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1 Introduction

The well-established phenomenon of neutrino oscillations [1, 2] implies that the family
lepton numbers are not unbroken symmetries of Nature. Therefore, other processes that
violate those symmetries, like the two-body decays `±1 → `±2 γ, Z → `+1 `

−
2 , and h→ `+1 `

−
2

may occur. (Here, h is the recently discovered scalar particle with mass mh = 125.25GeV,
and `1 and `2 are charged leptons with different flavours.) In the Standard Model (SM)
those decays only appear at the one-loop level and they are suppressed by a GIM-like
mechanism [3], due to the light-neutrino masses being very small and almost identical when
compared to the Fermi scale. As a consequence, in the SM those lepton-flavour-violating
(LFV) decays have very small rates and are, in practice, invisible. This fact renders them
all the more inviting to explore both experimentally, as windows to New Physics, and
theoretically, in extensions of the SM.

In table 1 we display the nine LFV two-body decays, the present upper bounds on
their branching ratios, and the expected sensitivity of some future experiments. Note that,
according to ref. [6], the HL-LHC experiment for Z decays will lead to improvements of
about one order of magnitude on the branching ratios from the full LHC samples; we have
indicated those general indications through signs ∼ in table 1.

In this paper we numerically compute the above-mentioned decays in a simple extension
of the SM. That extension is a particular case of the scheme proposed in ref. [18], which is
characterized by the following features:

• It is a multi-Higgs-doublet model.

• It has three right-handed neutrinos (RHν), with Majorana masses that enable a type-I
seesaw mechanism.

• All the Yukawa-coupling matrices are diagonal in lepton-flavour space, because of the
invariance of the dimension-four terms in the Lagrangian under the lepton-flavour
symmetries.

• The violation of the family lepton numbers arises only softly, through the dimension-
three Majorana mass terms of the RHν.

In ref. [18] the above-mentioned decays have been computed analytically within that general
scheme. In this paper we check that analytical computation, but express the amplitudes
through Passarino-Veltman (PV) functions. That allows us to use the resulting formulas
in high-precision numerical computations and to establish the impact of the separate
amplitudes on the branching ratios (BRs) of the LFV decays. Although our analytical
results allow one to study the LFV decays in a model with an arbitrary number of scalar
doublets, in this paper we only perform the numerical computation in the context of a
simple version of the two-Higgs-doublet model (2HDM).

The branching ratios of the LFV decays predicted by seesaw models like ours are usually
small due to the strong suppression from the very large RHν Majorana masses [19, 20]. A
recent paper [21] about the LFV Higgs decays in the framework of a general type-I seesaw
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Decay Present Experiment Future Experiment

τ± → µ±γ 4.4× 10−8 BABAR (2010) [4] 1× 10−9 BELLE-II [5]
2× 10−9 FCC-ee [6, 7]

τ± → e±γ 3.3× 10−8 BABAR (2010) [4] 3× 10−9 BELLE-II [5, 8]
µ± → e±γ 4.2× 10−13 MEG (2016) [9] 6× 10−14 MEG-II [10]

Z → τ±µ∓ 1.2× 10−5 DELPHI (1997) [11] ∼ 10−6 HL-LHC [6]
∼ 10−9 FCC-ee [6, 7]

Z → τ±e∓ 9.8× 10−6 OPAL (1995) [12] ∼ 10−6 HL-LHC [6]
∼ 10−9 FCC-ee [6, 7]

Z → µ±e∓ 7.5× 10−7 ATLAS (2014) [13] ∼ 7× 10−8 HL-LHC [6]
∼ 10−10 FCC-ee [6, 7]

h→ τ±µ∓ 2.5× 10−3 CMS (2018) [14] 1.4× 10−4 FCC-ee [15]
h→ τ±e∓ 4.7× 10−3 ATLAS (2019) [16] 1.6× 10−4 FCC-ee [15]
h→ µ±e∓ 6.1× 10−5 ATLAS (2019) [17] 1.2× 10−5 FCC-ee [15]

Table 1. Present upper bounds and future sensitivities for the branching ratios of LFV decays.

model with mass-insertion approximation concludes that the maximal decay rates are far
from the current experimental bounds. The inverse seesaw model, a specific realization of
low-scale seesaw models, might yield larger decay rates [22–25].

There is a large number of theoretical papers on the LFV decays, therefore we refer
only to some of them, grouping them according to the decays under consideration, since
most of the research has been conducted on individual types of decays:

• LFV decays of charged leptons were analyzed in the context of the inverse seesaw
model [22], of effective field theory [26–29], of 2HDMs [28, 30, 31], and of the flipped
3–3–1 model [32]. The current experimental and theoretical situation for these decays
is reviewed in ref. [33].

• The LFV Z decay rates have been computed in frameworks with massive Majorana
neutrinos [34–36], in the inverse seesaw model [24, 25], effective field theory [37–40], a
general 2HDM [41], and the minimal 3–3–1 model [42].

• LFV Higgs decays were analyzed in the framework of the inverse seesaw model [22,
23, 43–45], 2HDM [46–53], effective field theory [54], 3–3–1 models [32, 55], in models
with TeV sterile neutrinos [56] and models with Lµ − Lτ symmetry [57, 58]. We also
refer to the recent review by Vicente [59].

As mentioned above, the three types of LFV decays have been analyzed mostly separately, but
there are also studies that endeavour to combine all three types together [60, 61]. Correlations
among separate decay rates may exist, and some LFV decays may be constrained by other
LFV decays. Some constraints could appear in several models, while other constraints
operate only in specific models. For example, ref. [24] shows that Z → τ±µ∓ is constrained
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by τ± → µ±γ in the inverse seesaw model; constraints on the Z decays from the LFV decays
of charged leptons also emerge in the 2HDM [41] and in the minimal 3–3–1 model [42].
The authors of ref. [48] claim that h→ τ±µ∓ is constrained by τ± → µ±γ in their specific
2HDM, but in ref. [46] no such constraints have been found in the type-III 2HDM.

In this paper we perform the numerical study of all nine LFV two-body decays (τ± →
µ±γ, τ± → e±γ, µ± → e±γ, Z/h → τ±µ∓, Z/h → τ±e∓, and Z/h → µ±e∓) in the
context of the 2HDM with seesaw mechanism and flavour-conserving Yukawa couplings.
Our purpose is to see under which circumstances the decay rates might be close to their
present experimental upper bounds — namely, whether one has to resort to either very
large or very small Yukawa couplings, to a very low mass of the charged scalar of the 2HDM,
or to very low RHν masses. We want to elucidate which are the very relevant and the less
relevant parameters of that model for the LFV decays.

In section 2 we review both the scalar and the leptonic sectors of our model. Section 3
contains our main numerical results. The findings of this paper are summarized in section 4.
The Passarino-Veltman functions relevant for the analytic computation are expounded
in appendix A. The full one-loop analytical formulas for the LFV decays in terms of PV
functions are collected in appendices B, C, and D. Appendix E makes a digression on the
invisible Z decay width and appendix F reviews some literature on lower bounds on the
charged-Higgs mass.

2 The model

2.1 Scalar sector

2.1.1 The matrices U and V
In general,1 we assume the existence of 2nd scalar SU(2) doublets

Φk =
(
ϕ+
k

ϕ0
k

)
, Φ̃k =

(
ϕ0
k
∗

−ϕ+
k
∗

)
(k = 1, . . . , nd). (2.1)

We assume that no other scalar fields exist, except possibly SU(2) singlets of charge either
0 or ±1. The neutral fields ϕ0

k have vacuum expectation values (VEVs) vk
/√

2 that may
be complex. We use the formalism of ref. [62], that was further developed in refs. [18]
and [63]. The scalar eigenstates of mass are n charged scalars H+

a (a = 1, . . . , n) and m
real neutral scalars S0

b (b = 1, . . . ,m), with n ≥ nd and m ≥ 2nd. The fields ϕ+
k and ϕ0

k are
superpositions of the eigenstates of mass according to

ϕ+
k =

n∑
a=1
UkaH+

a , ϕ0
k = 1√

2

(
vk +

m∑
b=1
VkbS0

b

)
. (2.2)

The matrix U is nd × n and the matrix V is nd × m. In general, they are not unitary;
however, there are matrices

Ũ =
(
U
T

)
, Ṽ =

ReV
ImV
R

 (2.3)

1Soon we shall restrict the model to nd = 2.

– 3 –



J
H
E
P
0
3
(
2
0
2
2
)
1
0
6

that are n × n unitary and m ×m real orthogonal, respectively. The matrices T and R
account for the possible presence in the model of charged-scalar SU(2) singlets and of scalar
gauge invariants, respectively. The unitarity of Ũ and the orthogonality of Ṽ imply

UU† = ReV ReVT = ImV ImVT = 1nd×nd
, ReV ImVT = 0nd×nd

. (2.4)

By definition, H+
1 := G+ and S0

1 := G0 are the ‘would-be Goldstone bosons’. Hence [63],

Uk1 = vk
v
, Vk1 = i

vk
v
, (2.5)

where

v :=

√√√√ nd∑
k=1
|vk|2 = 2swmW

e
= 2cwswmZ

e
. (2.6)

In eq. (2.6), sw and cw are the sine and the cosine, respectively, of the weak mixing angle,
and e is the electric charge of the proton. Clearly, because of eqs. (2.5) and (2.6),

nd∑
k=1
|Uk1|2 =

nd∑
k=1
|Vk1|2 = 1. (2.7)

Thus,
(
V†V

)
11

= 1.
In eq. (2.3), Ũ is unitary and Ṽ is orthogonal. Hence, because of eq. (2.7), the first

columns of T and R are identically zero. Therefore the orthogonality of Ṽ implies that, for
b 6= 1,

0 =
nd∑
k=1

(ReVk1 ReVkb + ImVk1 ImVkb)

=
nd∑
k=1

Re (V∗k1Vkb)

=
nd∑
k=1

Re
(
−i v

∗
k

v
Vkb
)

=
nd∑
k=1

Im
(
v∗k
v
Vkb
)
. (2.8)

Thus,

xb := 1
v

nd∑
k=1

v∗kVkb (b 6= 1) (2.9)

is real. So,
(
V†V

)
1b

= −ixb is imaginary for all b 6= 1.

2.1.2 Some interactions of the scalars

The parameters xb in eq. (2.9) are important because they appear in the interaction of the
neutral scalars S0

b with two W gauge bosons [63]:

L = · · ·+ emW

sw
W−µ W

µ+
m∑
b=2

xbS
0
b . (2.10)
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Another important interaction is the one of a W gauge boson with one neutral scalar
and one charged scalar. It is given by [18]

L = · · ·+ i
e

2sw

n∑
a=1

m∑
b=1

[(
U†V

)
ab
W+
µ

(
H−a ∂

µS0
b − S0

b ∂
µH−a

)
(2.11a)

+
(
V†U

)
ba
W−µ

(
S0
b ∂

µH+
a −H+

a ∂
µS0

b

)]
. (2.11b)

Also relevant in this paper is the interaction of a neutral scalar with two charged scalars.
We parameterize it as

L = · · ·+
n∑

a,a′=1

m∑
b=1

λaa′bH
−
a H

+
a′S

0
b , (2.12)

where the coefficients obey λaa′b = λ∗a′ab because of the Hermiticity of L. Equation (2.12)
corresponds, when either a = 1 or a′ = 1, to an interaction of the charged would-be
Goldstone bosons. The coefficients for those interactions may be shown — either by gauge
invariance or indeed through an analysis of the scalar potential [18]—to be

λ1ab = e
(
m2
a −m2

b

)
2swmW

(
V†U

)
ba
, (2.13a)

λa1b = e
(
m2
a −m2

b

)
2swmW

(
U†V

)
ab
, (2.13b)

λ11b = −em2
b

2swmW
xb, (2.13c)

where ma is the mass of the charged scalar H+
a and mb is the mass of the neutral scalar S0

b .

2.2 Leptonic sector

2.2.1 The matrices U and X

We assume the existence of three right-handed neutrinos ν`R, where ` = e, µ, τ . We assume
that the flavour lepton numbers are conserved in the Yukawa Lagrangian of the leptons:

LY = −
nd∑
k=1

∑
`=e,µ,τ

[
Φ†k ¯̀

R (Γk)`` + Φ̃†k ν̄`R (∆k)``
]( ν`L

`L

)
+ H.c. (2.14)

All the 2nd matrices Γk and ∆k are diagonal by assumption. The charged-lepton mass
matrix M` and the neutrino Dirac mass matrix MD are

M` =
nd∑
k=1

v∗k√
2

Γk, MD =
nd∑
k=1

vk√
2

∆k, (2.15)

respectively. The matrices M` and MD are diagonal just as the matrices Γk and ∆k,
respectively. Without loss of generality, we choose the phases of the fields `R in such
a way that the diagonal matrix elements of M` are real and positive, viz. they are the
charged-lepton masses; thus,

nd∑
k=1

v∗k (Γk)`` =
√

2m` (` = e, µ, τ). (2.16)
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The neutrino mass terms are

Lνmass = −
(
ν̄eR, ν̄µR, ν̄τR

)
MD

 νeL
νµL
ντL



− 1
2
(
ν̄eR, ν̄µR, ν̄τR

)
MR


Cν̄TeR

Cν̄TµR

Cν̄TτR

+ H.c., (2.17)

where C is the charge-conjugation matrix in Dirac space. The flavour-space matrix MR is
non-diagonal and symmetric; it is the sole origin of lepton mixing in this model.

