# OBSERVATIONAL DATA AND ORBITS OF THE ASTEROIDS DISCOVERED AT THE BALDONE OBSERVATORY IN 2008-2013 

K. Černis ${ }^{1}$, I. Wlodarczyk ${ }^{2}$ and I. Eglitis ${ }^{3}$<br>1 Institute of Theoretical Physics and Astronomy, Vilnius University, Goštauto 12, Vilnius LT-01108, Lithuania; Kazimieras.Cernis@tfai.vu.lt<br>${ }^{2}$ Chorzow Astronomical Observatory, 41-500 Chorzow, Poland; astrobit@ka.onet.pl<br>${ }^{3}$ Institute of Astronomy, University of Latvia, Raina 19, Riga 1586, Latvia; ilgmars@latnet.lv

Received: 2015 March 6; accepted: 2015 April 27


#### Abstract

The paper presents statistics of the asteroids observed and discovered at the Baldone Observatory, Latvia, in 2008-2013 within the project for astrometric observations of the near-Earth objects (NEOs), the main belt asteroids and comets. CCD observations of the asteroids were obtained with the $0.80 / 1.20 \mathrm{~m}, \mathrm{f} / 3$ Schmidt telescope and a ST-10XME $15 \times 10 \mathrm{~mm}$ CCD camera. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2008-2013) we published 3511 astrometric positions of 826 asteroids. Among them, 43 asteroids were newly discovered at Baldone. For 36 of these asteroids the precise orbits are calculated. Because of short observational arc and small number of observations, a few asteroids have low-precision orbits and their tracks have been lost. For seven objects with poorly known orbits we present their ephemerides for 2015-2016. The orbits and the evolution of orbital elements of two asteroids, (428694) 2008 OS9 from the Apollo group and the Centaur (330836) Orius (2009 HW77), are recalculated including new observations obtained after 2011.


Key words: minor planets, asteroids - astrometry - ephemerides

## 1. ASTROMETRIC OBSERVATIONS OF MINOR PLANETS

This is our second paper in a series of papers which review our contribution to asteroid discovery and follow-up observations of newly and previously discovered asteroids. The first paper (Černis et al. 2014) was devoted to the asteroids discovered at the Moletai Observatory, Lithuania, in 2000-2004. In the present paper, we focus on statistics of the asteroids discovered at the Baldone Observatory in Latvia during the years 2008-2013.

The asteroid project of the Baldone Observatory (IAU code 069, longitude 24.4041 E , latitude 56.7734 N , altitude 103 m ) involves astrometric and photometric observations of the Main Belt asteroids and newly discovered Near Earth Objects (NEOs), including their search. Astrometric CCD observations of asteroids at this observatory were started in January of 2008, using the $0.80 / 1.20 \mathrm{~m}$, $\mathrm{f} / 3$ Schmidt telescope and a ST-10XME $15 \times 10 \mathrm{~mm}$ CCD camera (field of view
$21^{\prime} \times 14^{\prime}$ ), with an image scale of $0.58^{\prime \prime}$ per pixel. The first three new asteroids were discovered at the beginning of 2008 (2008 AL86, 2008 AU101 and 2008 AV101). During the sky survey close to the ecliptic, 43 new asteroids were discovered in 2008-2013: 14 of them have multiple-apparition orbits, 12 are one opposition objects of which two have no orbit (updated on 2015 February 12).

Among the newly discovered asteroids, two are exceptional objects, the NEO 2008 OS9 (Černis \& Eglitis 2008a; Černis et al. 2010) and the Centaur-type asteroid 2009 HW77 (Orius) (Cernis \& Eglitis 2009; Wlodarczyk et al. 2011), and two are the Trojan group asteroids (2011 QA50 with $a=5.27$ AU and 2013 RO26 with $a=5.12 \mathrm{AU}$ ).

The limiting $R$ magnitude for the Schmidt telescope is about 21 for unfiltered CCD images with an exposure time of about 8 minutes. All astrometric measurements and reductions were done using the Astrometrica software (Raab 2003). The reference stars were selected from the catalogs USNO-A2.0, USNO-B1.0, UCAC-2 and UCAC-4.

Most of the asteroids were discovered in the morning hours about 20 days before their opposition time at elongations of 150-160 deg. The sky survey has been undertaken close to the ecliptic (mostly not more than 10 deg from the ecliptic line), taking three or four CCD images of the same field, with $20-30 \mathrm{~min}$ time spans between the exposures.

The Baldone Schmidt telescope has proved to be a very useful instrument for asteroid searches as well as for follow-up astrometry of poorly observed NEOs and unusual objects. During 2008-2013, 2117 CCD images (in 116 observing nights) for astrometry of asteroids and comets were obtained by I. Eglitis. Inspection of the images and measurements of the positions of all asteroids which appeared in the frames were performed by K. Černis. The 3511 astrometric positions of 826 asteroids, including at least five NEOs, were published in the Minor Planet Circulars (MPC) and Electronic Minor Planet Circulars (MPEC) (Cernis \& Eglitis 2008ab, 2013).

Till now, 2015 March, the credits for discovery of 12 asteroids have been received by the Baldone Observatory from the Minor Planet Center, ten of them have been named. In the near future we expect to get the credits and numbers for another four asteroids: 2008 AK86, 2009 HW20, 2013 QW47 and 2013 RU34.

Our contribution is about $0.006 \%$ of all $55.7 \times 10^{6}$ observations of asteroids done in the world during this period. The new discoveries (43) compose a similar part, $0.018 \%$, of all 234000 asteroids discovered. This was the period when great numbers of asteroids were discovered by the specialized projects, such as LONEOS, LINEAR, Spacewatch, Catalina and Pan-STARRS.

Table 1 presents the distribution of asteroid discoveries by year and the numbers of astrometric observations performed in 2008-2013. Table 2 lists the new asteroids discovered at the Baldone Observatory.

The asteroid 2011 SW259 has got its designation only in 2011, however, this object was first spotted at the Baldone Observatory on 2008 January 5. According to the new rules defining the discoverer of a particular object (Spahr 2010), 2011 SW259 is confirmed as discovered by the Baldone Observatory because the resolution adopted by Commission 20 at the 1979 IAU General Assembly says: "The Commission defines the discovery as the earliest apparition at which an orbit useful in the establishment of identifications was calculated" (taken from the Minor Planet Circular 4845-4846).

