) +

(
PJ(

x−Ol
ε

)− c̃Jljζ(
x

(ej)
1

3rε
)
)

+c̃Jljζ(
x

(ej)
1

3rε
),

or,

(pεJ(x
(ej)
1 )− pεJ(x

(es)
1 = 0))ζ(

x
(ej)
1

3rε
) + pεJ(x

(es)
1 = 0) +

(
PJ(

x−Ol
ε

)− c̃Jljζ(
x

(ej)
1

3rε
)
)

+(c̃Jlj − cJlj)ζ(
x

(ej)
1

3rε
).

So, the residual rε(x) is generated by the difference between constants c̃Jlj and cJlj (the last term in the approxi-

mation of the pressure), by the cut-off factor 1− ζ(
6x

(ej)

1

|ej | )Xj in the boundary layer term and by the divergence

corrector Φej (because the multiplication of the boundary layer by the cut off function slightly violates the
”divergence free” equation):

rε = −div((ν0 + λν(γ̇(Ψ))DΨ +∇ψ, (9.18)
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where

Ψ(x) = εNJ(x−Olε )(1− ζ(
6x

(ej)

1

|ej | )Xj) + Φej (x)Xj ;

ψ(x) = (PJ(x−Olε )− c̃Jljζ(
x
(ej)

1

3rε )Xj)(1− ζ(
6x

(ej)

1

|ej | )Xj)

+(c̃Jlj − cJlj)ζ(
x
(ej)

1

3rε )(1− ζ(
6x

(ej)

1

|ej | ))Xj .

(9.19)

The difference between constants c̃Jlj and cJlj is of order O(εJ | ln ε|2J+2). The multiplication of the term

PJ(
x−Ol
ε

)− c̃Jljζ(
x

(ej)
1

3rε
)

by the cut-off factor 1 − ζ(
6x

(ej)

1

|ej | )χj brings a residual of order O(e−c/ε) in W 1,2 norm with some positive c

independent of ε, due to the exponential stabilization of PJ(ξ) to the constant c̃Jlj as ξ tends to infinity in
an outlet (so it is exponentially small in subdomain where ζ changes its value from one to zero; only in this
subdomain the boundary layer correctors do not satisfy exactly the equations). Let us evaluate

|div((ν0 + λν(γ̇(Ψ))DΨ| ≤ c|∇2Ψ|+ cλA|∇2Ψ|(|∇Ψ|+ 1),

|∇div((ν0 + λν(γ̇(Ψ))DΨ| ≤ c(|∇3Ψ|+ cλA|∇2Ψ|2)(|∇Ψ|+ 1),

and so,

‖rε‖H1(Bε) ≤ c(‖ (|∇3Ψ|+ |∇2Ψ|+ |∇2Ψ|2)(1 + |∇Ψ|)‖L2(Bε)

≤ c(ε−(n−4)/2|||Ψ|||3,0,Bε + 1)2|||Ψ|||3,0,Bε = O(e−c/ε);

|||∇ψ|||1,0,Bε = O(εJ−2+(n−1)/2| ln ε|2J+2).

(9.20)

Taking together these estimates we conclude that in W 1,2(Bε) norm the residual has order
O(εJ−2| ln ε|2J+2)ε(n−1)/2.

Applying Theorem 4.1, we prove the following theorem.

Theorem 9.1. Assume that gj ∈ W 5/2,2(γj) satisfy condition (1.3) and let ν satisfy conditions (1.1). There

exists λ̂ > 0 independent of small parameter such that for all λ ∈ [0, λ̂) there exists a solution of problem (1.2),
such that

‖vaJ − vε‖W 1,2(Bε) ≤ CεJ−2| ln ε|2J+2,
‖paJ − pε‖L2(Bε) ≤ CεJ−3| ln ε|2J+2 (9.21)

with a constant C independent of ε.

Remark 9.2. The obtained estimates can be applied to justify the method of asymptotic partial decomposition
of the domain for the non-Newtonian flows in thin tube structures. This method was tested in [17] however the
question of the reconstruction of the pressure is still an open question in the case of the non-Newtonian flows.
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10. Conclusion

The paper considers the stationary non-Newtonian Stokes system of equations in a thin tube structure
modeling a network of blood vessels with the no slip boundary condition. The viscosity depends on the shear
rate. The small parameter is the ratio of the radius of a vessel to its length. The complete asymptotic expansion
of the solution is constructed and justified by the error estimates. These estimates evaluate the limitations of the
asymptotic approximation, however, the numerical experiments often confirm wider frames for the asymptotic
theory. The leading term of the asymptotic expansion is presented by (1.15) corresponding to the Poiseuille-like
flow in the inner part of the vessels corrected with some boundary layer functions in the neighborhood of the
junction zones. The Poiseuille part of the leading term is defined by a non-linear elliptic problem on the graph
with the Kirchhoff type junction conditions at the nodes for the macroscopic pressure (1.12). Comparing this
approximation to the one-dimensional models of the blood flow [5], we notice that the model in [5] is essentially
non-stationary, having hyperbolic type; it is suitable for the description of the flows with high Reynolds’ number
when the inertial term dominates over the viscous term, while (1.15) is more advantageous for the quasi-
stationary flows with dominating viscous term and modest Reynolds’ number. Also the derivation of (1.15)
starts with the non-Newtonian version of the Stokes system of equations while [5] derives the one-dimensional
model directly from the conservation laws.
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