There are six physical Majorana neutrino fields νi = Cν̄Ti (i = 1, . . . , 6). The three ν`L
and the three ν`R are superpositions thereof [18]:

ν`L =
6∑
i=1

U`iPLνi, ν`R =
6∑
i=1

X`iPRνi, (2.18)

where PL := (1− γ5)/ 2 and PR := (1 + γ5)/ 2 are the projectors of chirality. The matrices
U and X are 3× 6. The matrix

U6 :=
(
U

X∗

)
(2.19)

is 6× 6 and unitary, hence

UU † = 13×3, U †U +XTX∗ = 16×6. (2.20)

The matrix U6 diagonalizes the full 6× 6 neutrino mass matrix as

UT6

(
03×3 M

T
D

MD MR

)
U6 = m̂ := diag (m1, . . . ,m6) . (2.21)

In eq. (2.21), the mi (i = 1, . . . , 6) are non-negative real; mi is the mass of the neutrino νi.
From eq. (2.21),

Um̂UT = 03×3, Xm̂U † = MD. (2.22)

The matrix MD is diagonal. Therefore, M †DMD = Um̂
(
16×6 − UTU∗

)
m̂U † = Um̂2U † is

diagonal. It follows from eqs. (2.20) and (2.22) that

X†MDU = m̂U †U. (2.23)

Equation (2.21) implies MT
DX

∗ = U∗m̂. Therefore,

X`i = U`i
mi

(M∗D)``
. (2.24)
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2.2.2 The interactions of the leptons

The charged-current Lagrangian is

Lcc = e√
2sw

∑
`=e,µ,τ

6∑
i=1

(
W−σ U`i

¯̀γσPLνi +W+
σ U

∗
`i ν̄iγ

σPL`
)
. (2.25)

The neutral-current Lagrangian is

Lnc = eZσ
2cwsw

∑
`=e,µ,τ

¯̀γσ
[(
s2
w − c2

w

)
PL + 2s2

wPR
]
` (2.26a)

+ eZσ
4cwsw

6∑
i,j=1

ν̄i γ
σ (qijPL − qjiPR) νj , (2.26b)

where
qij :=

(
U †U

)
ij
. (2.27)

When extracting the Feynman rule for the vertex from line (2.26b), one must multiply by a
factor 2 because the νi are Majorana fields.

The charged scalars interact with the charged leptons and the neutrinos through

LY ⊃
n∑
a=1

∑
`=e,µ,τ

6∑
i=1

[
H−a

¯̀(Ra`iPR − La`iPL) νi +H+
a ν̄i (R∗a`iPL − L∗a`iPR) `

]
. (2.28)

The coefficients in eq. (2.28) are given by

Ra`i =
nd∑
k=1
U∗ka

(
∆†kX

)
`i
, La`i =

nd∑
k=1
U∗ka (ΓkU)`i . (2.29)

The neutral scalars interact with the charged leptons and with the neutrinos through

LY ⊃ −
m∑
b=1

∑
`=e,µ,τ

S0
b√
2

¯̀(gb`PL + g∗b`PR) ` (2.30a)

−
m∑
b=1

6∑
i,j=1

S0
b

2
√

2
ν̄i
(
fbijPL + f∗bijPR

)
νj . (2.30b)

When extracting the Feynman rule for the vertex from line (2.30b), one must multiply by a
factor 2 because the νi are Majorana fields. The coefficients in eq. (2.30) are given by

gb` =
nd∑
k=1
V∗kb (Γk)`` , fbij =

nd∑
k=1
Vkb

(
X†∆kU + UT∆kX

∗
)
ij
. (2.31)

Notice that fbij = fbji.
The reader may now appreciate the practical computation of the amplitudes for

`±1 → `±2 γ (appendix B), Z → `+1 `
−
2 (appendix C), and S0

b → `+1 `
−
2 (appendix D). Those

amplitudes are expressed in terms of the Passarino-Veltman functions defined in appendix A.
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2.3 Restriction to a two-Higgs-doublet model

In the numerical computations in this paper, we work in the context of a two-Higgs-doublet
model without any scalar SU(2) singlets. We use, without loss of generality, the ‘Higgs
basis’, wherein only the first scalar doublet has a VEV, and moreover that VEV is real
and positive:

Φ1 =
(

G+(
v + ρ1 + iG0)/√2

)
, Φ2 =

(
H+

(ρ2 + iη)
/√

2

)
. (2.32)

In this basis, G+ = H+
1 is the charged would-be Goldstone boson and H+ = H+

2 is a
physical charged scalar. Thus, the matrix U defined through eq. (2.2) is the 2 × 2 unit
matrix. Moreover, G0 = S0

1 is the neutral would-be Goldstone boson, and [64]S
0
2
S0

3
S0

4

 = T

 ρ1
ρ2
η

 , (2.33)

where T is a real orthogonal 3× 3 matrix. Without loss of generality, we restrict T11, T21,
and T31 to be non-negative — this corresponds to a choice for the signs of S0

2 , S0
3 , and S0

4 ,
respectively. Without loss of generality, we choose the phase of the doublet Φ2 in such a
way that T12 + iT13 is real and non-negative; thus, T12 + iT13 =

√
1− T 2

11. The matrix V
defined through eq. (2.2) is given by

V =

 i T11 T21 T31

0
√

1− T 2
11 T22 + iT23 T32 + iT33

 . (2.34)

Then,

V†V =


1 −iT11 −iT21 −iT31
iT11 1 ±iT31 ∓iT21
iT21 ∓iT31 1 ±iT11
iT31 ±iT21 ∓iT11 1

 for detT = ±1. (2.35)

We are interested only in S0
2 , viz. in the index b = 2. Through the definition (2.9),

T11 = x2. (2.36)

From now on we will only use x2 and we will not mention T and its matrix elements again.
We use the notation mh for the mass of S0

2 ; since S0
2 is supposed to be the scalar discovered

at the LHC, mh = 125.25GeV. We use the notation mH+ for the mass of the charged scalar
H+. The neutral scalars S0

3 and S0
4 are unimportant in this paper.

We use the following notation [65] for the matrix elements of Γ1,2 and ∆1,2:

(Γ2)`` = γ`, (∆1)`` = d`, (∆2)`` = δ`, (2.37)

while (Γ1)`` =
√

2m`/v. Clearly, according to eq. (2.15) with vk = vδk1,

MD = v√
2

diag (de, dµ, dτ ) . (2.38)
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From eq. (2.24),

X`i =
√

2
d∗`

U`i
mi

v
. (2.39)

We use both eqs. (2.31) and the definition (2.27) to derive

g2` = x2

√
2m`

v
+
√

1− x2
2 γ`, (2.40a)

f2ij = x2

√
2 (miqij +mjqji)

v
+
√

1− x2
2

(
X†∆2U + UT∆2X

∗
)
ij
. (2.40b)

The scalar S0
2 couples to pairs of gauge bosons according to the Lagrangian [63]

L = · · ·+ e

sw
S0

2

(
mWW

+
µ W

µ− + mZ

2cw
ZµZ

µ
)
x2. (2.41)

It couples to the τ and µ leptons through the Lagrangian — cf. eq. (2.30a) —

L = · · · − S0
2

τ̄
 x2emτ

2swmW
+

√
1− x2

2 Re γτ
√

2
−

√
1− x2

2 Im γτ
√

2
γ5

 τ (2.42a)

+ µ̄

 x2emµ

2swmW
+

√
1− x2

2 Re γµ
√

2
−

√
1− x2

2 Im γµ
√

2
γ5

µ
 . (2.42b)

Experimentalists usually write

L = · · ·+ e

sw
S0

2

(
κW mWW

+
µ W

µ− + κZ
mZ

2cw
ZµZ

µ
)
− e

2swmW
S0

2 (κτ τ̄mττ + κµ µ̄mµµ) ,
(2.43)

viz. with factors κW,Z,τ,µ that parameterize the deviations from the SM. Detailed limits on
those factors have been derived from experiment, see for instance refs. [66–69]. In our fits
we enforce the conditions [68]2

0.93 ≤ |κW | = |κZ | = x2 ≤ 1, (2.44a)

0.81 ≤ |κτ | =
∣∣∣∣∣x2 +

√
2swmW

emτ

√
1− x2

2 Re γτ
∣∣∣∣∣ ≤ 1.17, (2.44b)∣∣∣∣mW

mτ

√
1− x2

2 Im γτ

∣∣∣∣ ≤ 0.3, (2.44c)

|κµ| =
∣∣∣∣∣x2 +

√
2swmW

emµ

√
1− x2

2 Re γµ
∣∣∣∣∣ ≤ 1.37, (2.44d)∣∣∣∣∣mW

mµ

√
1− x2

2 Im γµ

∣∣∣∣∣ ≤ 0.3. (2.44e)

These conditions constitute quite strong constraints on x2 and on the Yukawa couplings γτ
and γµ. Conditions (2.44b) and (2.44d) are displayed in figure 1. In the experimental papers,
for any given decay mode a coupling modifier is defined as κ2

i = Γi
/
ΓiSM , therefore in our

analysis we allow for either positive or negative Reκµ and Reκτ , as illustrated in figure 1.
2The LHC results also suggest that the couplings of the Higgs particle to the top and bottom quarks

should be quite close to the SM ones. However, since in our model we do not specify the Yukawa couplings
of the quarks, we refrain from imposing any constraint arising from the quark sector.
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Figure 1. The possible values of the real parts of the Yukawa couplings γµ (left panel) and γτ
(right panel) versus 1− x2, according to inequalities (2.44d) and (2.44b), respectively. In the right
panel, the dashed orange lines indicate the upper bound |Re γτ | ≤

√
4π ≈ 3.5 that we impose in our

fits. The locations of the benchmark points of table 3 are marked by crosses (for BP-1) and stars
(for BP-2).

We parameterize the vertex of S0
2 with two charged scalars through eq. (2.12). We

already know from eqs. (2.13) that

λ212 = λ122 =
e
(
m2
H+ −m2

h

)
2swmW

√
1− x2

2, (2.45a)

λ112 = − em2
h

2swmW
x2. (2.45b)

The value of λ222, i.e. of the coupling H−H+S0
2 , depends on the scalar potential. If we

write the quartic part of the scalar potential of the 2HDM in the standard notation [70]

V4 = λ1
2
(
Φ†1Φ1

)2
+ λ2

2
(
Φ†2Φ2

)2
+ λ3 Φ†1Φ1 Φ†2Φ2 + λ4 Φ†1Φ2 Φ†2Φ1

+
[
λ5
2
(
Φ†1Φ2

)2
+
(
λ6Φ†1Φ1 + λ7Φ†2Φ2

)
Φ†1Φ2 + H.c.

]
, (2.46)

then [64]

λ222 = −2swmW

e

(
x2λ3 +

√
1− x2

2 Reλ7

)
. (2.47)

The coupling λ222 is important for S0
2 → `+1 `

−
2 ; there is a diagram for that decay wherein

S0
2 attaches to H−H+. However, in practice that diagram gives amplitudes (D.5) that are

always much smaller than the dominant amplitudes (D.4) and (D.11). We have found that,
for −1 < λ3 < 7 and |Reλ7| < 1.5 [71], the branching ratios BR

(
S0

2 → `+1 `
−
2

)
are almost

completely independent of λ222.3 Thereafter we have kept λ3 = Reλ7 = 1 fixed.
3There is an exception to this behaviour when 1 − x2 . 10−7, i.e. when one is extremely close to the

‘alignment’ situation x2 = 1. In this case the amplitudes (D.4) and (D.11) are strongly suppressed and the
exact value of λ222 becomes quite relevant. However, in that very contrived case the branching ratios of
S0

2 → `+
1 `
−
2 become very close to zero and, therefore, uninteresting to us, since in this paper we are looking

for the possibility of largish LFV branching ratios.
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2.4 Fit to the lepton-mixing data

The lepton mixing matrix U is in the charged-current Lagrangian (2.25). It is a 3 × 6
matrix. We must connect it to the standard PMNS 3 × 3 unitary matrix. In order to
make this connection we use the seesaw approximation [72–76], which is valid when the
eigenvalues of MR are very much larger than the (diagonal) matrix elements of MD. The
3× 3 symmetric matrix

Mν = −MT
DM

−1
R MD (2.48)

is diagonalized by an unitary matrix V as

V TMνV = diag (n1, n2, n3) := n̂, (2.49)

where the np (p = 1, 2, 3) are real and positive. It follows from eqs. (2.48) and (2.49) that

MR = −MDV n̂
−1V TMT

D. (2.50)

In our fitting program we input the PMNS matrix V ,4 the Yukawa couplings de,µ,τ , and the
np. We firstly write the matrix MD given by eq. (2.38). We then determine MR through
eq. (2.50). We use MR and MD to construct the 6× 6 matrix(

03×3 M
T
D

MD MR

)
. (2.51)

We diagonalize the matrix (2.51) through the unitary matrix U6 as in eq. (2.21). We thus
find both U , viz. the 3×6 upper submatrix of U6, and the neutrino masses mi (i = 1, . . . , 6).
Because the seesaw approximation is very good, one obtains mi ≈ ni for i = 1, 2, 3 and
moreover the 3× 3 left submatrix of U turns out approximately equal to V . Finally, we
order the heavy-neutrino masses as m4 ≤ m5 ≤ m6.

