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Sveikareikšmių autoregresijos procesų modeliavimas ir taikymas COVID-19
duomenims

Santrauka

Šiame darbe yra pristatomi sveikareikšmiai autoregresijos modeliai kartu su keliais modelio
papildymais: sezoniniu INAR ir dvimačiu INAR. Modelių su Puasono, neigiamu binominiu ir
apibendrintu Puasono skirstiniais vertinimui naudojami trys skirtingi metodai: momentų me-
todas, sąlyginis mažiausių kvadratų metodas ir sąlyginis didžiausio tikėtinumo metodas. Apra-
šyti vertinimo būdai yra patikrinami naudojant simuliuotus duomenis ir pritaikomi COVID-19
mirčių ir susirgimų Lietuvoje, Estijoje, Kroatijoje ir Izraelyje laiko eilutėms. Taip pat darbe
pateikiamos trumpalaikės prognozės.

Raktiniai žodžiai: INAR, sezoninis INAR, dvimatis INAR, COVID-19, Puasono skirstinys,
neigiamas binominis skirstinys, apibendrintas Puasono skirstinys.

Modelling integer-valued autoregressive processes with application to
COVID-19 data

Abstract

This work introduces an integer-valued autoregressive model and its extensions: seasonal
INAR, bivariate INAR. Three estimation methods: method of moments, conditional least squ-
ares and conditional maximum likelihood, are presented for models with Poisson, Negative
Binomial and Generalized Poisson distributions. The described methods are tested on simula-
ted data and applied on COVID-19 cases and deaths for Lithuania, Croatia, Estonia and Israel.
Lastly, a short term forecast is presented.

Key words: INAR, Seasonal INAR, Bivariate INAR, COVID-19, Poisson distribution, Negative
Binomial distribution, General Poisson distribution.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is infectious pneumonia caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) [3]. This disease for the first time was reported
in December 2019 in Wuhan city, the capital of Hubei province in China [23]. Since then it
rapidly spread across China and throughout the world causing many national lockdowns. As of
9th January 2022, over 305.5 million cases and more than 5.4 million deaths have been reported
in 192 countries and regions [1]. The World Health Organization (WHO) has announced the
COVID-19 outburst as a Public Health Emergency of International Concern and a pandemic.

In 2020, prevention and restrictions were the only options that were able to help control
increasing numbers of cases and deaths. WHO estimated mortality rate which is around 3.4%,
by comparison, seasonal flu kills less than 1%. COVID-19 became a huge challenge for people
around the world. The pandemic provoked devastating consequences in the global financial,
merchandise and job markets. Some estimations show economic growth will contract by 4.7%
in Europe and Asia, even 7.2% in Latin America. Because of travel restrictions tourism sector
shrunk dramatically, growth 2020/2019 in Asia was -86%, Europe -67%, according to the World
Tourism Organization [5]. Exponential growing cases became a challenge for the health system,
all hospital beds were occupied, doctors working overtime, lack of disposable masks or gloves.
In order to control the situation is it important to understand the dynamics of the virus, detect
the most vulnerable groups and take actions.

In the past few years, we can find plenty of models applied for epidemic data. The most
commonly used models are Susceptible-Infectious-Removed (SIR) and Susceptible-Exposed-
Infectious-Removed (SEIR). These models are constructed by the system of ordinary differential
equations that simulate the spread of the virus, which is extremely useful for making decisions
[14]. From the theoretical point of view, it is known the growth of infectious diseases spread is
exponential. Naturally, a lot of researchers use a generalized-growth model in order to capture
exponential or sub-exponential growth [21], [10]. Another intuitive model applied for this type
of data is the Poisson autoregressive model, which assumes distribution of new cases at some
time t, conditional on the information t− 1, is Poisson distribution [7].

An epidemic data, when looking at numbers of deaths or infected persons, are recorded
as a series of counts. However, the typical models (e.g. ARMA) are improper for such data
because they assume continuous distributions. For this reason, a lot of studies focuses on
binomial thinning operator based integer-valued autoregressive model (INAR) [8]. The majority
of articles focus on Poisson distribution, which means the mean and variance of innovations are
equal, however, this is rarely the case. Real-life data usually are overdispersed, for this case
distributions like Negative Binomial or Generalized Poisson should be proper to use. INAR
type models do have some extensions, like adding seasonality [9] or constructing models for
data with bivariate structure [18].
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In this thesis, count data models are applied for the number of deaths and number of infec-
tions caused by a coronavirus in Lithuania, Estonia, Croatia and Israel. We present properties
for INAR, seasonal INAR and bivariate INAR models, derive how to estimate models’ coef-
ficients with the method of moments (MM), conditional least squares (CLS) and conditional
maximum likelihood (CML) while using Poisson, Negative Binomial and Generalized Poisson
distributions for innovations. Lastly, a short term forecast is performed.
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2 Literature review

2.1 SARS-CoV-2

Coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus, which
increased a huge threat to human health and public safety. In general, coronaviruses are a
diverse group of viruses that infect a wide range of species, as well as humans, and can cause
mild to serious respiratory infections [13]. Fever, dry cough, weakness, and, in serious cases,
dyspnea are common symptoms of COVID-19. Many infections are asymptomatic, particularly
in children and young adults, while older people and/or people with co-morbidities are more
likely to develop serious illness, respiratory failure, and death. In a study of 72,314 cases in
China, 81% were classified as moderate, 14% as extreme cases requiring intensive care unit
(ICU) ventilation, and 5% were classified as serious (meaning the patients had respiratory
failure, septic shock, and/or multiple organ dysfunction or failure) [23].

Since the virus is highly transmissible Centres for Disease Control and Prevention (CDC)
[4] defines three principal ways COVID-19 can spread:

1. Inhalation of air carrying very small fine droplets and aerosol particles that contain
COVID-19 virus, the risk of transmission is highest within three to six feet (approximate
one to two meters) of an infectious source.

2. Deposition of virus carried in exhaled droplets and particles onto exposed mucous mem-
branes (i.e., “splashes and sprays”, such as being coughed on).

3. Touching surfaces that have been contaminated by the virus when touching their eyes,
nose or mouth without cleaning their hands.

Knowing how the virus spread, some precautions were proposed and applied: sanitizing pub-
lic surfaces, such as door handles, public transportation stops, buses, trains; social distancing;
wearing masks in public places and of course mandatory isolation in cases of contact with an
infected person.

Epidemics, as well as COVID-19 pandemic, can be decomposed into three phases [14]:

1. The first phase of the epidemic is indicated by a linear increase in the number of reported
cases, with the number of daily cases being nearly constant from day to day.

2. The second phase of the epidemic is an exponentially growing phase, in which the number
of infected increases exponentially but the transmission rate remains constant.

3. Due to massive public interventions and social distancing efforts, the third phase of the
epidemic correlates to a time-dependent exponentially decreasing transmission rate.
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2.2 Modelling epidemics

Time series analysis is widely used to analyse and forecast different contagious diseases, such
as Ebola, influenza pandemic, smallpox and many more. In this section we present an overview
of models specifically used for dealing with epidemic data.

2.2.1 Generalized-growth model

Theoretically, the growth of infectious diseases spread is exponential due to the sufficiency
of resources. Using this assumption we can describe cumulative number of cases by equation
C(t) = C(0)ert, where r is the growth rate, t - time, C(0) - number of cases at the start of
outbreak. However not always exponential growth is the best option, in order to relax this
assumption about exponential growth - simple generalized model can be used: dC(t)/dt =

rC(t)p, here p - deceleration growth parameter. The generalized-growth model capture sub-
exponential pattern (when 0 < p < 1), lower p value leads to slower growth, and exponential
epidemic growth (when p = 1). Identifying growth dynamics and patterns of disease helps
to understand the specifics of contagious disease transmission. Article [21] analyse epidemic
growth patterns of different infectious disease, such as measles, smallpox, Ebola by estimating
parameters p and r jointly.

2.2.2 Integer value autoregression

Since infected population and casualties are counted variables, the popular model to use
is integer-valued autoregressive (INAR). The multiplication operator in AR-type processes is
replaced with the thinning operator, which ensures the integer discreteness of the process. In
terms of innovations, mostly are used Poisson distribution and Negative Binomial distribution.

INAR with an oscillating Weighted Cosine Geometric innovation term was applied for a
few small developing states: Singapore, Cape Verde, Bahrain, Maldives and Mauritius [15].
Analysis of this paper focuses on COVID-19 cases in countries mentioned before. The authors
performed the Ljung-Box test which confirmed data is serially correlated, moreover, it was
observed significant over-dispersion and that the time pattern of COVID-19 data is oscillating.
For this issue, it was selected to use the Weighted Cosine Geometric distribution, which has been
proven to mimic such patterns nicely in discrete data. Additionally, in the model were included
five covariates: population, GSI (Government Stringency Index, which is computed from nine
indicators corresponding to sanitary measures, such as school closures, cancellation of public
events), monthly temperature, air quality and a transmission mode. The results showed GSI
and transmission rate are highly significant, showing that local factors are extremely important
and health authorities should control it.