Table 1. Distribution of asteroid discoveries at the Baldone Observatory by year and the numbers of astrometric observations of newly and previously discovered asteroids.

| Number of <br> Year <br> asteroid <br> discoveries | Number of <br> asteroid <br> observations | Number of <br> objects <br> observed | References (MPC No.) |  |
| :--- | :---: | :---: | :---: | :---: |
| 2008 | 15 | 1261 | 273 | $61686,61979,62255,62566,62865,63123$ |
| 2009 | 11 | 528 | 101 | $64750,65037,65628,65920,66188,66450$ |
| 2010 | 3 | 365 | 126 | $68212,68670,69202,69725,70193,71529$ |
| 2011 | 3 | 247 | 73 | $73049,73667,74026,74812,75400,75594$ |
| 2012 | 1 | 342 | 47 | $77579,79473,79747,80114,80452,81615$ |
| 2013 | 10 | 768 | 206 | $82023,82459,82866,83281,83629,83714$ |
| Total | 43 | 3511 | 826 |  |

Table 2. List of asteroids discovered at the Baldone Observatory in 2008-2013.

| No. Date of discovery | Designation | Number | Name | Discoverers | Status |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12008 Jan 03 | 2008 AK86 |  |  | KC IE | + |
| 22008 Jan 03 | 2008 AL86 | 294664 | Trakai | KC IE | * |
| 32008 Jan 03 | 2008 AU101 | 274084 | Baldone | KC IE | * |
| 42008 Jan 03 | 2008 AV101 |  |  | KC IE | Id |
| 52008 Jan 04 | 2008 AW101 | 397261 |  | KC IE | Id |
| 62008 Jan 05 | 2011 SW259 | 353577 | Gediminas | KC IE | * |
| 72008 Feb 02 | 2008 CR10 |  |  | KC IE | Id |
| 82008 Feb 03 | 2008 CL177 | 418220 |  | KC IE | * |
| 92008 Feb 09 | 2008 CH184 |  |  | KC IE | Id |
| 102008 Jul 25 | 2008 OZ1 | 352646 | Blumbahs | KC IE | * |
| 112008 Jul 25 | 2008 OS9 | 428694 |  | KC IE | * |
| 122008 Jul 26 | 2008 OS10 | 276162 |  | KC IE | Id |
| 132008 Jul 29 | 2008 OZ11 |  |  | KC IE | Lost |
| 142008 Jul 29 | 2008 OS18 | 332530 | Canders | KC IE | * |
| 152008 Jul 31 | 2008 OT18 |  |  | KC IE | Lost |
| 162009 Apr 16 | 2009 HC12 | 255595 |  | KC IE | Id |
| 172009 Apr 16 | 2009 HV19 | 392142 | Solheim | KC IE | * |
| 182009 Apr 16 | 2009 HW19 |  |  | KC IE | Lost |
| 192009 Apr 18 | 2009 HS20 | 324928 |  | KC IE | Id |
| 202009 Apr 18 | 2009 HW20 |  |  | KC IE | + |
| 212009 Apr 20 | 2009 HB45 |  |  | KC IE | Lost |
| 222009 Apr 18 | 2009 HB59 |  |  | KC IE | Lost |
| 232009 Apr 24 | 2009 HG68 |  |  | KC IE | Lost |
| 242009 Apr 25 | 2009 HH68 | 343157 | Mindaugas | KC IE | * |
| 252009 Apr 25 | 2009 HJ68 | 321324 | Vytautas | KC IE | * |
| 262009 Apr 25 | 2009 HW77 | 330836 | Orius | KC IE | * |
| 272010 Apr 12 | 2010 GC158 | 284984 | Ikaunieks | KC IE | * |
| 282010 May 05 | 2010 JY14 |  |  | KC IE | Id |
| 292010 May 05 | 2010 JN76 |  |  | KC IE | Id |
| 302010 Apr 10 | 2011 HO28 |  |  | KC IE | Id |
| 312011 Aug 23 | 2011 QA50 |  |  | KC IE | Id |

Table 2. Continued.

| No. Date of discovery | Designation | Number Name | Discoverers | Status |
| :---: | :--- | :--- | :--- | :---: |
| 32 2011 Aug 23 | 2011 QE80 | KC IE | Id |  |
| 33 2012 Apr 10 | 2012 GA2 | KC IE | Id |  |
| 34 2013 Aug 29 | 2013 QW47 | KC IE | + |  |
| 35 2013 Sep 04 | 2013 RH24 | KC IE | Lost |  |
| 36 2013 Sep 04 | 2013 RO26 | KC IE | Lost |  |
| 37 2013 Sep 04 | 2013 RU34 | KC IE | + |  |
| 38 2013 Sep 05 | 2013 RV34 | KC IE | Id |  |
| 39 2013 Sep 06 | 2013 RN35 | KC IE | Id |  |
| 40 2013 Sep 06 | 2013 RU43 376342 | KC IE | Id |  |
| 41 2013 Sep 09 | 2013 RX43 | KC IE | Id |  |
| 42 2013 Sep 06 | 2013 RZ80 | KC IE | Id |  |
| 43 2013 Sep 04 | 2013 RR95 | KC IE | Id |  |


| Notes: |  |
| :--- | :--- |
| KC | Kazimieras Černis |
| IE | Ilgmars Eglitis |
| $*$ | Credited for discovery from the Baldone Observatory |
| Lost | The lost asteroid |
| Id | An independent discovery |
| + | Waiting for crediting Baldone |

## 2. ORBITS

To compute the orbits and ephemerides of asteroids, the freely available OrbFit software v.4.2 ${ }^{1}$ has been used. We also applied the JPL DE405 planetary and lunar ephemerides, the biased error model based on Chesley et al. (2010) and 25 perturbing asteroids. For weighting and selecting the observations, the method described in the NEODyS site (Wlodarczyk et al. 2014) has been used.

The masses of 25 perturbing asteroids were taken from Farnocchia et al. (2013). Starting positions of these asteroids and their perturbations were computed using the ASTDyS base of the initial orbital elements of asteroids ${ }^{2}$ and the OrbFit software. The precision of orbital computation using the OrbFit software is described in Wlodarczyk (2009).

Table 3 presents the high-precision orbital elements and their uncertainties for the asteroids discovered at the Baldone Observatory in 2008-2013. They are listed in order of the discovery date. For each asteroid, the first line gives the following orbital elements: $a$ - semimajor axis, $e$ - eccentricity, $i$ - inclination, $\Omega$ - longitude of the ascending node, $\omega$ - argument of perihelion, and $M$ - mean anomaly. The second line gives the rms errors of the elements and the third line gives the absolute magnitude $H$, the number of observations used, and their time coverage. The orbital elements and their ephemerides are computed without any non-gravitational effects, i.e., in the computations only the gravitational model of the Solar system has been used.