Since the inputted np are many orders of magnitude below the Fermi scale, the matrix
elements ofMR are much above the Fermi scale unless the Yukawa couplings d` are extremely
small. Therefore, when we lower the inputted d`, we lower the heavy-neutrino masses.

For the np we use the light-neutrino masses. The cosmological bound [77] is

3∑
p=1

np ≈
∑

light neutrinos
mν < 0.12 eV, (2.52)

together with the squared-mass differences ∆solar = n2
2 − n2

1 and ∆atmospheric =
∣∣n2

3 − n2
1
∣∣,

that are taken from phenomenology. The lightest-neutrino mass is kept free; we let it vary
in between 10−5 eV and ∼ 0.03 eV for normal ordering (n1 < n3), and in between 10−5 eV
and ∼ 0.015 eV for inverted ordering (n3 < n1); the upper bound on the lightest-neutrino
mass is indirectly provided by the cosmological bound (2.52). The smallest np cannot

4Recall that in our model there is conservation of the flavour lepton numbers in the Yukawa couplings
and therefore the charged-lepton mass matrix is diagonal from the start.
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Quantity Best fit 1σ range 3σ range

∆solar
/(

10−5eV2
)

7.55 7.39–7.75 7.05–8.14

∆atmospheric
/(

10−3eV2
)
(NO) 2.50 2.47–2.53 2.41–2.60

∆atmospheric
/(

10−3eV2
)
(IO) 2.42 2.34–2.47 2.31–2.51

sin2 θ12
/
10−1 3.20 3.04–3.40 2.73–3.79

sin2 θ23
/
10−1 (NO) 5.47 5.17–5.67 4.45–5.99

sin2 θ23
/
10−1 (IO) 5.51 5.21–5.69 4.53–5.98

sin2 θ13
/
10−2 (NO) 2.160 2.091–2.243 1.96–2.41

sin2 θ13
/
10−2 (IO) 2.220 2.144–2.146 1.99–2.44

δ /rad (NO) 3.80 3.33–4.46 2.73–6.09
δ /rad (IO) 4.90 4.43–5.31 3.52–6.09

Table 2. The neutrino-oscillation parameters used in our fits [78].

be allowed to be zero because n̂−1 appears in eq. (2.50). For the matrix V we use the
parameterization [66]

V =

 c12c13 s12c13 ε∗

−s12c23 − c12s23ε c12c23 − s12s23ε s23c13
s12s23 − c12c23ε −c12s23 − s12c23ε c23c13

× diag
(
1, eiα21/2, eiα31/2

)
, (2.53)

where ε ≡ s13 exp (iδ), cpq = cos θpq, and spq = sin θpq for (pq) = (12), (13), (23).
Three different groups [78–80] have derived, from the data provided by various neutrino-

oscillation experiments, values for the mixing angles θpq, for the phase δ, and for ∆solar and
∆atmospheric. The results of the three groups (especially the 1σ bounds) are different, but in
ref. [78] the values of the observables are in between the bounds of refs. [79] and [80]. In
this paper we use the 3σ data from ref. [78] that are summarised in table 2. The Majorana
phases α21 and α31 are kept free in our analysis.

3 Numerical results

3.1 Details of the computation

We have generated the complete set of diagrams for each process in Feynman gauge by
using the package FeynMaster [81] (that package combines FeynRules [82, 83], QGRAF [84],
and FeynCalc [85, 86]) with a modified version of the FeynRules Standard-Model file
to account for the six neutrinos, for lepton flavour mixing, and for the additional Higgs
doublet. The amplitudes generated automatically by FeynMaster were expressed through
Passarino-Veltman (PV) functions by using the package FeynCalc and specific functions
of FeynMaster. All the amplitudes were checked by performing the computations manually.
The results of these computations are presented in appendices B, C, and D.
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For numerical calculations we made two separate programs, one with Mathematica and
another one with Fortran. Because of the very large differences among

• the mass scale of the light neutrinos, between 10−5 eV and 0.1 eV,

• the mass scale of the charged leptons, between 100 keV and 1GeV,

• and the mass scale of the heavy neutrinos, between 100GeV and 1016 GeV,

there are both numerical instabilities and delicate cancellations in the calculations. These nu-
merical problems could be solved with the high-precision numbers that Mathematica allows.
However, this strongly slows down the calculations. Fortunately, numerical inaccuracies
occur only for very small values (less than 10−30) of the branching ratios (BRs), therefore we
were able to use a program written with Fortran to implement the minimization procedure
and to find BRs within ranges relevant to experiment. Some parts of the Fortran code
(such as the module for matrix diagonalization) have used quadruple precision to avoid
inaccuracies, but most of the code has used just double precision so that the computational
speed was sufficient for minimization. The final results were checked with the high precision
afforded by Mathematica.

The numerical computation of the PV functions was performed by using the Fortran
library Collier [87], which is designed for the numerical evaluation of one-loop scalar and
tensor integrals. A major advantage of Collier over the LoopTools package [88] is that
it avoids numerical instabilities when the neutrino masses are very large, even when one
only uses double precision. The integrals were checked with Mathematica’s high-precision
numbers and Package-X [89] analytic expressions of one-loop integrals.

In the fits of subsection 3.4, in order to find adequate numerical values for the parameters
we have constructed a χ2 function to be minimized:

χ2 =
n∑
i=1

Θ
(
Obi −Ovi

)(Obi
Ovi

)2

+ Θ
(
Ovi −Obi

)(Ovi −Obi
k

)2
 . (3.1)

In eq. (3.1),

• n is the total number of observables to be fitted; this is usually nine, since we fit the
BRs of the nine LFV decays in order to find them within the ranges accessible to
experiment.

• Θ is the Heaviside step function.

• Ovi is the computed value of each observable.

• Obi is the experimental upper bound on the observable, which is given in table 1.

• k is an appropriately small number that short-circuits the minimization algorithm
when Ovi turns out larger than Obi .5

5In practice, in each case we have tried various values of k before settling on the one that worked best, i.e.
that maximized the efficiency of the minimization algorithm for each problem at hand. Since the observables
viz. the branching ratios are very small, k ∼ 10−20 was a typical order of magnitude.
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The χ2 function (3.1) works well even when the calculated BRs and the experimental upper
bounds differ by many orders of magnitude. We have performed the fits in subsection 3.4 by
minimizing χ2 with respect to the model parameters — the Yukawa couplings d`, δ`, and
γ`, and the PMNS-matrix parameters. The mass of the lightest neutrino and the parameter
x2 were randomly generated before the minimization of the χ2 function, in order to be
able to explore the full range of the neutrino masses and the full range of x2. In the fits
of subsection 3.4 the mass of the charged scalar H+ was usually kept fixed, just as the
parameters λ3 and Reλ7 of the scalar potential (2.46).

The minimization of χ2 is not an easy task because of the large number of model
parameters that, moreover, may differ by several orders of magnitude, and because there is
always a large number of local minima. However, we don’t try to find absolute minima, i.e.
BRs as close as possible to the experimental upper bound; our purpose is rather to search
under which circumstances the decay rates may be in experimentally accessible ranges.

The inputted values of the masses of the leptons and bosons were taken from ref. [66].
We have used s2

w = 0.22337 and e ≡
√

4πα, where α = 1/137.036 is the fine-structure
constant. The neutrino-oscillation data are in table 2.

We introduce the shorthands BR(`), BR(Z), and BR(h) for the branching ratios of
the decays `±1 → `±2 γ, Z → `±1 `

∓
2 , and h → `±1 `

∓
2 , respectively. We also define the lower

bound Ymin = 10−6 and the upper bound Ymax =
√

4π ≈ 3.5 on the moduli of the Yukawa
coupling constants.

3.2 Benchmark points

We produce in table 3 two benchmark points (BPs). For those two BPs the neutrino mass
ordering is normal, the neutrino squared-mass differences and the lepton mixing angles
take their best-fit values in table 2, the mass of the charged scalar is 750GeV, and the
parameters λ3 and λ7 of the scalar potential are both equal to 1. The first nine rows of
table 3 contain the inputted values of the Yukawa couplings; the next two lines have the
computed values of κµ and κτ ; in the next four lines one finds the inputted values of the
lightest-neutrino mass m1, of the Majorana phases α21 and α31, and of the non-alignment
parameter 1− x2; the next three lines have the computed masses of the heavy neutrinos,
ordered as m4 ≤ m5 ≤ m6; the last nine lines display the computed branching ratios.

In benchmark point 2 (BP-2) only the BR(h) are sufficiently large to be observed in
the future, while the BR(`) and BR(Z) are negligibly small. Benchmark point 1 (BP-1)
indicates that very small values of the Yukawa couplings d` and large values of the Yukawa
couplings δ` are required in order to obtain BR(`) in experimentally reachable ranges. BP-2
shows that, if only the BR(h) are accessible, then the Yukawa couplings may all be in the
range [0.1, 1]; in that case, since the d` are not very small, the heavy-neutrino masses are
quite large.

3.3 Evolution of BRs

In this subsection we discuss the behaviour of the BRs when we vary some input parameters
of the benchmark point 1 of the previous section, while the other input parameters of that
point remain fixed.
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Point 1 (BP-1) Point 2 (BP-2)

de 10−6 0.25
dµ 4× 10−6 0.7
dτ 10−6 0.4
δe 3.5 0.7
δµ 3.5 0.2
δτ 3.5 0.7
γe 0.3 0.3
γµ 10−4 – 0.043
γτ – 0.24 – 0.73
κµ 1.01 – 1.04
κτ – 1.04 – 1.06

m1 (meV) 16.5 5.2
α21 (rad) 3.515 0
α31 (rad) 1.060 0

1− x2 0.0036 0.0004
m4 (TeV) 1.16066 1.33740× 1011

m5 (TeV) 3.54866 3.07494× 1011

m6 (TeV) 6.67826 12.5369× 1011

BR (τ± → µ±γ)× 109 8.1 —
BR (τ± → e±γ)× 109 12 —
BR (µ± → e±γ)× 1013 2.2 —
BR (Z → τ±µ∓)× 1013 9.6 —
BR (Z → τ±e∓)× 1013 12 —
BR (Z → µ±e∓)× 1015 38 —
BR (h→ τ±µ∓)× 104 3.6 5.5
BR (h→ τ±e∓)× 104 5.5 8.9
BR (h→ µ±e∓)× 105 3.6 3.9

Table 3. Two benchmark points. In the third column, the symbol ‘—’ stands for a tiny number
. 10−20. The values of the input parameters absent from the first column are given at the beginning
of subsection 3.2.
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Figure 2. The branching ratios as functions of the Yukawa coupling dτ . Full lines give the BRs
computed with the contribution of all amplitudes; dashed lines represent the BRs computed only
with the amplitudes that do not involve the charged scalars H±. The shadowed bands are excluded
by the present experimental data; the dashed/dotted horizontal lines show the future experimental
sensitivities given in table 1. The colours of the shadowed bands coincide with the colours of the
lines, viz. blue for (`1, `2) = (τ, µ), red for (`1, `2) = (τ, e), and green for (`1, `2) = (µ, e). The
vertical dashed lines mark the location of BP-1 of table 3. The upper-right panel is a zoom of the
upper part of the bottom-right one. In the left panels, the blue lines almost always coincide with
the red ones.

In order to visualize the impact of the Yukawa coupling constants on the BRs, we have
fixed their ratios in the same way as in BP-1, viz.

dτ = de, dµ = 4 dτ , δe = δµ = δτ ,
0.3 γτ
γe

= γτ
104 γµ

= −0.24. (3.2)

We change either only dτ , or only δτ , or only γτ , and we let the other Yukawa couplings
vary together with them through the fixed ratios (3.2). All the other input parameters keep
the values of BP-1.

In figure 2 we display the BRs against dτ , while the three δ` and the three γ` are
kept equal to their respective values of BP-1. It should be noted, in the upper and lower
horizontal scales of figure 2, that the mass m4 of the lightest heavy neutrino varies as
m4 ∝ d2

τ . One observes, in the top-left panel of figure 2, that the BR(`) reach values close
to their experimental upper bounds for a narrow range of dτ , viz. 2× 10−7 . dτ . 8× 10−6;
for these tiny values of dτ , m4 . 104 GeV. The behaviour of the BR(Z) is shown in the
bottom-left panel of figure 2; it is similar to the behaviour of the BR(`), as one might
foresee from the similarities in the amplitudes for the two processes, cf. appendices B
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Figure 3. The branching ratios as functions of the Yukawa couplings δτ = δµ = δe. See the caption
of figure 2 for further explanations.

and C. Unfortunately, however, because of a small factor in the decay width, cf. eq. (C.2),
the predicted BR(Z) are smaller by more than six orders of magnitude than the present
experimental upper bounds.

We observe a completely different behaviour of the BR(h) in the right panels of figure 2
(the top panel is a zoom of part of the bottom one): the BR(h) achieve values comparable
to the experimental upper bounds for a wide range of dτ , viz. even when the heavy-neutrino
masses are quite large.