INAR models can be extended by including seasonality, this type of model allows the autore-
gression parameter to vary with season. Seasonal INAR can be convenient to use for modelling
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diseases, that have a higher incidence rate at a certain time of the year. Article [17] analyses ar-
rivals to hospital with influenza symptoms in Spain. Five years data shows seasonality every 12
months, looking like a sinusoidal wave. Authors build and applied INAR(1) and INAR(2) with
innovations that follow Poisson distribution with different means λt = λt+τ , here τ represents
observed seasonality.

Another article [20] analyses monthly polio incidences in the United States of America.
The author offers to use seasonal geometric distribution and negative binomial thinning opera-
tor, SGINAR(12), instead of the popular Poisson distribution and binomial thinning operator.
This model performed better, compared with INAR(1), INAR(1)12 and NGINAR(1) (geometric
INAR model with no seasonality), based on AIC and BIC criteria. The article showed that
SGINAR was a quite good model for overdispersed seasonal data, however, models did not
capture all fluctuations very well.

Overall, INAR-type models might help to capture seasonality, also it is flexible, therefore
researchers can use a different distribution, based on with what data they are working.

2.2.3 SIR type models

One of the most widely used models for the simulation of the spread of viruses is Susceptible-
Infectious-Removed (SIR) and Susceptible-Exposed-Infectious-Removed (SEIR) models. Ini-
tially, the SEIR model was used to simulate the spread of flu, but it is easy to apply in other
cases, more specific when individuals experience a long incubation duration, such that the in-
dividual is infected but not yet infectious. This model represents the course of the disease:
Susceptible - Exposed - Infectious - Recovered, if recovery does not confer lifelong immunity
SEIRS (Susceptible - Exposed - Infectious - Recovered - Susceptible) model may be used, such
diseases may be rotavirus or malaria.

Article [12] introduces SEIR model constructed from seven differential equations, it includes
susceptible, exposed, infectious without intervention, infectious with intervention, recovered,
quarantined and hospitalized classes and it involves external input from the foreign countries.
The main hypothesis of this model is that all individuals will move from one class to another with
some probabilities and/or parameters. Some of the parameters can be fixed, such as temporary
immunity rate while others have to be estimated or calculated based on historical data. Article
analyses parameters by dividing Hubei province, China, data into two stages: outbreak and
inhibition. It was proved that the dynamics of the proposed model is different with different
sets of parameters.

Authors of the another article [14] analyse cases in South Korea, Italy, France and Germany.
The purpose is to predict the cumulative number of reported and unreported cases. As men-
tioned earlier this type of model requires some fixed parameters, however, true parameters are
unknown. Authors assumed some fraction f of total cases are unreported, the chosen f were
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0.6 and 0.1, meaning 40% or 90% of symptomatic infectious cases are not reported. Another
assumption is that the typical infectious time for symptomatic infected persons is 7 days. Dur-
ing the analysis it was observed that in the European countries the pandemic situation wass
getting worse, cases are increasing, while the situation in South Korea is stable because impor-
tant measures were implemented early. By comparing the situation in European countries and
South Korea, it can be seen that government intervention is crucial, measures should start as
early as possible, and should be strong.

2.2.4 Poisson autoregressive model

Poisson autoregressive model also is popular for modelling infectious diseases. In the article
[7], log-linear version of Poisson autoregression is used for understanding the spread of the
COVID-19 virus. It is assumed that the distribution of new cases at some time t, conditional
on the information t-1, is Poisson distribution. Moreover, short-term and long-term dependence
were included in the model. Log-linear intensity specification allows for negative dependency,
opposite that linear. Data used in the article covers the time period from January 20 to March 8,
2020, and represents infection in China, Iran, South Korea and Italy. China during this period
has a complete cycle: increasing trend, a peak and decreasing trend, meanwhile, other countries
looks like are still increasing. After calculations, significance for both short and long term
dependencies was confirmed. Such type of model helps to identify the stage of the contagion
cycle.
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3 Integer value autoregression models

In this chapter we look at how inter-valued autoregressive models are constructed and esti-
mated. We use three methods for parameters estimation as well as use three different distribu-
tions.

3.1 Multiplication Problem and Thinning Operator

Straight forward application of simple autoregressive models to count time series is not
feasible. AR(1) recursion Xt = α · Xt−1 + εt cannot be applied, even if innovations εt are
non-negative integers. Multiplication α· does not preserve the discrete range, this issue is
called multiplication problem. A few AR(1)-like models for count processes were introduced by
McKenzie in the 1985 paper ‘Some simple models for discrete variate time series‘. The author
proposed new mechanisms for reducing Xt−1, one of them - binomial thinning.

Definition 1. Let ξj be counting sequence of independent and identically distributed Bernoulli
random variables with mean α ∈ [0, 1] and X a non-negative integer-valued random variable
with a range {0, 1, ..., n}, independent of the counting sequence. The binomial thinning operator
α◦ is defined by

α ◦X :=


∑X

j=1 ξj(α) X ≥ 0,

0 X = 0.

Interpretation of binomial thinning is very intuitive. First, lets suppose the Xt−1 represents
population at time t − 1. At the next time step t, the population may have shrunk due to
individuals dying. If we can assume that each individual survives independently of each other
with the probability α of a individual surviving from time t − 1 to t, then the population at
time t can be given as Xt = α ◦Xt−1, where α ◦Xt−1 is the number of survivors from t− 1. See
also Weiß [22].

Some important properties of binomial thinning operator:

1. 0 ◦X = 0;

2. 1 ◦X = X;

3. α1 ◦ α2 ◦X
d
= α2 ◦ α1 ◦X;

4. α1 ◦ (X + Y )
d
= α1 ◦X + α1 ◦ Y ;

5. α1 ◦ (α2 ◦X)
d
= (α1α2) ◦X;

6. α1 ◦X + α2 ◦X
d

6= (α1 + α2) ◦X;
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7. Let X := α ◦ Y. The mean value and the variance of X are given

E(X) = αE(Y ) and Var(X) = α2Var(Y ) + α(1− α)E(Y ).

Multiple modifications to the binomial thinning operator have been developed in order to
make integer-valued thinning models more flexible for practical uses. For instance, some of
them allow the dependence between the indicators of counting series (ξj), this type of operator
is called generalized thinning. Another one - signed binomial thinning operator can handle over-
dispersed and non-stationary integer-valued time series, moreover, it can be used for negative
count data, which is an advantage, since binomial thinning can be applied only for non-negative
time series.

3.2 INAR

In this section we define the integer-values autoregressive process of order one, denote
INAR(1), this model was first introduced by McKenzie [16] and Al-Osh & Alzaid [8] in 1990’s.

Definition 2. Let (εt)N be the innovations consisting of i.i.d random variables with E(εt) = µε

and variance Var(εt) = σ2
ε . Let α ∈ (0, 1). A process (Xt)N of observations, which follows the

recursion
Xt = α ◦Xt−1 + εt (1)

is said to be an INAR(1) process if all thinning operations are performed independently the each
other and of (εt)N and if the thinning operations at each time t as well as εt are independent of
(Xs)s<t

We should stress, that INAR(1) process described in Definition 2 and based on binomial thin-
ning operator is a stationary process. Below we present and prove some of the most important
properties of INAR(1) process.

Properties of the INAR(1) based on binomial thinning operator:

1. E(Xt) =
µε

1− α
;

2. Var(Xt) =
αµε + σ2

ε

1− α2
;

3. E(Xt|Xt−1) = αXt−1 + µε;

4. Var(Xt|Xt−1) = α(1− α)Xt−1 + σ2
ε ;

5. Cov(Xt, Xt+i) = αiVar(Xt);

6. Corr(Xt, Xt+i) = αi.

10



Proof:
1. We have

E(Xt) = E(α ◦Xt−1 + εt) = E(α ◦ (α ◦Xt−1 + εt−1) + εt)

= E(α2 ◦Xt−1 + α ◦ εt−1 + εt) = ... = E(
∞∑
i=0

αi ◦ εt−i)

=
∞∑
i=0

αiE(εt−i) =
∞∑
i=0

αiµε =
µε

1− α
.

Here, for the first equality we use the definition of INAR(1) model (1). Using recursion we get
infinite sum of α ◦ ε, since the mean of innovations is µε, by using an infinite geometric series
formula we get the result.

2. We have

Var(Xt) = Var(
∞∑
i=0

αi ◦ εt−i) =
∞∑
i=0

Var(αi ◦ εt−i)

=
∞∑
i=0

(α2iVar(εt−i) + αi(1− αi)E(εt−i))

=
∞∑
i=0

(α2iσ2
ε + αi(1− αi)µε)

=
σ2
ε

1− α2
+

µε
1− α

− µε
1− α2

=
σ2
ε + µε + αµε − µε

1− α2

=
σ2
ε + αµε
1− α2

.

