
 

 

 

 

 

INVESTIGATION OF EYE FUNDUS IMAGE QUALITY ON 

VASCULAR SEGMENTATION USING DEEP NEURAL 

NETWORKS 

Master Thesis 

Systems biology master program 

Vilnius university 

 

 

 

 

STUDENT NAME:  Julija Domarkaitė 

STUDENT NUMBER: 2011285 

 

SUPERVISOR: dr. Jolita Bernatavičienė 

 

 

SUPERVISOR DECISION: ………………………………. 

 

 

 

FINAL GRADE ………………………. 

 

DATE OF SUBMISSION:  13 05 2022 



 

 2 

CONTENTS 

LIST OF ABBREVIATIONS .......................................................................................................................................... 3 

INTRODUCTION ............................................................................................................................................................ 4 

AIM AND TASKS ............................................................................................................................................................ 5 

LITERATURE REVIEW ................................................................................................................................................ 6 

1.1. DISEASES ASSOCIATED WITH RETINAL VASCULAR CHANGES .................................................................................... 6 

1.2. BIOMARKERS SEGMENTED IN FUNDUS IMAGES ......................................................................................................... 7 

1.3. QUALITY AND SIZE OF FUNDUS IMAGES .................................................................................................................... 9 

1.4. AUTOMATIC IMAGE SEGMENTATION ...................................................................................................................... 10 

1.4.1. Neural networks ............................................................................................................................................. 10 

1.4.2. Related work .................................................................................................................................................. 10 

METHODS ...................................................................................................................................................................... 15 

2.1. DATA...................................................................................................................................................................... 15 

2.2. DATA PREPARATION, PRE-PROCESSING AND AUGMENTATION ................................................................................ 17 

2.3. THE STRUCTURE OF DEEP NEURAL NETWORKS ....................................................................................................... 18 

2.4. IMAGE RESIZING BY DIFFERENT INTERPOLATIONS .................................................................................................. 21 

2.5. THE METHODOLOGY OF THE MASTER THESIS .......................................................................................................... 24 

2.6. THE EVALUATION OF THE DNNS ............................................................................................................................ 27 

EXPERIMENTAL RESULTS ....................................................................................................................................... 29 

3.1. MODEL SELECTION ................................................................................................................................................. 29 

3.2. SIZE SELECTION ...................................................................................................................................................... 32 

3.3. INTERPOLATION SELECTION ................................................................................................................................... 35 

3.4. INPUT SIZE SELECTION ............................................................................................................................................ 36 

DISCUSSION .................................................................................................................................................................. 39 

4.1. MODEL SELECTION ................................................................................................................................................. 39 

4.2. SIZE SELECTION ...................................................................................................................................................... 40 

4.3. INTERPOLATION SELECTION ................................................................................................................................... 40 

4.4. INPUT SIZE SELECTION ............................................................................................................................................ 41 

CONCLUSIONS ............................................................................................................................................................. 43 

ACKNOWLEDGEMENTS ........................................................................................................................................... 44 

REFERENCES ............................................................................................................................................................... 45 

SUMMARY ..................................................................................................................................................................... 51 

SUMMARY IN LITHUANIAN ..................................................................................................................................... 52 

 



 

 3 
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INTRODUCTION 

 

The analysis of retinal fundus images with non-invasive medical imaging lets diagnose or track the 

progression of the diseases like diabetic retinopathy (DR), diabetic macular oedema (DME), age 

related macular degeneration (AMD), glaucoma, systemic hypertension (SH) and hypertensive 

retinopathy (HR). Morphological changes in retinal blood vessels are observed in DR, SH, and HR 

which if not detected early can lead to vision loss or even life-threatening complications (Kabedi et 

al., 2014; Wong and Sabanayagam, 2020). The analysis of the overall health of vasculature tree and 

vessel structural changes in fundus images is a reliable tool for the early detection of mentioned 

diseases.  

The uniqueness of vasculature structures and enormous amounts of fundus images complicate 

manual segmentation making it ineffective in the modern world due to the huge time consumption 

needed for fundus image analysis (Chalakkal and Abdulla, 2017; Sosale, 2019). The improved deep 

learning methodology for segmentation have shown promising results in creating reliable assistance 

tool for ophthalmologists to make faster diagnoses. Even though, created model has to be universally 

applicable – be able to perform well on images of different quality and properties by providing reliable 

and robust segmentation results. This is where the problems arise as a lot of algorithms are built and 

optimised on one dataset with specific image quality and properties (Abdulsahib et al., 2022) making 

it unable to perform well on diverse data (Shen et al., 2020). Model inability to handle heterogeneous 

data eliminates the possibility to adapt it to real-life scenarios.  

This field still lacks investigation on the influence of image quality and its properties on the 

performance of the model. This investigation would provide greater insights on the best approaches 

in conducting retinal vessel segmentation on diverse and different data. Because of that, this master 

thesis is analysing the impact of image quality and size on the performance of Deep Neural Networks 

(DNNs) by analysing different approaches for handling heterogeneous data. 
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AIM AND TASKS 

The master thesis aims to investigate the feasibility of retinal vascular segmentation using deep 

neural networks (DNNs) and to evaluate the impact of different image qualities on segmentation 

accuracy. 

Tasks: 

1. Identify the advantages and disadvantages of selected algorithms according to their 

performance on eye fundus images of different quality. 

2. Evaluate the impact of image size on the segmentation results. 

3. Evaluate the influence of different interpolations on heterogeneous data and its segmentation 

results. 

4. Evaluate the input size effect on the segmentation results. 
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LITERATURE REVIEW 

1.1. Diseases associated with retinal vascular changes 

The retina is a layered tissue lining the entire back wall inside of the eye (except the area of the optic 

disc (OD)). It consists of different types of cells which have a specific function in sensing and 

converting the light into a neural signal – the form which can be processed in the brain. As the retina 

is one of the most metabolically active tissue, its integrity of structure and function highly depends 

on a regular oxygen supply (Kaur et al., 2008). Because of that, retinal tissue has a unique vascular 

system – dual circulation – which ensures to maintain efficient oxygenation (Mahabadi and Al Khalili, 

2021).  

The retina is the only part of the human body, in which blood circulation can be observed with non-

invasive medical imaging by photographing the back of the eye (Ramos-Soto et al., 2021). By 

analysing retinal fundus images, diseases like diabetic retinopathy (DR), diabetic macular oedema 

(DME), age-related macular degeneration (AMD), glaucoma, and hypertension can be quickly 

diagnosed. The most severe lesions are caused by DR, glaucoma, and AMD as they eventually lead 

to blindness if not detected and treated early.  

Morphological changes in retinal blood vessels are observed in DR and cardiovascular diseases like 

systemic hypertension (SH) and hypertensive retinopathy (HR). To this day DR, which is a 

complication of diabetes mellitus, is a leading cause of visual loss in adults. Hyperglycaemia (high 

glucose level in blood) plays a key role in damaging retinal vascularity and is associated with dilation 

of blood vessels and changes in blood flow, apoptosis of pericytes and endothelial cells which results 

in microaneurysms formation, impairment of blood-retinal barrier, capillary occlusion and retinal 

hypoxia (Wang and Lo, 2018). There are two phases of DR: non-proliferative diabetic retinopathy 

(NPDR) and proliferative diabetic retinopathy (PDR). Clinically NPDR indicates the early stage of the 

disease and shows alterations such as vascular permeability and capillary occlusion which cause 

lesions like microaneurysms (the earliest sign of DR) and haemorrhages (Pappuru et al., 2019; Wang 

and Lo, 2018). These two do not affect the vision and usually are asymptomatic but they indicate the 

progression of the disease. It is extremely important to spot these pathologies because they can be 

treated by laser surgery and the vision will stay unaffected. If the disease is left untreated it may 

advance into PDR when retinal tissue begins to lack oxygen (retinal hypoxia) and new abnormal 

blood vessels originate (neovascularization) causing vitreous haemorrhages or retinal detachment 

resulting in sudden vision loss (Kusuhara et al., 2018). 

High blood pressure (SH) is the main factor causing vessels transformation and can complicates into 

HR.  In principle, hypertension can lead to abnormalities which are also inherent in DR patients: 

lesions (microaneurysms, haemorrhages, exudates), changes in retinal blood vessels diameters 

(arteriolar narrowing) and architecture (tortuosity and branching) (Dai et al., 2020; Ikram et al., 2006). 

Hypertensive retinopathy rarely itself causes visual loss but is a huge risk factor for the development 
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of DR, glaucoma and AMD (Modi and Arsiwalla, 2022; Wong et al., 2007). Furthermore, it can lead 

up to life-threatening complications like congestive heart failure or stroke (Kabedi et al., 2014). 

Retinal image segmentation can prevent mentioned complications of diseases as the early changes 

of blood vessels are observed in fundus images. 

 

1.2. Biomarkers segmented in fundus images 

Regular monitoring of retinal vessel changes is performed in DR patients but there are no 

recommendations for routine screening for HR asymptomatic patients who have SH diagnosis 

(Tsukikawa and Stacey, 2020). DR screening programs include retinal fundus imaging and manual 

assessment of DR. 

Fundus images are obtained by photographing the back of the eye. Fundus imaging (Figure 1) is 

defined as the process where 3D retinal semi-transparent tissues are represented in 2D images and 

are obtained by using the reflection of light (Abràmoff et al., 2010). In the past, DR screening was 

performed by stationary mydriatic fundus camera which required pupil dilation and was not practical 

in some countries due to the lack of ophthalmologists and eye clinics (Piyasena et al., 2019). 

Because of the disadvantages of mydriatic photography, non-mydriatic fundus imaging became a 

popular screening tool at a primary care level due to its portability and no need for a pupil dilation. 