The main message of figure 2 is that all nine BRs would be very small if there were
no charged scalars H±. The contributions to the amplitudes from the diagrams with H±
increase some BRs in some circumstances by several orders of magnitude.

The BRs behave differently when plotted against the Yukawa couplings δ`, as shown in
figure 3. We see that all the BRs increase with increasing absolute value of δ`; the BR(`)
and BR(h) become visible in planned experiments when |δ`| & 2 (for appropriate values of
the other parameters, especially very small d`, as they are in figure 3). With decreasing
|δ`| the BRs decrease monotonically for all decays because of the decreasing values of all
the amplitudes; when |δτ | ∼ 10−6 the BRs have minimum values somewhere between 10−35

and 10−25.
The dependence of the BR(`) and BR(Z) from the Yukawa couplings γ` is weak, as

shown in the left panel of figure 4. The reason for this is that in the dominant amplitudes,
viz. the ones in eq. (B.13), the d` and δ` have much stronger impact than the γ`. The
relevance of the γ` is much stronger on BR(h); in the right panel of figure 4 one sees that
experimentally visible BR(h) may be reached when |γτ | & 0.1, for appropriate values of the
other parameters. The BR(h) decrease with decreasing |γ`| because of the decreasing values
of the dominant amplitudes, viz. dl/rb,16 in eq. (D.4) and dl/rb,19 in eqs. (D.11). However,
for |γτ | . 10−3 the amplitudes dl/rb,17 in eq. (D.5) become dominant and the BR(h) do not
decrease much any further.

In figures 2 and 4 we have seen that the behaviour of BR(h) is different from the
one of BR(Z) and BR(`). This happens because of different amplitudes, but also because
of additional parameters, viz. x2 and the triple-scalar couplings λ3 and λ7, that arise in
the diagram of figure 17 where h attaches to two charged scalars with couplings given by
eqs. (2.45) and (2.47). However, due to the small factor

√
1− x2

2 in the second term of
eq. (2.47), the impact of λ7 on BR(h) is almost imperceptible. On the other hand, λ3 may
have a strong influence on BR(h). This happens only for extremely small values of 1− x2,
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Figure 4. Some branching ratios as functions of the Yukawa coupling γτ . The vertical dashed lines
mark the value γτ = −0.24 of benchmark point 1. Left panel: BR (τ± → µ±γ) versus γτ for various
values of δτ . Right panel: the BR(h) versus γτ for δτ = 3.5. The light-gray-shadowed bands are
regions excluded by the inequalities (2.44).
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Figure 5. BR (h→ τ±µ∓) versus 1 − x2 for various values of the triple-scalar coupling λ3; all
the other input parameters are as in BP-1. The bands shadowed in light gray are excluded by
inequalities (2.44). The vertical dashed line marks the value 1− x2 = 0.0036 of BP-1.

though; and, for such extremely small values of 1− x2, BR(h) is anyway much too small
to be measurable. This is displayed in figure 5. In the cases that we are interested in, viz.
when the BR(h) are rather large, the exact value of λ3 is unimportant. For the sake of
simplicity, from now one we assume λ3 = λ7 = 1 everywhere.

With decreasing 1−x2, the BRs in figure 5 decrease because of the decreasing dominant
amplitudes dl/rb,16 in eq. (D.4) and dl/rb,19 in eqs. (D.11). At some point, though, the
amplitudes dl/rb,17 in eqs. (D.5) begin to dominate and then the BRs do not decrease much
any further. The dips in the lines of figure 5 arise from the partial cancellation of amplitudes
dl/rb,16 and dl/rb,19 with the amplitudes dl/rb,17.

As shown in figure 5, 1− x2 has a strong impact on BR(h). It is also important for
making BR(h) and BR(`) simultaneously close to the experimental bounds. Indeed, the
BR(h) may be made sufficiently large, for a wide range of the Yukawa couplings d` and
for sufficiently large values of the δ`, just by varying 1− x2. The strong impact of 1− x2
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Figure 6. The decay rates versus the mass of the charged scalar mH+ ; all the other parameters are
kept at their values of benchmark point 1 in table 3. The vertical dashed lines mark mH+ = 750GeV.
The oblique dashed lines are given by eqs. (3.3).

and of the γ` on BR(h) allows one to adjust BR(h), together with BR(`), to be close to the
experimental upper bounds — but for a quite restricted range of d` and δ`, because large
BR(`) require extremely small d` and rather large δ`. If, on the other hand, one attempts
to fit only BR(h), then both 1− x2 and the Yukawa couplings may be much more relaxed,
as shown in BP-2 of table 3.

In figure 6 we illustrate the evolution of the BRs when the mass of the charged scalar
mH+ is changed, while the other parameters are kept fixed at their values of BP-1. One
observes that when mH+ increases the BRs mostly decrease monotonically as (for the other
parameters fixed in their values of BP-1)

BR (`) ≈ 1017.72
(
mH+

1 GeV

)−7.51
, (3.3a)

BR (Z) ≈ 1013.82
(
mH+

1 GeV

)−7.82
, (3.3b)

BR (h) ≈ 1010.47
(
mH+

1 GeV

)−3.58
. (3.3c)

Eventually, when mH+ ∼ 107 GeV for BR(`) and BR(Z), and when mH+ ∼ 109 GeV for
BR(h), the BRs settle at their SM values. This illustrates the decoupling of H+. One also
sees in figure 6 that, for (`1, `2) = (µ, e), there is near mH+ = 750GeV a partial cancellation
of amplitudes that leads to a sudden drop of BR (µ± → e±γ); our benchmark point 1
has profited from that effect for attaining BR(µ± → e±γ) smaller than its experimental
upper bound.

In figure 7 we display the BRs as functions of the Majorana phase α31, with the other
input parameters kept fixed at their values of BP-1. Here too, for (`1, `2) = (µ, e) there is
a sudden drop of the branching ratios when α31 = 1.06, which is precisely the value that
we have utilized in benchmark point 1. A similar behaviour of the green lines also occurs
with other parameters, besides mH+ (figure 6) and α31 (figure 7). Hence, the values of
the parameters must be chosen very carefully if we want to find all six BR(`) and BR(h)
simultaneously close to their experimental upper bounds. The main difficulty arises because
the upper bound on BR (µ± → e±γ) differs from the upper bound on BR (τ± → µ±γ) by
five orders of magnitude. Fortunately, our minimization procedure allows this to be done
quite efficiently.
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Figure 7. The decay rates versus the Majorana phase α31; all the other parameters are kept at
their values of benchmark point 1 of table 3. The vertical dashed lines mark the value α31 = 1.06
of BP-1.

3.4 Fitting the BRs

In this model there is a large number of input parameters. We have performed a minimization
procedure in order to find adequate values for all of them. For each set of input parameters,
we have computed the branching ratios of the nine LFV decays; we have then selected sets
of input parameters for which all six BR(`) and BR(h) are simultaneously between the
current experimental upper bounds and the future experimental sensitivities.6

Since in this subsection we use a fitting procedure, we must enforce definite bounds on
the input parameters, lest they acquire either much too small or much too large values. We
adopt the following conditions:

• The neutrino-oscillation parameters, viz. the mixing angles θ12, θ13, and θ23, the Dirac
phase δ, and the neutrino squared-mass differences, are varied within their respective
3σ ranges taken from ref. [78] and reproduced in table 2. The Majorana phases α21
and α31 are kept free, i.e. we let them vary from 0 to 2π.

• The lightest-neutrino mass is varied in between 10−5 eV and either ∼ 0.03 eV for
normal ordering of the neutrino masses or ∼ 0.015 eV for inverted ordering. The
precise upper bound on the lightest neutrino mass is fixed, for each pair of values of
∆solar and ∆atmospheric, by the Planck 2018 cosmological upper bound (2.52).

• The Yukawa coupling constants d`, δ`, and γ` are assumed to be real (either positive
or negative).7

• The moduli of the Yukawa coupling constants are varied between Ymin = 10−6 (which
is the order of magnitude of the Yukawa coupling of the electron) and a perturbativity
bound Ymax =

√
4π ≈ 3.5.

• We enforce eqs. (2.44).

There are experimental and phenomenological constraints on the mass of the charged
scalar mH+ , as discussed in appendix F. The numerical study in the previous subsection

6It is extremely difficult to achieve values of the BR(Z) close to the future experimental sensitivities.
Still, our minimization procedure also seeks to obtain the highest possible values of the BR(Z).

7We have also investigated the case with complex Yukawa couplings. We have found out that its results
do not differ much from the real case, therefore we do not present fits with complex couplings.
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Figure 8. Scatter plots of the branching ratios for three different fits. Blue points have normal
ordering of the light-neutrino masses, red points have inverted ordering, and green points have
a lower bound (10−7 instead of 10−6) on the moduli of the Yukawa couplings. A cyan square
marks BP-1 of table 3. The shadowed bands are the present experimental upper bounds on the
BRs; dashed and/or dotted lines show the future experimental sensitivities, as described in table 1.

(see figure 6) shows that, when mH+ increases, most BRs decrease. Since we attempt to
obtain largish BRs, the fitting procedure always tends to produce the lowest mH+ in the
allowed range. In our fits we have fixed mH+ = 750GeV, in agreement with the lower
bounds of recent global fits [90, 91]. We have also kept the triple-scalar couplings fixed, viz.
λ3 = λ7 = 1, because they do not change much the BRs. Finally, we have checked that all
the final points meet the 3σ conditions on the Z invisible decay width in eq. (E.6).

In the figures of this subsection we display three different fits:

1. In the first fit (displayed through blue points and called ‘NO’ from now on), we have
assumed normal ordering of the light-neutrino masses.

2. In the second fit (displayed through red points and named ‘IO’) there is inverted
ordering of the light-neutrino masses.

3. In the numerical analysis8 we have found that most points have |d`| close to the
lower bound Ymin = 10−6. Therefore, we have produced a third fit (displayed through
green points and labelled ‘Ymin = 10−7’) that has normal ordering like the first one,
but where the lower bound on the moduli of the Yukawa couplings is 10−7 instead
of 10−6.9

Figure 8 shows that points for the NO and IO cases are similarly distributed in what respects
the BR(`) and BR(Z). It is possible in both cases to find points with the BR(`) close to the

8See the histograms of figure 10.
9The numerical analysis has also shown that most points have |δ`| close to the upper bound Ymax ≈ 3.5.

Therefore we have made an extra fit where that upper bound was relaxed to 12.5. However, that extra fit,
which we do not display, did not produce much improvement on BR(`) and BR(h). It did produce larger
BR(Z), but they were still very much below the future experimental sensitivities. Thus, it appears to us
that there are no advantages in allowing the moduli of the Yukawa couplings to be larger than 3.5.
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Figure 9. Correlation plots between BR(`) and BR(Z) for the three fits of figure 8; the points and
the notation are the same as in that figure.

experimental upper bounds, while the BR(Z) always remain much too suppresssed. For the
BR(h), on the other hand, NO usually leads to smaller values than IO. The larger freedom
of the third fit (with Ymin = 10−7 instead of Ymin = 10−6) facilitates larger BR(`), as shown
by the green points in figure 8.

Most points in figure 8 have negative κτ . This allows larger BR (h→ τ±µ∓) and
BR (h→ τ±e∓). If one only allows positive κτ , then in NO it is not possible to reach the
future sensitivity for BR (h→ τ±µ∓), except if one allows complex Yukawa couplings. On
the other hand, in both the IO and Ymin = 10−7 cases it is still possible to get all three
BR(h) above their future sensitivities with positive κµ and κτ .

We have found that free Majorana phases permit larger BRs for the decays with
τ±. Thus, it is advantageous to fit the Majorana phases instead of fixing them at any
pre-assigned values.

In figure 9 we display correlation plots of BR(`) and BR(Z). One sees that there
is a correlation between BR (τ± → µ±γ) and BR (Z → τ±µ∓), and a correlation between
BR (τ± → e±γ) and BR (Z → τ±e∓). These correlations are one of the main reasons for
the small BR(Z) in our model; if we want to keep the BR(`) below their experimental upper
bounds, then we necessarily obtain much too low BR(Z). Indeed, one sees in figure 9 that the
BABAR 2010 upper bounds on the BR(τ) lead, in our model, to BR (Z → τ±µ∓) . 6×10−12

and BR (Z → τ±e∓) . 4× 10−12; those values are much lower than the future experimental
sensitivity. We point out that in other models (see for instance refs. [24], [41], and [42])
there are also correlations between the BR(Z) and BR(`), and also with the branching
ratios for three-body LFV decays `±1 → `±2 `

+
3 `
−
3 .

In some models there are correlations between BR (h→ τ±µ∓) and either [46, 48, 49, 57]
BR (τ± → µ±γ) or [50] BR (µ± → e±γ). In our model we did not find correlations between
the BR(`) and BR(h).

In figure 10 we display histograms of the moduli of the Yukawa couplings for our
three fits. In the first row of panels one sees that, in order to get BR(`) in experimentally
reachable ranges, our fits always have very small |d`| . 10−5. If we had set Ymin much
larger than 10−6, then it might not have been possible to obtain BR(`) visible in the next
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Figure 10. The distributions of the moduli of the Yukawa couplings for the three fits.
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Figure 11. Histograms of the heavy-neutrino masses for the three fits.

generation of experiments. In the fit with relaxed Ymin = 10−7 the distribution of the |d`| is
more uniform. The second row of figure 10 shows that, in all three fits, |δe,µ,τ | have values
close to the allowed upper bound Ymax. In the third row one sees that the |γe,µ,τ | vary in
rather wide ranges, from ∼ 10−4 to Ymax. This happens because the parameter 1− x2 has
a strong impact on BR(h); for smaller values of the γ`, larger values of 1− x2 still allow
BR(h) to reach experimentally reachable ranges.

