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Abstract

The examination of financial markets behaviour crucial part of the financial investments theory.
The methods for analyzing the financial, markets established in the 1960’s and 1970’s, were valid only
during periods of stable market conditions. They are based on the assumption that the financial mar-
ket’s behaviour is subject to the normal distribution law. In the nineties began to look at this problem
from the point of view of fractal analysis. It was observed that financial time series have the property of
self-similarity. In this paper, we have tested long memory property for the five biggest cryptocurrencies:
Bitcoin, Ethereum, Binance Coin, XRP, and Cardano. This thesis studies persistence and volatility
using R/S analysis was carried out. Our findings show that four out of five cryptocurrencies have a
significant long memory, supporting the use of fractional Generalized Auto-Regressive Conditional Het-
eroscedasticity (GARCH) extensions as a suitable modeling technique. In this paper, the Fractionally
Integrated GARCH (FIGARCH) models, with skewed student distribution, were produced and com-
pared with GARCH models. Models were compared using Akaike information criteria, which indicated
the improvement of the model’s fitness. The paper ends with some concluding remarks and future
directions of research.

Keywords: Fractal analysis, R/S analysis, GARCH, Fractionally integrated GARCH, volatility of
financial series.
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Santrauka

Finansų rinkų elgesio tyrimas yra svarbi finansinių investicijų teorijos dalis. Finansinės analizės me-
todai, šeštajame ir aštuntajame dešimtmečiuose įkurtose rinkose, galiojo tik stabilių rinkos sąlygų lai-
kotarpiais. Jie buvo pagrįsti prielaida, kad finansų rinkos elgsena yra taikomas normalaus paskirstymas.
Praėjusio amžiaus devintajame dešimtmetyje į šią problemą buvo pradėta žiūrėti iš fraktalinės analizės
pusės ir pastebėta, kad finansinės laiko eilutės yra atsikartojančios į save. Šiame darbe išbandėme
penkių didžiausių kriptovaliutų ilgosios atminties savybę: Bitcoin, Ethereum, Binance Coin, XRP ir
Cardano. Buvo atliktas patvarumo ir nepastovumo eilučių tyrimas naudojant R/S analizę. Mūsų išva-
dos rodo, kad keturios iš penkių kriptovaliutų turi didelę atmintį, o tai leidžia naudoti fraktalinius
generalizuoto autoregresyvaus sąlyginio heteroskedastiškumo (GARCH) plėtinius kaip tinkamą mode-
liavimo metodą. Šiame darbe buvo sukurti fraktališkai integruoti GARCH (FIGARCH) modeliai su
iškreiptu studentų pasiskirstymu ir palyginti su GARCH modeliais. Modeliai buvo lyginami naudo-
jant Akaike informacinius kriterijus, kurie parodė modelio tinkamumo pagerėjimą. Rašto darbas yra
baigiamas pastebėjimais ir būsimomis tyrimų kryptimis.

Raktažodžiai: Fraktalinė analizė, R/S analizė, GARCH, Fraktališkai integruotas GARCH, laiko ei-
lutės nepastovumas.
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1 Introduction

By December of 2021, all cryptocurrencies, measured in market capitalization, had a combined
market value of 2.2 trillion dollars. Bitcoin alone made up nearly 895 billion dollars of this value, while
Ethereum – the second-biggest cryptocurrency, was catching up with Bitcoin, and made up over 461
billion dollars. Given the significant value of currencies, some people see their value as actual gold-
based currencies. In contrast, others view them as investment opportunities. The result has been large
swings in the value for both currencies over short periods of time.

In 2017, the value of a single Bitcoin increased 2000%, going from $863 on January 9, 2017, to the
highs of $17,550 in December 2017. Eight weeks later, in February 2018, the price of a single Bitcoin had
plunged to a value of $7,9643. Blockchain, the promising technology that underpins cryptocurrencies,
makes it probable that they will continue to be utilized in some capacity and that their use will expand.
The variability in the price of cryptocurrencies creates uncertainty for people and investors who use
them as a currency rather than an investment. Cryptocurrencies are a comparably new store of value
(Bitcoin was launched in 2009) relative to the well-established currencies such as the U.S. dollar. What
causes price changes in this new store of value is an area of debate. Researcher Ladislav Kiroufek
found that Bitcoin is a unique asset. Its price behaves similarly to both standard financial assets and
speculative ones. Given that cryptocurrency prices do not behave like traditional currencies, the prices
are tough to model and predict.