Here, for the first equality we again use recursion. The second equality is true, because we know
εt−i are i.i.d. For the third we use binomial thinning seventh property.

3. We have

E(Xt|Xt−1) = E(α ◦Xt−1 + εt|Xt−1) = E(α ◦Xt−1|Xt−1) + E(εt|Xt−1)

= αE(Xt−1|Xt−1) + E(εt) = αXt−1 + µε.

Here we use the independence between εt and Xt−1.

4. We have

Var(Xt|Xt−1) = Var(α ◦Xt−1 + εt|Xt−1) = Var(α ◦Xt−1|Xt−1) + Var(εt|Xt−1)

= Var(α ◦Xt−1|Xt−1) + σ2
ε = α(1− α)Xt−1 + σ2

ε .
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Here we use the seventh binomial thinning property and use the independence between εt and
Xt−1.

5. We have

Cov(Xt, Xt+h) = Cov(Xt, α
h ◦Xt +

h−1∑
i=0

αk ◦ εt+h−i)

= Cov(Xt, α
h ◦Xt) + Cov(Xt,

h−1∑
i=0

αk ◦ εt+h−i)

= αhCov(Xt, Xt) = αhVar(Xt).

Here we use the fact that εt are i.i.d in t and t+ h− k > t for k < h.

6. We have

Corr(Xt, Xt+i) =
Cov(Xt, Xt+j)√

Var(Xt)Var(Xt−1)
=
αiσ2

X√
σ4
X

= αi.

Having mean and variance of INAR(1) process, we can obtain mean and variance for inno-
vations:

µε = µ(1− α), σ2
ε = σ2(1− α2)− αµε. (2)

The most common distribution used for INAR processes is Poisson, however, it is rarely a
case that data has the same mean and variance. Calculation of the dispersion index and zero
index helps to identify if the Poisson distribution is appropriate. Equidispersion property is
described the following:

I := I(µ, σ2) :=
σ2

µ
∈ (0;∞). (3)

I = 1 shows that mean and variance are equal, which satisfies the Poisson distribution
definition. In case I > 1 we have overdispersed distribution, for example, a better choice would
be Negative Binomial distribution, and I < 1 shows underdispersion.

Zero index is another characterization that can help to choose what distribution to use, it
is obtained using the following:

Izero := Izero(µ, p0) := 1 +
lnp0
µ

∈ (−∞; 1). (4)

Here p0 is the probability of observing a zero p0 := P (X = 0) = exp(−E(X)). Izero > 0

indicates zero inflation - the excess of zeros compared to Poisson distribution and in case Izero < 0
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we are observing zero deflation in the data.

One of the key applications of the model for the observed INAR(1) process is to estimate
future outcomes of the process. Having observed X1, X2, ..., Xt, we wish to forecast Xt+h for
some h ≥ 1. The conditional mean is the most popular type of point forecast for real-valued
processes, as it is known to be optimal in terms of mean squared error. The h-step-ahead
conditional mean is given by

E(Xt+h|Ft) = E(α ◦Xt+h−1 + εt+h|Ft)

= E(α ◦ (α ◦Xt+h−2 + εt+h−1) + εt+h|Ft)
d
= E(α2 ◦Xt+h−2 + α ◦ εt+h−1 + εt+h|Ft)
d
= ...

d
= E(αh ◦Xt +

h−1∑
j=0

αj ◦ εt+h−j|Ft)

d
= E(αh ◦Xt|Ft) + E(

h−1∑
j=0

αj ◦ εt+h−j|Ft)

d
= αhXt + µε

1− αh

1− α
.

(5)

We can note, that due to the Markov property, the conditional mean depends only on Xt and
not on previous observations. The biggest disadvantage of this type forecast is that it almost
always returns a non-integer result, while Xt+h will certainly be an integer value from N0.
Another way for forecasting is to use the conditional median instead of conditional expectation,
however, in most cases, the conditional median can be difficult to compute.

3.2.1 Estimation of parameters

INAR(1) model is defined by the thinning parameter α and parameters specifying the
marginal distribution of innovations. Having data X1, ..., Xt the goal is to estimate these pa-
rameters. In this section we consider the estimation of the unknown parameters based on three
methods: MM, CLS and CML and analyse three different distributions: Poisson distribution
which is the most popular for the count data, the Negative Binomial and Generalized Poisson.
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3.2.1.1 Poisson distribution

Assume we have εt ∼ Pois(λ) with probability mass function

P(εt = k) =
λke−λ

k!
, k = 0, 1, ... (6)

In Poisson distribution case it is known that mean and variance is equal: E(εt) = Var(εt) =

λ.

Method of moments
The most simple method for estimating parameters is method of moments. The goal is to

choose appropriate moment relations so that real model parameters could be found by solving
system of equations. The MM estimates are found by replacing true parameters into corre-
sponding sample moments.

For Poisson INAR(1) we have two unknown parameters α and λ. MM estimator for α is
calculated as α̂MM := ρ̂(1) := γ̂(1)/γ̂(0), here γ̂(k) = 1

n

∑n
t=k+1(Xt − X̄)(Xt−k − X̄) for k ∈ N0.

For the mean of innovation we have µ̂MM := X̄ and by applying (2) λ̂MM := X̄(1− α̂MM).

Conditional least squares
Another approach for estimating parameters is to accumulate the squared deviations among

Xt and E(Xt|Ft−1) and to select parameters so that the conditional sum of squares is minimized
[8]. The CLS estimator θ̂

CLS
= (α̂CLS, λ̂CLS)T of θ = (α, λ)T is given by

Q(α, λ) := argmin
θ

(
n∑
t=2

[Xt − E(Xt|Ft−1)])2 = argmin
θ

(
n∑
t=2

[Xt − E(α ◦Xt−1 + εt|Ft−1)])2

= argmin
θ

(
n∑
t=2

[Xt − αXt−1 − λ])2.

Taking the partial derivatives of Q(α, λ) and equating them to 0 we get the following system
of equations:


∂Q
∂α

= −2
∑n

t=2(Xt − αXt−1 − λ)Xt−1 = 0,

∂Q
∂λ

= −2
∑n

t=2(Xt − αXt−1 − λ) = 0.
(7)

From the (7) we get the following equations:
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n∑
t=2

XtXt−1 − α
n∑
t=2

X2
t−1 − λ

n∑
t=2

Xt−1 = 0 (8)

and

λ =

∑n
t=2Xt − α

∑n
t=2Xt−1

n− 1
. (9)

Now we subside (9) in (8) and multiply by (n− 1):

0 = (n− 1)
n∑
t=2

XtXt−1 − α(n− 1)
n∑
t=2

X2
t−1 −

n∑
t=2

Xt

n∑
t=2

Xt−1 + α(
n∑
t=2

Xt−1)
2

= (n− 1)
n∑
t=2

XtXt−1 −
n∑
t=2

Xt

n∑
t=2

Xt−1 + α((
n∑
t=2

Xt−1)
2 − (n− 1)

n∑
t=2

X2
t−1). (10)

From (10) we can express α, which leads to formulas for α̂CLS and λ̂CLS :

α̂CLS :=
(n− 1)

∑n
t=2XtXt−1 −

∑n
t=2Xt

∑n
t=2Xt−1

(n− 1)
∑n

t=2X
2
t−1 − (

∑n
t=2Xt−1)2

, (11)

λ̂CLS :=
1

n− 1
(
n∑
t=2

Xt − α̂CLS
n∑
t=2

Xt−1). (12)

The CLS estimates in (11) and (12) are strongly consistent and asymptotically normally
distributed (see Weiß [22]).

Conditional maximum likelihood
The maximum likelihood approach is similar to MM, it tries to select parameter values so

that the sample which is observed becomes the most plausible.
By fixing the first observation X1, we avoid estimating pX1(θ) and get the conditional log-

likelihood function which is used to get estimates of θ = (α, λ)T :

θ̂
CML

= argmax
θ

n∑
t=2

logpxt|xt−1(θ),

where
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pxt|xt−1(θ) := P (Xt = xt|Xt−1 = xt−1) =

min(xt,xt−1)∑
k=0

(
xt−1
k

)
αk(1− α)xt−1−k e

−λλxt−k

(xt − k)!
.

The CML estimator, as described above, is consistent and asymptotically normal (see Free-
land and Mccabe [11]).

Simulation
In order to test if constructed estimates are plausible, simulations were performed. MM,

CLS and CML methods were applied for the same simulated data sets. It was chosen to use
two samples with different lengths, to see how methods perform, first set length N = 200 and
the second N = 500. 200 independent experiments performed for both data sets, parameters
were foxed for both simulation sets α = 0.8 and λ = 3.