 

 

Figure 1. Normal retinal fundus image taken from HRF dataset (Budai et al., 2013) 

 

From fundus images, structures of the eye (Figure 2), along with their location and shape, can be 

segmented. Alterations of biomarkers are associated with mentioned diseases: changes in OD with 

glaucoma; of macula and fovea – with DME or AMD; morphological changes of blood vessels are 

associated with DR, SH and HR. Different lesions can be represented in all diseases depending on 
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the stage of their progression. The analysis of vessel structural changes in fundus images is a 

reliable tool for the early detection of DR, SH and HR along with their progression. This analysis 

assesses the overall condition of the vascular tree and evaluates vessel morphological 

characteristics such as alterations of vessel tortuosity, narrowing, diameter/width, density and 

arteriolar-venular ratio (AVR) (Abdulsahib et al., 2021; Miri et al., 2017). In DR high glucose levels 

in the blood damage walls of thin vessels and vessels start leaking blood, forming microaneurysms 

near them. Furthermore, hyperglycaemia decreases the elasticity of vessels, causing them to narrow 

and their tortuosity transforms (Rosen et al., 2019). Fundus images from SH and HR patients can 

also display alterations in vascular narrowing and AVR (Oluleye et al., 2016). 

 

 

Figure 2. An eye fundus image with labelled biomarkers (Li et al., 2021) 

 

From retinal fundus imaging it is possible to evaluate retinal vascularity manually or automatically. 

The main limitations of blood vessels manual segmentation are that it is time-consuming and could 

be led by errors even from experienced observers. It takes around one to two hours to manually 

segment a single fundus image while with automatic segmentation complete it takes less than a 

minute (Chalakkal and Abdulla, 2017). In addition, the number of people affected by retinal diseases 

is increasing globally and the field itself lacks qualified doctors to conduct analysis of retinal images 

(L Srinidhi et al., 2017; Sosale, 2019). This leads to growing fundus photography volumes causing 

delays in getting back results to patients. Furthermore, the extraction of retinal vasculature itself is a 

difficult task. It is because retinal vasculature is unique to every individual and stands out in the 

diversity of vessels shapes, sizes, widths, intensity and arrangements (crossing and branching) (Li 
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et al., 2018; Oliveira et al., 2018; Semerád and Drahanský, 2020). Besides the challenges which 

occur during discrimination of vessels, the low quality of images and occurred lesions in the retina 

cause segmentation to be even more complicated. Because of all mentioned reasons, the automatic, 

fast and most importantly accurate segmentation which could be an assisting tool for 

ophthalmologists to make a quick diagnosis of retinal changes is necessary (Boudegga et al., 2021).  

 

1.3. Quality and size of fundus images 

Image quality is a huge issue on any task based on computer vision, but especially for the retina as  

various factors affect the condition of the image. It is not easy to define what is a low or high quality 

image as it is more intuitive for a person individually decide. Even so, some quality criteria for fundus 

images could be singled out: image noise, illumination disparities, camera artefacts, presence of 

lesions caused by disease and contrast between the object and the background (Adapa et al., 2020; 

Pednekar et al., 2018). The images of the retina most often are affected by non-uniform illumination. 

It is caused by several factors: narrow lens in completely dilated pupil, variation in light reflection and 

diffusion, low contrast, noise, and differences in retinal pigmentation and cameras (Joshi, 2017). The 

deviation from any mentioned criteria highly complicates both manual and automatic segmentation 

of retinal vessels.  

Nevertheless, the influence of image quality on automatic retinal vessel segmentation is yet little 

known as researches focus more on the development of a quality grading system for fundus images 

(Karlsson et al., 2021) and deep learning approaches: for classification of low quality regions in 

retinal images (Costa et al., 2017); classification of image quality regarding sharpness and 

illumination (Chalakkal et al., 2019) or differentiation of fundus images from optical coherence 

tomography images and classification of good quality images (Zapata et al., 2020). In real-life 

applications, for automatic segmentation of retinal vessels, not only effects of image quality need to 

be taken into consideration, but the impact of image size also. As automatic models are restricted to 

some size of the input, larger or smaller images need to be pre-processed by resizing. The 

modifications of size changes feature representation in the image (Rukundo, 2021) and it affects not 

only the segmentation performance but computational and memory requirements also which 

changes practical application effectiveness (Sahlsten et al., 2019). To conclude, it is necessary to 

assess mentioned details of the images in order to have robust and effectual segmentation of retinal 

blood vessels. 
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1.4. Automatic image segmentation 

1.4.1. Neural networks 

The main goal of image segmentation is to locate objects of interest (or their boundaries) by providing 

a simplified but more meaningful representation of the image for its easier analysis. Convolutional 

neural network (CNN) is the standard neural network architecture used for image analysis. In these 

networks, a mathematical operation – convolution – is employed. It produces a sum-of-product 

between input values and kernel weights while convoluting the smaller kernel over a larger image 

(Ghosh et al., 2019). Supervised methods became a popular approach in medical image 

segmentation. These methods rely on prior known information – the classifier is trained on manually 

labelled classes and segmented ground truth references, thereby creating rules for vessel pixel 

classification (Adapa et al., 2020).   

For retinal blood vessel segmentation supervised model firstly extracts relevant features which 

patterns are learned automatically and after that pixels are classified (Chen et al., 2021). Because 

of efficiency of deep learning methods (mostly performance time and huge accuracy), lots of 

research is conducted in this field hoping to develop a robust model for application in real-life 

scenarios.  

 

1.4.2. Related work 

In 2015 Ronneberger et al. (2015) proposed the new convolutional neural network (CNN) 

architecture, called U-net. This architecture is very beneficial in the biomedical field because it can 

effectively work with fewer training images and provides more precise segmentation. The U-net 

differs from traditional CNN because it has not only a contracting (encoding) path but an expansive 

(decoding) path also (Figure 3). The contracting path is the same as in traditional CNN architecture 

consisting of four downsampling layers which are made of two 3x3 convolutions. Each convolution 

is followed by an activation function – rectified linear unit (ReLU). Every downsampling layer is 

followed by max pooling operation. After each downsampling step the size of the image reduces, but 

because of max pooling – which reduces the size of the feature map by selecting the maximum pixel 

value – the receptive field increases. Bridge connects encoding and decoding paths. In the 

expansive path, there are four upsampling layers, with also two convolutions. At every upsampling 

layer, the corresponding output from the encoding path is concatenated. These upsampling 

operators increase the resolution of the output. The higher resolution feature maps from the 

contracting path with the up-sample features ensure more precise prediction. Furthermore, in the 

decoding path, there is a large number of feature channels. Because of it, the network is able to 

propagate context information further, to higher resolution layers. 
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Figure 3. The architecture of U-net (Ronneberger et al., 2015) 

 

Since the introduction of U-net, many scholars used this algorithm for retinal blood segmentation 

and proposed some architecture modifications in order to achieve better results in biomedical image 

segmentation. Xiuqin, et al. (Xiuqin et al., 2019) modified the traditional U-net by applying the 

Residual unit to the module in the expansive path. In the suggested method, the residual unit is 

implemented by the skip connection and the input is directly passed to the output. This improvement 

increases the training speed of the algorithm. Also, it solves the vanishing and exploding gradient 

problems which happen to very deep neural networks. Because the model ensures non-degrading 

information, the deeper network can be designed.  

To solve the segmentation of thin vessels problem, the accuracy and sensitivity of the algorithm have 

to be improved. Gao, et al., (2017) proposed to combine U-net and Gaussian matched filter in order 

to resolve mentioned topic. The scholars choose a short period of the major blood vessel and many 

small blood vessels where their length is divided by 2 and the direction is fixed. The segmented small 

vessels are more robust and the upsampling layer of the expansive path does not recover details of 

coding loss effectively. Because of that, the sensitivity of the model is kind of low. Another method 

to resolve the segmentation of thin vessels problem was proposed by Cheng, et al. (2020) by adding 

the dense block to U-net. The dense block directly connects all layers – the input of each layer comes 

from the output of all previous layers. The network of Dense U-net is narrower with fewer parameters 

and this leads to better network performance. Also, parametric ReLU (PReLU) is used as the 

activation function. It avoids the death of neurons and has a fast convergence speed with no 



 

 12 

vanishing gradient problem. The method achieved good sensitivity performance on CHASE_DB1 

dataset, but the sensitivity on DRIVE database was poor.  

To achieve better results of segmentation, Kumawat and Raman (2019) propose to insert Rectified 

Local Phase Unit (ReLPU) layer on the top of U-Net, after the input layer. The ReLPU layer itself is 

constructed of 4 layers: standard convolution, a second layer, which extracts local phase from the 

output of the first layer by computing the short term Fourier transforms in 2D space (image encoding) 

– network learns about frequency points and neighbourhood sizes – gives more weight to chosen 

ones in the fourth layer. The third layer is the ReLU activation layer and the fourth one is a trainable 

layer. ReLPU layer needs fewer learnable parameters than a convolutional layer, but further analysis 

of this layer application possibilities needs to be done. Another way to improve the algorithm was 

proposed by Kushol and Salekin (2020) by inserting the encoder ResNet152 inside the U-net 

architecture. ResNet152 contains 152 layers and this encoder optionally loads weights pre-trained. 

It achieved good sensitivity results on the STARE dataset. Soomro et al. (2018) proposed a fully-

strided convolutional neural network (Strided U-net) for labelling every pixel in the image and 

classifying it as a background or a vessel pixel. In this algorithm, all pooling layers were replaced by 

strided convolutional layers. These layers not only do the same function as pooling layers but also 

decrease the size of the feature maps to half. The dice loss was chosen as the loss function as it 

has good accuracy segmenting thin vessels. The performance of the algorithm is not outstanding 

and the AUC value, which shows classification performance, is low. Sathananthavathi et al. (2021) 

proposed many changes to traditional U-net architecture. In order to increase the receptive field, all 

convolutional layers were replaced by dilated convolutional layers and in order not to exclude any 

features, all stages were assigned with an equal number of kernels. Dilated convolutions widen the 

kernel by inserting gaps between kernel elements. Receptive field increases without losing any 

resolution. Furthermore, in the encoding path, two additional layers were added resulting in a total 

number of 96 layers in the proposed architecture. Even though the proposed method achieved good 

specificity for the HRF dataset, the method not achieved great sensitivity for any analysed database.  