In figure 11 we display the heavy-neutrino masses m4, m5, and m6 for our three fits.
Because the |d`| are always so small in the fits, the heavy-neutrino masses are very small
too. Thus, in NO and IO m4 lies in between ∼ 0.5TeV and ∼ 2.5TeV, and in Ymin = 10−7

it may be as small as 45GeV.10 The mass m5 is in between ∼ 1TeV and ∼ 10TeV for all
10We note the recent paper [92] that analyzes a model including a Majorana neutrino with mass of order

100GeV. That model apparently gives rise to lepton-number-violating signatures that might be visible at
the LHC.
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cases, and the mass m6 is in between ∼ 2.5TeV and ∼ 100TeV for NO, and ∼ 104 TeV for
both IO and Ymin = 10−7.

In all three fits, it is found that the mixing angles θ12,23,13, the Dirac phase δ, and the
Majorana phases α21 and α31 may have values anywhere in their ranges.

3.5 Single decays

In the previous subsection we have discussed the results that are obtained when all six
BR(`) and BR(h) are simultaneously between the current experimental upper bounds and
the future experimental sensitivities. Here we consider the case where only one of those six
BRs is above the future sensitivity.

We have found that requiring just one BR(`) to be above the future sensitivity still
restricts the Yukawa couplings |d`| . 10−3 and |δ`| & 0.5. Then, because of the small |d`|,
the heavy-neutrino mass m4 is always of order 1TeV (except in µ± → e±γ for which m4
may be of order 50TeV).

Requiring just one BR(h) to be above the future sensitivity restricts |δ`| & 0.1. The
|d`| and the heavy-neutrino masses do not need to be very small, as one sees for instance
in BP-2 of table 3.

In our model the decay Z → µ±e∓ might be observed at the FCC-ee collider in a
very restricted range of circumstances, viz. with large |δe,µ| & 4, small |de| . 10−6 and
|dµ,τ | . 5 × 10−6, and small mH+ . 500GeV. Moreover, a very precise finetuning is
required, wherein the Yukawa couplings are such that on the hand the decay µ± → e±γ has
a cancellation of amplitudes leading to its BR being below the experimental upper bound,
and on the other hand BR (Z → µ±e∓) still remains a little above the FCC-ee sensitivity.
The other two LFV Z decays Z → τ±e∓ and Z → τ±µ∓ are in our model always much too
suppressed to be visible.

3.6 Amplitudes

Numerically, we have found that only a few amplitudes have a substantial impact on
the BRs.

For `±1 → `±2 γ the amplitudes (B.13) are dominant. Specifically, al,H in eq. (B.13a)
gives the main impact. Therefore, the approximate decay width is

Γ
(
`±1 → `±2 γ

)
≈
m4
`1
−m4

`2

16πm3
`1

|S e|2 |al,H |2 . (3.4)

This yields the following approximate formulas for the BRs:

BR
(
τ± → µ±γ

)
≈
(
5.733× 104

)
|al,H |2 , (3.5a)

BR
(
τ± → e±γ

)
≈
(
5.733× 104

)
|al,H |2 , (3.5b)

BR
(
µ± → e±γ

)
≈
(
2.580× 1010

)
|al,H |2 . (3.5c)
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The amplitude āl,H in eq. (C.9a) is the most important one for the BR(Z).11 Therefore,

Γ
(
Z → `±1 `

∓
2

)
≈

√
m4
Z − 2m2

Z

(
m2
`1

+m2
`2

)
+
(
m2
`1
−m2

`2

)2

48πm5
Z

× |S e|2
[
2m4

Z −m2
Z

(
m2
`1 +m2

`2

)
−
(
m2
`1 −m

2
`2

)2
]
|āl,H |2 . (3.6)

Hence,
BR

(
Z → `±1 `

∓
2

)
≈
(
1.781× 10−6

)
|āl,H |2 . (3.7)

The amplitudes for the Higgs decays differ from those for the other decays. The
amplitudes from the self-energy-like diagrams of figure 16, with the charged scalar H±,
give the strongest impact on the branching ratios. Specifically, the amplitude drb,16(a,b) in
eq. (D.4b) is significant for largish values of the Yukawa couplings d` and the amplitude
dlb,16(a,b) in eq. (D.4a) is significant for all values of the d`. Moreover, for the h decays
the amplitudes from diagrams with two internal neutrino lines, depicted in figure 19, are
important too. Specifically, the amplitudes dlb,19(a) and drb,19(a) are relevant. Thus, defining

d̄lb = dlb,16(a,b) + dlb,19(a), d̄rb = drb,16(a,b) + drb,19(a), (3.8)

we have

BR
(
h→ τ±µ∓

)
≈
(
2.451× 10−2

)(∣∣∣d̄lb∣∣∣2 +
∣∣∣d̄rb∣∣∣2)

−
(
1.176× 10−6

)
Re
(
d̄lbd̄

∗
rb

)
, (3.9a)

BR
(
h→ τ±e∓

)
≈
(
2.451× 10−2

)(∣∣∣d̄lb∣∣∣2 +
∣∣∣d̄rb∣∣∣2)

−
(
5.690× 10−9

)
Re
(
d̄lbd̄

∗
rb

)
, (3.9b)

BR
(
h→ µ±e∓γ

)
≈
(
2.452× 10−2

)(∣∣∣d̄lb∣∣∣2 +
∣∣∣d̄rb∣∣∣2)

−
(
3.384× 10−10

)
Re
(
d̄lbd̄

∗
rb

)
. (3.9c)

In order to check the correctness of the approximate BRs of eqs. (3.5), (3.7), and (3.9)
we have calculated the asymmetry between the exact BRs and the approximate ones,

BRasymmetry ≡
|BRexact − BRapproximate|
BRexact + BRapproximate

. (3.10)

Using the points of case ‘NO’, these asymmetries are displayed in figure 12. One sees that
BRasymmetry . 0.1, which means that the approximate formulas are quite accurate. These
approximate expressions for the BRs may be very useful for intermediate calculations of
the fitting procedure, where the calculations need to be repeated many times, before the
final result is calculated by using the exact expressions. This computational trick has saved
us a lot of time.

11Due to the similarities between al,H in eq. (B.13a) and āl,H in eq. (C.9a), there are correlations between
BR
(
`±1 → `±2 γ

)
and BR

(
Z → `±1 `

∓
2
)
, as already seen in figure 9.
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Figure 12. Histograms of the asymmetries between the exact nine branching ratios and their
approximate expressions in eqs. (3.5), (3.7), and (3.8)–(3.9).

4 Summary and conclusions

Here we summarize our main findings:

• The amplitudes with the charged scalar are crucial in order to obtain BR
(
`±1 → `±2 γ

)
and BR

(
h→ `±1 `

∓
2

)
in experimentally accessible ranges.

• Because the experimental upper bound on BR (µ± → e±γ) is very small, it is often
necessary to finetune the values of the input parameters of the model so that the
largest amplitudes for that specific decay partially cancel among themselves, while
the other five decays `±1 → `±2 γ and h→ `±1 `

∓
2 remain experimentally visible in the

future.

• The decays `±1 → `±2 γ necessitate large values of the Yukawa couplings |δ`| & 1 and
extremely small values of the Yukawa couplings |d`| . 10−5 in order to be visible.
The latter imply a very low seesaw scale, i.e. rather light right-handed neutrinos.

• In our model the decays Z → `±1 `
∓
2 correlate with the decays `±1 → `±2 γ, i.e. they

behave similarly as functions of the parameters. Because of this correlation, the
experimental upper bounds on BR

(
`±1 → `±2 γ

)
imply that the decays Z → `±1 `

∓
2 will

remain invisible in all the planned experiments.

• The decays h→ `±1 `
∓
2 behave quite differently from `±1 → `±2 γ and Z → `±1 `

∓
2 . They

might be visible in future experiments without the need to choose either very large or
very small Yukawa couplings.

• The Majorana phases have a significant impact on the branching ratios of all the
decays. One should refrain from fixing them at any pre-assigned values.

• Both normal and inverted ordering of the light-neutrino masses may yield decay rates
of adequate orders of magnitude.

• When the mass of the charged scalar increases, most BRs decrease. Still, for mH+ .
1.5TeV the decays `±1 → `±2 γ and h→ `±1 `

∓
2 might be visible in future experiments.

– 26 –



J
H
E
P
0
3
(
2
0
2
2
)
1
0
6

Acknowledgments

D.J. thanks both Jorge C. Romão and Duarte Fontes for useful discussions. He also
thanks the Lithuanian Academy of Sciences for financial support through projects DaFi2019
and DaFi2021; he was also supported by a COST STSM grant through action CA16201.
L.L. warmly thanks the Institute of Theoretical Physics and Astronomy of the University
of Vilnius for the hospitality extended during a visit where part of this work has been
done. L.L. also thanks the Portuguese Foundation for Science and Technology for support
through projects CERN/FIS-PAR/0004/2019, CERN/FIS-PAR/0008/2019, PTDC/FIS-
PAR/29436/2017, UIDB/00777/2020, and UIDP/00777/2020.

A Passarino-Veltman functions

The relevant Passarino-Veltman (PV) functions are defined in the following way. Let the
dimension of space-time be d = 4− ε with ε→ 0. We define

Dk := µε
ddk

(2π)d
, S := i

16π2 . (A.1)

Then, ∫
Dk 1

k2 −A
1

(k + p)2 −B
= S B0

(
p2, A,B

)
, (A.2a)∫

Dk kθ 1
k2 −A

1
(k + p)2 −B

= S pθ B1
(
p2, A,B

)
, (A.2b)

and ∫
Dk 1

k2−A
1

(k+p)2−B
1

(k+q)2−C
=SC0

[
p2,(p−q)2 , q2,A,B,C

]
, (A.3a)∫

Dk kθ 1
k2−A

1
(k+p)2−B

1
(k+q)2−C

=S
{
pθC1

[
p2,(p−q)2 , q2,A,B,C

]
+qθC2

[
p2,(p−q)2 , q2,A,B,C

]}
, (A.3b)∫

Dk kθkψ 1
k2−A

1
(k+p)2−B

1
(k+q)2−C

=S
{
pθpψC11

[
p2,(p−q)2 , q2,A,B,C

]
+qθqψC22

[
p2,(p−q)2 , q2,A,B,C

]
+
(
pθqψ+qθpψ

)
C12

[
p2,(p−q)2 , q2,A,B,C

]
+gθψC00

[
p2,(p−q)2 , q2,A,B,C

]}
. (A.3c)

Some PV functions in eqs. (A.2) and (A.3) have 1/ε divergences that are independent
of the arguments of the PV functions. Thus,

B0
(
p2, A,B

)
= 2
ε

+ finite terms, (A.4a)

B1
(
p2, A,B

)
= −1

ε
+ finite terms, (A.4b)

C00
[
p2, (p− q)2 , q2, A,B,C

]
= 1

2ε + finite terms. (A.4c)

All other PV functions in eqs. (A.2) and (A.3) converge when ε→ 0.
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We next introduce specific notations for some PV functions that are used in appendices B,
C, and D. Thus,

e0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5a)

e1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5b)

e2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5c)

e11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5d)

e22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5e)

e12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5f)

e00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a

)
, (A.5g)

f0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6a)

f1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6b)

f2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6c)

f11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6d)

f22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6e)

f12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6f)

f00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
W

)
, (A.6g)

g0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7a)

g1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7b)

g2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7c)

g11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7d)

g22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7e)

g12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7f)

g00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
a,m

2
i ,m

2
j

)
, (A.7g)

h0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8a)

h1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8b)

h2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8c)

h11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8d)
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h22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8e)

h12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8f)

h00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
W ,m

2
i ,m

2
j

)
, (A.8g)

j0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a′

)
, (A.9a)

j1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a′

)
, (A.9b)

j2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
a′

)
, (A.9c)

k0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10a)

k1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10b)

k2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10c)

k00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10d)

k11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10e)

k22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10f)

k12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
W ,m

2
a

)
, (A.10g)

l0 := C0
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11a)

l1 := C1
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11b)

l2 := C2
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11c)

l00 := C00
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11d)

l11 := C11
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11e)

l22 := C22
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11f)

l12 := C12
(
m2
`1 , q

2,m2
`2 ,m

2
i ,m

2
a,m

2
W

)
, (A.11g)

where m`1 and m`2 are the masses of the charged leptons `±1 and `±2 , respectively, mi and
mj are the masses of the neutrinos νi and νj , respectively, ma and ma′ are the masses of the
charged scalars H±a and H±a′ , respectively, and mW is the mass of the gauge bosons W±.