To compare the simulation results we calculate Bias (13) and Root Mean Square Error
(RMSE) (14):

Bias =
1

N

N∑
t=1

(θ̂t − θt), (13)

RMSE =

√√√√ 1

N

N∑
t=1

(θ̂t − θt)2. (14)

It is worth stressing, to find the CML estimations some initial parameters must be provided.
In this case, CLS estimates were used as the primary values. The CML approach is used to
locate global extremes, choosing unreasonable values for the parameters may result in finding
local rather than global extremes, resulting in biased results. From the simulation results Table
1 we can notice, that in both cases N = 200 and N = 500 MM and CLS estimates are very
similar. But looking at Bias and RMSE of CML estimator we can see the better performance
than MM and CLS for both sets of simulations.

MM estimation CLS estimation CML estimation
Size Real parameter BIAS RMSE BIAS RMSE BIAS RMSE

N=200
α = 0.8 0.019 0.004 0.015 0.003 0.0014 0.0015
λ = 3 -0.307 0.054 -0.247 0.052 -0.034 0.023

N=500
α = 0.8 0.004 0.0008 0.0036 0.0008 0.0007 0.0003
λ = 3 -0.067 0.0133 -0.0566 0.0131 -0.0122 0.005

Table 1: Simulation results of Poisson INAR(1)
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Forecasting
From equation (5) we can derive h-step-ahead forecast formula for INAR(1) with Poisson

distribution:

E(Xt+h|Ft)
d
= αhXt + λ

1− αh

1− α
. (15)

3.2.1.2 Negative Binomial Distribution

Lets say we have εt ∼ NB(r, p) with probability mass function

P(εt = k) =

(
k + r − 1

r − 1

)
· (1− p)kpr, k = 0, 1, ... (16)

where r is the number of successes, k is the number of failures, and p is the probability of
success. Mean and variance is known E(εt) = pr

1−p , Var(εt) = pr
(1−p)2 .

Method of moments
First, lets consider method of moments estimators for unknown parameters α, p and θ.

Having the first two moments, mean and variance, it is easy to derive estimations for parameters
r and p. It can be done just by expressing one from another, and because α = ρ1 we have
estimators:

α̂MM =
γ̂(1)

γ̂(0)
, p̂MM = 1− E(εt)

Var(εt)
, r̂MM =

E(εt)
2

Var(εt)− E(εt)
. (17)

Conditional least squares
Parameters α, p and r also can be estimated with CLS, since now we need to estimate three

parameters instead of two, we will use two-step conditional least squares method [19]. The first
step is to find estimates for α and µε, they are obtained by minimizing the following expression:

n∑
t=2

[Xt − E(Xt|Ft−1)]2 =
n∑
t=2

[Xt − αXt−1 − µε]2. (18)

Analogical as in the Poisson distribution case, we took partial derivatives and express α and
µε through each other leading to equations:

α̂CLS :=
(n− 1)

∑n
t=2XtXt−1 −

∑n
t=2Xt

∑n
t=2Xt−1

(n− 1)
∑n

t=2X
2
t−1 − (

∑n
t=2Xt−1)2

, (19)

µ̂ε
CLS :=

1

n− 1
(
n∑
t=2

Xt − α̂CLS
n∑
t=2

Xt−1). (20)
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For the second step it is necessary to find estimation for σ2
ε . Lets define a new random

variable Vn = (Xt−E(Xt|Ft−1))2 = (Xt−αXt−1−µε)2, and more E(Vt|Ft−1) = Var(Xt|Ft−1) =

Var(α ◦Xt + εt|Ft−1) = α(1− α)Xt−1 + σ2.
The CLS estimator for σ2

ε can be found by minimizing the sum of squares:

Sn(σ2
ε) =

n∑
t=2

(Vt − E(Vt|Ft−1)2 =
n∑
t=2

(Vn − α(1− α)Xt−1 − σ2
ε)

2.

Taking partial derivative and equating to zero:

∂Sn
∂σ2

ε

= −2
n∑
t=2

(Vt − α(1− α)Xt−1 − σ2
ε) = 0

Now we can find estimate of the parameter σ2
ε and use estimates of α̂ from equation (19)

and µ̂ε (20)

σ̂2
ε

CLS
=

∑n
t=2 Vt − α̂(1− α̂)

∑n
t=2Xt−1

n− 1

=

∑n
t=2(Xt − α̂Xt−1 − µ̂ε)2 − α̂(1− α̂)

∑n
t=2Xt−1

n− 1

(21)

Lastly, the CLS for the parameters p and r are:

p̂CLS = 1− µ̂CLSε

σ̂2
ε

CLS
and r̂CLS =

µ̂2
CLS

ε

σ̂2
ε

CLS
− µ̂CLSε

. (22)

Conditional maximum likelihood
Assume we have X1, X2, ..., Xn with fixed X1, be a random sample of size n from a Neg-

ative Binomial INAR(1) process, with parameters θ = (α, p, r)T . To estimate the unknown
parameters we maximize the conditional log-likelihood function:

θ̂
CML

= argmax
θ

n∑
t=2

logpxt|xt−1(θ), (23)

where
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pxt|xt−1(θ) := P (Xt = xt|Xt−1 = xt−1)

=

min(xt,xt−1)∑
k=0

(
xt−1
k

)
αk(1− α)xt−1−k

(
xt−1 − k + r − 1

r − 1

)
· (1− p)xt−1−kpr.

Simulation
Similarly as in previous example we ran two sets of 200 independent simulations for proposed

estimates. The lengths for series were chosen N = 200 and N = 500, model parameters fixed
α = 0.8, p = 0.3 and r = 2. To compare the accuracy we use Bias, described in equation
(13) and RMSE (14). CLS estimates were used as the initial values for the CML estimations.
Results are presented in Table 2.

From Bias and RMSE we can observe that parameters estimated by CML are the most
accurate, values are smallest. Naturally in all cases, simulations with larger sample were more
accurate. As in Poisson INAR(1) case, MM and CLS do not differ a lot.

MM estimation CLS estimation CML estimation
Size Real parameter BIAS RMSE BIAS RMSE BIAS RMSE

N=200
α = 0.8 0.004 0.001 0.003 0.0008 0.0005 0.0004
r = 2 -0.164 0.032 -0.159 0.030 -0.045 0.014
p = 0.3 -0.152 0.011 -0.151 0.010 -0.003 0.001

N=500
α = 0.8 0.0017 0.0004 0.0014 0.0003 0.0002 0.0001
r = 2 -0.076 0.015 -0.073 0.012 -0.017 0.006
p = 0.3 -0.096 0.007 -0.094 0.006 -0.001 0.0005

Table 2: Simulation results of Negative Binomial INAR(1)

Forecasting
From equation (5) we can derive h-step-ahead forecast formula for INAR(1) with Negative

Binomial distribution:

E(Xt+h|Ft)
d
= αhXt +

pr

1− p
1− αh

1− α
. (24)
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3.2.1.3 Generalized Poisson Distribution

Lets say we have εt ∼ GP (λ, η) with probability mass function

P(εt = k) = λ(λ+ ηk)k−1
e−λ−ηk

k!
, k = 0, 1, ... (25)

Mean and variance is known E(εt) = λ
1−η , Var(εt) = E(εt)

(1−η)2 .

Method of moments
Lets consider method of moments estimators for unknown parameters α, η and λ. Having

the first two moments, mean and variance, we can derive estimators for parameters η and λ. It
is done just by expressing one from another, and because α = ρ1 we have expressions:

α̂MM =
γ̂(1)

γ̂(0)
, η̂MM = 1−

√
E(εt)

Var(εt)
, λ̂MM = E(εt)

√
E(εt)

Var(εt)
. (26)

Conditional least squares
Parameters α, η and λ also can be estimated with CLS, because now we need to estimate

three parameters instead of two we will use two-step conditional least squares method, just like
it was shown for Negative Binomial case. Using equations for α̂CLS from equation (19), µ̂CLSε

(20) and σ̂2
ε

CLS
(21) we derive CLS estimators for η and λ:

η̂CLS = 1−
√

µ̂CLSε

σ̂2
ε

CLS
, λ̂CLS = µ̂CLSε

√
µ̂CLSε

σ̂2
ε

CLS
(27)

Conditional maximum likelihood
Let X1, X2, ..., Xn with fixed X1, be a random sample of size n from a Generalized Poisson

INAR(1) process, with parameters θ = (α, λ, η)T . To estimate the unknown parameters we
maximize the conditional log-likelihood function:

θ̂
CML

= argmax
θ

n∑
t=2

logpxt|xt−1(θ), (28)

where

pxt|xt−1(θ) := P (Xt = xt|Xt−1 = xt−1)

=

min(xt,xt−1)∑
k=0

(
xt−1
k

)
αk(1− α)xt−1−kλ[λ+ (xt − k)η]xt−k−1e−λ−(xt−k)η

(xt − k)!
.
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Simulation
Likewise in Poisson and Negative Binomial distributions sections, we ran two sets of 200

independent simulations for checking estimators. The lengths for series were chosen N = 200

and N = 500, model parameters fixed α = 0.8, η = 0.2 and λ = 3. For the accuracy comparison
we use Bias, described in equation (13) and RMSE (14). CLS estimates were used as the initial
values for the CML estimations. Results are presented in Table 3.