Hemelings et al. (2019) modify U-net by setting 3-channel RGB input at the encoding path and the 

output at the end of expanding path to four classes (background, vein, artery and unknown). These 

output maps are generated by the final convolutional layer which has four filters. To increase the 

receptive field, scholars increased the kernel of each convolution to 5x5 as dilation did not favour 

the DRIVE dataset. This improvement lets applicate the U-net (which was designed for image 

segmentation) for the classification of vessels. This method achieved high accuracy on the HRF 

dataset. Atli and Gedik (2021) introduced a pure novelty, fully convolutional model called Sine-Net. 

The proposed architecture first applies upsampling operations, which help to extract thin vessel 

features, and then downsampling operations for the extraction of thick vessel features. Furthermore, 

scholars used strided and transposed convolutions instead max-pooling and upsampling layers. 

Because of that, the method learns and updates weights during both downsampling and upsampling 

operations. Sine-Net achieved great specificity performance on all used datasets and all evaluation 
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metrics (despise sensitivity on STARE database) show great performance of the algorithm. The 

pathologies in STARE images probably affect the sensitivity of the segmentation but in the future, it 

can be resolved by choosing an appropriate loss function. 

Guo et al. (2020) introduce Spatial Attention U-net (SA-Unet). This method replaces original 

convolutional blocks with structured dropout convolutional blocks which implement DropBlock 

(where neighbouring units of a feature map are dropped together) and batch normalization. These 

blocks prevent the overfitting of the algorithm. In the bridge, scholars apply the Spatial Attention 

Module which enhances important features and suppresses unimportant features by multiplying the 

attention map by the input feature map. Attention map is produced from the spatial relationship 

between features. SA-Unet achieves state-of-art performance on both DRIVE and CHASE_DB1 

datasets by accuracy and AUC values close to 1. The performance of algorithms and used datasets 

for retinal blood vessel segmentation are shown in Table 1. 

 

Table 1. The comparison of the proposed methods performance on different datasets for retinal blood 

vessel segmentation 

Author Method Datasets 
Performance 

Accuracy Sensitivity Specificity AUC 

(Xiuqin et al., 
2019) 

Res U-net DRIVE 0.965 0.831 0.9863 0.9811 

(Gao et al., 
2017) 

U-net and 
Gaussian 

matched filter 
DRIVE 0.9636 0.7802 0.9876 0.9772 

(Hemelings et 
al., 2019) 

FCN 
DRIVE 0.9675 - - - 

HRF 0.9698 - - - 

(Kumawat and 
Raman, 2019) 

Local Phase 
U-net 

DRIVE - - - 0.9831 

STARE - - - 0.9930 

(Cheng et al., 
2020) 

Densely 
connected U-

net 

DRIVE 0.9559 0.7672 0.9834 0.9793 

CHASE_DB1 0.9488 0.8967 0.954 0.9785 

(Kushol and 
Salekin, 2020) 

RBVS-Net 

DRIVE 0.9633 0.8003 0.9792 - 

CHASE_DB1 0.9675 0.7823 0.9801 - 

STARE 0.9708 0.8188 0.9824 - 

(Soomro et al., 
2018) 

Strided 
U-net 

DRIVE 0.948 0.739 0.956 0.844 

STARE 0.947 0.748 0.962 0.855 

(Sathananthav
athi et al., 

2021) 
EEA U-net 

DRIVE 0.9577 0.7918 0.9708 - 

STARE 0.9445 0.8021 0.9561 - 

CHASE_DB1 0.9340 0.6457 0.9653 - 

HRF 0.9244 0.6589 0.9799 - 

(Atli and 
Gedik, 2021) 

Sine-Net 
(FCNN) 

DRIVE 0.9685 0.8260 0.9824 0.9852 

STARE 0.9711 0.6776 0.9946 0.9807 

CHASE_DB1 0.9676 0.7856 0.9845 0.9828 

(Guo et al., 
2020) 

SA-UNet 
DRIVE 0.9698 0.8212 0.984 0.9864 

CHASE_DB1 0.9755 0.8573 0.9835 0.9905 

 

Literature analysis has shown that a huge variety of algorithms was proposed in order to resolve 

different retinal vessel segmentation tasks. Nevertheless, this field still lacks investigation on how 
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the properties of the image, especially image quality (Abdulsahib et al., 2022; Wan et al., 2022), 

influence the performance of the model. In addition, a lot of proposed methods are not yet suitable 

for real-life scenarios as algorithms are usually built and optimised just on one or few datasets with 

similar data characteristics (Abdulsahib et al., 2022; Memari et al., 2019) while population-level 

screening for retinal diseases always implies a huge variety of fundus cameras and the main target 

population presents vast variation in the health condition of retina (Shen et al., 2020). Greater 

insights into ability of models to conduct accurate segmentation of retinal vessels from images of 

different properties are necessary. This master thesis investigates, how image quality such as 

various types of illuminations, low resolution and size affects the performance of DNNs, as well as 

investigating the most suitable approaches (image size, resizing technique and input size) for the 

retinal vessel segmentation when dealing with heterogeneous data.  
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METHODS 

2.1. Data 

In the project 7 datasets, which are used in developing an automatic segmentation of retinal vessels 

for disease diagnosis and are available online, were collected and used for training and testing the 

algorithms. As supervised machine learning algorithms are used in the project, datasets containing 

at least one manual blood vessel annotation were chosen. The summary of collected data is 

presented in Table 2. 

Table 2. Properties of collected data 

Dataset Camera Number of images Image size (width x height) 

DRIVE Canon CR5 3CCD 40 565x584 

STARE TRV-50 20 700x605 

CHASE_DB1 – 28 999x960 

IOSTAR EasyScan 30 1024x1024 

DRHAGIS 

Canon CR Dgi, 

Topcon TRC-NW8, 

TRC-NW6s 

39 

4752x3168, 

3216x2136, 

3456x2304, 

2816x1880, 

2896x1944 

ARVDB Topcon TRC-NW8 100 1504x1000 

HRF – 45 3504x2336 

 

The DRIVE (digital retinal images for vessel extraction) dataset was obtained from a diabetic 

retinopathy screening program performed in the Netherlands. The photographs were taken using a 

Canon CR5 non-mydriatic 3CCD camera whose field of view (FOV) is of 45 degrees. The dataset 

consists of 40 retinal images, where 33 images were observed from healthy patients and 7 images 

show early lesions of DR. The size of the images is 768x584 and the resolution of the images is 

565x584. The dataset is divided into 20 training images and 20 testing images. 

The STARE (structured analysis of the retina) database (Hoover et al, 2000) was conceived in 1975 

at the university of California, San Diego by Michael Goldbaum, M.D. The dataset contains 20 

images, and 10 of them show pathologies. All images are manually annotated by two observers, the 

first set is considered as the ground truth. Images were taken by a TRV-50 fundus camera with 35 

FOV and have a resolution of 700x605 pixels.  

The HRF (High-Resolution Fundus) database (Budai et al., 2013) consists of 45 fundus images 

which are divided into healthy, glaucoma and DR patients (15 images of each type). The resolution 

of the images is 3504x2336. 
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The CHASE_DB1 (Owen et al., 2009) dataset contains 28 fundus images, collected from both eyes 

of 14 children from London, Birmingham and Leicester. The resolution of the images is 999x960. All 

images are manually labelled by two experts. 

The IOSTAR vessel segmentation dataset (Abbasi-Sureshjani et al., 2015; Zhang et al., 2016) 

includes 30 images which were taken using an EasyScan camera with FOV of 45 degree. The 

resolution of images is 1024x1024 pixels. Database was obtained from the RetinaCheck project 

which conducted a large-scale screening program of diabetes patients in China. The ground truths 

of vessel segmentation, artery/vein and OD are annotated by a group of experts. 

The DRHAGIS database (Holm et al., 2017) consists of 39 fundus images obtained during DR 

screening program performed in the United Kingdom. Images were taken with 3 different non-

mydriatic cameras (Canon CR DGi, Topcon TRC-NW8 and Topcon TRC-NW6s) with 45 FOV. As 

different cameras were used the resolution of images is not the same. Resolution varies from 

4752x3168, 3216x2136, 3456x2304 to 2816x1880 or 2896x1944. Even though the resolution of 

images is the highest, some images have a large amount of lesions or uneven and low illumination 

which could cause bad segmentation of retinal vessels. On the contrary, in some of the high quality 

images the choroidal vessels are visible which could also contort the results. Choroid is a connective 

tissue layer with a dense network of vessels lying below the retina, which supplies nutrition to the 

outer retina and maintains the temperature of the eye (Ehrlich et al., 2017; Lambert-Cheatham et al., 

2021). Choroidal vessels in fundus images are captured by multispectral fundus cameras with 

wavelengths longer than 605 nm (Huang et al., 2020). Mostly these vessels are brighter and thicker 

than retinal vessels, they do not come from the optic nerve and are not annotated in retinal vessels 

manual segmentation. Examples of images from DRHAGIS are presented in Figure 4.  

 

Figure 4. Images from DRHAGIS dataset. (A) – Image with lesions; (B) – Uneven illumination; (C) – Low 

illumination; (D) – High quality image with visible choroidal vessels 
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DRHAGIS dataset presents one manual segmentation annotated by an experienced observer. 

Images in this database were divided by visible lesions into four groups: glaucoma, hypertension, 

DR and AMD patients. One patient exhibited both DR and AMD co-morbidities and this image is 

included in both groups. Only one example of the image was used in our project to avoid any 

distortion of the results. 

Another dataset (Akram et al., 2020) with an unspecified title (will be referred as ARVDB) contains 

100 fundus images acquired from Armed Forces Institute of Ophthalmology (AFIO), Pakistan. 

Images were taken by a non-mydriatic TOPCON TRCN-W8 camera with 30 FOV. Resolution of the 

images is 1504x1000. Manual vessel segmentations were performed by four experts of AFIO. Two 

images were removed as corresponding manual segmentations were untrue to the original images. 

This dataset contains the highest amount of low quality images which examples are presented in 

Figure 5. 

