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Abstract: Training elite kayakers at a distance of 1000 m is associated with aerobic and anaerobic
metabolism, while intermittent training, in a variety of forms, is one of the effective ways to improve
cardiorespiratory and metabolic function. Thus, this study aimed to investigate muscle oxygenation
responses during repetition training (RT), interval training (IT), and sprint interval training (SIT).
Near-infrared spectroscopy (NIRS) monitors were placed on the latissimus dorsi (LD), pectoralis
major (PM), and vastus lateralis (VL) of a world-class kayaker during their preparatory period.
The intensity of work, relief, and recovery intervals were the independent variables that were
manipulated using three different training protocols. The inferential analysis between intermittent
training protocols showed significant differences for all variables except total the hemoglobin (tHb)
index in LD during bout 2 (F = 2.83, p = 0.1, ηp2 = 0.205); bout 3 (F = 2.7, p = 0.125, ηp2 = 0.193);
bout 4 (F = 1.8, p = 0.202, ηp2 = 0.141); and bout 6 (F = 1.1, p = 0.327, ηp2 = 0.092). During the rest
bouts, all training protocols showed significant differences for all variables except muscle oxygen
saturation (SmO2) in the VL during bout 5 (F = 4.4, p = 0.053, ηp2 = 0.286) and tHb in VL during bout
1 (F = 2.28, p = 0.132, ηp2 = 0.172); bout 2 (F = 0.564, p = 0.561, ηp2 = 0.049); bout 3 (F = 1.752, p = 0.205,
ηp2 = 0.137); bout 4 (F = 1.216, p = 0.301, ηp2 = 0.1); and bout 6 (F = 4.146, p = 0.053, ηp2 = 0.274). The
comparison between IT protocols RT and SIT presented similar results. All variables presented higher
values during SIT, except HR results. Finally, the comparison between IT and SIT showed significant
differences in several variables, and a clear trend was identified. The results of this study suggest that
the application of different intermittent exercise protocols promotes distinct and significant changes
in the peripheral effect of muscle oxygenation in response to training stimuli and may be internal
predictors of hemodynamic and metabolic changes.
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1. Introduction

To achieve high-standard-specific goals, athletes are constantly looking for ways to
optimize skeletal muscle function and its monitoring process through different types of
physical training methodologies and evaluation procedures. Based on oxygen-dependent
characteristics, NIRS is one of the non-invasive methods that can provide information about
the changes in the oxygen saturation of muscle tissue during various sports exercises [1].
For that reason, the popularity of the NIRS method in sports research and real-world
scenarios has been growing in recent years [2]. Wearable and wireless devices are fixed
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in the muscle, and shining near-infrared light travels along the tissue [3,4]. Light passes
through muscles, especially in the near-infrared region of the spectrum, and differences in
the reflection index within cells promote scattering [5]. Thus, NIRS technology can supply
information on SmO2 and the tHb index in real time [4,5]. Considering that more than 90%
of the total blood volume in the muscle is supplied by capillaries and that under regular
conditions, all muscle tissues receive fully oxygenated arterial blood, NIRS technology can
detect changes in capillary hemoglobin and intracellular myoglobin oxygen levels [6]. The
validity of NIRS technology was established through the strong correlations with venous
O2 saturation, not only during exercise but also during rest (r = 0.92) [7]. Additionally, NIRS
measurements are highly reproducible during repeated incremental running (r = 0.87–0.88)
and cycling (r = 0.94–0.99) tests to exhaustion [8]. Several studies have focused on the
application of NIRS in assessing the effectiveness of sports training programs [9], and the
effects of endurance, interval, and hypoxic training on muscle oxygenation in trained and
untrained subjects [10]. Ferrari, Muthalib [4], and Hamaoka and McCully [5] reviewed
NIRS methodologies and found that most studies focused on endurance or strength training
and related to muscle oxidative capacity, oxygen delivery, and oxygen consumption. Only
four studies on oxygenation profiles have been completed [11,12] utilizing wearable NIRS
devices on well-trained kayakers. Based on the current literature, NIRS appears to have
the potential to contribute to human performance analysis. It presents an opportunity to
evaluate muscle contribution to the athlete’s motion and the ability to sustain performance,
which will directly influence fatigue during exercise [13].

Even though continuous endurance training and high-intensity interval training can
promote maximal oxygen (VO2max) uptake adaptations in subjects with low training status,
VO2max improvements are greater after interval training modes across the lifespan [14].

Currently, there is great interest in different intensity intermittent training programs [15]
in which the manipulation of the exercise intensity as well as the duration and recovery
regimen remain the variables that determine the total workload [16]. Based on these variables,
the concepts of RT, IT, and SIT emerged in sports training practice and raise problematic
issues related to muscle metabolism that require scientific analysis. RT induces numerous
physiological adaptations that facilitate improved exercise capacity, i.e., the ability to sustain
a given workload for an actual period of time or achieve a higher average power output
over a fixed distance or time [17,18]. The principle of IT was first described by Reindell
and Roskman [19] and is a method of training that alternates between exercise periods and
recovery and with specific adaptive effects on the athlete’s heart. In moderate-intensity
interval training, when alternating 30–90 s exercise that reaches the anaerobic threshold, the
systolic volume of the heart increases during recovery intervals, causing myocardial metabolic
load [20]. Interval training can be performed effectively with numerous combinations of
work duration and intensity, rest duration, and intensity, and their effects on aerobic exercise
training are still being studied [21]. SIT is characterized by efforts performed at intensities
equal to the pace that would elicit VO2max, including the maximal efforts of the athlete [22].
This training increases the maximal activities of mitochondrial enzymes [23], reduces glycogen
utilization and lactate accumulation during matched-work exercise [24,25], and improves
performance during those tasks that primarily rely on aerobic metabolism [25].