From Bias and RMSE we can observe that parameters estimated by CML are the most
accurate, values are the smallest. The worst performance showed MM, accuracy increases as
the number of observations increase, nevertheless, it still has the highest Bias and RMSE. As
in previous simulation cases, MM and CLS do not differ a lot.

MM estimation CLS estimation CML estimation
Size Real parameter BIAS RMSE BIAS RMSE BIAS RMSE

N=200
α = 0.8 0.0207 0.003 0.017 0.003 0.004 0.002
η = 0.2 0.057 0.111 0.062 0.011 0.013 0.005
λ = 3 -0.62 0.103 -0.589 0.0977 -0.147 0.046

N=500
α = 0.8 0.003 0.0008 0.0022 0.0008 0.0008 0.0005
η = 0.2 0.008 0.0026 0.008 0.002 0.004 0.0015
λ = 3 -0.094 0.023 -0.085 0.013 -0.034 0.0126

Table 3: Simulation results of Generalized Poisson INAR(1)

Forecasting
From equation (5) we can derive h-step-ahead forecast formula for INAR(1) with Generalized

Poisson:

E(Xt+h|Ft)
d
= αhXt +

λ

1− η
1− αh

1− α

3.3 Seasonal INAR

Often in the data, we observe seasonality, which can be monthly, weekly, etc. For this reason,
in this section we present the seasonal INAR process, define how to estimate parameters and
how to get the point forecast. The first-order seasonal non-negative INAR model is defined
following [9].

Definition 3. A discrete-time non-negative integer-valued stochastic process {Xt}t∈Z is said to
be a first-order seasonal INAR process with seasonal period s (INAR(1)s) if is satisfies the
following equation:

Xt = α ◦Xt−s + εt, t ∈ Z, (29)
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where α ∈ [0, 1], {εt}t∈Z is an innovation sequence of i.i.d. non-negative integer-valued
random variables not depending on past values of {Xt}t∈Z and s ∈ N denotes the seasonal
period. It is also assumed that the Bernoulli variables that define α◦Xt−s, that is, the Bernoulli
variables from which Xt are obtained, are independent of the Bernoulli variables from which
other values of the series are calculated. Moreover, we assume that all Bernoulli variables
defining the thinning operations are independent of the innovation sequence {εt}t∈Z.

Process described in equation (29) has two random components: α◦Xt−s number of survivals
of the process at time t− s with survival probability α and innovations εt describing elements
that entered the system at time interval (t− s, t]. Note, that in case s = 1 we have previously
described INAR(1) (1) model.

Lets assume we have seasonal Poisson INAR(1) process. Then the CLS estimator θ̂CLS =

(α̂CLS, λ̂CLS)T of θ = (α, λ)T is given by

θ̂CLS := argmin
θ

(
n∑

t=s+1

[Xt − E(Xt|Ft−1)])2.

We know E(Xt|Ft−1) = E(Xt|Xt−s)] = αXt−s + λ. By making analogous calculations as in
Poisson INAR(1) case, we can find the CLS estimators for α and λ respectively, as:

α̂CLS :=
(n− s)

∑n
t=s+1XtXt−s −

∑n
t=s+1Xt

∑n
t=s+1Xt−s

(n− s)
∑n

t=s+1X
2
t−s − (

∑n
t=s+1Xt−s)2

, (30)

λ̂CLS :=
1

n− s
(

n∑
t=s+1

Xt − α̂CLS
n∑

t=s+1

Xt−s). (31)

Considering the forecasts for Xt+h, h ∈ N, the distribution of Xt+h can be expressed as

Xt+h
d
= αq ◦Xt−r +

q−1∑
j=0

αj ◦ εt+h−js, h ∈ N. (32)

Here q := dh/se and r := qs − h, r ∈ 1, ..., s− 1, since dye denoting the upper integer part of
y ∈ R, dye := min{n ∈ Z|y ≤ n}. Based on the observed sample X1, X2, ..., Xt, h-step-ahead
conditional expectation is given by:

E(Xt+h|Ft) = αqXt−r + µε
1− αh

1− α
, h ∈ N. (33)

Similarly as in INAR(1) case, CML estimators can be derived for INAR(1)s. Applying the
s−step Markov property of the process, conditional likelihood function is
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L(θ|X1, ..., Xn) =
n∏

t=s+1

P (Xt|Xt−s).

The CML estimators are obtained by maximizing the conditional log-likelihood function

l(θ|X1, ..., Xn) =
n∑

t=s+1

logP (Xt|Xt−s).

3.4 BINAR

Another extension of simple INAR processes is bivariate INAR. Sometimes the data have a
bivariate structure, so it is more appropriate to analyse it together.

Definition 4. Let Xt = [X1,t, X2,t]
T , t ∈ Z be stationary non-negative integer-valued bivariate

time series and εt = [ε1,t, ε2,t]
T , t ∈ Z be a non-negative integer-valued bivariate random sequence

independent fromXt. Then the processXt is a bivariate INAR process if it satisfies the equation:

Xt = A ◦Xt−1 + εt =

[
α1 0

0 α2

]
◦

[
X1,t−1

X2,t−1

]
+

[
ε1,t

ε2,t

]
, t ∈ Z, (34)

here αi ∈ [0, 1), i = 1, 2.

Similarly we can define non-negative seasonal integer-value process:

Xt = A ◦Xt−s + εt =

[
α1 0

0 α2

]
◦

[
X1,t−s

X2,t−s

]
+

[
ε1,t

ε2,t

]
, t ∈ Z. (35)

Lets assume innovations εt = [ε1,t, ε2,t]
T , t ∈ Z have a bivariate Poisson distribution with

parameters λ1, λ2 and φ with probability mass function:

f(k, l) = P(Z1 = k, Z2 = l) = e−(λ1−λ2−φ)
(λ1 − φ)k

k!

(λ2 − φ)l

l!

×
min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!

(
φ

(λ1 − φ)(λ2 − φ)

)m
.

The mean, variance and covariance is known:
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µ(Zi) = Var(Zi) = E(Zi) = λi + φ, i = 1, 2

Cov(Z1, Z2) = φ.

Now we will derive some properties for seasonal BINAR, but it also applies for simple case,
when s = 1.

1. E(Xi,t) =
λi + φ

1− αi
, i = 1, 2;

2. E(Xi,t|Xi,t−s) = αiXi,t−s + λi + φ, i = 1, 2;

3. Var(Xi,t) =
λi + φ

1− αi
, i = 1, 2;

4. Cov(Xi,t, Xj,t) =
φ

1− αiαj
, i 6= j.

Proof:
1.

E(Xi,t) = E(
∞∑
k=0

αki ◦ εt−ks,i) =
∞∑
k=0

E(αki ◦ εt−ks,i) =
∞∑
k=0

αkiE(εt−ks,i)

=
∞∑
k=0

αki (λi + φ) =
λi + φ

1− αi
.

2.

E(Xi,t|Xi,t−s) = E(α ◦Xi,t−s + εi,t|Xi,t−s) = E(α ◦Xi,t−s|Xi,t−s) + E(εi,t|Xi,t−s)

= αiE(Xi,t−s|Xi,t−s) + E(εi,t) = αiXi,t−s + λi + φ.

3.

Var(Xi,t) = Var(
∞∑
k=0

αki ◦ εt−ks,i) =
∞∑
k=0

Var(αki ◦ εt−ks,i)

=
∞∑
k=0

(α2k
i Var(εt−ks,i) + αki (1− αksi)E(εt−ks,i)

=
∞∑
k=0

(α2k
i (λi + φ) + αki (1− αki )(λi + φ))

=
λi + φ

1− α2
i

+
λi + φ

1− αi
− λi + φ

1− α2
i

=
λi + φ

1− αi
.
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4.

Cov(Xi,t, Xj,t) = Cov(
∞∑
k=0

αki ◦ εt−ks,i,
∞∑
l=0

αlj ◦ εt−l,j)

=
∞∑

k,l=0

αki α
l
jCov(εt−ks,i, εt−ls,j)

=
∞∑
k=0

αki α
k
jCov(εt−ks,i, εt−ks,j)

=
Cov(εt−ks,i, εt−ks,j)

1− αiαj
=

φ

1− αiαj
.

To find unknown parameters for seasonal BINAR we will use CLS method, which minimizes
the squared differences:

Q(αj, λj) = min
αj ,λj

n∑
t=s+1

(Xj,t − αjXj,t−s − λj)2.