[^0]Table 3. High-precision orbital elements of the asteroids discovered at the Baldone Observatory in 2008-2013. The epoch JD2457000 = 2014 December 09.

| $\begin{gathered} a \\ (\mathrm{au}) \end{gathered}$ | $e$ | $\begin{gathered} i \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \Omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} M \\ (\mathrm{deg}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (2008 AK86) |  |  |  |  |  |
| 2.33566920104 | 0.1192572988 | 3.6600561446 | 272.430623145 | 271.7938530 | 274.9662972 |
| $2.79475 \mathrm{E}-06$ | $1.70364 \mathrm{E}-05$ | $7.88429 \mathrm{E}-05$ | $5.58108 \mathrm{E}-04$ | $1.27394 \mathrm{E}-02$ | $1.42692 \mathrm{E}-02$ |
| $\mathrm{H}=17.621$ | rms=0.4217" | 26 obs. | arc: 200801 | 03.90422-2015 | 0120.26813 |
| (294664) |  |  |  |  |  |
| 3.248280132299 | 0.05865146755 | 5.3667305468 | 277.249722573 | 36.178783848 | 219.925102494 |
| $1.54081 \mathrm{E}-07$ | $1.50940 \mathrm{E}-07$ | $1.37495 \mathrm{E}-05$ | $1.31500 \mathrm{E}-04$ | $1.75078 \mathrm{E}-04$ | $1.17978 \mathrm{E}-04$ |
| $\mathrm{H}=15.677$ | rms=0.5259" | 90 obs. | arc: 200610 | 04.37855-2014 | 0227.24351 |
| (274084) |  |  |  |  |  |
| 2.4036188289985 | 0.175606081662 | 3.9175584610 | 278.872406823 | 283.544541900 | 235.8731732909 |
| $4.52711 \mathrm{E}-08$ | $1.60734 \mathrm{E}-07$ | $1.22275 \mathrm{E}-05$ | $2.44476 \mathrm{E}-04$ | $2.49362 \mathrm{E}-04$ | $4.89770 \mathrm{E}-05$ |
| $\mathrm{H}=17.316$ | rms $=0.5875$ " | 83 obs. | arc: 200103 | 24.37401-2013 | 0903.36457 |
| (2008 AV101) |  |  |  |  |  |
| 2.450248745521 | 0.15835880858 | 1.3008826908 | 233.33165162 | 312.99701378 | 228.356462380 |
| $3.89941 \mathrm{E}-07$ | $1.96833 \mathrm{E}-06$ | $1.70719 \mathrm{E}-05$ | $1.70317 \mathrm{E}-03$ | $1.78504 \mathrm{E}-03$ | $4.35474 \mathrm{E}-04$ |
| $\mathrm{H}=17.768$ | rms $=0.7426$ " | 28 obs. | arc: 200609 | 26.38853-2012 | 0325.21023 |
| (397261) |  |  |  |  |  |
| 2.590588070181 | 0.094882110822 | 10.0038479296 | 281.6439681722 | 46.5983625693 | 11.1451467164 |
| $1.22386 \mathrm{E}-07$ | $4.26723 \mathrm{E}-07$ | $1.80509 \mathrm{E}-05$ | $5.77498 \mathrm{E}-05$ | $9.34401 \mathrm{E}-05$ | $6.82328 \mathrm{E}-05$ |
| $\mathrm{H}=16.194$ | rms $=0.5284$ " | 125 obs. | arc: 200210 | 10.24929-2014 | 0924.16554 |
| (2008 CR10) |  |  |  |  |  |
| 2.982647129845 | 0.31930394017 | 1.1317884015 | 53.22589119 | 20.42423481 | 155.167975550 |
| $1.40223 \mathrm{E}-07$ | $5.01146 \mathrm{E}-06$ | $1.80011 \mathrm{E}-05$ | $2.12778 \mathrm{E}-03$ | $2.76835 \mathrm{E}-03$ | $6.08202 \mathrm{E}-04$ |
| $\mathrm{H}=17.508$ | $\mathrm{rms}=0.5269$ " | 41 obs. | arc: 199111 | 05.23954-2013 | 0212.31973 |
| (2008 CL177) |  |  |  |  |  |
| 2.419330321423 | 0.12564858210 | 2.9294644355 | 150.159319515 | 342.531176906 | 300.021542409 |
| $4.79790 \mathrm{E}-07$ | $1.32421 \mathrm{E}-06$ | $3.02170 \mathrm{E}-05$ | $2.41186 \mathrm{E}-04$ | $8.98288 \mathrm{E}-047$ | $9.03301 \mathrm{E}-04$ |
| $\mathrm{H}=18.025$ | $\mathrm{rms}=0.6899$ " | 64 obs. | arc: 200401 | 30.11711-2012 | 0323.41076 |
| (2008 CH184) |  |  |  |  |  |
| 3.03371396 | 0.06265973 | 11.386092 | 140.2515664 | 328.93680 | 141.63454 |
| $1.29837 \mathrm{E}-03$ | $4.05736 \mathrm{E}-03$ | $1.01347 \mathrm{E}-01$ | $8.85166 \mathrm{E}-02$ | $1.54397 \mathrm{E}+00$ | $1.60162 \mathrm{E}+00$ |
| $\mathrm{H}=16.696$ | $\mathrm{rms}=0.6791$ " | 14 obs. | arc: 200802 | 09.23263-2008 | 0226.41344 |
| (352646) |  |  |  |  |  |
| 2.1803790181788 | 0.134062682722 | 7.21630350905 | 159.6807239964 | 109.343365125 | 27.0594941973 |
| $4.41825 \mathrm{E}-08$ | $1.42131 \mathrm{E}-07$ | $8.60799 \mathrm{E}-06$ | $9.55323 \mathrm{E}-05$ | $1.08411 \mathrm{E}-04$ | $4.63840 \mathrm{E}-05$ |
| $\mathrm{H}=17.520$ | $\mathrm{rms}=0.5989$ " | 94 obs. | arc: 200402 | 29.24403-2014 | 0630.34273 |
| (428694) |  |  |  |  |  |
| 1.6016281924520 | 0.648078360317 | 19.1241224069 | 133.55253305050 | 0288.2019102858 | 15.8058261653 |
| $2.58570 \mathrm{E}-08$ | $1.44825 \mathrm{E}-07$ | $2.31142 \mathrm{E}-05$ | $3.74716 \mathrm{E}-06$ | $2.07785 \mathrm{E}-05$ | $2.79108 \mathrm{E}-05$ |
| $\mathrm{H}=19.400$ | $\mathrm{rms}=0.5756$ " | 539 obs. | arc: 200807 | 25.36573-2015 | 0218.62309 |
| (276162) |  |  |  |  |  |
| 2.9796377943778 | 0.032229567379 | 10.6394261640 | 163.1276550461 | 18.655606186 | 219.243149488 |
| $6.98295 \mathrm{E}-08$ | $1.19573 \mathrm{E}-07$ | $1.38747 \mathrm{E}-05$ | $6.56336 \mathrm{E}-05$ | $2.48173 \mathrm{E}-04$ | $2.46093 \mathrm{E}-04$ |
| $\mathrm{H}=15.697$ | $\mathrm{rms}=0.6104$ " | 91 obs. | arc: 20001223 | 23.470760-2014 | 1002.47629 |
| (2008 OZ11) |  |  |  |  |  |
| 2.7007508 | 0.13075084 | 4.9837349 | 269.188390 | 74.1016 | 136.4412 |
| $1.14719 \mathrm{E}-02$ | $3.17196 \mathrm{E}-03$ | $7.77562 \mathrm{E}-02$ | $5.38163 \mathrm{E}-01$ | $1.02234 \mathrm{E}+01$ | $1.05095 \mathrm{E}+01$ |
| $\mathrm{H}=16.882$ | rms=0.5269" | 11 obs. | arc: 200807 | 29.92917-2008 | 0806.92352 |