 

Figure 5. Images from ARVDB dataset. (A) – Good quality image; (B) – Parts of the image with low 

illumination; (C) – Blurred image; (D) – Camera artefact; (E) – Distortion of colour; (F) – Uneven illumination 

 

Data in all datasets were divided into training and testing samples. As only the DRIVE dataset was 

separated by default to training and testing folders, we divided images from other datasets randomly: 

80 percent of samples were assigned for training and the remaining samples to testing groups.  

 

2.2. Data preparation, pre-processing and augmentation 

To prepare suitable images for resizing, we removed the unnecessary background and left only the 

region of interest (ROI). Original images were converted to grayscale images which by thresholding 

were transformed to binary images. From binary images contours of the object (continuous points 

along the border of object) were found. Coordinates of contours were used for calculating minimal 
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bounding rectangles for non-zero pixels (object) and original images, ground truths and masks were 

cropped by their values. Extraction of the ROI guarantees an appropriate image interpolation without 

distorting characteristics of the object. The ground truths of ARVDB dataset were transformed to 

appropriate appearance as originally they represented vessels in black and background in white 

colours. It was done by changing values of pixels.  

From datasets training and testing data (original images, corresponding ground truths and border 

masks) are saved in hdf5 format. This format supports large and heterogeneous data and is suitable 

for used algorithms. For samples of STARE, CHASE_DB1, ARVDB databases we automatically 

generated border masks as it was not provided primarily. Border masks are used to define the area 

of the FOV in fundus image so only area inside the FOV would be used for image segmentation and 

analysis. Border masks were obtained by thresholding original fundus images. 

The pre-processing step is used to normalize the intensities of image by reducing/removing noise 

and enhancing contrast. It is essential point as limitation of undesired variance ensures that the 

dataset is consistent and displays only relevant features. Retinal images were pre-processed by 

converting original RGB images into grayscale images as true colours of fundus image complicates 

feature detection and segmentation (Hernandez-Matas et al., 2019). Pixels were divided by 255 to 

ensure that they fit into [0,1] range. In order to reduce noise and increase the contrast between 

vessels and background,  contrast limited adaptive histogram equalization (CLAHE). When CLAHE 

is applied, image is divided into tiles of size 8x8 and histograms for each blocks are computed and 

interpolated values are assigned to neighbouring pixels of the centre pixel in tile. CLAHE improves 

local contrasts and definitions of edges in each region (Swathi et al., 2017). For further contrast 

enhancement, gamma correction were used. It suppresses the uneven light and corrects image in 

different regions by raising real pixel value to the power of gamma (Rahman et al., 2016). 

As DNNs needs a lot of data to be trained, data is artificially augmented. In this project full size 

images are randomly split into smaller patches of size 64x64 and they can overlap by some amount 

of pixels. By giving patch as an input, DNNs  acquire feature maps which at the end are concluded 

into the final segmented image.  

 

2.3. The structure of deep neural networks 

In this master thesis two DNNs – Bi-Directional ConvLSTM U-net (BCDU-Net) and Residual U-net 

(ResUnet) – will be used as they are based on U-net. BCDU-Net algorithm was proposed by Azad 

et al. (2019) and implements Bi-Directional ConvLSTM (BConvLSTM) and densely connected 

convolutions. The architecture of the network is presented in Figure 6. 
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Figure 6. The structure of BCDU-Net algorithm (Azad et al., 2019) 

 

The contracting path is identical to traditional U-net – there are three layers of two 3x3 convolutions 

followed by 2x2 max pooling operation and ReLU activation function: ReLU(x) = max{0, x}. ReLU  is 

a piecewise linear function – it is linear if the input x has a positive value as it returns the value which 

was provided or nonlinear if the x ≤ 0 as output will be 0 even when input had negative value.  

The differences from U-net occurs in the bridge as it consists three layers of two 3x3 convolutions 

with ReLU function. Furthermore, the third bridge layer is densely connected to the first one which 

is concatenated with second convolutional block. Because of dense connectivity third convolutional 

block receives feature map not only from previous layer, but from first block also, meaning that 

algorithm learns diverse feature maps and the risk of vanishing or exploding gradients is avoided 

(Liu et al., 2021). 

To the output of last layer of the bridge upsampling operation is employed, starting the expansive 

path. Upsampling operation seeks to restore original features and every upsampling operation as 

well as corresponding feature map from encoding path concatenated and fed to BConvLSTM layer. 

This layer uses two ConvLSTM layers which moves the input to forward and backward directions in 

their hidden tensors, dealing with data dependencies and makes a decision for the input. After that 

2x2 convolutions are applied which at each step increases the size of the feature maps. It goes on 

until it reaches the final layer where sigmoid is used as activation function: Sigmoid(x) = 1/(1 + e-x) 

and produces values from 0 to 1 – standard output produced in segmentation. 

Researchers introduced BCDU-Net as model which achieves high results in segmentation of various 

types of images: fundus;  dermoscopy skin and lung computed tomography, which is really important 

for our case as we are focusing on analysing the best approach for segmentation of images with 

diverse features and properties. For retinal vessel segmentation task, BCDU-Net was trained and 
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tested only on DRIVE dataset, which have relatively little amount of images whose size is small. 

BCDU-Net performance shown in Table 3.  

Table 3. The performance of BCDU-Net network on DRIVE dataset 

Network Accuracy Sensitivity Specificity AUC F1-score 

BCDU-Net  0.9560 0.8007 0.9786 0.9789 0.8224 

 

Originally ResUnet was proposed for semantic road extraction from aerial images by implementing 

residual units in U-net architecture (Zhang et al., 2018). As mentioned before, in 2019 Xiuqin et al. 

(2019), implemented ResUnet for vascular segmentation task. Same as BCDU-Net, ResUnet was 

also trained and tested only on DRIVE dataset and achieved accuracy, sensitivity, specificity and 

AUC of 0.9650, 0.8310, 0.9863 and 0.9811 respectively.This model replaces traditional neural units 

(two convolutions 3x3 with ReLU activation function) with residual units, where convolutions are 

followed by batch normalization and ReLU activation and most importantly have added shortcut/skip 

connections meaning that layer feeds into the next layer and directly into further layer. Both BCDU-

Net and ResUnet use skip connections, but their implementation differs – in ResUnet shortcut 

connections are added and implemented throughout the structure, while in BCDU-Net they are only 

in the bridge and concatenated. When skip connections are summed, features are refined through 

the network layers and fixed amount of features is preserved across the unit. Meanwhile 

concatenated skip connections reuses middle representations – ensures the maximum information 

flow throughout layers and maintenance of enormous amount of features (Huang et al., 2018). 

Despite the advantages, concatenation can cause a rise of trainable parameters which would lead 

to drastically prolonged training time. The structure of ResUnet used in this master thesis is 

presented in Figure 7.  

 

Figure 7. The architecture of ResUnet 
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Used ResUnet model has four downsampling and upsampling layers and one residual convolution 

layer at the bridge. At the end of encoding path the reached feature map of ResUnet is two times 

smaller than in BCDU-Net and overall there are three times less trainable parameters in ResUnet. 

This structure suggests that this algorithm requires less time to train. In addition, because of the 

shortcut connections throughout its structure, learning of the redundant features would be avoided 

which is important when dealing with diverse data.  

To summarize, both algorithms were proposed on DRIVE dataset and achieved quite fine results in 

the task of retinal vessel segmentation. Even though, it is unclear how these models would perform 

on images of different properties and quality, which is exceptionally important in real-life situations. 

Because of that, our experiments compare these two models in two directions: their performance on 

different datasets when trained on DRIVE (as both models were proposed) and their performance 

when trained with heterogeneous data (training sets from all datasets combined into one), which is 

a usual case in real-life. 

 

2.4. Image resizing by different interpolations 

Till this day the effects of the image size from various databases for training the algorithms were 

vaguely analysed (Pauli et al., 2012; Rukundo, 2021). Even though as U-net based algorithms do 

not have fully connected layers and can process arbitrary sized inputs, the pixel aspect ratio highly 

differs when feeding large and small images into the networks. The algorithm trained on the vessels 

of the same size in pixels of some fixed resolution is going to fail on images with vessels of different 

size. Because of that, the segmentation performance of algorithms highly depends on the size of 

images used for vessel profile in the training stage. In order to investigate such size dependencies, 

our master thesis analyses the effects on network performance by resizing images with three nearest 

neighbour, bilinear and bicubic interpolations.  

Image interpolation is a process which employs known data in estimating values at unspecified 

locations (Gonzalez and Woods, 2018). The geometrical transformations do not alter the content of 

the image but deform the grid of the pixel which is mapped to a goal image. The location of a pixel 

is denoted by 2-dimensional grid in an image f(i, j), when referring to coordinates of a pixel  (i, j). By 

interpolating the image, coordinates of the corresponding contributor pixel in original image is 

computed and intensity value is copied for each pixel (i, j) into the goal image: 

 

goal(i, j) = original(fx(i, j), fy(i, j)) 

( 1 ) 

From all interpolations the most straightforward one is a nearest neighbour interpolation. This 

interpolation does not create new pixel value but simply resamples the contributor pixel value to a 

neighbour empty location at the shortest distance. It is the computational fastest and simplest 
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approach but the main disadvantage appears by upscaling an image, when after the interpolation, 

pixels become much bigger and image along with its features appears to be blocky with degraded  

quality (Rukundo and Cao, 2012).  

Bilinear interpolation takes values not from one nearest known neighbour as in nearest neighbour 

interpolation, but from four closest neighbouring pixels. The coordinates of these neighbouring pixels 

are (x1, y1), (x1, y2), (x2, y1) and (x2, y2) with values Z11, Z12, Z21, Z22 at these points. By having values 

and coordinates of neighbouring pixels the value Z at (x, y) of goal pixel can be calculated by formula: 

 

 Z(x, y) = 
(x

2
 – x)(y2– y)  

(x
2
 – x1)(y2– y1)  

Z11+ 
(x

2
 – x)(y – y1)  

(x
2
 –  x1)(y2– y1)  

Z12 + 
(x –  x1)(y2– y)  

(x
2
 –  x1)(y2– y1)  

Z21+ 
(x –  x1)(y – y1)  

(x
2
 –  x1)(y2– y1)  

Z22 

( 2 )  

Where the weighted average of these pixel values is calculated and assigned at interpolated pixel. 