We get the following system by taking partial derivatives of Q(αj, λj) and equating them to
zero:


∂Q
∂αj

= −2
∑n

t=2(Xj,t − αjXj,t−s − λj)Xj,t−s = 0

∂Q
∂λj

= −2
∑n

t=2(Xj,t − αjXj,t−s − λj) = 0
, j = 1, 2. (36)

Now from (36) we get the following expressions:

n∑
t=s+1

Xj,tXj,t−s − αj
n∑

t=s+1

X2
j,t−s − λj

n∑
t=s+1

Xj,t−s = 0 (37)

and

λj =

∑n
t=s+1(Xj,t − αjXj,t−s)

n− s
. (38)

By substituting expression from (37) into (38) and multiplying by (n− s) we get:
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(n− s)
n∑

t=s+1

Xj,tXj,t−s − αj(n− s)
n∑

t=s+1

X2
j,t−s −

n∑
t=s+1

Xj,t

n∑
t=s+1

Xj,t−s + αj(
n∑

t=s+1

Xj,t−s)
2 =

αj((
n∑

t=s+1

Xj,t−s)
2 − (n− s)

n∑
t=s+1

X2
j,t−s) + (n− s)

n∑
t=s+1

Xj,tXj,t−s −
n∑

t=s+1

Xj,t

n∑
t=s+1

Xj,t−s = 0.

Now we have CLM estimators for αj and λj, j = 1, 2.

α̂CLSj :=
(n− s)

∑n
t=s+1Xj,tXj,t−s −

∑n
t=s+1Xj,t

∑n
t=s+1Xj,t−s

(n− s)
∑n

t=s+1X
2
j,t−s − (

∑n
t=s+1Xj,t−s)2

, (39)

λ̂CLSj :=
1

n− s
(

n∑
t=s+1

Xj,t − α̂CLSj

n∑
t=s+1

Xj,t−s). (40)

However, these CLS estimates do not consider the dependence parameter for innovations
assumed to have bivariate distribution. Based on suggestion by Padeli [18] it is proven, that
models residuals are equal to the covariance of the innovations. Therefore, by minimizing
the squared differences between model residuals and the innovation covariance the dependence
parameter φ can be estimated:

Q(Cov(ε1, ε2)) = min
Cov(ε1,ε2)

n∑
t=s+1

((X1,t − α1X1,t−s − λ1)(X2,t − α2X2,t−s − λ2)− Cov(ε1, ε2))
2.

Assuming Cov(ε1, ε2) = φ it becomes:

Q(φ) = min
φ

n∑
t=s+1

((X1,t − α1X1,t−s − λ1)(X2,t − α2X2,t−s − λ2)− φ)2.

By taking the derivative in respect of φ and equating it to zero and expressing φ we get:

φ =
1

n− s

{ n∑
t=s+1

(X1,t − α1X1,t−s)(X2,t − α2X2,t−s)− λ1
n∑

t=s+1

(X2,t − α2X2,t−s)−

λ2

n∑
t=s+1

(X1,t − α1X1,t−s) + λ1λ2

}
.

Now by substituting λ̂CLSj , j = 1, 2 from (40) we get CLS estimator for φ:
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φ̂CLS =
1

n− s

n∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)(X2,t − α̂CLS2 X2,t−s)

− 1

(n− s)2
n∑

t=s+1

(X1,t − α̂CLS1 X1,t−s)
n∑

t=s+1

(X2,t − α̂CLS2 X2,t−s)

− 1

(n− s)2
n∑

t=s+1

(X2,t − α̂CLS2 X2,t−s)
n∑

t=s+1

(X1,t − α̂CLS1 X1,t−s)

+
1

(n− s)2
n∑

t=s+1

(X1,t − α̂CLS1 X1,t−s)
n∑

t=s+1

(X2,t − α̂CLS2 X2,t−s)

=
1

n− s

{ n∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)(X2,t − α̂CLS2 X2,t−s)

− 1

n− s

n∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)
n∑

t=s+1

(X2,t − α̂CLS2 X2,t−s)

}
.

Here λ̂CLSj represents E(εj,t). Since we use innovations that are distributed under bivari-
ate Poisson distribution (ε1, ε2) ∼ BivariatePois(λ1, λ2, φ), the expectations are calculated
E(εj,t) = λj + φ. Therefore, the true estimator for λj is:

λ̂∗CLSj = λ̂CLSj − φ̂CLS, j = 1, 2.
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4 Covid-19 data

In this thesis INAR models are applied to COVID-19 data: deaths and incidences in Lithua-
nia, Estonia, Croatia and Israel. First, we present an overview of the situation, then analyse the
relationship between deaths and incidences and lastly apply models and produce a two-week
forecast.

4.1 Data description

Data for Lithuania is taken from Lithuania Official Statistics Portal Open Data [2] and
covers the period from the first registered case on February 1st, 2020, to December 31st 2021.
Data set contains daily registered COVID-19 cases, deaths, vaccinations. The number of deaths
is broken down into three groups based on the definition:

1. Number of deaths with COVID-19 as the leading cause of death. The indicator is
calculated by summing all registered records of medical form E106 (unique persons), in which
the main cause of death is ICD disease codes U07.1 or U07.2.

2. Number of deaths with COVID-19 of any cause of death. The indicator is calculated by
summing all registered records of the medical form E106 (unique persons), in which the ICD
disease codes U07.1, U07.2, U07.3, U07.4, U07.5 are indicated as the main, direct, intermediate
cause of death or other important pathological condition.

3. Number of deaths of COVID-19 or COVID-19 deaths due to any cause and deaths due to
non-external causes within 28 days. The indicator is calculated by summing all registered records
of the medical form E106 (unique persons), in which the ICD disease codes U07.1, U07.2, U07.3,
U07.4, U07.5 are indicated as the main, direct, intermediate cause of death or other important
pathological condition, and all records in medical form E106 (unique individuals) who died
within the last 28 days after receiving a positive diagnostic response to the SARS-CoV-2 test
or had an entry in medical form E025 with ICD disease code U07.2 or U07.1.

For the analysis and calculations we chose the third definition, which is the widest of all
and comparable with other countries. Looking at the Figure 1 we can observe that a better
epidemic situation is during the warm season - late spring to early autumn. Also, it is possible
to see three waves, and notice that the current wave started to increase earlier compared with
2020. Just to remind, in 2020 schools and universities were on remote teaching, and working
from home, if possible, was highly recommended. Of course, a series of preventions were made
so that the spread be stopped, the most important dates are presented in Table 4. There
were two quarantines, which respectively lasted three and seven and a half months, another
important date is the start of mass vaccination on May 31th 2020, before that the priority was
for vulnerable parts of the population, such as older people or having some chronic disease, and
for workers at the most important sections, like medics or teachers.
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(a) (b)

Figure 1: COVID-19 cases (a) and deaths (b) in Lithuania

Date Event
2/28/2020 The first case detected
3/16/2020 Beginning of the first quarantine
6/17/2020 End of first quarantine
11/7/2020 Beginning of the second quarantine
12/27/2020 Vaccination started
5/31/2021 Start of mass vaccination
7/1/2021 End of the second quarantine
9/13/2021 Activities bounded by the National Certificate

Table 4: COVID-19 restrictions in Lithuania

By looking at the data we can suspect the seasonality for incidence data, which closely
depends on the number of tests done. Usual during Friday and weekend testing slows down and
that reflects on confirmed cases. It would be possible to use the derived indicator - share of
positive tests from all tests, however, since we want to work with integer-value data it can not
be a choice. To check seasonally we calculated daily means and variance, from Figure 2 (a) we
can see that weekly seasonality do exist, this hypothesis is also confirmed by ACF, significant
lag at 7 days period. The same hypothesis can be checked for deaths data, as seen in Figure 2
(b) there is no evidence for seasonality, which is expected.
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(a) (b)

Figure 2: Mean, variance and ACF for cases (a) and deaths (b) in Lithuania

Data for other countries are taken from the World Health Organisation website [6]. A few
countries are selected: Estonia, Israel and Croatia. The first registered COVID-19 cases for
all countries are different, and the last data point is 31st December, 2021. The dynamics for
Lithuania, Estonia and Croatia are similar, lowers numbers of infected during late spring - early
autumn, while during the colder season we observe an increase (see Appendix A 6). A little
different situation can be observed in Israel data, here a fast increase in the summer of 2021
and a decrease in late autumn. Of course, the control of pandemic depends on taken precaution
actions from the government, the vaccination rate.

As well as in Lithuania data, weekly seasonality in incidence exists and in other countries
(see Appendix A 6), while there is no seasonality in deaths time series, as expected. Since we
analyse a few distributions, we need to figure out what kind of data we have.