Table 3. Continued.

| $\begin{gathered} a \\ (\mathrm{au}) \end{gathered}$ | $e$ | $\begin{gathered} i \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \Omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} M \\ (\mathrm{deg}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (332530) |  |  |  |  |  |
| 2.740897007502 | 0.051512639804 | 5.5667198262 | 184.258008724 | 151.014467614 | 129.211985473 |
| $1.00704 \mathrm{E}-07$ | $1.90913 \mathrm{E}-07$ | $2.22756 \mathrm{E}-05$ | $1.51005 \mathrm{E}-04$ | $2.75833 \mathrm{E}-04$ | $2.14962 \mathrm{E}-04$ |
| $\mathrm{H}=16.946$ | $\mathrm{rms}=0.5813$ " | 63 obs. | arc: 200202 | 20.40169-2013 | 1027.37211 |
| (255595) |  |  |  |  |  |
| 2.31313913784490 | 0.1576188972751 | 5.8068422830 | 73.632463865 | 250.252112598 | 124.8020283793 |
| $3.79075 \mathrm{E}-08$ | $9.86926 \mathrm{E}-08$ | $1.16340 \mathrm{E}-05$ | $1.06053 \mathrm{E}-04$ | $1.14866 \mathrm{E}-04$ | $4.03927 \mathrm{E}-05$ |
| $\mathrm{H}=17.436$ | $\mathrm{rms}=0.6762$ " | 74 obs. | arc: 200311 | 24.26306-2013 | 0717.47305 |
| (392142) |  |  |  |  |  |
| 3.115196611981 | 0.057327182832 | 9.7591665296 | 187.968650745 | 123.101370754 | 278.370218189 |
| $2.36376 \mathrm{E}-07$ | $2.59524 \mathrm{E}-07$ | $4.98698 \mathrm{E}-05$ | $1.07788 \mathrm{E}-04$ | $5.63616 \mathrm{E}-04$ | $5.79453 \mathrm{E}-04$ |
| $\mathrm{H}=16.077$ | rms=0.6771" | 44 obs. | arc: 200304 | 05.25870-2014 | 0322.34836 |
| (2009 HW19) |  |  |  |  |  |
| 2.87230267 | 0.0613206 | 9.183162 | 186.58092 | 134.3249 | 317.3868 |
| $1.49779 \mathrm{E}-03$ | $2.37750 \mathrm{E}-02$ | $4.07857 \mathrm{E}-01$ | $1.11820 \mathrm{E}+00$ | $1.66807 \mathrm{E}+01$ | $1.62917 \mathrm{E}+01$ |
| $\mathrm{H}=16.387$ | $\mathrm{rms}=0.6973$ " | 11 obs. | arc: 200904 | 16.92005-2009 | 0425.92089 |
| (324928) |  |  |  |  |  |
| 2.2068158144943 | 0.068810915868 | 5.8141369584 | 179.0287970802 | 225.368796924 | 66.121920679 |
| $8.09944 \mathrm{E}-08$ | $1.53658 \mathrm{E}-07$ | $1.63553 \mathrm{E}-05$ | $8.87482 \mathrm{E}-05$ | $1.77940 \mathrm{E}-04$ | $1.72876 \mathrm{E}-04$ |
| $\mathrm{H}=17.898$ | rms=0.7011" | 74 obs. | arc: 200008 | 01.34709-2013 | 0815.40326 |
| (2009 HW20) |  |  |  |  |  |
| 2.421055165650 | 0.114308783065 | 3.4735517884 | 99.532194184 | 70.702167407 | 212.735073811 |
| $1.33295 \mathrm{E}-07$ | $2.45336 \mathrm{E}-07$ | $2.58118 \mathrm{E}-05$ | $3.65035 \mathrm{E}-04$ | $4.33811 \mathrm{E}-04$ | $2.51752 \mathrm{E}-04$ |
| $\mathrm{H}=17.897$ | rms=0.7579" | 42 obs. | arc: 200711 | 09.20980-2013 | 0701.35367 |
| (2009 HB45) |  |  |  |  |  |
| 3.2708675 | 0.1055105 | 8.73419 | 59.38308 | 97.77931 | 29.8168 |
| $7.57724 \mathrm{E}-02$ | $9.86939 \mathrm{E}-02$ | $1.84644 \mathrm{E}+00$ | $4.32493 \mathrm{E}+00$ | $3.36351 \mathrm{E}+01$ | $4.70527 \mathrm{E}+01$ |
| $\mathrm{H}=16.285$ | rms=0.4557" | 7 obs. | arc: 200904 | 20.90691-2009 | 0424.91837 |
| (2009 HB59) |  |  |  |  |  |
| 2.5576248 | 0.1307296 | 8.629719 | 59.41091 | 367.0868 | 274.0737 |
| $1.06878 \mathrm{E}-02$ | $2.06917 \mathrm{E}-02$ | $5.12832 \mathrm{E}-01$ | $1.23677 \mathrm{E}+00$ | $1.04350 \mathrm{E}+01$ | $1.62886 \mathrm{E}+01$ |
| $\mathrm{H}=16.648$ | rms=0.9263" | 12 obs. | arc: 200904 | 18.97237-2009 | 0424.90486 |
| (343157) |  |  |  |  |  |
| 3.0842939300996 | 0.176293712389 | 17.9274407790 | 55.9061917110 | 95.177268436 | 64.3405470178 |
| $7.80147 \mathrm{E}-08$ | $1.38799 \mathrm{E}-07$ | $2.56563 \mathrm{E}-05$ | $4.45401 \mathrm{E}-05$ | $1.08084 \mathrm{E}-04$ | 8.84192E-05 |
| $\mathrm{H}=15.693$ | $\mathrm{rms}=0.6505$ " | 104 obs. | arc: 199804 | 23.24783-2014 | 0507.27647 |
| (321324) |  |  |  |  |  |
| 3.1253607550736 | 0.110292913268 | 6.6059518353 | 96.618392847 | 1.0819210 | 117.9460053154 |
| $7.64030 \mathrm{E}-08$ | $1.15384 \mathrm{E}-07$ | $1.06663 \mathrm{E}-05$ | $1.26638 \mathrm{E}-04$ | $1.54683 \mathrm{E}-04$ | $7.98938 \mathrm{E}-05$ |
| $\mathrm{H}=15.971$ | rms=0.5469" | 99 obs. | arc: 2000090 | 05.427320-2014 | 40406.27566 |
| (330836) |  |  |  |  |  |
| 2.146608923 | 0.4198629165 | 17.8788035964 | 50.3967392329 | 140.466932470 | 28.54643347 |
| $8.76149 \mathrm{E}-04$ | $2.16505 \mathrm{E}-05$ | $4.00936 \mathrm{E}-05$ | $6.07582 \mathrm{E}-05$ | $3.20807 \mathrm{E}-04$ | $1.84854 \mathrm{E}-03$ |
| $\mathrm{H}=9.725$ | $\mathrm{rms}=0.6494$ " | 79 obs. | arc: 200202 | 12.50951-2012 | 0519.44276 |
| (284984) |  |  |  |  |  |
| 2.6827354144259 | 0.085399827175 | 8.8958766735 | 78.6201526310 | 283.936688372 | 227.3479935055 |
| $8.64629 \mathrm{E}-08$ | $1.10219 \mathrm{E}-07$ | $1.49454 \mathrm{E}-05$ | $7.58058 \mathrm{E}-05$ | $1.24143 \mathrm{E}-04$ | $9.70250 \mathrm{E}-05$ |
| $\mathrm{H}=16.737$ | rms=0.6857" | 86 obs. | arc: 200311 | 29.25098-2014 | 0322.30039 |