Bilinear interpolation takes more processing time to compute the final pixel than nearest neighbour 

interpolation and produces smoother images with blurred features (Bovik, 2009). 

Bicubic interpolation fits a surface among four corner pixels by using a third order polynomial function 

(Khaledyan et al., 2020). The intensity values along with vertical, horizontal and vertical derivate of 

four corner points have to be specified in order to compute this interpolation. The interpolated surface 

fi(x, y) is presented as:  

𝑓
𝑖
(𝑥, 𝑦) =  ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗

3

𝑗=0

3

𝑖=0

 

( 3 ) 

Where 16 coefficients of ai,j  have to be determined (intensity values in four corners directly 

determines 4 coefficients, spatial derivate in the horizontal and vertical direction – 8 coefficients and 

diagonal derivatives – 4 coefficients) (Gao and Gruev, 2011). Basically, bicubic interpolation 

considers the closest known 4x4 neighbourhood pixels and closer pixels give higher weighting in the 

calculation than further ones. This method produces sharper images than previous interpolations 

and takes the longest processing time for computing a goal pixel. 

For this master thesis, images was either reduced or increased in size as the data have different 

dimensions. The downsampling of image size is easier task than upsampling because by increasing 

the size, interpolation methods have to create artificial pixels to add into original image. However, 

when images are reduced in size the number of pixels are permanently removed and the quality of 

the image decreases. Furthermore, another problem arises – downscaling tends to deform the 

thinniest and smallest vessels as they are represented only by a few pixels. In resized ground truths 

these vessels lose connectivity and original form as some white pixels are removed. It becomes 

unclear from which branch vessel origins, where it ends and what shape it has. The ground truth is 

put into algorithms without the information of small vessels details and the performance results from 

algorithms can be affected. The examples of downscaled and upscaled retinal images and manual 

segmentations are presented in Figure 8.  
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Figure 8. Resizing by different interpolations 
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By visually judging, it seems that nearest neighbour interpolation distort vessels and it representing 

pixels the most. In addition, bicubic and bilinear interpolations provide very similar outcomes just that 

bilinear interpolation smooths features more. Because of that bicubic interpolation gives an 

impression as the most appropriate resizing technique for accurate retinal vessel representation. In 

our experiments all three interpolations are evaluated with respect to their influence to the 

segmentation results. 

2.5. The methodology of the master thesis 

This master thesis is focusing on investigating the best approaches for retinal blood vessels 

segmentation with neural networks while working with datasets of different quality and size which at 

is an usual case in real word scenarios. The same data preparation, pre-processing and patch 

extraction techniques are used for all training and testing processes. In total 10 trainings for this 

master thesis were conducted. All trainings were carried out for 50 epochs with batch size of 32 and 

tested on all datasets separately, each time resizing (by the same interpolation used for training) the 

testing images to the size of the training images. All computations were done on VU MIF ITAPC 

supercomputer with 1912 CPU cores 17TB RAM and 32GPU 1TB RAM with 3xNVIDIA DGX-1 Tesla 

V100 system of 32GB graphic memory. 

In the first experiment  both DNNs are trained on DRIVE images from which 200000 patches (size 

64x64) were extracted. Algorithms are trained only on DRIVE images as both models were proposed 

and evaluated only on this dataset. We evaluate both DNNs on other datasets also. All testing 

images are resized to the size of the 565x565 by nearest neighbour interpolation as it is the fastest 

technique and the first experiment is conducted in order to compare algorithms and select the model 

which performs better on diverse data without analysing the influence of interpolations to the 

performance of networks.  

As we are focusing for the best segmentation on several datasets with different characteristics, both 

algorithms are trained on combined training set from all datasets (229 training images in total). We 

are hoping to simulate real-life situation when models have to perform well on diverse data. The 

training images of all datasets were resized by nearest neighbouring interpolation to the same 

dimensions (565x565) and 196940 patches were extracted. The combination of datasets was done 

in order to observe how much the performance of algorithms changes when patches contains more 

diverse features inside (tortuosity, size, branches, etc. of vessels, various lesions) and different 

quality of images (uneven illumination, blurriness, artifacts, etc.). The combination of training 

samples reduces redundancy as patches are extracted from 10 times larger amount of images. In 

addition, this step shows which model is able to accurately segmentate more diverse features and 
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is selected for further experiments The scheme of first experiment is present in Figure 9.

 

Figure 9. The scheme for model selection 

 

Second experiment (Figure 10) is done in order to choose the most appropriate size of the images 

for the best segmentation of retinal blood vessels.  

 

Figure 10. The scheme for image size selection 
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The combined data was resized to 750x750 and 1000x1000 using nearest neighbour interpolation. 

When images were resized  to the size of DRIVE dataset, all images from other datasets lost some 

information because of downscaling (except DRIVE database). As mentioned before, downscaling 

disfigures and loses thin vessels – the ground truths are already put to model without truthful material 

which can produce unreliable results. By resizing to mentioned sizes the most convenient image size 

is selected which is favourable for diverse data, as it requires some images to be downscaled while 

loosing pixels and others to be upscaled with artificially created pixels. 

In fourth experiment images are resized by bilinear and bicubic interpolations to the size selected in 

third experiment, in order to investigate the impact of different resizing techniques to the 

segmentation results. We explained differences between interpolations in 2.4. section and their 

effects on models performances were evaluated in this experiment. The interpolation giving the best 

results for segmentation is selected. The pipeline of experiment is presented in Figure 11. 

 

Figure 11. The scheme for interpolation selection 

 

In the last experiment (Figure 12) the size of the input for the model is selected. As for all earlier 

experiments patches of size 64x64 was given to the model, this approach includes changing the 

input size to two times smaller (32x32) and two times larger (128x128). Inputs of different sizes 

parallelly provides different information from which model extracts feature maps and can make a 

decision when classifying pixels. The impact of input size on DNN training time and its performance 

effectiveness were evaluated.  
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Figure 12. The scheme for input size selection 

All conducted experiments provides information from different perspectives on several factors impact 

to DNN performance as well as advantages and disadvantages choosing these applications. 

 

2.6. The evaluation of the DNNs 

To evaluate the segmentation performance of models several evaluation metrics will be calculated. 

The confusion matrix will be produced and other metrics floating from it such as accuracy, sensitivity, 

specificity, precision, Area under the curve (AUC)  and F1 score will be computed. 

Confusion matrix can be computed only for binary segmentation as it gives 1 for the positive (vessel 

pixel) and 0 for negative (background pixel). Confusion matrix is presented in Table 4, where TP – 

true positive, FP – false positive, FN – false negative and TN – true negative. TP denotes a vessel 

pixel while TN – a background pixel, which were predicted by model and are annotated in ground 

truth. FP denotes a predicted vessel pixel which in the mask is annotated as a background while FN 

– a background pixel annotated as a vessel by observer. 

Table 4. Confusion matrix 
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Accuracy – a total number of correctly detected positives and negatives:  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁  

𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 +  𝑇𝑁
 

( 4 ) 

Sensitivity – correctly identified positives to all actual positives: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁
 

( 5 ) 

Specificity – correctly identified negatives to all actual negatives: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁 

𝑇𝑁 +  𝐹𝑃
 

( 6 ) 

Precision – proportion of actual positives to all positives:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃
 

( 7 ) 

F1 score or Dice coefficient (they are equal only in binary segmentation) – area of overlapping pixels 

divided by the total number of pixels: 

𝐹1 =
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

( 8 ) 

Area under the curve (AUC) is a metric also used to evaluate the segmentation results. The closer 

AUC value is to 1 – the better performance of the model. 

For retinal vessels segmentation, achieving higher sensitivity and AUC score is more essential than 

achieving higher specificity (Kamran et al., 2021). As the key task of retinal vessel segmentation is 

to achieve the best segmentation of blood vessels, the main focus is on segmentation of vessel 

pixels (TP) than background (TN).  
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EXPERIMENTAL RESULTS 

3.1. Model selection 

As we are using images with different properties the most suitable model for diverse data needs to 

be selected. The most suitable algorithm is able to perform well and fast on retinal vessel 

segmentation.  In order to compare BCDU-Net and ResUnet algorithms, both networks were trained 

on 200000 patches (size 64x64) of DRIVE dataset. Models were trained for 50 epochs. The 

algorithms were evaluated separately on all databases resizing them to the DRIVE size by nearest 

neighbour interpolation. All computations for this master thesis were done on VU MIF ITAPC 

supercomputer 3xNVIDIA DGX-1 Tesla V100 32GB graphic memory. The evaluations of the BCDU-

Net and ResUnet performance on different datasets are presented in Table 5.  