Country Sample size Mean Variance Min Max Overdispersion
Croatia 676 1049.8195 2178988.7 0 7315 2075.5841
Estonia 673 358.7043 193204.9 0 2300 538.6189
Israel 680 2027.1882 6766747.2 0 11345 3337.9965
Lithuania 652 800.1411 825264.4 0 3925 1031.3986

Table 5: Incidence data summary
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Country Sample size Mean Variance Min Max Overdispersion
Croatia 676 18.480769 473.42630 0 92 25.6172
Estonia 673 2.870728 16.63951 0 32 5.7963
Israel 680 12.123529 180.79768 0 75 14.9130
Lithuania 652 21.466258 537.04494 0 102 25.0181

Table 6: Deaths data summary

Tables 5 and 6 show information about the data. Mortality is significantly highest in Lithua-
nia, having in mind that the population in Croatia and Israel respectively are ≈4.1 and ≈9.3
million while the population in Lithuania are ≈2.7 million, according to the UN. Another thing
we can observe from these two tables is the overdispersion, which means Poisson distribution
might not be the best choice.

4.2 Incidence and deaths

What about the dependence between the number of incidences and the number of causalities?
It is clear that deaths depend on confirmed cases, what is unknown with what lag the dependence
is the highest, in other words after getting infected how many days passed till the person might
die. To figure this out we calculate the Pearson correlation coefficients for 1 to 30 days. Also,
since we know some information about vaccination in each country, additionally we split the
time series into two parts: before vaccination and after vaccination. However, vaccination is
rather a slow process, consequently, there is no exact date to use. Because of it, for each country
selected the date was when a share of the vaccinated population in greater than 40%.

From the Figure 3 we can observe a slight difference between pre-vaccination and post-
vaccination (assumption is 40% of the population are vaccinated), but it seems like the period
is just a little bit longer, for instance in Lithuania before July 1st, 2021 the highest correlation
coefficient was at day 13, while after July 1st, 2021 it is 19 days. Only for Israel in all three
cases is the same number of days - 13 days. We could conclude that on average it is 15 days,
so when we have a peak of number incidence, approximately after 15 days, we can expect the
peak of the number of deaths.
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(a) (b)

(c) (d)

Figure 3: Correlation between deaths and incidences in Lithuania (a), Croatia (b), Estonia (c)
and Israel (d)

4.3 Two weeks forecast

Before applying the models we need to prepare the data. As seen in the graphs earlier we
can observe some specifics: a wide range of values, high variability and trend. Knowing that
the INAR type models are used for stationary data, we make a few data transformations. First,
we take the logarithm of data, however, just by taking the logarithm, we get non-integer values
meaning we can not apply models. Several articles proposed to take logarithm and then use
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only the integer part of values. Using this proposition we take ceilings of logarithmic data, that
is dye := min{n ∈ Z|y ≤ n}. Also in order not to lose a lot of information, before taking the
ceiling, we multiply data by 100, so the full transformation is:

d100 · log(y + 10)e.

The constant is added for dealing with zero values. The next step is to remove the trend.
Just by looking at graphs, we see the trend, which is also confirmed by the Augmented Dickey-
Fuller test, a p-value greater than 0.05 shows that the data has unit root. For trend elimination
we calculate seven days median, however, we can not straightforward subtract it from the data
because we would get negative values. To avoid it, a trend was shifted lower so that there are no
negative values after subtraction. Performed Augmented Dickey-Fuller test showed (see Table
7 ) that after transformations there are no proof of unit root, the null hypothesis is rejected for
both variables, all countries have a p-value less than 0.05.

Before transformation After transformation
Country Variable Test statistic p-value Test statistic p-value

Lithuania
Incidence -1.72 0.69 -5.52 0.01
Deaths -1.24 0.9 -5.87 0.01

Estonia
Incidence -2.4 0.41 -6.9 0.01
Deaths -2.02 0.58 -9.38 0.01

Croatia
Incidence -1.66 0.72 -5.58 0.01
Deaths -1.67 0.71 -6.63 0.01

Israel
Incidence -1.89 0.62 -3.72 0.02
Deaths -1.63 0.73 -6.12 0.01

Table 7: Unit root test

4.3.1 INAR

Having prepared data we can apply models and calculate a two-week forecast. For incidence
data, we use INAR(1)7 model since weekly seasonality was confirmed. INAR(1) will be used for
the number of deaths. From the results presented in Tables 5 and 6 we can assume, that Poisson
distribution is not a good fit, therefore we also take Negative Binomial and Generalized Poisson
distributions, which are used for overdispersed data. In previous sections, we concluded the
best estimation method is CML, accordingly, parameters will be estimated using this method.
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Distribution
Parameter Poisson NB GP

α 0.11 0.12 0.13
λ 90.2 68.96
r 148.72
p 0.63
η 0.21

RMSE 12.193 12.375 12.185
AIC 5145.872 5112.303 5086.734
BIC 5154.810 5120.641 5100.142

Distribution
Parameter Poisson NB GP

α 0.018 0.04 0.04
λ 99.15 64.97
r 77.96
p 0.45
η 0.33

RMSE 14.377 14.452 14.381
AIC 5775.571 5629.469 5540.957
BIC 5784.573 5638.312 5554.461

(a) (b)
Distribution

Parameter Poisson NB GP
α 0.11 0.17 0.16
λ 89.16 55.49
r 64.65
p 0.54
η 0.34

RMSE 14.296 14.572 14.272
AIC 5712.404 5582.982 5484.284
BIC 5721.415 5596.499 5497.801

Distribution
Parameter Poisson NB GP

α 0.09 0.12 0.12
λ 90.15 61.28
r 82.49
p 0.51
η 0.30

RMSE 13.673 13.770 13.662
AIC 5651.759 5575.839 5477.909
BIC 5660.783 5589.374 5491.445

(c) (d)

Table 8: INAR(1) model results for number of deaths in Lithuania (a), Croatia (b), Estonia (c)
and Israel (d)

Table 8 shows the results for all countries. To determine which model is the best, RMSE,
Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) was calculated.
Based on these three indicators it can be concluded that INAR(1) model with Generalized
Poisson distribution is the best fit for deaths data. In all four countries, AIC and BIC were
the smallest for the model with Generalized Poisson distribution, while RMSE for Estonia and
Croatia were slightly smaller for the model with the Poisson distribution.

Assuming the best choice is INAR(1) with Generalized Poisson distribution a two-week
forecast is calculated, which is presented in Figure 5, the black line is the historical data, red -
forecasted values. The dynamic for all countries is very similar - a slight decrease. If we look at
the dynamic of new registered cases data for Lithuania and Croatia from the time t− 15, here
t is December 31st, 2021, we also observe a slight decrease, which confirms that forecasts are
quite reasonable. In Estonia and Israel past few weeks shows an increase in new cases, which
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might be because of a new fast-spreading COVID-19 variant Omicron. Having this in mind
we could expect an increase in the number of deaths, however, this model does not take into
account incidence data.

(a) (b)

(c) (d)

Figure 4: Two week forecast for Lithuania (a), Croatia (b), Estonia (c) and Israel (d)

A similar situation is in the number of new cases data, where INAR(1)7 was used. If we look
at the Table 9 it can be noticed that the smallest RMSE values are for the model with Poisson
distribution for Lithuania, Estonia and Israel. But considering AIC and BIC unanimously the
best fit for this data is INAR(1)7 with Generalized Poisson distribution.

Having the results, 14-day forecasts were calculated by using the model with Generalized
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Poisson distribution. It is visible that for Lithuania, Estonia and Israel cases will increase, while
in Croatia will drop a little. Weekly fluctuations are also seen in the forecasts. Of course to
calculate an accurate forecast is quite impossible since it depends on many factors, such as virus
mutation, which could be highly transmissible, vaccination rate etc.

Distribution
Parameter Poisson NB GP

α 0.47 0.64 0.63
λ 156.43 48.96
r 66.19
p 0.56
η 0.54

RMSE 30.506 31.74 31.43
AIC 6475.471 6213.179 5915.363
BIC 6484.410 6226.587 5928.770

Distribution
Parameter Poisson NB GP

α 0.24 0.19 0.21
λ 227.29 55.48
r 65.27
p 0.22
η 0.33

RMSE 33.526 33.6455 33.610
AIC 7603.348 6825.739 6641.678
BIC 7612.351 6939.243 6655.182

(a) (b)
Distribution

Parameter Poisson NB GP
α 0.11 0.17 0.16
λ 89.16 55.49
r 64.65
p 0.54
η 0.34

RMSE 56.549 62.085 55.118
AIC 10713.707 8694.388 7502.765
BIC 10722.718 8106.963 7516.282

Distribution
Parameter Poisson NB GP

α 0.47 0.58 0.57
λ 155.51 51.06
r 65.90
p 0.55
η 0.59

RMSE 35.282 36.856 35.653
AIC 7501.892 7169.428 6486.868
BIC 7510.915 7182.964 6500.403

(c) (d)

Table 9: INAR(1) model results for number of incidences in Lithuania (a), Croatia (b), Estonia
(c) and Israel (d)
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(a) (b)

(c) (d)

Figure 5: Two week forecast for Lithuania (a), Croatia (b), Estonia (c) and Israel (d)

4.3.2 BINAR

In previous sections the dependence between deaths and incidences was confirmed, also it
could be assumed data have similar contributory factors: various preventions measures, weather
or season etc., therefore, it is plausible to analyse time series as a bivariate process by applying
bivariate INAR model. Since it is already known that incidence data has seasonality, we would
like to include it in the model. Lets use BINAR(p) model, denote Dt - number of deaths, It -
number of incidences:
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Dt = β1 ◦Dt−1 + ...+ βp ◦Dt−p + ε
(1)
t ,

It = α1 ◦ It−1 + ...+ αp ◦ It−p + ε
(2)
t .