Table 3. Continued.

| $\begin{gathered} a \\ (\mathrm{au}) \end{gathered}$ | $e$ | $\begin{gathered} i \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \Omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} \omega \\ (\mathrm{deg}) \end{gathered}$ | $\begin{gathered} M \\ (\mathrm{deg}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (2010 JY14) |  |  |  |  |  |
| 2.68175578 | 0.10680731 | 15.2218867 | 54.2299332 | 181.722196 | 355.649164 |
| $1.10170 \mathrm{E}-03$ | $8.97870 \mathrm{E}-04$ | $2.10126 \mathrm{E}-02$ | $3.06269 \mathrm{E}-02$ | $4.78401 \mathrm{E}-01$ | $5.48967 \mathrm{E}-01$ |
| $\mathrm{H}=16.789$ | rms=0.7974" | 11 obs. | arc: 201004 | 15.67744-2010 | 0510.91866 |
| (2010 JN76) |  |  |  |  |  |
| 2.992129459 | 0.0384985293 | 10.087968874 | 73.20071744 | 102.732464 | 350.994787 |
| $1.11553 \mathrm{E}-04$ | $3.95875 \mathrm{E}-05$ | $2.40490 \mathrm{E}-04$ | $1.15040 \mathrm{E}-03$ | $1.05122 \mathrm{E}-01$ | $1.02184 \mathrm{E}-01$ |
| $\mathrm{H}=16.380$ | $\mathrm{rms}=0.7803$ " | 24 obs. | arc: 201001 | 20.12162-2010 | 0710.43818 |
| (2011 HO28) |  |  |  |  |  |
| 3.155731195073 | 0.127861800869 | 26.8492666569 | 213.36497787 | 338.8323288697 | 555.6030458679 |
| $1.57379 \mathrm{E}-07$ | $1.66753 \mathrm{E}-07$ | $2.22146 \mathrm{E}-05$ | $3.42082 \mathrm{E}-05$ | $9.38207 \mathrm{E}-05$ | $9.03881 \mathrm{E}-05$ |
| $\mathrm{H}=15.456$ | rms=0.6470" | 74 obs. | arc: 200503 | 19.63199-2014 | 1211.44819 |
| (2011 QA50) |  |  |  |  |  |
| 5.275123719778 | 0.050008461597 | 5.0244780680 | 285.549715437 | 70.017654527 | 74.831962994 |
| $2.69039 \mathrm{E}-07$ | $2.00325 \mathrm{E}-07$ | $1.46187 \mathrm{E}-05$ | $2.18289 \mathrm{E}-04$ | $3.46449 \mathrm{E}-04$ | $2.53911 \mathrm{E}-04$ |
| $\mathrm{H}=13.477$ | $\mathrm{rms}=0.5838$ " | 86 obs. | arc: 200110 | 19.44811-2015 | 0120.18838 |
| (2011 QE80) |  |  |  |  |  |
| 2.726096692329 | 0.148402094041 | 9.7882412691 | 165.0878295722 | 209.062106805 | 230.1334689997 |
| $4.56822 \mathrm{E}-08$ | $2.12019 \mathrm{E}-07$ | $2.53360 \mathrm{E}-05$ | $6.51641 \mathrm{E}-05$ | $1.29008 \mathrm{E}-04$ | $9.69800 \mathrm{E}-05$ |
| $\mathrm{H}=16.980$ | $\mathrm{rms}=0.6606 "$ | 47 obs. | arc: 200208 | 16.43587-2014 | 0402.33934 |
| (2012 GA2) |  |  |  |  |  |
| 3.149952531 | 0.12673593 | 1.96578764 | 59.818967 | 158.233838 | 155.600932 |
| $7.85609 \mathrm{E}-04$ | $3.45216 \mathrm{E}-03$ | $8.98990 \mathrm{E}-03$ | $1.50022 \mathrm{E}-01$ | $5.12029 \mathrm{E}-01$ | $4.38009 \mathrm{E}-01$ |
| $\mathrm{H}=16.414$ | $\mathrm{rms}=0.7658$ " | 21 obs. | arc: 201204 | 01.27730-2012 | 0420.94495 |
| (2013 QW47) |  |  |  |  |  |
| 3.16743465153 | 0.22596163817 | 8.9766824091 | 337.500121141 | 67.42220074 | 49.41104113 |
| $1.62523 \mathrm{E}-06$ | $4.24641 \mathrm{E}-06$ | $3.64308 \mathrm{E}-05$ | $1.70564 \mathrm{E}-04$ | $3.47531 \mathrm{E}-03$ | $2.47929 \mathrm{E}-03$ |
| $\mathrm{H}=16.485$ | $\mathrm{rms}=0.7113$ " | 28 obs. | arc: 200402 | 22.33208-2015 | 0122.42913 |
| (2013 RH24) |  |  |  |  |  |
| 3.0467796 | 0.1115971 | 8.913271 | 337.204355 | 324.14190 | 130.70848 |
| $1.93928 \mathrm{E}-02$ | $1.99371 \mathrm{E}-02$ | $1.59162 \mathrm{E}-01$ | $3.41562 \mathrm{E}-01$ | $1.70558 \mathrm{E}+00$ | $2.00926 \mathrm{E}+00$ |
| $\mathrm{H}=15.270$ | rms=0.7782" | 15 obs. | arc: 201309 | 04.02023-2013 | 0911.98830 |
| (2013 RO26) |  |  |  |  |  |
| 5.1666714 | 0.06835088 | 8.268781 | 205.690155 | 196.4971 | 1.6580 |
| $3.59617 \mathrm{E}-02$ | $9.00785 \mathrm{E}-03$ | $1.64561 \mathrm{E}-01$ | $4.50743 \mathrm{E}-01$ | $3.06404 \mathrm{E}+01$ | $2.60937 \mathrm{E}+01$ |
| $\mathrm{H}=12.800$ | $\mathrm{rms}=0.8081$ " | 14 obs. | arc: 201308 | 29.94263-2013 | 0924.26137 |
| (2013 RU34) |  |  |  |  |  |
| 2.2031759499282 | 0.131142836931 | 3.8872863081 | 316.665903346 | 329.012156036 | 194.133183066 |
| $7.11326 \mathrm{E}-08$ | $5.15974 \mathrm{E}-07$ | $2.84324 \mathrm{E}-05$ | $2.98673 \mathrm{E}-04$ | $4.16764 \mathrm{E}-04$ | $3.22821 \mathrm{E}-04$ |
| $\mathrm{H}=17.758$ | $\mathrm{rms}=0.6776$ " | 34 obs. | arc: 199903 | 20.268660-2015 | 50116.57109 |
| (2013 RV34) |  |  |  |  |  |
| 2.3828902223338 | 0.153359577248 | 6.26158717187 | 195.811019466 | 155.479501514 | 125.4970182443 |
| $4.69739 \mathrm{E}-08$ | $2.08708 \mathrm{E}-07$ | $2.13964 \mathrm{E}-05$ | $1.03992 \mathrm{E}-04$ | $1.66941 \mathrm{E}-04$ | $9.41591 \mathrm{E}-05$ |
| $\mathrm{H}=17.673$ | $\mathrm{rms}=0.5463$ " | 63 obs. | arc: 200210 | 04.22417-2013 | 1028.30337 |
| (2013 RN35) |  |  |  |  |  |
| 2.656380188982 | 0.23348146720 | 16.043542778 | 345.634982928 | 5.67040159 | 106.25660039 |
| $2.16047 \mathrm{E}-07$ | $6.33157 \mathrm{E}-06$ | $2.41824 \mathrm{E}-04$ | $1.84092 \mathrm{E}-04$ | $9.20676 \mathrm{E}-03$ | $5.48753 \mathrm{E}-03$ |
| $\mathrm{H}=17.486$ | rms=0.6116" | 57 obs. | arc: 200009 | 08.34222-2013 | 1031.12053 |