B `±1 → `±2 γ

We compute the process `−1 (p1)→ `−2 (p2) γ (q), where q = p1 − p2. Obviously,

p2
1 = m2

`1 , p2
2 = m2

`2 , 2 p1 · p2 = m2
`1 +m2

`2 − q
2. (B.1)

– 29 –



J
H
E
P
0
3
(
2
0
2
2
)
1
0
6

If the outgoing photon is physical, then q2 = 0; but we keep q2 6= 0 for generality. The
amplitude for a photon with polarization σ is

T σ = S e ū`2 (p2) [γσ (alPL + arPR) + pσ1 (blPL + brPR) + pσ2 (clPL + crPR)]u`1 (p1) ,
(B.2)

where S has been defined in eq. (A.1) and e is the electric charge of the proton. Clearly,

6p1 u`1 (p1) = m`1 u`1 (p1) , u`2 (p2) 6p2 = m`2 u`2 (p2) . (B.3)

If T σ in eq. (B.2) is multiplied by qσ and then eqs. (B.1) and (B.3) are utilized, one must
obtain zero because of gauge invariance. Thus,

2m`1ar − 2m`2al +
(
m2
`1 −m

2
`2

)
(bl + cl) + q2 (bl − cl) = 0, (B.4a)

2m`1al − 2m`2ar +
(
m2
`1 −m

2
`2

)
(br + cr) + q2 (br − cr) = 0. (B.4b)

We have used eqs. (B.4)—that hold even when q2 6= 0 — as a check on our calculations.
The decay width is, in the rest frame of the decaying `−1 ,12

Γ =
m2
`1
−m2

`2

16πm3
`1

|S e|2
[(
m2
`1 +m2

`2

) (
|al|2 + |ar|2

)
− 4m`1m`2 Re (a∗l ar)

]
. (B.5)

In our model each of the coefficients al, . . . , cr is the sum of two contributions, viz.

al = al,H + al,W , . . . , cr = cr,H + cr,W . (B.6)

The contributions with sub-index H arise from the diagrams in figure 13 and are given
in eqs. (B.13) below, and the contributions with sub-index W come from the diagrams in
figure 14 and are given in eqs. (B.21) below. Notice that figure 13 includes diagrams with
the charged Goldstone bosons G± ≡ H±1 .

In all our calculations we utilize Feynman’s gauge. Let ma denote the mass of H±a ; for
a = 1 one must use ma=1 = mW because we are in Feynman’s gauge.

B.1 H±a

The charged scalars H±a couple to the charged leptons and the neutrinos according to
eq. (2.28). The charged scalars include as a particular case the charged Goldstone bosons.
For G± = H±1 , one has [18]

R1`i = e√
2swmW

U`imi, L1`i = e√
2swmW

U`im`, (B.7)

where U is the lepton mixing matrix and sw is the sine of the weak mixing angle.
12Instead of eq. (B.5) there is another way to express the decay width, viz.

Γ =
(
m2

`1 −m
2
`2

)3

64πm3
`1

|S e|2
(
|bl + cl|2 + |br + cr|2

)
.

This agrees with eq. (7) of ref. [93], that has a factor e2 missing, though.
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`−2
H+
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γ
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1

Figure 13. The three diagrams for `1
− → `2

−γ with a loop containing H±
a .

The diagrams in figures 13(a) and 13(b) produce

T σ13(a) + T σ13(b) = S e
6∑
i=1

n∑
a=1

[ū`2 (p2) γσ (xiaPR + yiaPL)u`1 (p1)m`2b0

+ ū`2 (p2) γσ (xiaPL + yiaPR)u`1 (p1)m`1b0

+ ū`2 (p2) γσ (ziaPL + wiaPR)u`1 (p1) b1

+ū`2 (p2) γσ (ziaPR + wiaPL)u`1 (p1)m`2m`1b2] , (B.8)

where

xia := Ra`2iL
∗
a`1imi, (B.9a)

yia := La`2iR
∗
a`1imi, (B.9b)

zia := Ra`2iR
∗
a`1i, (B.9c)

wia := La`2iL
∗
a`1i, (B.9d)

and

b0 :=
B0
(
m2
`1
,m2

i ,m
2
a

)
−B0

(
m2
`2
,m2

i ,m
2
a

)
m2
`1
−m2

`2

, (B.10a)

b1 :=
m2
`1
B1
(
m2
`1
,m2

i ,m
2
a

)
−m2

`2
B1
(
m2
`2
,m2

i ,m
2
a

)
m2
`1
−m2

`2

, (B.10b)

b2 :=
B1
(
m2
`1
,m2

i ,m
2
a

)
−B1

(
m2
`2
,m2

i ,m
2
a

)
m2
`1
−m2

`2

. (B.10c)

Notice that in our model
6∑
i=1

zia =
6∑
i=1

Ra`2iR
∗
a`1i =

nd∑
k,k′=1

U∗kaUk′a
(
∆†k∆k′

)
`2`1

, (B.11a)

6∑
i=1

wia =
6∑
i=1

La`2iL
∗
a`1i =

nd∑
k,k′=1

U∗kaUk′a
(
ΓkΓ†k′

)
`2`1

, (B.11b)

6∑
i=1

xia =
6∑
i=1

Ra`2iL
∗
a`1imi =

nd∑
k,k′=1

U∗kaUk′a
(
∆†kMDΓ†k′

)
`2`1

, (B.11c)
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6∑
i=1

yia =
6∑
i=1

La`2iR
∗
a`1imi =

nd∑
k,k′=1

U∗kaUk′a
(
ΓkM †D∆k′

)
`2`1

(B.11d)

vanish when `2 6= `1 by virtue of the matrices Γk, ∆k, and MD being diagonal.
The diagram 13(c) produces

T σ13(c) = S e
6∑
i=1

n∑
a=1

ū`2 (p2) {[(e0 + 2e1) pσ1 + (e0 + 2e2) pσ2 ] (xiaPR + yiaPL)

+ [(e2 + 2e22) pσ2 + (e2 + 2e12) pσ1 ]m`2 (ziaPL + wiaPR)
+ [(e1 + 2e11) pσ1 + (e1 + 2e12) pσ2 ]m`1 (ziaPR + wiaPL)
+2e00 γ

σ (ziaPL + wiaPR)}u`1 (p1) , (B.12)

where the e functions have been defined in eqs. (A.5).
Thus, adding eqs. (B.8) and (B.12), one obtains

al,H =
6∑
i=1

n∑
a=1

[b0m`1xia + b0m`2yia + (2e00 + b1) zia + b2m`2m`1wia] , (B.13a)

ar,H =
6∑
i=1

n∑
a=1

[b0m`2xia + b0m`1yia + b2m`2m`1zia + (2e00 + b1)wia] , (B.13b)

bl,H =
6∑
i=1

n∑
a=1

[(e0 + 2e1) yia + (e2 + 2e12)m`2zia + (e1 + 2e11)m`1wia] , (B.13c)

br,H =
6∑
i=1

n∑
a=1

[(e0 + 2e1)xia + (e1 + 2e11)m`1zia + (e2 + 2e12)m`2wia] , (B.13d)

cl,H =
6∑
i=1

n∑
a=1

[(e0 + 2e2) yia + (e2 + 2e22)m`2zia + (e1 + 2e12)m`1wia] , (B.13e)

cr,H =
6∑
i=1

n∑
a=1

[(e0 + 2e2)xia + (e1 + 2e12)m`1zia + (e2 + 2 e22)m`2wia] . (B.13f)

One may use

B0
(
m2
`1 ,m

2
i ,m

2
a

)
= d e00 −m2

a e0 +m2
`1 (e1 + e11 + e12)

+m2
`2 (e0 + e1 + 2 e2 + e22 + e12)− q2 (e1 + e12) , (B.14a)

B0
(
m2
`2 ,m

2
i ,m

2
a

)
= d e00 −m2

a e0 +m2
`1 (e0 + 2 e1 + e2 + e11 + e12)

+m2
`2 (e2 + e22 + e12)− q2 (e2 + e12) , (B.14b)

B1
(
m2
`1 ,m

2
i ,m

2
a

)
=
(
m2
`2 −m

2
`1

)
(e1 + e11 + e12)− 2e00 + q2 (e12 − e11) , (B.14c)

B1
(
m2
`2 ,m

2
i ,m

2
a

)
=
(
m2
`1 −m

2
`2

)
(e2 + e22 + e12)− 2e00 + q2 (e12 − e22) , (B.14d)
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Figure 14. The five diagrams for `1
− → `2

−γ with a loop containing W±.

where d is the dimension of space-time, to derive

b0 = −e0 − e1 − e2 + q2

m2
`1
−m2

`2

(e2 − e1) , (B.15a)

2e00 + b1 = −m2
`1 (e1 + e11)−m2

`2 (e2 + e22) +
(
q2 −m2

`1 −m
2
`2

)
e12

+ q2

m2
`1
−m2

`2

(
m2
`2 e22 −m2

`1 e11
)
, (B.15b)

b2 = −e1 − e2 − e11 − e22 − 2e12 + q2

m2
`1
−m2

`2

(e22 − e11) . (B.15c)

As a consequence of eqs. (B.15), the constraints (B.4) hold for the contributions with
sub-index H.

B.2 W±

Besides the diagrams exclusively with G±, there are five diagrams with W±, cf. figure 14.
Figures 14(d) and 14(e) have the outgoing photon attaching to W±G∓. Those diagrams
produce

al,de = − e2

2s2
w

6∑
i=1

U`2iU
∗
`1i

(
2m2

i f0 +m2
`1f1 +m2

`2f2
)
, (B.16a)

ar,de = e2m`2m`1

2s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + f2) , (B.16b)

bl,de = −e
2m`2

s2
w

6∑
i=1

U`2iU
∗
`1if1, (B.16c)
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br,de = 0, (B.16d)
cl,de = 0, (B.16e)

cr,de = −e
2m`1

s2
w

6∑
i=1

U`2iU
∗
`1if2, (B.16f)

where the f functions have been defined in eqs. (A.6). The diagram of figure 14(c) produces

al,c = e2

2s2
w

6∑
i=1

U`2iU
∗
`1i

[(
3m2

`1 + 2m2
`2 − 2q2

)
f1 +

(
2m2

`1 + 3m2
`2 − 2q2

)
f2

+2m2
`1f11 + 2m2

`2f22 + 2
(
m2
`1 +m2

`2 − q
2
)
f12 + 12f00

]
, (B.17a)

ar,c = 3e2m`2m`1

2s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + f2) , (B.17b)

bl,c = −e
2m`2

s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + f2 − 2f12) , (B.17c)

br,c = e2m`1

s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + 2f11) , (B.17d)

cl,c = e2m`2

s2
w

6∑
i=1

U`2iU
∗
`1i (f2 + 2f22) , (B.17e)

cr,c = −e
2m`1

s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + f2 − 2f12) . (B.17f)

A crucial property of the lepton mixing matrix U in our model is(
UU †

)
`2`1

=
6∑
i=1

U`2i U
∗
`1i = 0, (B.18)

cf. eq. (2.20). In spite of f00 containing a divergence 1/(2ε) , al,c in eq. (B.17a) is finite
because of eq. (B.18).

Finally, there are the diagrams of figures 14(a) and 14(b), producing

al,ab = e2

s2
w

6∑
i=1

U`2iU
∗
`1ib4, (B.19a)

ar,ab = e2m`2m`1

s2
w

6∑
i=1

U`2iU
∗
`1ib5, (B.19b)

bl,ab = br,ab = cl,ab = cr,ab = 0, (B.19c)

where

b4 :=
m2
`1
B1
(
m2
`1
,m2

i ,m
2
W

)
−m2

`2
B1
(
m2
`2
,m2

i ,m
2
W

)
m2
`1
−m2

`2

(B.20a)

= −2f00 −m2
`1 (f1 + f11 + f12)−m2

`2 (f2 + f22 + f12)

+ q2 f12 + q2

m2
`1
−m2

`2

(
m2
`2f22 −m2

`1f11
)
, (B.20b)
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b5 :=
B1
(
m2
`1
,m2

i ,m
2
W

)
−B1

(
m2
`2
,m2

i ,m
2
W

)
m2
`1
−m2

`2

(B.20c)

= −f1 − f2 − f11 − f22 − 2f12 + q2

m2
`1
−m2

`2

(f22 − f11) . (B.20d)

Thus, the sum total of the diagrams of figure 14 is

al,W = e2

s2
w

6∑
i=1

U`2iU
∗
`1i

[
−m2

i f0 +m2
`2f1 +m2

`1f2 + 4f00

−q2 (f1 + f2) + q2

m2
`1
−m2

`2

(
m2
`2f22 −m2

`1f11
)]
, (B.21a)

ar,W = e2m`2m`1

s2
w

6∑
i=1

U`2iU
∗
`1i

[
f1 + f2 − f11 − f22 − 2f12 + q2

m2
`1
−m2

`2

(f22 − f11)
]
,

(B.21b)

bl,W = e2m`2

s2
w

6∑
i=1

U`2iU
∗
`1i (2f12 − 2f1 − f2) , (B.21c)

br,W = e2m`1

s2
w

6∑
i=1

U`2iU
∗
`1i (f1 + 2f11) , (B.21d)

cl,W = e2m`2

s2
w

6∑
i=1

U`2iU
∗
`1i (f2 + 2f22) , (B.21e)

cr,W = e2m`1

s2
w

6∑
i=1

U`2iU
∗
`1i (2f12 − f1 − 2f2) . (B.21f)

C Z → `+
1 `
−
2

We compute the process Z (q)→ `+1 (p1) `−2 (−p2), where q2 = m2
Z and eqs. (B.1) hold. The

amplitude for a Z with polarization σ is written

T σ = S e ū`2 (−p2)
[
γσ (ālPL + ārPR) + pσ1

(
b̄lPL + b̄rPR

)
+ pσ2 (c̄lPL + c̄rPR)

]
v`1 (p1) .