Flat water race 1000 m kayaking is a highly demanding sport that requires both aerobic
and anaerobic efforts, which reinforces the importance of selecting adequate methods
of endurance training. The aerobic contribution, expressed as a fraction of VO2max,
was shown to be 85% for 1000 m kayaking and lasting approximately 3 min 45 s [26].
Kayakers of the Olympic standard were reported to reach a peak oxygen uptake from
4.27 to 4.67 L·min−1 during an on-water 1000 m race [27,28]. One of the recent studies [29]
characterized the changes in oxygenation derived from NIRS in three active muscles during
a VO2max test and on-water time trials (200, 500, or 1000 m) in male and female U23 and
senior athletes and found the relation between muscle oxygenation, VO2max, maximal
cardiac output, and performance. The analysis of stroke force data and electromyography
(EMG) revealed that the most active muscles during kayak stroke are the anterior deltoid
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(AD), triceps brachii (TB), LD, and VL [30]. Thus far, there is only one study in junior
male athletes that displayed a moderate correlation between the maximal O2 extraction
in the LD during an incremental test on a kayak ergometer and both 200 and 1000 m
performances [15]. It is understood that some muscle oxygenation studies are limited
by technical conditions that cause inconvenience in attaching sensors and performing
paddling movements. However, there is a need to determine the contribution of other
muscles, such as the PM, that have not been previously studied in any kayak training
protocol. Depending on the demands of the training, several approaches exist to control
and individualize intermittent exercise intensities [31,32]. Individual incremental test
parameters are much more objective, practical, and likely the more accurate and effective
criteria for achieving the desired performance results [33–35]. Paquette and Bieuzen [36]
studied thirteen canoe kayak athletes of different genders and different levels to determine
their muscle oxygenation and cardiac output responses to various HIIT sessions with the
intensity ranging from 110% peak power output to all-out, suggesting that the muscle
demand for O2 is high, especially with the increase in the number and targeting intensity.
However, it is unknown whether moderate-intensity repetition work can cause muscle
oxygenation and cardiac output in world-class kayakers, compared with moderate interval
and sprint interval training. Thus, the purpose of this study is to assess muscle oxygen
responses during the RT, IT, and SIT in a world-class kayaker and to determine oxygenation
parameters in the VL, PM, and LD muscles in each training workout. We hypothesized
that the SIT training protocol activates the muscle’s O2 dynamics and oxidative energy
metabolism more than the IT and RT, and this response would be detected using NIRS.

2. Materials and Methods
2.1. Subject

A male world-class kayaker (World Championship silver and bronze medal winner
and European Championship bronze medal winner in 1000 m kayak flat water race event),
during the preparatory period, participated in this study. At the start of the data collection,
the participant’s age was 32 years, with a height of 184.5 cm, body mass of 89 kg, and
training volume of 18 h·week−1. Physical characteristics are presented in Table 1.

Table 1. Subject’s physical characteristics.

VO2max (L·min−1) 5.1

VO2max (mL·kg−1·min−1) 57.5

HR (beat·min−1) at CIL 180.0

Power (W) at CIL 300.0

VO2 (L·min−1) at VT2 3.8

VO2 (mL·kg−1·min−1) at VT2 43.0

HR (beat·min−1) at VT2 165.0

Power (W) at VT2 200.0
Note: VO2max—maximal oxygen uptake; CIL—critical intensity limit; VT2—2nd ventilatory threshold; HR—heart
rate; W—watts.

2.2. Design

During the study, the athlete was encouraged to undertake their normal training but
not to train on the day before each test. The athlete was acquainted with the experimental
procedures prior to testing and gave written informed consent to participate in the study.
All the experimental procedures involved in this study were approved by the Bioethics
Research Committee of Vilnius Region (#158200-18/11-1040-573). This study adhered to
ethical principles under the Declaration of Helsinki.

The participant performed three randomized separated training sessions, RT, IT, and SIT,
upon a Dansprint PRO, KE001 ergo, Denmark kayak ergometer at air brake resistance level 7. The
ergometer was calibrated before each test according to the manufacturer’s recommendations, and
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the tension in the ergometer’s ropes was verified regularly [37]. All sessions were performed under
similar environment conditions (relative humidity 60%) and circumstances (from 11.00 to 12.30 h).

The study protocol practice sessions started with a 15 min standard warm-up compris-
ing rowing exercises and 5 min of recovery (Table 2).

Table 2. Experimental conditions of the protocol depicting the three IT intensity modes.

Duration 15′ 6 Bouts

RT

Warm-Up S-6′ 6′
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Table 2. Experimental conditions of the protocol depicting the three IT intensity modes. 

Duration 15′ 6 Bouts 

RT 

Warm-Up S-6′ 6′ 
  PR 

5′-160 W + 1,30′PR + 3,30′-
3X(10″300 W + 1′PR) + 5′PR I-200 W  

IT 

Warm-Up S-60″+60″ 6′ 

  PR 

5′-160 W + 1,30′PR + 3,30′-
3X(10″300 W + 1′PR) + 5′PR I-200 W+40 W  

 Warm-Up S-10″ + 30″ 6′ 

SIT   PR 

 
5′-160 W + 1,30′PR + 3,30′-

3X(10″300 W + 1′PR) + 5′PR I-300 W + 40 W  

Note: RT—repetition training protocol 1; IT—interval training protocol 2; SIT—sprint interval train-
ing protocol 3; S—series; PR—passive recovery; W—watts; I—intensity. 

For all tests, the athlete started in the kayak ergometer, waited 3 min for the starting 
signal, and established the baseline responses for NIRS and HR monitor. The participant 
was asked to perform the same volume of 6 bouts of activity interspersed with 6 min of 
passive recovery (Table 2). To program the RT, IT, and SIT intensities, the subject’s indi-
vidual power output characteristics were used at the critical intensity limit (CIL) and at 
the second ventilatory threshold (VT2) associated with physiological markers such as 
VO2max, VO2, and HR (Table 1) [38]. The participant received stroke power output and 
heart rate (HR) feedback during the test and was asked to maintain the right intensity (W) 
in each stage of the exercises. Blood lactate (Bla) concentration (mmol·L−1), as a proxy for 
metabolic anaerobic demand, was determined 3 min after the end of each intermittent 
training. 

2.3. Protocols 
2.3.1. RT 

The RT protocol comprised 6 bouts of 6 min of ergometer paddling at 200 watts in-
tensity interspersed with 6 min of passive recovery. The participant was instructed to as-
sume the ready position, and after the starting signal, the activity lasted for 72 min.  

2.3.2. IT 
The IT protocol comprised 6 bouts of 6 min that consisted of interspersing periods of 

1-min ergometer paddling at the intensity of 200 watts and 1 min relief at 40 watts pad-
dling intensity. The 6 min of activity were interspersed with 6 min of passive recovery. 

PR

5′-160 W + 1,30′PR + 3,30′-3X(10′′300 W + 1′PR) + 5′PR I-300 W + 40 W
Note: RT—repetition training protocol 1; IT—interval training protocol 2; SIT—sprint interval training proto-
col 3; S—series; PR—passive recovery; W—watts; I—intensity.

For all tests, the athlete started in the kayak ergometer, waited 3 min for the starting
signal, and established the baseline responses for NIRS and HR monitor. The participant
was asked to perform the same volume of 6 bouts of activity interspersed with 6 min of pas-
sive recovery (Table 2). To program the RT, IT, and SIT intensities, the subject’s individual
power output characteristics were used at the critical intensity limit (CIL) and at the second
ventilatory threshold (VT2) associated with physiological markers such as VO2max, VO2,
and HR (Table 1) [38]. The participant received stroke power output and heart rate (HR)
feedback during the test and was asked to maintain the right intensity (W) in each stage
of the exercises. Blood lactate (Bla) concentration (mmol·L−1), as a proxy for metabolic
anaerobic demand, was determined 3 min after the end of each intermittent training.