Table 3. Continued.

| $a$ <br> $(\mathrm{au})$ | $e$ | $i$ <br> $(\mathrm{deg})$ | $\Omega$ <br> $(\mathrm{deg})$ | $\omega$ <br> $(\mathrm{deg})$ | $M$ <br> $(\mathrm{deg})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(376342)$ |  |  |  |  |  |  |

The absolute magnitudes $H$ given in Table 3 were calculated from the observed magnitudes $R$ taking into account the computed orbit. All of the asteroids discovered have absolute magnitudes in the range $H=9.7-19.4$ mag.

Using all astrometric and photometric observations of the asteroid (330836) Orius, we computed its absolute magnitude, $H=9.725 \pm 0.343 \mathrm{mag}$. The computations were done with the Fowler \& Chillemi (1992) formula, using a typical geometric albedo $p_{v}$ for Centaurs in the range 0.054-0.2 (Johnston 2014):

$$
\begin{equation*}
2 R=1329 \times 10^{-H / 5} p_{v}[\mathrm{~km}] . \tag{1}
\end{equation*}
$$

The diameter of (330836) Orius was found to be between 29 and 79 km .
We have also found that the asteroid (428694) 2008 OS9 has the absolute magnitude $H=19.400 \pm 0.399 \mathrm{mag}$. For $p_{v}=0.04$ (C-type asteroid) the diameter is 1052 m , and for $p_{v}=0.20$ (S-type asteroid) it would be 326 m . The true diameter of this asteroid is probably between these two values.

It was impossible to compute the orbits for the asteroids 2008 OT18 (6) and 2009 HG68 (1) which have only several observations and a small arc of the orbit covered (in parentheses, the observed arc in days is given). Likewise, because of the short arc and small number of observations, the orbits of the following asteroids are of lower accuracy: 2008 CH184 (17), 2008 OZ11 (8), 2009 HW19 (9), 2009 HB45 (4), 2009 HB59 (6), 2013 RO26 (26) and 2013 RH24 (8). More observations of these asteroids are needed. The ephemerides of these asteroids for 2015 and 2016 will be given in Section 4.

## 3. NEW ORBITS OF THE NEO (428694) 2008 OS9 AND THE CENTAUR (330836) ORIUS (2009 HW77)

We recomputed orbits of the asteroid (428694) 2008 OS9 from the Apollo group and the Centaur-type asteroid (330836) Orius (2009 HW77). For this we applied new observations of both asteroids which became available after our previous studies (Černis et al. 2010; Wlodarczyk et al. 2011). Furthermore, we used a new

Table 4. Orbital elements and their $1 \sigma$ errors (rms) for (428694) 2008 OS9, calculated with the OrbFit software. Epoch: JD 2455000.5 TDT = 2009-06-18, $\mathrm{rms}=0.519^{\prime \prime}$ both in our previous (top lines) and present (bottom lines) study.

| Orbit elements | Values | $\sigma$ |
| :--- | :--- | :--- |
| $a[\mathrm{AU}]$ | 1.60126725 | $7.11 \mathrm{E}-06$ |
|  | 1.6012462762501 | $2.67802 \mathrm{E}-08$ |
| $e$ | 0.64800051 | $2.54 \mathrm{E}-06$ |
|  | 0.647993241286 | $1.44821 \mathrm{E}-07$ |
| $i[\mathrm{deg}]$ | 19.1226311 | $7.37 \mathrm{E}-05$ |
|  | 19.1225706068 | $2.31101 \mathrm{E}-05$ |
| Longitude of ascending node [deg] | 133.6023575 | $7.0 \mathrm{E}-06$ |
|  | 133.60232796883 | $3.74819 \mathrm{E}-06$ |
| Argument of perihelion [deg] | 288.1570352 | $6.19 \mathrm{E}-05$ |
|  | 288.1569767117 | $2.07695 \mathrm{E}-05$ |
| Mean anomaly $[\mathrm{deg}]$ | 123.1535334 | $7.640 \mathrm{E}-04$ |
|  | 123.15577481025 | $8.20793 \mathrm{E}-06$ |

version of the OrbFit software $4.2^{3}$, which accepts the new error model based on Chesley et al. (2010). Also, in our model of the Solar system we took into account 25 perturbing asteroids with masses from Farnocchia et al. (2013).

### 3.1. The asteroid (428694) 2008 OS9

In our previous work on the asteroid (428694) 2008 OS9 (Černis et al. 2010) we computed its orbit using 178 optical observations (of which 12 were rejected as outliers) from 2008-07-25.36573 to 2008-08-12.71959. Now, the orbit of this asteroid is computed using 539 observations (of which 23 are rejected as outliers) obtained during the period from 2008-07-25.36573 to 201502 18.62309. Hence, the observational arc of (428694) 2008 OS9 is extended from 18 days to about 7 years!