(C.1)
The decay width in the rest frame of the decaying Z is

Γ =
√
λ

16πm3
Z

|S e|2
(
λℵ0

12m2
Z

+ ℵ1 + ℵ2
3m2

Z

)
, (C.2)

where

λ := m4
Z +m4

`1 +m4
`2 − 2

(
m2
Zm

2
`1 +m2

Zm
2
`2 +m2

`1m
2
`2

)
(C.3)
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and

ℵ0 =
(
m2
Z −m2

`1 −m
2
`2

)(∣∣∣b̄l + c̄l
∣∣∣2 +

∣∣∣b̄r + c̄r
∣∣∣2)− 4m`1m`2 Re

[(
b̄l + c̄l

) (
b̄∗r + c̄∗r

)]
− 4m`1 Re

[
ā∗r

(
b̄l + c̄l

)
+ ā∗l

(
b̄r + c̄r

)]
− 4m`2 Re

[
ā∗l

(
b̄l + c̄l

)
+ ā∗r

(
b̄r + c̄r

)]
, (C.4a)

ℵ1 = 4m`1m`2 Re (ālā∗r) , (C.4b)

ℵ2 =
[
2m4

Z −m2
Z

(
m2
`1 +m2

`2

)
−
(
m2
`1 −m

2
`2

)2
] (
|āl|2 + |ār|2

)
. (C.4c)

We define
tl := s2

w − c2
w

2cwsw
, tr := sw

cw
, (C.5)

so that the coupling of the Z to the charged leptons is given by

Lnc = · · ·+ eZσ
∑

`=e,µ,τ

¯̀γσ (tlPL + trPR) `, (C.6)

cf. eq. (2.26a). Notice that
− 1
tr

= 2tl − tr. (C.7)

We shall write the coefficients āl, . . . , c̄r as the sum of three pieces, viz.

āl = āl,H + āl,W + āl,2ν ,

... (C.8)
c̄r = c̄r,H + c̄r,W + c̄r,2ν .

C.1 H±a

We recover the diagrams of figure 13, with the photon substituted by a Z. Diagrams 13(a)
and 13(b) produce the result in eq. (B.8) with the transformations PL → tlPL and PR →
trPR. Diagram 13(c) produces the result in eq. (B.12) multiplied by tl. Thus, the full result
of figure 13 with Z instead of γ is

āl,H = tl

6∑
i=1

n∑
a=1

[(m`1xia +m`2yia) b0 + zia (2e00 + b1) +m`2m`1wia b2] , (C.9a)

ār,H =
6∑
i=1

n∑
a=1
{tr [(m`2xia +m`1yia) b0 +m`2m`1zia b2 + wia b1] + 2tlwiae00} , (C.9b)

b̄l,H = tl

6∑
i=1

n∑
a=1

[yia (e0 + 2e1) +m`2zia (e2 + 2e12) +m`1wia (e1 + 2e11)] , (C.9c)

b̄r,H = tl

6∑
i=1

n∑
a=1

[xia (e0 + 2e1) +m`1zia (e1 + 2e11) +m`2wia (e2 + 2e12)] , (C.9d)

c̄l,H = tl

6∑
i=1

n∑
a=1

[yia (e0 + 2e2) +m`2zia (e2 + 2e22) +m`1wia (e1 + 2e12)] , (C.9e)

c̄r,H = tl

6∑
i=1

n∑
a=1

[xia (e0 + 2e2) +m`1zia (e1 + 2e12) +m`2wia (e2 + 2e22)] . (C.9f)
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C.2 W±

We consider the diagrams of figure 14 with a Z instead of the γ. They produce

āl,W = āl,de + āl,c + āl,ab,

... (C.10)
c̄r,W = c̄r,de + c̄r,c + c̄r,ab.

Figures 14(d) and 14(e) yield

āl,de = tr al,de, (C.11a)
ār,de = tr ar,de, (C.11b)
b̄l,de = tr bl,de, (C.11c)
b̄r,de = 0, (C.11d)
c̄l,de = 0, (C.11e)
c̄r,de = tr cr,de. (C.11f)

Figure 14(c) produces

āl,c = − 1
tr
al,c, (C.12a)

ār,c = − 1
tr
ar,c, (C.12b)

b̄l,c = − 1
tr
cl,c, (C.12c)

b̄r,c = − 1
tr
br,c, (C.12d)

c̄l,c = − 1
tr
cl,c, (C.12e)

c̄r,c = − 1
tr
cr,c. (C.12f)

Notice that in eqs. (C.12) one may use eq. (C.7). Figures 14(a) and 14(b) give

āl,ab = tl al,ab, (C.13a)
ār,ab = tr ar,ab, (C.13b)

b̄l,ab = b̄r,ab = c̄l,ab = c̄r,ab = 0. (C.13c)

C.3 Diagrams with two neutrino internal lines

There are also diagrams where the Z boson attaches to the neutrino line as depicted in
figure 15. The relevant vertex is given in eq. (2.26b). We have

āl,2ν = āl,15(a) + āl,15(b),

... (C.14)
c̄r,2ν = c̄r,15(a) + c̄r,15(b).
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1

Figure 15. Two diagrams for Z → `1
+`2

− where the Z attaches to two neutrino lines.

From the diagram 15(a) one obtains

āl,15(a) = 1
2cwsw

n∑
a=1

6∑
i,j=1
{m`1xija [miqijg1 +mjqji (g0 +g1)]

+m`2yija [mjqijg2 +miqji (g0 +g2)]

+zijaqij
[
−2g00 +q2g12−m2

`2 (g2 +g12 +g22)−m2
`1 (g1 +g12 +g11)

]
−zijaqjimimjg0−wijaqjim`2m`1 (g0 +g1 +g2)} , (C.15a)

ār,15(a) = 1
2cwsw

n∑
a=1

6∑
i,j=1
{−m`2xija [miqij (g0 +g2)+mjqjig2]+mimjwijaqijg0

−m`1yija [mjqij (g0 +g1)+miqjig1]+m`2m`1zijaqij (g0 +g1 +g2)

+wijaqji
[
2g00−q2g12 +m2

`2 (g2 +g12 +g22)+m2
`1 (g1 +g12 +g11)

]}
, (C.15b)

b̄l,15(a) = 1
cwsw

n∑
a=1

6∑
i,j=1

[miyijaqjig1 +m`2zijaqijg12−m`1wijaqji (g1 +g11)] , (C.15c)

b̄r,15(a) = 1
cwsw

n∑
a=1

6∑
i,j=1

[−mixijaqijg1 +m`1zijaqij (g1 +g11)−m`2wijaqjig12] ,

(C.15d)

c̄l,15(a) = 1
cwsw

n∑
a=1

6∑
i,j=1

[−mjyijaqijg2 +m`2zijaqij (g2 +g22)−m`1wijaqjig12] , (C.15e)

c̄r,15(a) = 1
cwsw

n∑
a=1

6∑
i,j=1

[mjxijaqjig2 +m`1zijaqijg12−m`2wijaqji (g2 +g22)] . (C.15f)

In eqs. (C.15),

xija := Ra`2jL
∗
a`1i, (C.16a)

yija := La`2jR
∗
a`1i, (C.16b)

zija := Ra`2jR
∗
a`1i, (C.16c)

wija := La`2jL
∗
a`1i, (C.16d)
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and the g functions are defined in eqs. (A.7). Note that the divergences cancel out in āl,15(a)
and ār,15(a). Indeed,

6∑
i,j=1

zijaqij =
6∑

i,j=1
Ra`2jR

∗
a`1iqij =

nd∑
k,k′=1

6∑
i,j=1
U∗ka

(
∆†kX

)
`2j
Uk′a

(
X†∆k′

)
i`1

(
U †U

)
ij

=
nd∑

k,k′=1
U∗kaUk′a

(
∆†kXU

TU∗X†∆k′

)
`2`1

= 0, (C.17)

because the unitarity of the matrix U6 of eq. (2.19) implies UXT = 03×3; and
6∑

i,j=1
wijaqji =

6∑
i,j=1

La`2jL
∗
a`1iqji =

nd∑
k,k′=1

6∑
i,j=1
U∗ka (ΓkU)`2j Uk′a

(
U †Γ†k′

)
i`1

(
U †U

)
ji

=
nd∑

k,k′=1
U∗kaUk′a

(
ΓkUU †UU †Γ†k′

)
`2`1

=
nd∑

k,k′=1
U∗kaUk′a

(
ΓkΓ†k′

)
`2`1

(C.18)

vanishes if `2 6= `1 because the matrices Γk are diagonal.
The diagram 15(b) yields

āl,15(b) = e2

2cws3
w

6∑
i,j=1

U`2jU
∗
`1i

[
qijmimjh0 + 2qjih00

+ qji
(
m2
`1 +m2

`2 − q
2
)

(h0 + h1 + h2 + h12)

+qjim2
`1 (h1 + h11) + qjim

2
`2 (h2 + h22)

]
, (C.19a)

ār,15(b) = e2m`2m`1

2cws3
w

6∑
i,j=1

U`2jU
∗
`1iqji (h0 + h1 + h2) , (C.19b)

b̄l,15(b) = −e
2m`2

cws3
w

6∑
i,j=1

U`2jU
∗
`1iqji (h0 + h1 + h2 + h12) , (C.19c)

b̄r,15(b) = −e
2m`1

cws3
w

6∑
i,j=1

U`2jU
∗
`1iqji (h1 + h11) , (C.19d)

c̄l,15(b) = −e
2m`2

cws3
w

6∑
i,j=1

U`2jU
∗
`1iqji (h2 + h22) , (C.19e)

c̄r,15(b) = −e
2m`1

cws3
w

6∑
i,j=1

U`2jU
∗
`1iqji (h0 + h1 + h2 + h12) , (C.19f)

where the h functions are defined in eqs. (A.8). When writing eq. (C.19a) we have used the
fact that

6∑
i,j=1

U`2jU
∗
`1iqji =

6∑
i,j=1

U`2jU
†
i`1

(
U †U

)
ji

= δ`2`1 , (C.20)

because UU † is the 3× 3 unit matrix, cf. eq. (2.20).
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Figure 16. The four self-energy-like diagrams for S0
b → `+

1 `
−
2 .

D S0
b → `+

1 `
−
2

We compute the process S0
b (q) → `+1 (p1) `−2 (−p2), where S0

b is a physical neutral scalar,
i.e. b 6= 1. Equations (B.1) hold and q2 = m2

b . The amplitude is written

Tb = S ū`2 (−p2) (dlbPL + drbPR) v`1 (p1) , (D.1)

where S was defined in eq. (A.1). The decay width in the rest frame of S0
b is

Γ =
√
λ

16πm3
b

|S|2
[(
m2
b −m2

`1 −m
2
`2

) (
|dlb|2 + |drb|2

)
− 4m`1m`2 Re (dlbd∗rb)

]
, (D.2)

where
λ := m4

b +m4
`1 +m4

`2 − 2
(
m2
bm

2
`1 +m2

bm
2
`2 +m2

`1m
2
`2

)
. (D.3)

D.1 Diagrams in which S0
b attaches to charged leptons

There are self-energy-like diagrams with a loop of either H±a — diagrams (a) and (b) in
figure 16—or W± — diagrams (c) and (d) in figure 16. The vertex of S0

b with the charged
leptons is given by eq. (2.30a). One obtains

dlb,16(a,b) = 1
√

2
(
m2
`1
−m2

`2

) n∑
a=1

6∑
i=1

{
gb`1 (m`2xia +m`1yia)B0

(
m2
`2 ,m

2
i ,m

2
a

)
+ gb`1m`2 (m`1zia +m`2wia)B1

(
m2
`2 ,m

2
i ,m

2
a

)
− gb`2 (m`1xia +m`2yia)B0

(
m2
`1 ,m

2
i ,m

2
a

)
−gb`2m`1 (m`1zia +m`2wia)B1

(
m2
`1 ,m

2
i ,m

2
a

)}
, (D.4a)
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Figure 17. Diagram for S0
b → `+

1 `
−
2 with the neutral scalar attaching to two charged scalars.

drb,16(a,b) = 1
√

2
(
m2
`1
−m2

`2

) n∑
a=1

6∑
i=1

{
g∗b`1 (m`1xia +m`2yia)B0

(
m2
`2 ,m

2
i ,m

2
a

)
+ g∗b`1m`2 (m`2zia +m`1wia)B1

(
m2
`2 ,m

2
i ,m

2
a

)
− g∗b`2 (m`2xia +m`1yia)B0

(
m2
`1 ,m

2
i ,m

2
a

)
−g∗b`2m`1 (m`2zia +m`1wia)B1

(
m2
`1 ,m

2
i ,m

2
a

)}
, (D.4b)

dlb,16(c,d) = e2m`1√
2s2
w

(
m2
`1
−m2

`2

) 6∑
i=1

U`2iU
∗
`1i

[
gb`1m`2 B1

(
m2
`2 ,m

2
i ,m

2
W

)
−gb`2m`1 B1

(
m2
`1 ,m

2
i ,m

2
W

)]
, (D.4c)

drb,16(c,d) = e2m`2√
2s2
w

(
m2
`1
−m2

`2

) 6∑
i=1

U`2iU
∗
`1i

[
g∗b`1m`2 B1

(
m2
`2 ,m

2
i ,m

2
W

)
−g∗b`2m`1 B1

(
m2
`1 ,m

2
i ,m

2
W

)]
. (D.4d)