2.3. Protocols
2.3.1. RT

The RT protocol comprised 6 bouts of 6 min of ergometer paddling at 200 watts
intensity interspersed with 6 min of passive recovery. The participant was instructed to
assume the ready position, and after the starting signal, the activity lasted for 72 min.

2.3.2. IT

The IT protocol comprised 6 bouts of 6 min that consisted of interspersing periods of 1-min
ergometer paddling at the intensity of 200 watts and 1 min relief at 40 watts paddling intensity.
The 6 min of activity were interspersed with 6 min of passive recovery. The participant was
instructed to assume the ready position, and after the starting signal, the activity lasted for 72 min.

2.3.3. SIT

The SIT protocol comprised 6 bouts of 6 min that consisted of interspersing periods of 10 s of
ergometer paddling at 300 watts intensity with 30 s of relief paddling at 40 watts intensity. The
6 min of activity were interspersed with 6 min of passive recovery. The participant was instructed
to assume the ready position, and after the starting signal, the activity lasted for 72 min.

2.4. Variables
2.4.1. NIRS Values

The oxygenation level of exercising muscles (oxygenated hemoglobin), SmO2 (%),
and deoxygenated total hemoglobin, tHb (arbitrary units AU), were assessed with a NIRS
device (Moxy Oxygen Monitor-USA, Hutchinson, MN, USA) (Figure 1).
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Figure 1. Moxy monitor placement.

Three NIRS monitors were placed and affixed using double-sided adhesive tape over
the left (dominant) VL, PM, and LD muscles: for the VL, on the distal part of the VL muscle
belly (10 cm above the proximal border of the patella); for the PM, on the center of the
muscle belly along in the principal direction of the muscle fibers of the sternocostal head,
and for the LD, on the midpoint between the inferior border of the scapula and the posterior
axillary fold. The skinfold thickness at each site was measured using a skinfold caliper
(Harpenden, C-136) to ensure that the skinfold thickness was less than half the distance
between the emitter and the detector (25 mm). The raw muscle O2 saturation (SmO2) and
total hemoglobin concentration (tHb) signals were captured at 10 Hz, and the data were
smoothed using a 10th order low pass-zero phase Butterworth filter (cut-off frequency
0.1 Hz) provided by the recording Artinis Software (Oxysof, Artinis Medical System, Elst,
The Netherlands) [39]. Black elastic bandages were used to shield the probes from ambient
light and minimize movement during exercise. The values of muscles oxygenation at the
baseline (averaging 30 s before exercise), during exercise (sample size of each bout n = 180),
and during exercise recovery periods (sample size of each bout n = 180) were recorded
in the Moxy PC software (Fortiori Design LLC, Minneapolis, MN, USA), which allowed
for the calculation of the average of the recorded values and the lowest point of the SmO2
in each training. The variation between recovery and exercise in SmO2 (∆ SmO2) was
calculated by evaluating the difference between the minimum SmO2 and baseline SmO2,
and the tHb (∆ tHb) variation was also assessed by calculating the variation between the
maximum tHb and baseline tHb [40].

2.4.2. Heart Rate Responses

HR responses were assessed with a telemetric HR monitor (Polar RS800 CX, Polar
Electro Oy, Kempele, Finland). The HR (sample size of each bout n = 180) was measured
during all the interval bouts, including during the rest. The HR signals were treated using a
moderate filter, cleaning and replacing all irregular heartbreaks with interpolated, adjacent
R–R interval values using the Polar Software (Pro Trainer 5, Polar Electro, Finland).

2.4.3. Blood Lactate Concentration

Blood lactate (Bla) concentration (mmol·L−1) was calculated 3 min after the end of
the protocols. The blood lactate samples were taken from the participant’s fingertip and
immediately analyzed with a validated lactate analyzer (Lactate Pro; Arkray, Tokyo, Japan).

2.5. Statistical Analysis

Descriptive analysis is presented in Tables 3 and 4, and data are presented as means
(M) ± standard deviations (SD). Before using the parametrical statistical procedures, the
assumptions of normality and sphericity were verified. A one-way repeated-measure
ANOVA was performed to identify the differences in muscle oxygen saturation and the
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total hemoglobin in the VL, PM, and LD muscles, and the heart rate between the interval
training modes. Bonferroni’s corrections were used for the comparisons of more than two
groups, and Cohen’s d was calculated as the effect-size measure. The alpha level for all
statistical tests was set a priori at α = 0.05, and the calculations were carried out using the
SPSS software V24.0 (IBM SPSS Statistics for Windows, Armonk, NY, USA: IBM Corp.). The
thresholds for effect-size statistics were <0.2, trivial; <0.6, small; <1.20, moderate; <2.0, large;
and >2.0, very large. These statistical computations were processed with a specific post-only
crossover spreadsheet for each age group [41].

Table 3. Characterization and inferential analysis of the considered variables according to different
intermittent training protocols during exercise bouts.

Bouts Variables

Intermittent Training Protocol Difference in Means (Row; ±95% CL)

RT IT SIT
(a) (b) (c) p

Mean ± SD Mean ± SD Mean ± SD

SmO2 (%) LD 43.4 ± 4.8 46.1 ± 6.8 40.5 ± 4.1 2.7 [−1.1, 6.6] −2.9 [−5, −0.8] −5.6 [−10.4, −0.9] <0.05
tHb (AU) LD 13.2 ± 0 13.3 ± 0.1 13.2 ± 0.1 0.1 [0, 0.2] 0.1 [0, 0.1] 0 [−0.1, 0] <0.05
SmO2 (%) PM 30.7 ± 8.9 44.2 ± 10.0 37.0 ± 5.0 13.5 [6.2, 20.9] 6.3 [3.4, 9.2] −7.2 [−14.1, −0.3] <0.01

1 tHb (AU) PM 13.2 ± 0 13.2 ± 0.1 13.1 ± 0 0 [−0.1, 0] −0.1 [−0.1, −0.1] 0 [−0.1, 0] <0.01
SmO2 (%) VL 64.8 ± 5.7 77.3 ± 4.0 70.4 ± 3.6 12.4 [7.3, 17.6] 5.6 [3.8, 7.4] −6.8 [−10.5, −3.1] <0.001
tHb (AU) VL 12.4 ± 0.1 12.4 ± 0.1 12.3 ± 0 0.1 [0, 0.1] −0.1 [−0.1, −0.1] −0.1 [−0.2, −0.1] <0.01
HR (Bpm) 144.7 ± 11.4 122.2 ± 13.3 127.7 ± 3.9 −22.5 [−31.5, −13.5] −17.0 [−22.8, −11.2] 5.5 [−3, 13.9] <0.001