 

Table 5. Evaluation of BCDU-Net and ResUnet trained on DRIVE dataset 

Dataset Model Accuracy Sensitivity Specificity Precision F1 score AUC 

DRIVE 
BCDU-Net 0.9550 0.8197 0.9747 0.8257 0.8227 0.9787 

ResUnet 0.9543 0.7601 0.9827 0.8650 0.8092 0.9761 

STARE 
BCDU-Net 0.9476 0.6420 0.9752 0.7070 0.6729 0.9476 

ResUnet 0.9505 0.6090 0.9824 0.7628 0.6773 0.9457 

CHASE_DB1 
BCDU-Net 0.9386 0.7450 0.9590 0.6573 0.6984 0.9536 

ResUnet 0.9411 0.6832 0.9684 0.6951 0.6891 0.9456 

DRHAGIS 
BCDU-Net 0.9480 0.8751 0.9548 0.6444 0.7420 0.9764 

ResUnet 0.9534 0.8510 0.9629 0.6818 0.7570 0.9755 

IOSTAR 
BCDU-Net 0.9442 0.8598 0.9539 0.6823 0.7608 0.9718 

ResUnet 0.9443 0.8083 0.9600 0.6996 0.7500 0.9598 

ARVDB 
BCDU-Net 0.9119 0.5529 0.9849 0.8813 0.6795 0.9312 

ResUnet 0.9074 0.5089 0.9885 0.8996 0.6501 0.9295 

HRF 
BCDU-Net 0.9405 0.8202 0.9522 0.6257 0.7099 0.9592 

ResUnet 0.9451 0.7654 0.9626 0.6661 0.7123 0.9546 

 

As seen from the Table 5, BCDU-Net achieved better sensitivity and AUC scores on all datasets 

compared to ResUnet. As we mentioned before, BCDU-Net was originally built and optimised on 

DRIVE dataset while ResUnet was originally created for different segmentation task. The predicted 

DRIVE image is shown in Figure 13. 
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Figure 13. Original image of DRIVE dataset (left) and BCDU-Net predicted blood vessels (right) 

 

As it is seen in the figure, BCDU-Net was able to predict not only major vessels but thinner vessels 

also as they have a good contrast from the background and there is no huge noise in the image.  

The highest sensitivity was achieved in the DRHAGIS dataset. It could be the outcome of resizing – 

as we mentioned in section 2.4., downscaling tends to remove pixels of the smallest vessels 

(especially in masks), which usually are the hardest task for DNNs to accurately segmentate from 

the images. As these smallest pixels are already lost in ground truths, the sensitivity increases as 

there are fewer positive pixels and they annotate larger vessels which model is able to catch. It also 

applies to other datasets which were downscaled but especially to the datasets which were resized 

to >= 2 times smaller size (HRF, IOSTAR, DRHAGIS). The segmented vasculature tree is shown in 

Figure 14. 

 

Figure 14. Ground truth (left) and BCDU-Net predicted vascular tree (right) from DRHAGIS dataset 
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Poor performance of BCDU-Net was observed on ARVDB database. The evaluation metrics for this 

dataset compared to other differs drastically. It achieved the highest specificity and very low 

sensitivity, meaning the poor segmentation of retinal vessels. The segmented vascular images have 

lots of noise, and not only thin but also major vessels were not accurately extracted (Figure 15).  

 

Figure 15. Original image (left), ground truth (middle) and BCDU-Net predicted vascular tree (right) 

from ARVDB dataset 

The original image is blurred with uneven illumination and has a lot of lesions of various size. All 

these factors could influence the poor segmentation of retinal vessels. 

As ResUnet produces poorer results in sensitivity and AUC on all datasets. It also achieved higher 

accuracy (except on DRIVE and ARVDB) on all datasets because of also higher specificity values. 

ResUnet segments background pixels better than BCDU-Net – vascular trees show less noise 

(Figure 16) but is unable to extract not only thin and tiny vessels but the major ones also. 

 

Figure 16. ResUnet predicted vascular trees from DRIVE (left), DRHAGIS (middle) and ARVDB (right) 

datasets 

 

As we need to chose the algorithm which is able to perform well on diverse data, both models were 

trained from scratch on combined data, resized to 565x565 with nearest neighbour interpolation from 

which 196490 (size 64x64) patches were extracted. ResUnet needed 5 times less time to learn as 

training speed was 62% faster than BCDU-Net. The performances of algorithms are present in Table 

6. 
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Table 6. Evaluation of BCDU-Net and ResUnet trained on all data of size 565x565 

Dataset Model Accuracy Sensitivity Specificity Precision F1 score AUC 

DRIVE 
BCDU-Net 0.9525 0.7094 0.9880 0.8961 0.7919 0.9770 

ResUnet 0.9539 0.7511 0.9835 0.8693 0.8059 0.9777 

STARE 
BCDU-Net 0.9663 0.6998 0.9912 0.8806 0.7799 0.9831 

ResUnet 0.9650 0.7461 0.9854 0.8266 0.7843 0.9804 

CHASE_DB1 
BCDU-Net 0.9611 0.8003 0.9781 0.7942 0.7972 0.9612 

ResUnet 0.9599 0.7865 0.9782 0.7919 0.7892 0.9799 

DRHAGIS 
BCDU-Net 0.9693 0.8156 0.9836 0.8229 0.8192 0.9866 

ResUnet 0.9647 0.8491 0.9755 0.7636 0.8041 0.9841 

IOSTAR 
BCDU-Net 0.9655 0.7781 0.9871 0.8743 0.8234 0.9861 

ResUnet 0.9648 0.7662 0.9877 0.8776 0.8181 0.9852 

ARVDB 
BCDU-Net 0.9250 0.6741 0.9760 0.8512 0.7524 0.9562 

ResUnet 0.9275 0.6928 0.9752 0.8506 0.7636 0.9606 

HRF 
BCDU-Net 0.9633 0.7624 0.9828 0.8120 0.7864 0.9756 

ResUnet 0.9606 0.7865 0.9775 0.7730 0.7797 0.9733 

 

ResUnet reached 2.8%-6.6% better sensitivity scores in all datasets (except IOSTAR and 

CHASE_DB1), especially on DRIVE and STARE datasets, which sensitivity values were higher by 

5.8% and 6.6% respectively compared to BCDU-Net. BCDU-Net trained on all data, could not 

perform so well as previously on DRIVE dataset  – sensitivity decreased by 13.5%, F1 score –  3.8%. 

ResUnet trained on combined data performed quite similar on DRIVE dataset, and much better on 

other datasets compared when it was trained only on DRIVE. The ResUnet sensitivity on ARVDB 

increased by 26.5% (while BCDU-Net – 18%).  

ResUnet was selected for further segmentations of retinal vessels as it is able to perform better, 

faster and more stable on combined data. 

 

3.2. Size selection 

As our data consists images of various sizes another experiment is done in order to select the most 

appropriate size which would achieve the best segmentation of retinal blood vessels without loosing 

too much information because of resizing. Combined data (with its origin dimensions) was resized 

with nearest neighbour interpolation to the sizes of 750x750 and 1000x1000. From resized images 

196490 patches (size 64x64) were extracted and ResUnet was trained from scratch for 50 epochs 

each time. The training time of the algorithm does not change, but it requires much more memory 

resources to handle 1.5-2 times bigger files as it consists data of larger size. The performances are 

shown in Table 7. 
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Table 7. ResUnet performance on all data of different sizes 

Dataset Image size Accuracy Sensitivity Specificity Precision F1 score AUC 

DRIVE 

565x565 0.9539 0.7511 0.9835 0.8693 0.8059 0.9777 

750x750 0.9518 0.6965 0.9890 0.9025 0.7862 0.9776 

1000x1000 0.9493 0.6643 0.9909 0.9142 0.7695 0.9771 

STARE 

565x565 0.9650 0.7461 0.9854 0.8266 0.7843 0.9804 

750x750 0.9642 0.6517 0.9934 0.9024 0.7568 0.9821 

1000x1000 0.9621 0.6243 0.9937 0.9021 0.7379 0.9782 

CHASE_DB1 

565x565 0.9599 0.7865 0.9782 0.7919 0.7892 0.9799 

750x750 0.9601 0.7506 0.9822 0.8163 0.7821 0.9802 

1000x1000 0.9583 0.7309 0.9822 0.8127 0.7696 0.9778 

DRHAGIS 

565x565 0.9647 0.8491 0.9755 0.7636 0.8041 0.9841 

750x750 0.9680 0.8157 0.9823 0.8113 0.8135 0.9860 

1000x1000 0.9674 0.8130 0.9818 0.8065 0.8098 0.9844 

IOSTAR 

565x565 0.9648 0.7662 0.9877 0.8776 0.8181 0.9852 

750x750 0.9644 0.7411 0.9901 0.8956 0.8111 0.9858 

1000x1000 0.9639 0.7327 0.9906 0.8996 0.8076 0.9851 

ARVDB 

565x565 0.9275 0.6928 0.9752 0.8506 0.7636 0.9606 

750x750 0.9267 0.6740 0.9781 0.8622 0.7566 0.9614 

1000x1000 0.9228 0.6319 0.9820 0.8772 0.7346 0.9578 

HRF 

565x565 0.9606 0.7865 0.9775 0.7730 0.7797 0.9733 

750x750 0.9645 0.7456 0.9858 0.8360 0.7882 0.9780 

1000x1000 0.9626 0.7516 0.9832 0.8128 0.7810 0.9762 

 

As we can see, when the size of the image is increasing – the sensitivity decreases by 2.7%-16.3% 

in all datasets, but especially for DRIVE and STARE datasets, whose images were upscaled. 

Nearest neighbour interpolation creates blocky pixels which reduces model ability to accurately 

extract vessels as it gets not only normal but also artificially created pixels. When image size 

increased, the sensitivity for STARE dataset decreased the most: with size of 750x750 – by 12,6% 

and with size of 1000x1000 – by 16,3%, compared to the size of 565x565. Even though, the highest 

AUC score was achieved in 750x750 size. The example of segmented STARE image is presented 

in Figure 17.  
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Figure 17. The segment of image (left), ground truth (middle) and predicted vessels (right) from 

STARE dataset (size 750x750) 

 

As we mentioned before, by downscaling large images to the size of 565x565, a lot of pixels of small 

vessels were lost, especially in ground truths. It produces higher sensitivity values as only bigger 

pixels are left in masks. These pixels represents larger features in the images which model is able 

to segmentate. When masks from DRHAGIS and HRF were resized to 750x750 and 1000x1000, 

fewer small vessels lost their details and more precise evaluation is possible. The example is shown 

in Figure 18. 

 

Figure 18. The mask (left) and predicted vascular tree (right) from DRHAGIS dataset (size 1000x1000) 

 

Even though the segmentation of major and small vessels is quite good, model segmented both 

retinal and choroidal vessels, making the image noisy with a lot unnecessary and not relevant 

information.  

The AUC score increased for all datasets when images were resized to the size of 750x750 (except 

DRIVE, which value differs with third decimal point) compared to sizes 565x565 and 1000x1000. 
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As we are trying to preserve the most truthful retinal vessel segmentation without loosing much 

information, it was decided to conduct further experiments with images of the 750x750 size. 