This paper focuses on analyzing time series from the point of view of fractal analysis and creating a
forecasting model to predict the returns of cryptocurrencies. For this paper, Bitcoin, Ethereum, Binance
Coin, XRP, and Cardano were chosen as analysis objects, which have the biggest capitalization market
and have more than four years of historical data. Such cryptocurrencies are more predictable and more
interesting from the point of view of investment.

Fractal analysis, for a long time, was used to analyze and recognize when features of complex
ecological systems are altered, since fractals can characterize the natural complexity in such systems.
Thus, fractal analysis helps quantify patterns in nature and identify deviations from these natural
sequences. At the beginning of the 90s, the study of financial markets began in fractal analysis.
Financial time series, with the property of self-similarity, began to be regarded as fractals [13]. In this
paper, Rescaled range analysis (R/S analysis), one of the fractal analysis methods, was used to observe
the presence of long-term memory in time series.

The Hurst index (H index) captures a strong trend in data, if it exists. The H index, also known as
the index of long-range dependence, can extrapolate a future value or average for the data. The Hurst
index ranges between zero and one, measuring persistence, randomness, or mean reversion. Time series
that displays a random stochastic process has the H index close to 0.5. When H is greater than 0.5,
the data is exhibiting a strong long-term trend, and when H is less than 0.5, it is likely to reverse the
trend over the time frame considered.[13]

Chapter 1 provides a brief overview of the working principles and history of cryptocurrency. It
quickly introduces the reader to all the cryptocurrencies and data, which will be mentioned or used
in this paper. Chapter 2 introduces the reader to the methodology used and the steps to execute it.
Chapter 3 consists of the descriptive statistics of the data and the results after R/S analysis was done.
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Chapter 4 compares and shows the best GARCH and FIGARCH models, created with the hourly data
and checks whether including long memory into the model improves the model’s accuracy. Finally,
Section 5 summarizes our conclusions and the opportunities for future work.
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2 Cryptocurrencies

The research, outlined further in this article, requires understanding where and why the data was
acquired and how cryptocurrencies differ from typical fiat currency or company stocks traded on regular
stock exchanges. This section will go into the history of these data sources and why they were picked
so that the reader can understand the final analysis.

2.1 Working principle of the Cryptocurrencies and history

This research examines market capitalization statistics for the world’s most valuable cryptocurren-
cies. Bitcoin is the most popular, and Ethereum is the second most popular. The first cryptocurrency,
Bitcoin, was founded in 2009 by a person or group known only as "Satoshi Nakamoto." With the launch
of Bitcoin, "Satoshi Nakamoto" has published a study, "Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem," which described a peer-to-peer payment system, based on electronic cash (cryptocurrencies) that
could be sent without a middleman from one party to another without the need for a third party to
verify the transaction. This breakthrough is made possible by using "blockchain," which functions as
a shared ledger on a peer-to-peer network, with all transactions validated by the network and hence
impossible to counterfeit. Blockchain technology has applications that go beyond peer-to-peer pay-
ment systems. The technology offers security, anonymity, and a distributed ledger, making it ideal for
internet-of-things applications, distributed storage systems, healthcare, and other applications. Many
more blockchains and cryptocurrencies have been formed due to the blockchain’s wide range of appli-
cations. Cryptocurrencies are linked to the blockchain because they incentivize machines to run and
validate the blockchain and the electricity they require. Cryptocurrencies will become more popular as
the use of blockchains grows. This provides them intrinsic value, but a variety of variables can influence
the scale of said value. Because this is a new sort of money and a new type of storing value, gaining a
better knowledge of what can drive price shifts is valuable.

2.2 Bitcoin

Bitcoin (BTC) is a decentralized cryptocurrency launched in 2009. It is a peer-to-peer online cur-
rency, meaning that all transactions happen directly between equal, independent network participants,
without the need for any intermediary to permit or facilitate them [4]. According to Nakamoto’s own
words, Bitcoin was created to allow “online payments to be sent directly from one party to another with-
out going through a financial institution.” Some concepts for a similar type of decentralized electronic
currency precede BTC [6]. Still, Bitcoin holds the distinction of being the first-ever cryptocurrency to
come into actual use.