SmO2 (%) LD 47.3 ± 3.8 47.2 ± 7.9 42.5 ± 3.8 −0.1 [−4.4, 4.3] −4.8 [−6.8, −2.7] −4.7 [−9.4, 0] <0.05
tHb (AU) LD 13.2 ± 0.1 13.3 ± 0.2 13.3 ± 0.1 0.1 [−0.1, 0.2] 0.1 [0, 0.2] 0.1 [0, 0.2] >0.05
SmO2 (%) PM 32.5 ± 8.6 42.6 ± 10.6 38.2 ± 5.3 10.1 [3.3, 16.9] 5.7 [2.4, 8.9] −4.4 [−11.5, 2.7] <0.05

2 tHb (AU) PM 13.2 ± 0 13.2 ± 0 13.1 ± 0 −0.1 [−0.1, 0] −0.1 [−0.1, −0.1] 0 [−0.1, 0] <0.001
SmO2 (%) VL 63.6 ± 5.7 78.4 ± 4.1 70.6 ± 2.8 14.8 [9.5, 20.1] 7 [4.7, 9.2] −7.8 [−11.3, −4.4] <0.001
tHb (AU) VL 12.4 ± 0.1 12.4 ± 0.1 12.3 ± 0 0 [0, 0.1] −0.1 [−0.1, −0.1] −0.1 [−0.2, −0.1] <0.01
HR (Bpm) 151.3 ± 11.4 120.4 ± 12.8 127.0 ± 7.4 −30.9 [−40.8, −21.0] −24.3 [−27.1, −21.5] 6.6 [−2.5, 15.8] <0.001

SmO2 (%) LD 48.8 ± 3.3 49.4 ± 6.9 43.9 ± 47 0.7 [−2.3, 3.7] −4.8 [−6.3, −3.3] −5.5 [−8.8, −2.2] <0.001
tHb (AU) LD 13.3 ± 0.1 13.4 ± 0.2 13.4 ± 0.1 0.1 [0, 0.3] 0.1 [0, 0.1] −0.1 [−0.2, 0.1] >0,.05
SmO2 (%) PM 34.0 ± 8.3 45.2 ± 9.1 41.5 ± 4.5 11.2 [5.2, 17.2] 7.5 [4.4, 10.5] −3.7 [−10.0, 2.5] <0.01

3 tHb (AU) PM 13.2 ± 0 13.2 ± 0 13.2 ± 0 0 [−0.1, 0] −0.1 [−0.1, 0] 0 [0, 0] <0.01
SmO2 (%) VL 62.4 ± 6.3 78.9 ± 4.0 71.2 ± 3.5 16.6 [10.8, 22.3] 8.8 [6.7, 11.0] −7.7 [−11.7, −3.8] <0.001
tHb (AU) VL 12.4 ± 0.1 12.4 ± 0.1 12.3 ± 0 0 [0, 0.1] −0.1 [−0.1, −0.1] −0.1 [−0.2, −0.1] <0.01
HR (Bpm) 154.6 ± 11.3 120.9 ± 14.2 125.8 ± 5.0 −33.7 [−44.2, −23.2] −28.8 [−33.4, −24.3] 4.9 [−5.1, 14.9] <0.001

SmO2 (%) LD 49.1 ± 4.1 50.8 ± 5.7 43.8 ± 3.8 1.7 [−0.8, 4.2] −5.3 [−7.1, −3.5] −7.0 [−9.9, −4.1] <0.001
tHb (AU) LD 13.4 ± 0.1 13.5 ± 0.2 13.3 ± 0.1 0.1 [−0.1, 0.2] 0 [−0.1, 0.1] −0.1 [−0.2, 0] >0.05
SmO2 (%) PM 29.6 ± 9.4 48.6 ± 9.7 36.9 ± 6.2 19.0 [12.2, 25.7] 7.3 [4.2, 10.4] −11.7 [−18.6, −4.7] <0.001

4 tHb (AU) PM 13.2 ± 0 13.3 ± 0 13.1 ± 0 0.1 [0, 0.1] −0.1 [−0.1, 0] −0,.1 [−0.1, −0.1] <0.001
SmO2 (%) VL 61.0 ± 6.2 77.4 ± 4.5 72.5 ± 4.1 16.4 [10.7, 22.0] 11.5 [9.7, 13.3] −4.9 [−9.3, −0.5] <0.001
tHb (AU) VL 12.4 ± 0 12.4 ± 0.1 12.3 ± 0.1 0 [0, 0.1] −0.1 [−0.1, −0.1] −0.1 [−0.2, 0] <0.01
HR (Bpm) 158.0 ± 10.9 118.8 ± 14.0 126.2 ± 9.3 −39.2 [−48.7, −29.7] −31.7 [−34.5, −28.9] 7.5 [−1.8, 16.7] <0.001

SmO2 (%) LD 48.0 ± 3.4 50.9 ± 6.1 39.9 ± 4.6 2.9 [−0.2, 5.9] −8.2 [−10.1, −6.2] −11.0 [−15.1, −7.0] <0.001
tHb (AU) LD 13.3 ± 0.1 13.5 ± 0.2 13.3 ± 0.1 0.1 [0, 0.3] 0 [−0.1, 0] −0.2 [−0.3, 0] <0.05
SmO2 (%) PM 26.3 ± 8.1 47.6 ± 9.6 37.6 ± 6.1 21.3 [15.5, 27.1] 11.2 [8.5, 13.9] −10.1 [−17.2, −2.9] <0.001

5 tHb (AU) PM 13.2 ± 0 13.2 ± 0 13.1 ± 0 0.1 [0, 0.1] −0.1 [−0.1, 0] −0.1 [−0.1, −0.1] <0.001
SmO2 (%) VL 60.4 ± 6.3 78.4 ± 3.7 73.3 ± 3.9 18.0 [12.6, 23.4] 13.0 [11.1, 14.8] −5.0 [−9.2, −0.9] <0.001
tHb (AU) VL 12.4 ± 0 12.4 ± 0.1 12.3 ± 0.1 0 [0, 0.1] −0.1 [−0.1, −0.1] −0.1 [−0.2, −0.1] <0.001
HR (Bpm) 159.8 ± 11.2 119.5 ± 14.7 127.9 ± 6.3 −40.3 [−50.8, −29.7] −31.9 [−35.6, −28.1] 8.4 [−2.1, 19.0] <0.001