 

3.3. Interpolation selection 

As in previous experiments our focus was on choosing a better model and sizes for data with various 

dimensions and properties – the fastest interpolation method was used for resizing. This experiment 

was conducted in order to analyse the influence of the interpolation method for segmentation of 

retinal vessels. Combined data (with its origin dimensions) was resized by bilinear and bicubic 

interpolations to the size of 750x750, from which 196490 patches (size 64x64) were extracted and 

model was trained for 50 epochs from scratch. The ResUnet performance on differently interpolated 

data is present in Table 8, where ‘nearest neigh’ is for nearest neighbour interpolation. 

Table 8. ResUnet performance on all data resized by different interpolations 

Dataset Interpolation  Accuracy Sensitivity Specificity Precision 
F1 

score 
AUC 

DRIVE 

Nearest neigh 0.9518 0.6965 0.9890 0.9025 0.7862 0.9776 

Bilinear 0.9521 0.7047 0.9880 0.8943 0.7883 0.9777 

Bicubic 0.9441 0.6071 0.9936 0.9337 0.7355 0.9765 

STARE 

Nearest neigh 0.9642 0.6517 0.9934 0.9024 0.7568 0.9821 

Bilinear 0.9659 0.7127 0.9895 0.8639 0.7810 0.9814 

Bicubic 0.9631 0.6416 0.9931 0.8963 0.7478 0.9792 

CHASE_DB1 

Nearest neigh 0.9601 0.7506 0.9822 0.8163 0.7821 0.9802 

Bilinear 0.9588 0.7577 0.9799 0.7990 0.7778 0.9786 

Bicubic 0.9606 0.7332 0.9846 0.8338 0.7802 0.9803 

DRHAGIS 

Nearest neigh 0.9680 0.8157 0.9823 0.8113 0.8135 0.9860 

Bilinear 0.9662 0.8258 0.9793 0.7886 0.8068 0.9847 

Bicubic 0.9687 0.7786 0.9865 0.8432 0.8096 0.9864 

IOSTAR 

Nearest neigh 0.9644 0.7411 0.9901 0.8956 0.8111 0.9858 

Bilinear 0.9642 0.7418 0.9899 0.8940 0.8108 0.9857 

Bicubic 0.9640 0.7279 0.9912 0.9045 0.8066 0.9859 

ARVDB 

Nearest neigh 0.9267 0.6740 0.9781 0.8622 0.7566 0.9614 

Bilinear 0.9265 0.6684 0.9788 0.8647 0.7540 0.9608 

Bicubic 0.9244 0.6496 0.9800 0.8683 0.7432 0.9584 

HRF 

Nearest neigh 0.9645 0.7456 0.9858 0.8360 0.7882 0.9780 

Bilinear 0.9634 0.7600 0.9832 0.8147 0.7864 0.9771 

Bicubic 0.9642 0.7187 0.9881 0.8550 0.7809 0.9783 
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Using bilinear interpolation, sensitivity increased by 1.9%-16.1% for all datasets (except ARVDB) 

and significantly for STARE dataset compared to nearest neighbour and bicubic interpolations. It 

also achieved lowest precision and specificity scores (except ARVDB). Similar accuracy, F1 and 

AUC scores was achieved as with nearest neighbour interpolation. Using bicubic interpolation, 

sensitivity decreased by 1.8%-13.8% for all datasets and extremely for DRIVE dataset compared to 

other resizing techniques (by 13.8% comparing to bilinear interpolation and by 12.8% compared to 

nearest neighbour interpolation). Nevertheless, it achieved highest AUC scores for high quality 

images (HRF, IOSTAR, DRHAGIS and CHASE_DB1), but it did not significantly differed from results 

of other interpolations. As we shown before, bilinear and bicubic interpolations provided similar 

results in pixels, but bilinearly interpolated images were more blurred. As all images were pre-

processed by the same techniques, without individually improvements (as some images are more 

blurred, noisy, etc.), bilinear interpolation was the most favourable one as blurred effect reduced 

noise in images and model performed better. The example is shown in Figure 19.  

 

Figure 19. The segments of masks and predicted images from DRIVE dataset 

 

Due to significantly increased sensitivity scores bilinear interpolation was chosen as the most 

suitable technique when resizing images of different quality.  

 

3.4. Input size selection 

The last experiment was done in order to choose the best input size which would achieve better 

segmentation results. In all prior tests patches of size 64x64 were input for the model. As we 

mentioned before, different input size have different amount of information from which model 

decides. Because of that, in this experiment combined data was resized by bilinear interpolation to 

the size of 750x750 from which 196490 patches of sizes 32x32 and 128x128 were extracted and put 

into the ResUnet. As usually, model was trained from scratch for 50 epochs and evaluated on all 

datasets. With input size of 32x32, model training time decreased by 52.4% compared to the input 
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size of 64x64, while input size of 128x128 prolonged training time by 69.2% compared to the input 

size of 64x64. The segmentation results are present in Table 9. 

Table 9. Input size impact to ResUnet performance 

Dataset Input size Accuracy Sensitivity Specificity Precision F1 score AUC 

DRIVE 

32x32 0.9480 0.6452 0.9918 0.9191 0.7582 0.9764 

64x64 0.9521 0.7047 0.9880 0.8943 0.7883 0.9777 

128x128 0.9533 0.7672 0.9802 0.8487 0.8059 0.9775 

STARE 

32x32 0.9637 0.6510 0.9929 0.8946 0.7537 0.9752 

64x64 0.9659 0.7127 0.9895 0.8639 0.7810 0.9814 

128x128 0.9659 0.7912 0.9822 0.8054 0.7982 0.9833 

CHASE_D

B1 

32x32 0.9553 0.7002 0.9822 0.8054 0.7491 0.9745 

64x64 0.9588 0.7577 0.9799 0.7990 0.7778 0.9786 

128x128 0.9579 0.8229 0.9721 0.7565 0.7883 0.9799 

DRHAGIS 

32x32 0.9655 0.8224 0.9788 0.7838 0.8026 0.9832 

64x64 0.9662 0.8258 0.9793 0.7886 0.8068 0.9847 

128x128 0.9613 0.8765 0.9692 0.7262 0.7943 0.9846 

IOSTAR 

32x32 0.9625 0.7257 0.9898 0.8911 0.8000 0.9832 

64x64 0.9642 0.7418 0.9899 0.8940 0.8108 0.9857 

128x128 0.9641 0.7739 0.9860 0.8644 0.8167 0.9856 

ARVDB 

32x32 0.9162 0.5704 0.9863 0.8939 0.6964 0.9506 

64x64 0.9265 0.6684 0.9788 0.8647 0.7540 0.9608 

128x128 0.9277 0.6921 0.9755 0.8511 0.7634 0.9607 

HRF 

32x32 0.9617 0.7484 0.9824 0.8054 0.7759 0.9744 

64x64 0.9634 0.7600 0.9832 0.8147 0.7864 0.9771 

128x128 0.9579 0.8133 0.9720 0.7385 0.7741 0.9740 

 

With input size of 32x32, sensitivity and F1 scores drastically decreased for images of poorer quality 

(DRIVE, STARE, CHASE_DB1, ARVDB), and not so significantly for other datasets compared to the 

input size of 64x64. With input size of 32x32, the highest specificity and precision scores were 

achieved for poorer quality images (DRIVE, STARE, CHASE_DB1, ARVDB), while with input size o 

64x64 - for high quality images. With input size of 128x128, sensitivity highly increased for all 

datasets compared to the input size of 64x64. Comparing 128x128 between 32x32 input size, for 

the input of 128x128 size, sensitivity for datasets increased by: STARE – 21,5%,  ARVDB – 21,3%, 

DRIVE – 18,9%, CHASE_DB1 – 17,5%, HRF – 8,7%, DRHAGIS and IOSTAR – 6,6%. The difference 

of predicted vascular trees when input size is 32x32 and 128x128 is present in Figure 20. 
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Figure 20. The impact of input size to retinal vessel segmentation (STARE) 

As we can see in the figure, model is not able to predict even major vessels when the size of the 

input is 32x32. With larger input size, both major and small blood vessels are segmented more 

accurately and precise. Furthermore, we observed that increased input size lets model to distinguish 

vessels from background noise more accurately and in the area of OD separate uneven border 

colour from vessels (Figure 21).  

 

Figure 21. The impact of input size for differentiation of relevant information (DRHAGIS) 

 
Larger input size gives more contextual information to the model and enables proper segmentation 

of retinal blood vessels.  

To conclude all experiment results, ResUnet performed better on diverse data compared to BCDU-

Net and achieved the best segmentation of retinal vessels when images were resized by bilinear 

interpolation to the size of 750x750 with patch extraction of 128x128 size.  
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DISCUSSION 

4.1. Model selection 

As the development of deep learning methods increases rapidly, there are a lot of proposed models 

to conduct retinal vessel segmentation. As we explained before, BCDU-Net and ResUnet were 

chosen due to their suggested abilities to perform well on diverse data as well as some structural 

similarities within algorithms. As both algorithms were proposed only on DRIVE datasets, we 

evaluated their performance on other datasets when models are trained on DRIVE images. BCDU-

Net outperformed ResUnet as reached higher sensitivity and AUC scores in all datasets.  

As we mentioned prior, usually algorithms are optimised for a dataset of specific characteristics. 

Because of that, we decided to combine training images from all seven datasets into combined data, 

which would contain images of different quality and properties – creating heterogeneous data and 

simulating real-life cases. The approach of merging different images was done by Hacisoftaoglu et 

al. (2020) for the classification task to distinguish of DR and healthy images where researchers 

observed that diverse images improved the accuracy of DR detection. The datasets suitable for 

unsupervised models were used. We could not find any study where fundus images of various 

datasets were combined for a supervised retinal vessel segmentation task. This master thesis 

proposes novelty as training images from seven used datasets were combined into one diverse 

training data in order to represent and analyse the different quality and properties that impact the 

performance of the model. 