However, we would like to have restricted BINAR(p). Assume p = 7, since we have weekly
seasonality, and coefficients {β2, ..., β7, α1, ..., α6} = 0, using binomial thinning property 0 ◦Z =

0, we get the following model: Dt = β1 ◦Dt−1 + ε
(1)
t ,

It = α7 ◦ It−7 + ε
(2)
t .

For simplicity instead of β1 and α7 we use β, α. Then the conditional means are:

E(Dt|Ft−1) = E(β ◦Dt−1 + ε
(1)
t |Ft−1) = βDt−1 + λ1,

E(It|Ft−7) = E(α ◦ It−7 + ε
(2)
t |Ft−7) = αIt−7 + λ2.

Using the calculation provided in section 3.4 we will use CLS method to estimate the un-
known parameters for β, α, λj, φ, here j = 1, 2.

β̂CLS :=
(n− 1)

∑n
t=2DtDt−1 −

∑n
t=2Dt

∑n
t=2Dt−1

(n− 1)
∑n

t=2D
2
t−1 − (

∑n
t=2Dt−1)2

, λ̂CLS1 :=

∑n
t=2Dj,t − β̂CLS

∑n
t=2Dt−1

n− 1
,

(41)

α̂CLS :=
(n− 7)

∑n
t=8 ItIt−7 −

∑n
t=8 It

∑n
t=8 It−7

(n− 7)
∑n

t=8 I
2
t−7 − (

∑n
t=8 It−7)

2
, λ̂CLS2 :=

∑n
t=8 It − α̂CLS

∑n
t=8 It−7

n− 7
. (42)

The next step is to minimize the squared differences of models residuals and the covariance:

Q(Cov(ε(1), ε(2))) = min
Cov(ε(1),ε(2))

n∑
t=8

((Dt − βDt−1 − λ1)(It − αIt−7 − λ2)− φ)2.

Again by taking the derivative in respect of φ and equating it to zero we get:

(n− 7)φ =
n∑
t=8

(It − αIt−7)(Dt − βDt−1)− λ1
n∑
t=8

(Dt − βDt−1)− λ2
n∑
t=8

(It − αIt−7) + λ1λ2.

Now by substituting λ̂CLSj , j = 1, 2, we get CLS estimate for φ:
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φ̂CLS =
1

n− 7

{ n∑
t=8

(It − α̂It−7)(Dt − β̂Dt−1)−
∑n

t=8(It − α̂It−7)
∑n

t=8(Dt − β̂Dt−1)

n− 7
−∑n

t=8(It − α̂It−7)
∑n

t=8(Dt − β̂Dt−1)

n− 1
+

∑n
t=8(It − α̂It−7)

∑n
t=8(Dt − β̂Dt−1)

(n− 1)(n− 7)

}
.

The final estimate for λ̂∗CLSj = λ̂CLSj − φ̂CLS, j = 1, 2.

Now having all the necessary information about the model, restricted BINAR will be applied
to the data. The results are presented in the Table 10, since the parameters were estimated
using the CLS method, RMSE is used for measuring model accuracy. Interesting results can be
noticed by looking at the φ estimate, for Lithuania φ = 1.3 which means only approximately
one incidence/causality is caused by the same factors (season, virus mutation, etc.) for both
time series, while for Croatia and Estonia it is around 26. If we compare the RSME of the
BINAR model and individual model, calculated earlier (Tables 8 and 9), it can be concluded
that individual models worked better, RMSE are lower for all countries for both time series.
For deaths data separate models RMSE was around 12-14.5, meanwhile, for the BINAR model
it varies from 14.3 - 34.3, a similar situation is for incidence data: RMSE from the separate
model were 30 - 62, and for BINAR it is significantly higher 297 - 1324. However, it is essential
to remember that for separate models Generalized Poisson distribution was used, which is
more suitable for overdispersed data, moreover different estimation methods were used, from
simulations we concluded CML presents more accurate estimators.

Parameter Lithuania Croatia Estonia Israel
β 0.14 0.17 0.018 0.14
α 0.67 0.81 0.39 0.71
λ1 24.31 44.76 34.93 18.23
λ2 97.75 78.63 153.71 74.51
φ 1.31 26.17 26.21 10.46

RMSE
Deaths 25.37 34.25 32.38 14.26

Incidences 446.03 819.69 297.01 1323.54

Table 10: BINAR(1) model results

As well as in previous cases, a 14-day forecast can be calculated. Figures 6-9 below illus-
trates the results, black line represents historical data, red - forecasted values. The forecasted
number of incidences are increasing in all four countries, in Croatia a higher variability might
be observed. The fastest increase in two weeks is for Israel, which is expected since the last
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week was rather a large growth. Taking a look at the number of deaths forecast all, except for
Israel, are slightly decreasing.

(a) (b)

Figure 6: Two week forecast using BINAR for Lithuania: incidences (a) and deaths (b)

(a) (b)

Figure 7: Two week forecast using BINAR for Croatia: incidences (a) and deaths (b)
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(a) (b)

Figure 8: Two week forecast using BINAR for Estonia: incidences (a) and deaths (b)

(a) (b)

Figure 9: Two week forecast using BINAR for Israel: incidences (a) and deaths (b)
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5 Conclusions

In this thesis some non-negative integer-valued autoregressive models, that are easy to es-
timate and apply, were introduced. Furthermore, INAR models can be extended by including
seasonality (INARs) or analysing data with bivariate structure (BINAR). Three estimators for
the model parameters are considered: the method of moments, conditional least squares and
conditional maximum likelihood. The efficiency of the estimators has been tested on simu-
lated data and evaluated using Bias and RMSE. Considered models with different distributions:
Poisson, Negative Binomial and Generalized Poisson.

Models for COVID-19 data: incidence and deaths in Lithuania, Estonia, Croatia and Israel
were applied. The start day is unique for each country (early spring of 2020), while the last
data point is in 31st December, 2021. In all four countries, 7 days seasonality in incidence data
was observed, while no seasonality in deaths data, as expected. First, models were applied
separately: INAR(1) for deaths and INAR(1)7 for incidences. Several transformations were
made: we took logarithm and ceilings to keep integer-valued series, after that the trend was
removed so that data be stationary. By comparing models with different distributions, the
best result, in respect of RMSE, showed models with Generalized Poisson innovations, which is
reasonable having in mind overdispersion in the data.

Another part of the analysis was made by taking deaths and incidence as bivariate data
case, where innovations are bivariate Poisson distribution. BINAR model was constructed as
restricted BINAR(7), where some coefficients were equated to zero. Based on model accuracy
and forecasts BINAR model did not outperform previously explored individual models.

Predicting COVID-19 cases and deaths are quite impossible, it depends on a bunch of various
factors, such as vaccination, preventions like quarantine, social distancing or masks. Also at
any time, a new more aggressive mutation might appear, such as a variant called Omicron,
which is experienced currently at the beginning of 2022. The most recent researches state the
Omicron has a higher transmissibility rate than previous mutations and might predominate in
most places, moreover it is more resistant to vaccines, so the boost shot is recommended.

For future work, model modification might be applied, such as the incorporation of some
lagged number of incidence, cause the more people get infected the more will die. For this case,
it could be interesting to find a solution, if it exists, for model Dt = β1 ◦Dt−1 + α ◦ It−s, where
s is highest correlation between deaths and lags of incidences, as seen earlier it is around 15
days. Another model that could be applied is the Poisson model with varying intensity.
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6 Appendix A

(a) (b)

Figure 10: COVID-19 cases (a) and deaths (b) in Estonia

(a) (b)

Figure 11: Mean, variance and ACF for cases (a) and deaths (b) in Estonia
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(a) (b)

Figure 12: COVID-19 cases (a) and deaths (b) in Croatia

(a) (b)

Figure 13: Mean, variance and ACF for cases (a) and deaths (b) in Croatia
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(a) (b)

Figure 14: COVID-19 cases (a) and deaths (b) in Israel

(a) (b)

Figure 15: Mean, variance and ACF for cases (a) and deaths (b) in Israel
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