SmO2 (%) LD 47.9 ± 3.6 50.0 ± 5.3 40.9 ± 3.8 2.2 [−0.4, 4.7] −7.0 [−8.6, −5.4] −9.2 [−11.7, −6.6] <0.001
tHb (AU) LD 13.3 ± 0.1 13.3 ± 0.2 13.3 ± 0.1 0.1 [−0.1, 0.2] 0 [−0.1, 0] −0.1 [−0.2, 0.1] >0.05
SmO2 (%) PM 33.2 ± 8.0 46.9 ± 9.6 36.1 ± 5.6 13.7 [8.0, 19.4] 2.9 [0.6, 5.1] −10.8 [−17.1, −4.6] <0.001

6 tHb (AU) PM 13.2 ± 0 13.2 ± 0 13.1 ± 0 0 [−0.1, 0] −0.1 [−0.1, −0.1] −0.1 [−0.1, −0.1] <0.001
SmO2 (%) VL 61.2 ± 6.6 80.4 ± 2.3 73.6 ± 3.7 19.2 [14.4, 24.1] 12.5 [10.3, 14.7] −6.8 [−9.7, −3.8] <0.001
tHb (AU) VL 12.4 ± 0.1 12.5 ± 0.1 12.3 ± 0.1 0.1 [0.1, 0.2] −0.1 [−0.1, −0.1] −0.2 [−0.3, −0.2] <0.001
HR (Bpm) 161.8 ± 10.7 119.4 ± 14.4 129.4 ± 6.3 −42.4 [−52.5, −32.3] −32.4 [−36.0, −28.8] 10.0 [−0.1, 20.0] <0.001

Note: SmO2, muscle O2 saturation; tHb, total hemoglobin; HR, heart rate; LD, latissimus dorsi; PM, pectoralis
major; VL, vastus lateralis; CL = confidence limits; RT, repetition training; IT, interval training; SIT, sprint interval
training. Comparisons among intermittent training protocols during exercise bouts identified as (a) RT vs. IT,
(b) RT vs. SIT, and (c) IT vs. SIT.
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Table 4. Characterization and inferential analysis of the considered variables according to different
intermittent training protocols during rest bouts.

Bouts Variables

Intermittent Training Protocol Difference in Means (Row; ±95% CL)

RT IT SIT
(a) (b) (c) p

Mean ± SD Mean ± SD Mean ± SD

SmO2 (%) LD 65.7 ± 7.4 70.2 ± 6.9 71.2 ± 6.7 4.5 [1.0, 8.0] 5.5 [2.5, 8.5] 1.0 [−0.7, 2.7] <0.01
tHb (AU) LD 13.1 ± 0 13.2 ± 0.1 13.2 ± 0 0.1 [0, 0.1] 0.1 [0.1, 0.2] 0 [0, 0.1] <0.001
SmO2 (%) PM 64.7 ± 12.1 72.7 ± 4.7 72.0 ± 9.7 8.0 [2.7, 13.3] 7.4 [2.6, 12.1] −0.7 [−4.6, 3.3] <0.01

1 tHb (AU) PM 13.0 ± 0 13.1 ± 0 13.0 ± 0 0.1 [0.1, 0.2] 0.1 [0, 0.1] −0.1 [−0.1, 0] <0.001
SmO2 (%) VL 74.9 ± 3.4 77.4 ± 3.5 78.6 ± 2.8 2.6 [−1.0, 6.1] 3.8 [2.5, 5.1] 1.2 [−2.0, 4.4] <0.05
tHb (AU) VL 12.4 ± 0.1 12.4 ± 0 12.4 ± 0 0 [0, 0.1] 0.1 [0, 0.1] 0 [0, 0.1] >0.05
HR (Bpm) 95.6 ± 16.7 77.7 ± 7.4 77.6 ± 8.4 −17.9 [−25.8, −10.0] −18.0 [−25.7, −10.4] −0.2 [−6.5, 6.1] <0.001

SmO2 (%) LD 64.5 ± 7.0 70.3 ± 6.8 69.0 ± 7.8 5.8 [3.0, 8.6] 4.6 [2.0, 7.2] −1.2 [−2.6, 0.2] <0.001
tHb (AU) LD 13.1 ± 0 13.2 ± 0.1 13.2 ± 0.1 0.1 [0.1, 0.2] 0.1 [0.1, 0.2] 0 [0, 0] <0.001
SmO2 (%) PM 65.9 ± 11.5 72.0 ± 6.5 71.4 ± 9.2 6.1 [1.5, 10.6] 5.5 [2.0, 9.0] −0.6 [−2.7, 1.6] <0.01

2 tHb (AU) PM 13.1 ± 0 13.0 ± 0 13.1 ± 0 0 [−0.1, 0] 0 [0, 0] 0 [0, 0.1] <0.05
SmO2 (%) VL 74.8 ± 4.3 79.5 ± 3.6 77.8 ± 2.6 4.7 [0.7, 8.7] 3.0 [1.0, 5.0] −1.7 [−5.2, 1.7] <0.05
tHb (AU) VL 12.4 ± 0.1 12.4 ± 0.1 12.4 ± 0 0 [−0.1, 0.1] 0 [−0.1, 0] 0 [−0.1, 0] >0.05
HR (Bpm) 101.6 ± 18.1 73.1 ± 6.2 77.5 ± 10.8 −28.5 [−37.0, −20.0] −24.1 [−30.3, −17.9] 4.4 [0.6, 8.1] <0.001

SmO2 (%) LD 63.6 ± 7.0 68.4 ± 6.3 67.3 ± 7.3 4.8 [1.6, 8.0] 3.7 [1.1, 6.3] −1.1 [−2.8, 0.5] <0.01
tHb (AU) LD 13.1 ± 0.1 13.3 ± 0.1 13.2 ± 0 0.1 [0.1, 0.2] 0.1 [0, 0.1] 0 [−0.1, 0] <0.001
SmO2 (%) PM 64.7 ± 11.7 73.5 ± 4.6 70.8 ± 8.1 8.8 [4.0, 13.7] 6.1 [2.0, 10.1] −2.8 [−5.3, −0.2] <0.001

3 tHb (AU) PM 13.0 ± 0.1 13.1 ± 0.1 13.1 ± 0 0.1 [0, 0.2] 0 [0, 0] −0.1 [−0.1, 0] <0.01
SmO2 (%) VL 73.4 ± 4.4 77.0 ± 4.3 79.0 ± 2.4 3.5 [−0.6, 7.6] 5.6 [4.1, 7.1] 2.1 [−1.5, 5.6] <0.05
tHb (AU) VL 12.4 ± 0 12.4 ± 0.1 12.4 ± 0 0 [0, 0.1] 0 [0, 0.1] 0 [−0.1, 0.1] >0.05
HR (Bpm) 107.1 ± 17.4 77.2 ± 7.8 79,9 ± 10.7 −29.9 [−38.9, −20.9] −27.2 [−34.7, −19.7] 2.7 [−1.5, 6.9] <0001