Original training images were resized to the size of the DRIVE dataset and both models were trained 

from scratch on combined data. This time ResUnet was superior to BCDU-Net – performed much 

faster and better by achieving higher sensitivity values for mostly all datasets indicating its 

capabilities to analyse diverse data better. Because of that ResUnet and combined data were 

selected for other experiments. By combining data, accuracy, sensitivity and AUC increased for the 

majority of datasets. This experiment also shows that diversity of features improves the model ability 

to produce more precise segmentation of retinal vessels. Galdran et al. (2022) stated that DRIVE 

dataset images are still used as the main dataset for algorithm construction and other less known 

datasets of higher quality are ignored due to scholars efforts to compare results to prior researches. 

We want to add that by using DRIVE as the main dataset for training, other datasets of larger size 

loose a lot of valuable information about the condition of small vessels due to resizing. These models 

used for real-life applications could provide untruthful results when larger images are extremely 

resized.  
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4.2. Size selection 

As we already stressed out that small image size is unfavourable for larger images due to the loss 

of important information about smaller vessels, the various image sizes were considered to preserve 

as much as possible information. Original training images were resized to 1.5 and 2 times bigger 

sizes than the size of the DRIVE dataset. Increased size of the images produced lower sensitivity 

and F1 scores basically for all datasets. As we argued before, we think that it is a more truthful 

representation of larger image segmentation as ground truths maintain a larger amount of small 

vessels pixels. Upscaled images may confuse models due to artificially created pixels leading the 

models to perform poorer. Because of that images should not be upscaled by huge volumes. Further 

studies may consider excluding images of the smallest size. Despite that, the highest AUC scores 

were observed when the size was increased by 1.5 points and the size of 750x750 was selected for 

other experiments. Rukundo (2021) evaluated the effects of image size on U-net segmentation of 

myocardial infarction in magnetic resonance imaging. These images from one dataset of size 

128x128 were increased 2 times to the size of 256x256 and U-net performed better. Our images 

contrastingly to mentioned study are combined from various datasets and some images had to be 

upscaled while others were downscaled. Horwath et al. (2020) observed that segmentation improved 

on high quality images when convolutional kernel size is increased, but a number of trainable 

parameters also increases which prolongs the training time. The prolonged training time when image 

size is increased was observed in our work. However, we did not analyse which structural changes 

in the model favourites different quality images and further studies could be conducted in this area.  

 

4.3. Interpolation selection 

The effects of three interpolations on segmentation performance were evaluated. The highest 

sensitivity scores were achieved with bilinear interpolation almost for all datasets. We think it is 

because the same pre-processing was done on all images despite their quality. For further studies 

we suggest performing pre-processing more individually without generalising it on different quality 

images (improve features of low quality images more). the Bilinear interpolation creates a blurred 

effect on images and low quality images with high noise could benefit from this interpolation parallelly 

improving segmentation results. For the same reason, bicubic interpolation could be the most 

unfavourable to the images of low quality as it produces quite sharp images. Bicubic interpolation 

scored the highest AUC scores in images of high quality. Nevertheless, bilinear interpolation was 

selected due to the low sensitivity scores of bicubic interpolation. Triwijoyo and Adil (2021) also used 

the same interpolation methods for  MESSIDOR (Methods to evaluate segmentation and indexing 

techniques in the field of retinal ophthalmology) dataset which contains 1200 images of different 

sizes and is used in unsupervised retinal vessel segmentation as it does not contains ground truths. 

The dimensions of images were downscaled 3.75-9 times to the size 256x256 and bicubic 
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interpolation was considered the most favourable compared to other interpolations. Our research 

analyses not only downscaling impact on the segmentation results but upscaling also. Also, we 

avoided downscaling to such small values in order to preserve valuable information and did not 

evaluated different interpolations effects on such sizes. In addition, as we mentioned downscaling 

removes a lot of information and downscaling by extreme volumes should be avoided in order to 

have reliable retinal vessel segmentation. 

 

4.4. Input size selection 

As mentioned before, CNNs can process inputs of arbitrary size, but the inputs of different scales 

represent different contextual information to the models. Our findings show that a larger input size 

increases the accuracy and F1 score for low quality images and the sensitivity of significant values 

for all images. AUC scores are almost the same for both inputs of sizes 64x64 and 128x128. We 

suggest that contextual information provides important insights from which the model is able to 

predict better and a larger input size enables the greater performance of retinal vessel segmentation. 

Despite that, it also requires higher memory resources and extends training time. Sekou et al. (2019) 

state that patch based methods need a sufficient amount of discriminative information for effective 

retinal segmentation of retinal vessels. It agrees with our argument of contextual information 

importance and we can state that the smallest input made the model perform poorly due to the lack 

of surrounding details. Richter et al. (2021) suggest that each algorithm has a preferred input size 

without a direct connection between a larger input size and better model performance. In addition, 

they show that the structure of the model must match with image properties for effective model 

performance and residual connections successfully help in counteracting mismatches. We do not 

rule out such a possibility as our algorithm consists of many residual connections and further studies 

on input size effects for other models could give a clearer view. Hamwood et al.(2018) suggest that 

large patch input increases CNN classification accuracy on optical coherence tomography images. 

Our findings complement this idea that a larger size of patch increases not only accuracy but 

sensitivity also of retinal vessel segmentation from fundus images.  

In conclusion, this master thesis analyses seven datasets of fundus images with different quality and 

their effects with attention to image properties on the model performance on retinal vessel 

segmentation. To conclude our work, we show that models built on one dataset do not provide 

reliable retinal vessel segmentation on images of various characteristics and handle diverse data 

differently. This master thesis shows that resizing affects heterogeneous data deeply and huge 

image size alterations should be avoided in order to maintain the highest amount of information for 

retinal vessel segmentation. Also, our work suggests that bilinear interpolation improves 

segmentation performance on generally pre-processed diverse data. In the end, our master thesis 
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suggests that a larger input size gives greater contextual information to the model and segmentation 

of retinal vessels improves. 
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CONCLUSIONS 

1. ResUnet trained on combined data achieved 2.8%-6.6% higher sensitivity values for the 

majority of datasets and performs better than BCDU-Net on images with different quality. 

2. Image size of 750x750 provided the highest AUC results on all datasets when ResUnet is 

trained on combined data but sizes of 750x750 and 1000x1000 decreased sensitivity scores 

by 2.7%-16.3% for images of all qualities.  

3. Bilinear interpolation achieved 1.9%-16.1% higher sensitivity values while bicubic 

interpolation scored 1.8%-13.8% lower sensitivity values for all quality images compared to 

other interpolations. 

4. The input size of 128x128 for ResUnet achieved 17.5%-21.5% higher sensitivity values on 

low quality images and 6.6%-8.7% sensitivity scores on high quality images compared to 

input sizes of 32x32 and 64x64. 
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SUMMARY 

Master thesis “Investigation of eye fundus image quality on vascular segmentation using deep neural 

networks” was conducted at Vilnius university by the student of Systems biology master program 

Julija Domarkaitė. This master thesis investigates the impact of fundus image quality on deep neural 

networks performance on retinal vessel segmentation. Automatic segmentation of retinal vessels 

from fundus images provides information about vessels characteristics but models are unable to 

handle diverse data. This problem requires a deep investigation on the impact of image quality on 

deep neural network performance. In order to give insights, this master thesis analyses seven 

datasets of different properties and quality and their influence on the performance of two deep neural 

networks. The effects of image size, resizing technique and input size on the model performance are 

observed. This master thesis shows that models perform on diverse data differently and 

modifications of image size alter provided information to the models leading to changes in their 

performance. Different interpolation techniques create different pixel representations which affects 

segmentation results. Changes of input size provide different contextual information to the model 

which also affects the segmentation of retinal vessels. In conclusion, this master thesis evaluates 

the effects of quality of the images and various components on the segmentation of fundus images 

and provides valuable information about the best approaches to deal with diverse data. 
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SUMMARY IN LITHUANIAN  

Vilniaus universiteto Sistemų biologijos magistrantūros studijų programos studentė Julija Domarkaitė 

atliko magistro baigiamąjį darbą „Akies dugno vaizdų kokybės poveikis kraujagyslių segmentavimui 

naudojant giliuosius neuroninius tinklus“. Šis magistrinis darbas tiria akies dugno nuotraukų kokybės 

įtaką giliųjų neuroninių tinklų veikimui segmentuojant tinklainės kraujagysles. Automatinis tinklainės 

kraujagyslių segmentavimas iš akies dugno vaizdų suteikia informacijos apie kraujagyslių savybes, 

tačiau automatiniai modeliai nesugeba tinkamai apdoroti duomenų pasižyminčių įvairiomis ir 

skirtingomis charakteristikomis. Ši problema reikalauja gilios analizės tyrinėjant vaizdų kokybės įtaką 

giliojo neuroninio tinklo veikimui. Tam, kad suteikti įžvalgų, šiame magistriniame darbe yra 

analizuojami septyni skirtingų savybių ir kokybės duomenų rinkiniai bei jų įtaka dviejų giliųjų 

neuroninių tinklų veikimui. Stebimi vaizdo dydžio, dydžio keitimo metodo ir įvesties dydžio poveikiai 

modelio veikimui. Šis magistro darbas parodo, kad modeliai skirtingai veikia įvairius duomenis, o 

vaizdo dydžio modifikacijos pakeičia modeliams paduodamą informaciją, taip darant įtaką jų 

veikimui. Skirtingi interpoliacijų metodai sukuria skirtingas pikselių pateiktis, kurie turi įtakos 

segmentavimo rezultatams. Įvesties dydžio pokyčiai suteikia modeliui skirtingą kontekstualią 

informaciją, kuri taip pat turi įtakos tinklainės kraujagyslių segmentavimui. Apibendrinant, šiame 

magistro darbe analizuojamas įvairių komponentų poveikis akių dugno vaizdų segmentavimui ir 

pateikiama vertingos informacijos apie geriausius būdus, kaip dirbti su įvairiais duomenimis. 

 