Table 4 lists the Keplerian elements computed for this asteroid: semimajor axis $a$ in AU, eccentricity $e$, inclination $i$, longitude of ascending node, argument of perihelion, and mean anomaly. Their $1 \sigma$ uncertainties are given in the last column.

With the new orbit this asteroid remains in the Apollo group, i.e., it is a NearEarth object which crosses the Earth's orbit $(a>1.0 \mathrm{AU} ; q<1.017 \mathrm{AU})^{4}$. It is interesting to note that its absolute magnitude (i.e., the magnitude at 1 AU from the Sun and observer) has decreased from $H=19.42$ in our previous work to about $H=19.40$ now, i.e., the asteroid has a greater diameter, see Section 2 . It is worth noting that, due to the sufficiently precise orbit, the asteroid 2008 OS9 is now numbered.

### 3.2. The asteroid 2009 HW77

In our previous publication on the asteroid 2009 HW77 (Wlodarczyk et al.

[^1]Table 5. Orbital elements and their $1 \sigma$ errors (rms) for 2009 HW77, calculated with the OrbFit software. Epoch: JD 2455400.5 TDT $=2010-07-23, \mathrm{rms}=0.416^{\prime \prime}$ both in our previous (top lines) and present (bottom lines) study.

| Orbit elements | Values | $\sigma$ |
| :--- | :--- | :--- |
| $a[\mathrm{AU}]$ | 21.4342 | 0.0077 |
|  | 21.439846274 | $8.71611 \mathrm{E}-04$ |
| $e$ | 0.4184 | 0.0002 |
|  | 0.4185184184 | $2.16154 \mathrm{E}-05$ |
| $i[\mathrm{deg}]$ | 17.8893 | 0.0003 |
|  | 17.8893412421 | $4.01394 \mathrm{E}-05$ |
| Longitude of ascending node [deg] | 50.4225 | 0.0003 |
|  | 50.4225527477 | $6.06948 \mathrm{E}-05$ |
| Argument of perihelion [deg] | 140.6464 | 0.0161 |
|  | 140.647278432 | $3.15146 \mathrm{E}-04$ |
| Mean anomaly [deg] | 12.6705 | 0.0120 |
|  | 12.665144617 | $8.72432 \mathrm{E}-04$ |

2011) we computed its orbit using 64 optical observations (one was rejected as an outlier) from 2008-03-10.42621 to 2010-05-20.25274. Adding four observations from 2002 taken from IAU 644 (Palomar Mountain/NEAT, California, USA), the observational arc was extended from about 2 years to 10 years. Now, the orbit of the asteroid 2009 HW77 is computed using 79 observations (one is rejected as an outlier) from 2002-02-12.50951 to 2012-05-19.44276.

The orbital elements and their $1 \sigma$ errors calculated for the asteroid 2009 HW77 are given in Table 5. The orbit of the asteroid remains of the Centaur-type, i.e., it is located between Jupiter and Neptune (5.5 AU $<a<30.1 \mathrm{AU})^{5}$. Due to its sufficiently precise new orbit, the asteroid 2009 HW77 is now numbered.

Previously we had calculated the orbit of this asteroid (top lines in Table 5), as well as orbits of other asteroids, with the use of the OrbFit v.4.0 software ${ }^{6}$, and, apart from planets, three massive asteroids, Ceres, Pallas and Vesta, were added as additional perturbers with the JPL NASA Ephemerides DE405. Now, as it was mentioned above, we used the OrbFit v.4.2 software, 25 perturbing asteroids and the error model (bottom lines in Tables 4 and 5). It is obvious that our present computations give orbital elements with higher precision, mainly because of the longer arc covered by observations.

## 4. EPHEMERIDES FOR THE ASTEROIDS WITH ORBITS OF LOW ACCURACY

For seven asteroids discovered at the Baldone Observatory, which have lowaccuracy orbits, we have computed the ephemerides for 2015-2016 (for a geocentric observer). We used the OrbFit software version 4.2 and JPL DE405 planetary and lunar ephemerides with 25 additional perturbing asteroids according to

[^2]Table 6. Ephemerides for 2015-2016 for the asteroids with orbits of low accuracy discovered at the Baldone Observatory (for a geocentric observer).