SmO2 (%) LD 62.5 ± 6.3 67.5 ± 6.9 67.4 ± 7.0 4.9 [1.8, 8.0] 4.8 [2.5, 7.2] −0.1 [−1.6, 1.4] <0.001
tHb (AU) LD 13.1 ± 0.1 13.2 ± 0.1 13.2 ± 0 0.1 [0, 0.2] 0.1 [0.1, 0.2] 0 [−0.1, 0] <0.001
SmO2 (%) PM 62.5 ± 12.1 75.3 ± 4.9 69.4 ± 9.7 12.8 [7.8, 17.8] 6.8 [3.6, 10.0] −6.0 [−9.2, −2.7] <0.001

4 tHb (AU) PM 13.0 ± 0.1 13.2 ± 0 13.0 ± 0 0.2 [0.1, 0.2] 0 [0, 0] −0.2 [−0.2, −0.2] <0.001
SmO2 (%) VL 74.9 ± 5.2 78.5 ± 4.4 80.0 ± 2.0 3.5 [−1.5, 8.5] 5.1 [2.9, 7.3] 1.5 [−2.0, 5.0] <0.05
tHb (AU) VL 12.4 ± 0 12.4 ± 0.1 12.4 ± 0 0 [0, 0.1] 0 [0, 0] 0 [−0.1, 0] >0.05
HR (Bpm) 104.4 ± 18.6 74.0 ± 7.5 84.1 ± 8.3 −30.4 [−39.8, −21.1] −20.3 [−30.6, −10.0] 10.1 [3.4, 16.9] <0.001

SmO2 (%) LD 60.5 ± 8.2 68.0 ± 6.7 67.3 ± 8.1 7.4 [4.3, 10.5] 6.8 [4.2, 9.3] −0.7 [−1.9, 0.6] <0.001
tHb (AU) LD 13.1 ± 0 13.2 ± 0 13.2 ± 0 0.2 [0.1, 0.2] 0.1 [0.1, 0.2] 0 [0, 0] <0.001
SmO2 (%) PM 63.5 ± 13.4 74.7 ± 6.5 71.4 ± 10.6 11.2 [6.2, 16.2] 7.9 [4.0, 11.8] −3.3 [−6.2, −0.4] <0.001

5 tHb (AU) PM 13.1 ± 0 13.1 ± 0 13.1 ± 0 0.1 [0, 0.1] 0 [0, 0] −0.1 [−0.1, 0] <0.001
SmO2 (%) VL 76.5 ± 5.9 81.0 ± 3.6 80.8 ± 2.3 4.5 [−0.7, 9.6] 4.4 [1.8, 6.9] −0.1 [−3.3, 3.0] >0.05
tHb (AU) VL 12.4 ± 0 12.5 ± 0.1 12.4 ± 0 0.1 [0.1, 0.2] 0 [0, 0.1] −0.1 [−0.1, 0] <0.001
HR (Bpm) 107.7 ± 19.4 72.5 ± 8.3 77.3 ± 7.7 −35.2 [−43.2, −27.1] −30.4 [−38.8, −22.0] 4.8 [1.1, 8.4] <0.001

SmO2 (%) LD 58.3 ± 7.2 65.4 ± 7.6 61.0 ± 4.0 7.2 [2.5, 11.9] 2.7 [−0.5, 5.9] −4.5 [−7.7, −1.2] <0.01
tHb (AU) LD 13.1 ± 0.1 13.2 ± 0.1 13.2 ± 0 0.1 [0, 0.1] 0.1 [0.1, 0.1] 0 [0, 0.1] <0.001
SmO2 (%) PM 54.3 ± 7.9 70.8 ± 6.1 63.5 ± 8.2 16.5 [13.4, 19.7] 9.2 [6.2, 12.3] −7.3 [−9.7, −4.9] <0.001

6 tHb (AU) PM 13.0 ± 0.1 13.1 ± 0 13.0 ± 0 0.1 [0, 0.2] 0 [−0.1, 0] −0.1 [−0.1, −0.1] <0.01
SmO2 (%) VL 71.1 ± 5.5 80.4 ± 3.5 76.3 ± 2.4 9.3 [5.7, 13.0] 5.2 [1.4, 8.9] −4.2 [−7.2, −1.2] <0.01
tHb (AU) VL 12.5 ± 0.1 12.5 ± 0 12.4 ± 0.1 0 [−0.1, 0.1] −0.1 [−0.1, 0] −0.1 [−0.1, 0] >0.05
HR (Bpm) 116.4 ± 16.6 75.4 ± 6.7 85.3 ± 10.7 −41.1 [−49.0, −33.2] −31.2 [−38.5, −23.8] 9.9 [3.5, 16.3] <0.001

Note: LD, latissimus dorsi; PM, pectoralis major; VL, vastus lateralis; CL = confidence limits; RT, repetition
training; IT, interval training; SIT, sprint interval training. Comparisons among intermittent training protocols
during exercise bouts identified as (a) RT vs. IT, (b) RT vs. SIT, and (c) IT vs. SIT.

3. Results

The results of the inferential analysis between the intermittent training protocols
during the exercise bouts and rest bouts are presented in Tables 3 and 4, respectively.
Complementarily, both figures show the standardized (Cohen) differences for the pairwise
comparisons. During the exercise bouts, all the intermittent training protocols presented
significant differences for all variables except tHb in the LD during bout 2 (F = 2.83, p = 0.1,
ηp2 = 0.205); bout 3 (F = 2.7, p = 0.125, ηp2 = 0.193); bout 4 (F = 1.8, p = 0.202, ηp2 = 0.141);
and bout 6 (F = 1.1, p = 0.327, ηp2 = 0.092). During the rest bouts, all the intermittent
training protocols showed significant differences for all variables except SmO2 in the VL
during bout 5 (F = 4.4, p = 0.053, ηp2 = 0.286) and the tHb in the VL during bout 1 (F = 2.28,
p = 0.132, ηp2 = 0.172); bout 2 (F = 0.564, p = 0.561, ηp2 = 0.049); bout 3 (F = 1.752, p = 0.205,
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ηp2 = 0.137); bout 4 (F = 1.216, p = 0.301, ηp2 = 0.1); and bout 6 (F = 4.146, p = 0.053,
ηp2 = 0.274). Complementarily, Figures 2 and 3 show the standardized (Cohen) differences
for the pairwise comparisons. The comparison between the protocols showed that the RT
protocol presented higher deoxygenation levels than the IT protocol. On the other hand,
the SIT protocol presented higher deoxygenation levels than the RT and IT protocols but
only in the LD muscle (Figure 2).
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Figure 2. Standardized (Cohen) differences in the considered variables during exercise bouts. Error
bars indicate uncertainty in the true mean changes with 95% confidence intervals. Abbreviations:
1—RT protocol 1; 3—IT protocol 2; SIT protocol 3; SmO2—muscle oxygen saturation; tHb—total
hemoglobin; LD—latissimus dorsi; PM—pectoralis major; VL—vastus lateralis; HR—heart rate;
T—trivial effect; S—small effect; M—moderate effect; L—large effect.
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Figure 3. Standardized (Cohen) differences in the considered variables during rest bouts. Error bars
indicate uncertainty in the true mean changes with 95% confidence intervals. Abbreviations: 1—RT
protocol 1; 3—IT protocol 2; SIT protocol 3; SmO2—muscle oxygen saturation; tHb—total hemoglobin;
LD—latissimus dorsi; PM—pectoralis major; VL-vastus lateralis; HR—heart rate; T—trivial effect;
S—small effect; M—moderate effect; L—large effect.