The Bitcoin network uses the Proof-of-Work (PoW) consensus algorithm, which is used to validate
transactions, secure the network, and mine new tokens. The critical drawback of the PoW mechanism
is extra computational work, which leads to a large amount of excess electricity consumption.

The market cap of Bitcoin stood over 900 billion USD when this paper was written. It has a
circulating supply of over 18.9 million BTC coins and a maximum supply of 21 million BTC coins. The
cryptocurrency price has reached an all-time high of 68, 789.63 USD. Historical BTC prices are shown
in Figure 1.
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Figure 1: Bitcoin historical price

2.3 Ethereum

Ethereum (ETH) is a decentralized open-source blockchain system that features its cryptocurrency,
Ether [9]. Ethereum works as a platform for numerous other cryptocurrencies and executing decen-
tralized smart contracts. Ethereum was first described in 2013 in the white paper by Vitalik Buterin.
Buterin, along with other co-founders, secured funding for the project in an online public crowd sale in
the summer of 2014. The project team managed to raise $18.3 million in Bitcoin. Ethereum’s price in
the Initial Coin Offering (ICO) was $0.311, with over 60 million Ether sold. Taking Ethereum’s price
now puts the return on investment (ROI) at an annualized rate of around 270%, essentially almost
quadrupling investment every year since the summer of 2014.

Same as Bitcoin, Ethereum currently uses a Proof-of-Work (PoW) consensus mechanism. Ethereum
network will switch to a different, more efficient consensus algorithm – Proof-of-Stake (PoS). The
selected algorithm will fix issues arising from the original PoW protocol, such as scalability limitations
and high energy consumption.

The market cap of Ethereum stands over 450 billion USD, making it the second-biggest cryptocur-
rency when this paper was written. It has a circulating supply of 118 million ETH coins and does not
have the maximum limit of the available coins. Historical ETH prices are shown in Figure 2.
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Figure 2: Ethereum historical price

2.4 Binance Coin

Binance Coin (BNB) has the most significant cryptocurrency daily exchange volume globally. Bi-
nance brings cryptocurrency exchanges to the forefront of financial activity globally. Binance’s idea is
to show this new paradigm in global finance.

Binance Chain relies on a system of 21 validators with proof-of-Staked-Authority (PoSA) consensus
that can support short block times and lower fees. As Ethereum price rises and network usage increases,
Binance Chain achieves significantly lower fees and a faster transaction rate relative to the Ethereum
network.

Aside from being the largest cryptocurrency exchange globally, Binance has launched a whole
ecosystem of functionalities for its users. The Binance network includes the Binance Chain, Binance
Smart Chain, Binance Academy, Trust Wallet, and Research projects, which all employ the powers of
blockchain technology to bring new-age finance to the world. Binance Coin is an integral part of the
successful functioning of many of the Binance sub-projects. [17]

The market cap of Binance Coin stands over 88 billion USD, which makes it the third biggest
cryptocurrency at the time this paper was written. It has a circulating supply of 166 million BNB
coins, which is the maximum limit of the available coins. Historical BNB prices are shown in Figure 3.
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Figure 3: Binance Coin historical price

2.5 XRP

XRP is the currency that runs on a digital payment platform called RippleNet, which is on top of
a distributed ledger database called XRP Ledger. The XRP Ledger is open-source and is not based
on blockchain but rather the previously mentioned distributed ledger database. The idea behind the
Ripple payment platform was first voiced in 2004 by Ryan Fugger [14]. It was not until Jed McCaleb,
and Chris Larson took over the project in 2012, that Ripple began to be built.

The market cap of XRP stands over 38 billion USD, making it the eighth biggest cryptocurrency
when this paper was written. It has a circulating supply of 47 billion XRP coins, and the maximum
limit of available coins is 100 billion XRP. Historical XRP prices are shown in Figure 4.
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Figure 4: XRP historical price

2.6 Cardano

Cardano (ADA) is a proof-of-stake blockchain platform. The open-source project aims to “redis-
tribute power from unaccountable structures to the margins to individuals”.

Cardano was founded in 2017 and named after the 16th-century Italian polymath Gerolamo Car-
dano. The ADA token is designed to ensure that owners can participate in the operation of the network.
Because of this, those who hold the cryptocurrency have the right to vote on any proposed changes to
the software [8].