| Date | RA | DEC | Mag | Solar | Lunar | Sky plane error |  | $P A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | elong. | elong. | Err1 | Err2 |  |
| 2008 CH184 |  |  |  |  |  |  |  |  |
| 2016-09-13 | 05309.212 | -06 4138.53 | 21.3 | 157.8 | -69.6 | $1.490^{\circ}$ | $0.052^{\circ}$ | 76.9 |
| 2016-09-23 | 04656.600 | -075725.29 | 21.1 | 165.9 | 76.4 | $1.519^{\circ}$ | $0.056^{\circ}$ | 77.3 |
| 2016-10-03 | 03955.953 | -09 0754.63 | 21.1 | -166.9 | $-152.6$ | $1.522^{\circ}$ | $0.060^{\circ}$ | 77.8 |
| 2016-10-13 | 03253.718 | -10 0644.94 | 21.2 | -159.5 | -30.0 | $1.499^{\circ}$ | $0.062^{\circ}$ | 78.5 |
| 2008 OZ11 |  |  |  |  |  |  |  |  |
| 2016-04-16 | 143119.937 | -21 1040.40 | 21.0 | 162.9 | -84.2 | $4.161^{\circ}$ | $0.040^{\circ}$ | 103.9 |
| 2016-04-26 | 142248.060 | $-202607.97$ | 20.8 | 172.8 | 39.0 | $4.242^{\circ}$ | $0.045^{\circ}$ | 104.7 |
| 2016-05-06 | 141400.345 | -193235.50 | 20.8 | -170.3 | 170.0 | $4.239^{\circ}$ | $0.053^{\circ}$ | 105.6 |
| 2016-05-16 | 140555.490 | $-183520.29$ | 21.0 | -159.6 | -44.9 | $4.151^{\circ}$ | $0.063^{\circ}$ | 106.3 |
| 2009 HW19 |  |  |  |  |  |  |  |  |
| 2015-08-10 | 221830.749 | $-010342.91$ | 20.3 | 158.9 | 107.6 | $3.880^{\circ}$ | $0.737^{\circ}$ | 75.0 |
| 2015-08-20 | 221136.046 | -02 0427.82 | 20.1 | 168.6 | $-128.0$ | $3.972^{\circ}$ | $0.720^{\circ}$ | 75.1 |
| 2015-08-30 | 220418.489 | -03 1617.21 | 20.0 | -171.0 | 9.5 | $3.981{ }^{\circ}$ | $0.684^{\circ}$ | 75.4 |
| 2015-09-09 | 215731.611 | -04 3238.38 | 20.2 | $-162.5$ | 148.6 | $3.911^{\circ}$ | $0.633^{\circ}$ | 75.8 |
| 2009 HB45 |  |  |  |  |  |  |  |  |
| 2016-06-25 | 200214.593 | -29 5936.14 | 21.5 | 155.4 | 33.5 | $13.665^{\circ}$ | $2.380^{\circ}$ | 86.9 |
| 2016-07-05 | 195455.338 | -30 3957.66 | 21.4 | 164.9 | 165.5 | $13.949^{\circ}$ | $2.445^{\circ}$ | 88.0 |
| 2016-07-15 | 194641.653 | $-311430.37$ | 21.3 | 170.1 | -59.4 | $14.025^{\circ}$ | $2.485^{\circ}$ | 89.3 |
| 2016-07-25 | 193819.940 | $-314026.51$ | 21.4 | $-165.0$ | 75.3 | $13.890^{\circ}$ | $2.498^{\circ}$ | 90.6 |
| 2009 HB59 |  |  |  |  |  |  |  |  |
| 2015-11-08 | 43446.925 | +215855.24 | 19.6 | 154.7 | 113.8 | $17.922^{\circ}$ | $0.101^{\circ}$ | 72.2 |
| 2015-11-18 | 42538.203 | +223033.62 | 19.3 | 166.8 | -119.1 | $18.697^{\circ}$ | $0.168^{\circ}$ | 71.3 |
| 2015-11-28 | 41449.409 | +22 5720.03 | 19.0 | 178.2 | 27.3 | $18.986^{\circ}$ | $0.234^{\circ}$ | 70.1 |
| 2015-12-08 | 40354.255 | +2318 57.59 | 19.3 | -167.9 | 152.0 | $18.732^{\circ}$ | $0.293^{\circ}$ | 68.6 |
| 2013 RH24 |  |  |  |  |  |  |  |  |
| 2016-02-06 | 10748.756 | +14 1922.17 | 20.1 | 167.3 | 133.2 | $5.626^{\circ}$ | $0.078^{\circ}$ | 118.0 |
| 2016-02-16 | 95926.970 | +14 4446.32 | 19.9 | 177.7 | -81.9 | $5.665^{\circ}$ | $0.072^{\circ}$ | 117.7 |
| 2016-02-26 | 95057.330 | +150736.46 | 20.1 | -168.0 | 47.5 | $5.610^{\circ}$ | $0.066^{\circ}$ | 117.5 |
| 2016-03-07 | 94306.884 | +15 2444.17 | 20.3 | $-156.2$ | 173.5 | $5.474^{\circ}$ | $0.058^{\circ}$ | 117.3 |
| 2013 RO26 |  |  |  |  |  |  |  |  |
| 2015-12-01 | 52037.596 | +14 5614.87 | 19.5 | 165.4 | 51.7 | $2.494^{\circ}$ | $0.040^{\circ}$ | 96.9 |
| 2015-12-11 | 51459.455 | +14 425.72 | 19.4 | 171.7 | 173.3 | $2.486^{\circ}$ | $0.042^{\circ}$ | 96.9 |
| 2015-12-21 | 5920.019 | +143114.91 | 19.5 | -166.2 | -48.0 | $2.453^{\circ}$ | $0.043^{\circ}$ | 96.9 |
| 2015-12-31 | 546.193 | +142417.48 | 19.6 | $-156.1$ | 88.1 | $2.401^{\circ}$ | $0.043^{\circ}$ | 96.8 |

Farnocchia et al. (2013). The computations were performed for the value of the non-gravitational parameter $A_{2}=0$. The ephemerides of the asteroids for the dates at their brightest are listed in Table 6 which gives right ascensions (h, m, s) and declinations (deg, arcmin, arcsec), expected magnitudes, solar and lunar elongations (deg) and the sky plane errors in both axes (Err1 and Err2) in (deg) and the position angle (PA, deg). The magnitude errors are of the order of 0.5 mag . Table 6 shows that most of the asteroids can be recovered even with moderate size telescopes.

## 5. SUMMARY

In 2008-2013, at the Baldone Observatory a total of 43 asteroids were discovered. For 36 of these asteroids we present their orbital elements of much higher accuracy than those that came before, based on a much larger number of observations and the longer observational arc covered. The remaining seven asteroids have their orbits of low accuracy, thus they need additional astrometric observations. For these seven asteroids the ephemerides for 2015-2016 are given.

## REFERENCES

Černis K., Eglitis I. 2008a, Discovery of Apollo-type asteroid 2008 OS9, MPEC, 2008-O66
Černis K., Eglitis I. 2008b, MPC 61686
Černis K., Eglitis I. 2009, Discovery of Centaur group asteroid 2009 HW77, MPEC, 2009-U68
Černis K., Eglitis I. 2013, MPC 84740
Černis K., Eglitis I., Wlodarczyk I., Zdanavičius J., Zdanavičius K. 2010, Baltic Astronomy, 19, 235
Černis K., Wlodarczyk I., Zdanavičius J. 2014, Baltic Astronomy, 23, 231
Chesley S. R., Baer J., Monet D. G. 2010, Icarus, 210, 158
Farnocchia D., Chesley S. R., Chodas P. W. et al. 2013, Icarus, 224, 192
Fowler J. W., Chillemi J. R. 1992. IRAS Asteroid Data Processing. Chapter 4, p. 17-43 of the IRAS Minor Planet Survey, ed. F. F. Tedesco, https://irsa.ipac.caltech.edu/IRASdocs/surveys/PL-TR-92-2049.pdf
Johnston W. R. 2014, TNO and Centaur diameters, albedos, and densities, V2.0. EAR-A-COMPIL-5-TNOCENALB-V2.0. NASA Planetary Data System
Raab H. 2003, Astrometrica, http://www.astrometrica.at/ (electronic version)
Spahr T. B. 2010, MPEC, 2010-U20
Wlodarczyk I. 2009, Icarus, 203, 119
Wlodarczyk I., Černis K., Boyle R. P., Laugalys V. 2014, MNRAS, 438, 2621
Wlodarczyk I., Černis K., Eglitis I. 2011, MNRAS, 418, 2330


[^0]:    ${ }^{1} \mathrm{http}: / /$ adams.dm.unipi.it/~orbmaint/orbfit/
    2 http://hamilton.dm.unipi.it/astdys/

[^1]:    ${ }^{3} \mathrm{http}: / /$ adams.dm.unipi.it/~orbmaint/orbfit/
    ${ }^{4} \mathrm{http}: / /$ ssd.jpl.nasa.gov/sbdb.cgi?sstr$=2008+$ OS9\&orb=1

[^2]:    ${ }^{5} \mathrm{http}: / /$ ssd.jpl.nasa.gov/sbdb.cgi?sstr$=2009+$ HW $77 \&$ orb $=1$
    ${ }^{6}$ http://adams.dm.unipi.it/~orbmaint/orbfit/