However, the SIT and IT protocols presented higher mean O2 saturation levels during
the passive recovery than the RT protocols.

4. Discussion

Our research aimed to assess muscle oxygenation responses during the RT, IT, and
SIT in a world-class kayaker and to determine their parameters in the VL, PM, and LD
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muscles. The findings of this case study only partially confirm our hypothesis: (1) the
RT was characterized by a greater mean deoxygenation rate than the IT protocol, and the
SIT mean deoxygenation was greater than the RT and IT workouts only in the LD muscle;
however, (2) the mean O2 saturation level during the passive rest period was higher in the
SIT and IT protocols than in the RT; (3) oxygenation responses in the three active muscles
suggest higher PM muscle recruitment than those of the LD and VL muscles as well as
changes in the level of muscle contribution during the exercises of different intensities.
This study shows the possibilities of using NIRS devices in the monitoring of elite kayak
paddling performance and may provide complementary information to the HR and Bla
concentration on a local muscle metabolism level.

4.1. O2 Dynamics during Different Training

In this study, we identified oxygen muscle changes during the RT, IT, and SIT protocols.
The RT induced greater mean oxygenation in the PM and VL and caused a greater HR
response than other protocols we applied. In our design, the RT involved a constant
intensity of around ~65% of the critical intensity limit (CIL) when performing a 200 W
workload. The increase in mean HR during the RT may reflect an increase in the cardiac
output associated with a central cardiocirculatory component of the training [42]. IT
intensities (200 W) were similar to RT intensities; however, relief intervals reduced the
mean oxygenation level of the IT, which had the lowest ∆ SmO2 (%) and the highest ∆ tHb
during all exercise bouts when compared with the RT and SIT protocols (Table 5).

Table 5. Changes in ∆ SmO2 (%) and ∆ tHb (AU) following different training protocols for each bout.

Bouts Variables
Intermittent Training Protocol

RT IT SIT

1

∆ SmO2 (%) LD −44.36 −38.48 −49.53
∆ tHb (AU) LD 0.18 0.46 0.56
∆ SmO2 (%) PM −58.74 −36.71 −45.25
∆ tHb (AU) PM 0.27 0.37 0.23
∆ SmO2 (%) VL −13.30 −2.24 −4.13
∆ tHb (AU) VL 0.21 0.29 0.01

2

∆ SmO2 (%) LD −47.65 −38.48 −50.80
∆ tHb (AU) LD 0.46 0.60 1.10
∆ SmO2 (%) PM −54.04 −35.46 −42.93
∆ tHb (AU) PM 0.29 0.31 0.25
∆ SmO2 (%) VL −15.96 −2.24 −6.51
∆ tHb (AU) VL 0.21 0.33 0.06

3

∆ SmO2 (%) LD −48.38 −33.87 −50.17
∆ tHb (AU) LD 0.77 0.85 0.76
∆ SmO2 (%) PM −48.39 −31.71 −40.25
∆ tHb (AU) PM 0.32 0.28 0.26
∆ SmO2 (%) VL −17.21 −2.29 −9.00
∆ tHb (AU) VL 0.21 0.37 0.09

4

∆ SmO2 (%) LD −43.87 −32.99 −44.91
∆ tHb (AU) LD 1.02 0.78 0.59
∆ SmO2 (%) PM −63.33 −32.56 −45.82
∆ tHb (AU) PM 0.28 0.41 0.24
∆ SmO2 (%) VL −18.46 −3.41 −6.51
∆ tHb (AU) VL 0.19 0.20 0.14

5

∆ SmO2 (%) LD −44.04 −38.18 −52.17
∆ tHb (AU) LD 0.42 0.85 0.71
∆ SmO2 (%) PM −60.83 −30.46 −43.46
∆ tHb (AU) PM 0.27 0.34 0.21
∆ SmO2 (%) VL −20.96 −2.21 −2.94
∆ tHb (AU) VL 0.19 0.22 0.11
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Table 5. Cont.

Bouts Variables
Intermittent Training Protocol

RT IT SIT

6

∆ SmO2 (%) LD −45.20 −36.53 −51.66
∆ tHb (AU) LD 0.44 0.69 0.83
∆ SmO2 (%) PM −56.86 −30.46 −48.31
∆ tHb (AU) PM 0.33 0.36 0.18
∆ SmO2 (%) VL −19.47 −2.19 −2.98
∆ tHb (AU) VL 0.22 0.42 0.14

Note: LD—latissimus dorsi; PM—pectoralis major; VL—vastus lateralis; RT—repetition training; IT—interval
training; SIT—sprint interval training.

The RT was distinguished by the duration of continuous work, while the SIT featured
the increased intensity of short intervals. The reviewers of this type of RT response catego-
rize them as metabolic, eliciting large requirements from the O2 transport and utilization
systems [43], and responses to protocols such as the SIT are considered metabolic but
with a certain degree of neuromuscular strain [21]. Previous reports state that during
moderate-intensity IT, the systolic volume of the heart increases during recovery intervals,
causing myocardial metabolic load [21]. Therefore, hypothetically, peripheral metabolic
changes were not expected in our study. Paquette and Bieuzen [40] considered that ∆ SmO2
is a good performance predictor since SmO2 represents the balance between O2 delivery
and extraction at the muscle level [4]. Thus, a decrease in SmO2 may originate from both
reduced delivery and/or increased extraction. However, it is difficult to draw a conclusion
indicating the importance of the exercise mode to elicit the cardiovascular component. The
control or adjustment of the intensity of the training sessions related to HR may be limited
due to the well-known HR delay at exercise onset [20], which showed a slower response
than the SmO2 response during the IT protocol (Figure 4. As the oxygen demand in the
working muscle is the driving force for oxygen delivery by the cardiovascular system [42],
muscle deoxygenation responded even faster than the oxygen uptake to the onset of a time
trial [44].
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Judging by the NIRS indicators, in the LD, the peripheral effects on oxygen extraction
during the SIT protocol were higher than during the RT. It has been previously established
that increasing exercise intensity improves aerobic energy metabolism, which is primarily
linked to increased skeletal muscle mitochondrial content and capillary density [45].