Cardano uses the proof-of-Stake (PoS) consensus mechanism, which is less energy-intensive than
the proof-of-Work algorithm relied upon by Bitcoin. Although the much larger Ethereum is going to
be upgrading to PoS, this transition is going to take place gradually [7].

The market cap of Cardano stands over 42 billion USD, which makes it the 6th biggest cryptocur-
rency at the time this paper was written. It has a circulating supply of 33.5 billion ADA coins, and the
maximum limit of available coins is 45 billion ADA. The historical price of Cardano is shown in Figure
5.
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Figure 5: Cardano historical price

2.7 Data

https://www.cryptodatadownload.com/data/binance/ website has already collected cryptocurrency
data gathered from the exchange platform ”Binance”. Datasets used for this paper consist of hourly
prices of Bitcoin, Ethereum, Binance Coin, XRP, and Cardano during the pandemic from August 2020
up until December 2021, which consists of more than 11 000 values per cryptocurrency. The data was
used for R/S analysis to check whether the time series has a long memory and to make GARCH models
for forecasting. Daily data was used to make forecasting models. In this paper, we compare the results
of two models: GARCH and Fractional Integrated GARCH models.
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3 Methodology

To better detect various characteristics of cryptocurrency returns, we employ long memory tests
before modelling the volatility of these series. According to the results of these long memory tests, we
later estimate the appropriate GARCH and Fractionally Integrated GARCH (FIGARCH) class models,
which accurately take into account the asymmetry in the relevant series. The long memory process
could be described as a slowly decaying autocovariance function. At this point, it is necessary to remind
that volatility is highly persistent in high-frequency financial time series.

3.1 R/S Analysis procedure

Re-scaled range statistic (R/S) was introduced by Hurst (1951) and later revised by Mandelbrot
and Wallis (1969) to detect the presence of long-term memory in time series. According to Mandelbrot
(1971), R/S statistics could be used in economic and financial analysis. Essentially, the re-scaled range
statistic R/S is the range of partial sums of deviations of a time series from its mean, re-scaled by its
standard deviation (Zivot and Wang 2003). Consequently, the Hurst exponent H symbolizes the scaling
behaviour of the range of cumulative departures of a time series from its mean.

To determine the type of memory of financial time series, R/S analysis was used, which consists of
performing the following steps:

• The Source series with length M is converted using logarithmic ratios. The result is a time series
of length N =M − 1 with the following values:

Ni = log

(
Mi+1

Mi

)
,

where i = 1, 2, ...,M − 1. The requirements for the sample are that its volume N must be large
enough and be a multiple of 2.

• Further, this series is divided into A adjacent sub-periods of length n, such that An = N . Each
of them is denoted by Ia, where a = 1, 2, ..., A. We denote every item in Ia through Nk,a at
k = 1, 2, ..., n. The average value Nk,a is determined in each sub-period according to the formula:

ea =
1

n

n∑
k=1

Nk,a,

where a = 1, 2, ..., A.

• Next, a series of accumulated deviations (Xk,a) are compiled for each sub-period Ia. It is defined
as follows:

Xk,a =
k∑

i=1

(Ni,a − ea),

where k = 1, 2, ..., n.

14



• In the next step, the range of the accumulated frequency of each sub-period Ia is determined:

Ra = max
1≤k≤n

Xk,a − min
1≤k≤n

Xk,a.

• Then we calculate the sample standard deviation for each sub-period Ia according to the formula:

Sa =

√√√√ 1

n

k∑
i=1

(Ni,a − ea)2.

• The average value R/S is determined for length n according to the following formula:

(R/S)n =
1

A

A∑
a=1

Ra

Sa
.

• The last step is to increase the length n to the next higher value. Steps 1-6 are repeated until
n = N/2. Finally, linear regression is constructed, where the variable log(n) is taken as an
argument, and the dependent value is log

(
R
S

)
. The slope of the equation is an estimate of the

Hurst index, H.

The values of the Hurst index can take the following values:

• Whether the process is characterized by long-term memory, that is persistence. It means that
subsequent indicators are highly dependent on previous ones. This is close to the sensitivity to
the initial conditions, which is characteristic of chaos.

0, 5 < H ≤ 1.

• If the sample is random.
H = 0, 5.

• If the system is changing faster than random. The Hurst indicator means not a persistent process.