D.2 Diagrams in which S0
b attaches to charged scalars

There is a diagram, depicted in figure 17, wherein the S0
b attaches to two charged scalars

that may in principle be different. We parameterize the vertex of the three scalars through
eq. (2.12), where the coefficients λaa′b are in general complex but obey λaa′b = λ∗a′ab because
of the Hermiticity of the Lagrangian. The values of the λaa′b depend on the scalar potential
and are unconstrained by gauge invariance, unless either a = 1 or a′ = 1. The diagram of
figure 17 yields

dlb,17 =
n∑

a,a′=1

6∑
i=1

λaa′b
(
Ra′`2iR

∗
a`1im`2 j2 + La′`2iL

∗
a`1im`1 j1 + La′`2iR

∗
a`1imi j0

)
, (D.5a)

drb,17 =
n∑

a,a′=1

6∑
i=1

λaa′b
(
Ra′`2iR

∗
a`1im`1 j1 + La′`2iL

∗
a`1im`2 j2 +Ra′`2iL

∗
a`1imi j0

)
, (D.5b)

where j0,1,2 are defined by eqs. (A.9).
Note that the diagram of figure 17 implicitly contains the cases where either H±a or

H±a′ (or both) coincide with the charged Goldstone bosons G± := H±1 . In those cases one
must use ma=1 = mW together with eqs. (2.13).
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Figure 18. Three diagrams for S0
b → `+

1 `
−
2 with the neutral scalar attaching to a gauge boson.

D.3 Diagrams in which S0
b attaches to W bosons

We next compute the diagrams in figure 18. The relevant terms of the Lagrangian are the
ones of eq. (2.11) [18, 63]. Diagram 18(a) produces

dlb,18(a) = e2

2
√

2s2
w

n∑
a=1

6∑
i=1

U∗`1i

(
V†U

)
ba

{
−Ra`2imim`2 (2k0 +k2)

−La`2i
[
4k00 +m2

`1 (k11 +k12 +k1)+m2
`2 (k22 +k12 +2k1 +2k2)

−q2 (k12 +2k1)
]}
, (D.6a)

drb,18(a) = e2

2
√

2s2
w

n∑
a=1

6∑
i=1

U∗`1i

(
V†U

)
ba
m`1 [Ra`2imi (k0−k1)+La`2im`2 (2k1 +k2)] ,

(D.6b)
with the k functions defined in eqs. (A.10). Diagram 18(b) produces

dlb,18(b) = e2

2
√

2 s2
w

n∑
a=1

6∑
i=1

U`2i
(
U†V

)
ab
m`2

[
R∗a`1imi (l0 − l2) + L∗a`1im`1 (l1 + 2 l2)

]
,

(D.7a)

drb,18(b) = e2

2
√

2 s2
w

n∑
a=1

6∑
i=1

U`2i
(
U†V

)
ab

{
−R∗a`1imim`1 (2 l0 + l1)

− L∗a`1i
[
4 l00 +m2

`1 (l11 + l12 + 2 l1 + 2 l2) +m2
`2 (l22 + l12 + l2)

−q2 (l12 + 2 l2)
]}
, (D.7b)

with the l functions defined in eqs. (A.11). Equations (D.6) and (D.7) contain no divergences
because

6∑
i=1

La`iU
∗
`′i =

nd∑
k=1
U∗ka

(
ΓkUU †

)
``′

=
nd∑
k=1
U∗ka (Γk)``′ (D.8)

vanishes if ` 6= `′, since the matrices Γk are diagonal.
Equations (D.6) and (D.7) include the particular case where a = 1; then, H±a coincides

with the Goldstone bosons G±. In that particular case one must use ma=1 = mW together
with eqs. (B.7) and (

U†V
)

1b
=
(
V†U

)
b1

= xb, (D.9)

where xb is the real number defined in eq. (2.9).
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Figure 19. Two diagrams for S0
b → `+

1 `
−
2 where S0

b attaches to neutrinos.

In order to compute diagram 18(c) one must know the vertex of a neutral scalar with
two W± gauge bosons, which is given by eq. (2.10) [63]. One then obtains

dlb,18(c) = −e
3mWm`2xb

s3
w

6∑
i=1

U`2iU
∗
`1i f2, (D.10a)

drb,18(c) = −e
3mWm`1xb

s3
w

6∑
i=1

U`2iU
∗
`1i f1, (D.10b)

where f1 and f2 are defined in eqs. (A.6). Notice that eqs. (D.10) only hold for b 6= 1;
indeed, dl1,18(c) = dr1,18(c) = 0 because the vertex W+W−G0 does not exist.

D.4 Diagrams where S0
b attaches to neutrino lines

The neutral scalar S0
b may also attach to two internal neutrino lines. The relevant diagrams

are displayed in figure 19. The vertex of the neutral scalars with the neutrinos is given by
eq. (2.30b). From figure 19(a) one obtains

dlb,19(a) = 1√
2

6∑
i,j=1

n∑
a=1

{
−xijafbjim`2m`1 (g0 + g1 + g2)− yijafbjimimjg0

− yijaf∗bji
[
4g00 +m2

`1 (g1 + g11 + g12) +m2
`2 (g2 + g22 + g12)− q2g12

]
+ zijafbjimim`2 (g0 + g2) + zijaf

∗
bjimjm`2g2

+wijaf∗bjimim`1g1 + wijafbjimjm`1 (g0 + g1)
}
, (D.11a)

drb,19(a) = 1√
2

6∑
i,j=1

n∑
a=1

{
−yijaf∗bjim`2m`1 (g0 + g1 + g2)− xijaf∗bjimimjg0

− xijafbji
[
4g00 +m2

`1 (g1 + g11 + g12) +m2
`2 (g2 + g22 + g12)− q2g12

]
+ zijaf

∗
bjimjm`1 (g0 + g1) + zijafbjimim`1g1

+wijafbjimjm`2g2 + wijaf
∗
bjimim`2 (g0 + g2)

}
, (D.11b)
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where the relevant symbols are defined in eqs. (C.16) and (A.7). The divergences originating
in the function g00 vanish in eqs. (D.11) because

6∑
i,j=1

n∑
a=1

yijaf
∗
bji =

6∑
i,j=1

n∑
a=1

La`2jR
∗
a`1if

∗
bji

=
6∑

i,j=1

n∑
a=1

nd∑
k,k′,k′′=1

U∗ka (ΓkU)`2j Uk′a
(
X†∆k′

)
i`1

× V∗k′′b
(
U †∆∗k′′X +XT∆∗k′′U∗

)
ij

=
6∑

i,j=1

n∑
a=1

nd∑
k,k′,k′′=1

(
UU†

)
k′k
V∗k′′b

×
(
ΓkUU †∆∗k′′XX†∆k′ + ΓkUXT∆∗k′′U∗X†∆k′

)
`2`1

=
6∑

i,j=1

n∑
a=1

nd∑
k,k′,k′′=1

δk′kV∗k′′b (Γk∆∗k′′∆k′)`2`1

= 0, (D.12a)

since the Yukawa-coupling matrices Γk and ∆k are all diagonal. In a similar fashion one
easily demonstrates that

6∑
i,j=1

n∑
a=1

xijafbji = 0. (D.13)

From figure 19(b) one obtains

dlb,19(b) = e2m`2√
2s2
w

6∑
i,j=1

U`2jU
∗
`1i

[
fbjimj h2 + f∗bjimi (h0 + h2)

]
, (D.14a)

drb,19(b) = e2m`1√
2s2
w

6∑
i,j=1

U`2jU
∗
`1i

[
f∗bjimi h1 + fbjimj (h0 + h1)

]
, (D.14b)

cf. eqs. (A.8).

E The Z invisible decay width

The determination by LEP of the number of light active neutrinos provides a constraint to
heavy-neutrino mixing. The Z invisible decay width was measured by LEP [66, 94] to be

Γ (Z → invisible)experimental = (0.499± 0.0015) GeV. (E.1)

This is almost 2σ below the SM theoretical expectation

Γ (Z → invisible)SM =
∑
ν

Γ (Z → νν̄)SM = (0.50169± 0.00006) GeV. (E.2)
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The tree-level Z invisible decay width in the presence of six Majorana neutrinos with
masses mi reads [95]

Γ (Z → invisible)tree =
6∑
i=1

6∑
j=i

∆ij Θ (mZ −mi −mj)

√
λ (mZ ,mi,mj)

24πmZv2


2m2

Z

−m2
i −m2

j −

(
m2
i −m2

j

)2

m2
Z

 ∣∣∣xij∣∣∣2 − 6mimj Re
(
xij
)2

 , (E.3)

where Θ is the Heaviside step function, i.e. the sum in eq. (E.3) extends over pairs of
neutrinos νi and νj that have masses mi and mj , respectively, such that mi +mj is smaller
than the mass mZ of the Z; the kinematical function λ is defined as

λ (a, b, c) = a4 + b4 + c4 − 2
(
a2b2 + a2c2 + b2c2

)
. (E.4)

The factor ∆ij = 1− δij/ 2 in eq. (E.3) accounts for the Majorana character of the neutrinos.
The coupling xij is

xij =
∑

`=e,µ,τ
U∗`i U`j =

(
U †U

)
ij
, (E.5)

and the vacuum expectation value is defined through v ≡
(√

2GF
)−1/2

≈ 246.22GeV,
where GF is the Fermi coupling constant.

In a correct computation of the full invisible width of the Z one must include a
parameter ρ that accounts for that part of the radiative corrections coming from the SM
loops. Thus,

Γ (Z → invisible) = ρ× Γ (Z → invisible)tree , (E.6)

where ρ is evaluated as [24, 96]

ρ = Γ (Z → invisible)SM∑
ν Γ (Z → νν̄)tree, SM

= 8πv2 Γ (Z → invisible)SM
m3
Z

. (E.7)

After accounting for the uncertainties of Γ (Z → invisible)SM, one obtains ρ = 1.00812±
0.00012.

In our numerical results, the tree-level Z invisible decay width in eq. (E.3) is always
within the 1σ experimental bands of eq. (E.1), while the decay width of eq. (E.6), including
the corrections, is within the 2σ experimental bands. Therefore, the Z invisible decay
width does not effectively constrain the branching ratios of LFV processes in our model.
This is distinct from LFV studies in the inverse seesaw model [24] or in the effective field
theory of the seesaw [39]. That happens because in our case the masses m4,5,6 of the heavy
neutrinos are sufficiently high that the Z can never decay into a heavy neutrino plus a light
neutrino, except for very small values |d`| . 10−7 of the Yukawa couplings; and because
the non-unitarity of the matrix U has a very weak impact on the couplings of the active
neutrinos to the Z boson in our model.
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F Constraints on the mass of the charged scalar

Direct constraints on mH+ may be obtained from collider experiments on the production and
decay of on-shell charged Higgs bosons. The search sensitivity is limited by the kinematic
reach of experiments, but collider constraints have the advantage of being robust and
model-independent. The bound obtained from direct searches at LEP for any value of
tan β is mH+ > 78.6GeV at 95%CL [97]. Combining data of the four LEP experiments, a
limit of mH+ & 80GeV is obtained [66, 98], while mH+ & 150GeV may be derived from
the searches at LHC [99, 100]. Stronger mass limits on mH+ may be obtained for specific
regions of tan β.

Some constraints on mH+ from flavour physics depend strongly on the 2HDM Yukawa
type, while others are type-independent. Among the flavour processes, the constraints from
b→ sγ are most stringent due to the constructive interference of the H± contribution with
the SM contribution. For a type-II 2HDM, the lower limit mH+ > 480GeV at 95%CL [101]
includes NNLO QCD corrections and is rather independent of tan β. In a recent study [102],
the branching ratio of b→ sγ enforces mH+ & 580GeV at 95%CL both for the type-II and
for the flipped 2HDM.

The recent global fits in refs. [90, 91, 100, 103] give bounds on the charged-Higgs mass for
various 2HDM Yukawa types. In those studies only 2HDMs with a Z2-symmetric potential
are considered, but one may suppose that the bounds would be similar for the general
2HDM. In ref. [100] it is found that, for the type-II 2HDM, flavour-physic observables
impose a lower bound mH+ & 600GeV that is independent of tan β when tan β > 1 but
increases to mH+ & 650GeV when tan β < 1. In ref. [90], mH+ > 740GeV in both the
type-II and flipped 2HDMs, but mH+ & 460GeV for the lepton-specific 2HDM. In ref. [91]
one finds mH+ & 500GeV or mH+ & 750GeV in the aligned 2HDM, depending on the
fitted mass range. However, for the type-I and lepton-specific 2HDMs the restrictions on
mH+ from flavour constraints are weaker [100, 103, 104].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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