Another feature of our study was to monitor the mean muscle oxygenation of each
training session in 6 min duration rest bouts (Figures 4–6). It was possible to observe after
which training protocol O2 returned faster to the pre-exercise conditions since recovery is an
important component to improve physical training adaptations [46]. In the RT, oxygenation
during the rest bouts in the PM ranged from 54.4% to 65.9%, in the IT from 72% to 79.5%, and
in the SIT from 63.5% to 78.6% of SmO2 (Table 3). Our findings suggest that the link between
the O2 uptake recovery might be related to the exercise intensity and the nature of repeated
sequences in the IT and SIT. The ability to resist fatigue (SmO2% decrement) and replenish
the energy substrates (ATP and PCr) are oxygen-dependent processes [47]. In the present
study, during the rest bouts, muscle oxygenation in different training protocols returned at
a different pace to pre-exercise (~80%) levels (Figures 4–6), indicating a possible recovery
of muscle PCr [48]. The VL muscle was the least affected, presenting oxygenation at its
highest level, and in the RT, the mean values ranged from 71.1% to 76.5%, while in the IT, it
ranged from 77% to 81%, and in the SIT, from 76.3% to 80.8% of SmO2 (Table 4). Different
levels of muscle recovery may be related to factors such as impairments in neural drive
and motor unit activation or metabolite accumulation [49]. The oxygenation in the muscles
quickly adjusted post-exercise, indicating that the use of NIRS technology showed high
sensitivity and may lead to discussion and further investigations as to whether oximetry and
HR monitoring are more sensitive methods, especially in the IT (Figure 4) and SIT (Figure 6).
The three training protocols elicited different increases in blood lactate concentrations during
the exercise, showing the contribution of the anaerobic glycolytic system, inferred by blood
lactate accumulation, to be numerically greater in the RT (3.5 mmol·L−1) (Figure 5) than
in the IT (1.4 mmol·L−1) (Figure 4) and SIT (1.8 mmol·L−1) (Figure 6). The benefit of the
relief intensity has often been discussed via changes in blood lactate concentration [50];
however, neither blood [51] nor muscle lactate has a direct (nor linear) relationship with
performance capacity [50]. It has also been shown that substantially different intermittent
training modalities (as assessed by accumulated Bla-1 levels and the HR) may have relatively
similar muscle mean peripheral O2 responses.
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4.2. O2 Responses in Different Muscles

Information about simultaneous oxygenation in different muscles provides a potential
understanding of internal load. Paquette and Bieuzen [30] aimed to understand muscle
oxygenation in more than one active muscle and suggested that the maximum O2 extraction
is independent and a better performance predictor than the VO2max in sprint canoeing and
kayaking. Thus, our main results on muscle oxygenation during the RT show differences
between SmO2 in the LD, PM, and VL and between the tHb in the VL, PM, and LD during all
workout intervals (Figure 2). This could suggest higher PM recruitment during ergometer
paddling than the LD, and especially with the VL, in the applied intermittent training
sessions. The ∆ tHb was lower in the VL than in the PM and LD across all the training
protocols, suggesting a decrease in the leg muscle’s blood volume (Table 4). This is in line
with previous studies that showed a higher energy requirement of the fatigued muscle per
unit of external work performed than the non-fatigued muscle [52]. The deoxygenation
of the LD in the SIT was higher than during the other protocols, which was confirmed
by a previous electromyography study on different muscle activation levels during kayak
paddling, which showed that the LD muscle is highly active during the draw phase of the
kayaking [52]. However, an increase in different muscle activation levels during different
training protocols, which will likely produce an increase in O2 extraction, may be associated
with the technique required to cover the distances of different intensities. The tHb was
lower in the VL (12.4 ± 0.1) than in the PM (13.2 ± 0.1) and LD (13.3 ± 0.1), suggesting a
decrease in the muscle blood volume in lower body muscles. The drop in O2 saturation in
the less active muscles is explained by the sympathetic flow induced by exercise, promoting
vasoconstriction in this tissue and consequently, a redirection of the blood flow to the more
active muscles [53]. This way of explanation about the decreased muscle oxygenation in
the non-exercising limb was already used during graded leg cycling exercises, by adopting
ultrasound and NIRS methods [54]. At the same time, we did not observe any differences
in the tHb between the RT, IT, and SIT in the LD during the exercise bouts and in the VL
during the rest bouts, which should be considered in future studies.

Despite some limitations of the NIRS technique and its technology [55], this study
was conducted during a real training scenario in the preparatory training period for the
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world-class kayak competition. Our study was limited to one participant to find out
the individual response to single kayak training. Intermittent training is associated with
aerobic and anaerobic metabolism; therefore, for practical reasons, it was not possible
to invasively determine the accumulation of Bla after each exercise bout by measuring
this level at the end of the training. However, previous studies of elite kayakers have
shown [56] that the mean lactate threshold occurred at a blood lactate concentration of
2.7 mmol·L−1, an HR of 170 beats·min−1, and a VO2 of 44.2 mL·kg−1·min−1. The lactate
threshold presented corresponded to a percentage of 89.6% of the maximum heart rate and
82.4% of the VO2 peak. This shows that the characteristics of our subject are close to these
indicators. Therefore, the relationships between oxygen kinetics and anaerobic metabolism
should be further examined with experimental training studies.

5. Conclusions

The current results suggest that the observations of intermittent exercise performance
and significant changes in the peripheral effect of muscle oxygenation in response to
training stimuli are the internal predictors of the aerobic metabolism intensity related to
work, relief, and recovery intensity. Differences in muscle oxygenation suggest muscle
recruitment between the PM, LD, and VL during different exercises; however, this area
is still poorly understood requiring further research. To our knowledge, this is the first
study that shows the significant contribution of the PM muscle on individual performance
in world-class kayakers following different modality intermittent kayak training. In ad-
dition to the HR, blood lactate, and VO2 measurements, wearable NIRS technology is,
therefore, a significant tool for monitoring muscle oxidative metabolism during different
training modalities.
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