0 ≤ H < 0, 5.

Then, the financial time series was investigated concerning chaotic cycles. For this, the V-statistic
was calculated, which gives a more accurate measurement of the cycle length. It can be said that the
higher the Hurst index is, the smaller the number of “notches” in the time series. This indicator can be
used to get a good performance in the presence of noise. It is defined as follows: [13]

Vn =
(R/S)n√

n
.

This ratio will lead to a constant line if the R/S statistics changes the scale in proportion to the square
root of time [18]. For example, function graph V will be flat if the process is independent probabilistic.

15



If the process is persistent and R/S changes its scale faster than the square root of time (H > 0, 5), the
graph has a slope directed upwards. If the process is not persistent (H < 0, 5), the graph has a slope
directed downwards. Plotting V -statistics is as follows: values Vn are put on the Oy axis, and log(n)

are arranged along axis Ox. At the points in which the graph becomes straightforward, the process
with long-term memory dissipates.

To test the null hypothesis that the system is an independent process, these values must be compared
with the theoretical values E((R/S)n). These values are calculated by the formula:

E((R/S)n) =
(n− 0, 5)

n
·
√

2

πn
·
n−1∑
r=1

√
n− r

r

Next, the same series of financial indicators are checked for volatility. For this, the values of the original
series were transformed into a series of logarithmic differences:

Si = ln

(
Mi

Mi−1

)
, where i = 2, 3, ...,M.

Volatility is the deviation of adjacent increments Si. These increments are disjoint and independent:

Vn =

∑n
i=1(Si − S)2

n− 1
,

where Vn is dispersion for n days, S is an average value for Si(i = 1, 2, ..., n). Change in volatility over
time n is calculated:

Ln = ln

(
Vn
Vn−1

)
.

A study was conducted in the presence of cycles. The entire period was divided into sub-periods
according to the schedule of V-statistics of the financial series. For each sub-period, the Hurst index
was calculated, and the significance of the regression equations was determined. After interpreting the
result obtained, the investigated persistent financial series cycles were determined.

3.2 GARCH Model

Data used for GARCH models must be stationary. The data is stationary if the mean, variance,
and autocorrelation structure are constant over the time interval. A stationary series does not contain
trends, and it has no seasonality. The stationarity of the data is essential to describe the future
behaviour of the process. If the data is not stationary, it is necessary to transform it using the first
difference. The first differences are the data changes from one period to the next. Plotting the data of
the first difference can reveal whether the data has been transformed to a stationary series or not. If
it is still not stationary, the second difference is taken [11]. The model fitting can be carried out once
the stationarity of the series has been achieved. In the current study, two-time series models will be
considered.

The central assumption underlying Bollerslev’s (1986) GARCH modelling is that the market vari-
ance depends not only on historical conditional market variance but also on market shocks. Generalized
Auto-Regressive Conditional Heteroscedasticity (GARCH, p, q) equation is written in the following
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form:

Rt = α0 +
k∑

i=1

βiXi +
h∑

j=1

ϕjRt−j + εt, (1)

where εt|Ωt−1 ∼ N(0, ht).

ht = ω +

p∑
i=1

βiht−i +

q∑
j=1

αjε
2
t−j , (2)

where ht = σ2t |Ωt−1.
The satisfying conditions for the equations are ω > 0, α > 0, β ≥ 0, (

∑p
i=1 αi +

∑q
i=1 βi < 1). εt

stands for disturbance term for mean equation, Rt describes the return of the asset at time t, and
X’s denote explanatory variables. Equations (1) and (2) are the mean and the conditional variance
equations, respectively. In this model, estimated parameters should satisfy non-negativity constraints
to assure a positive conditional variance. Hence, GARCH models consider only the magnitude of the
shock - not its sign.

3.3 The Fractionally Integrated GARCH (FIGARCH) Model

The primary purpose of introducing the FIGARCH model was to develop a more flexible class of
processes for the conditional variance, capable of explaining and representing the observed temporal
dependencies in financial market volatility. In particular, the FIGARCH model allows only a slow
hyperbolic rate of decay for the lagged, squared or absolute innovations in the conditional variance
function. This model can accommodate the time dependence of the variance and a leptokurtic un-
conditional distribution for the returns with a long memory behaviour for the conditional variances.
[2]

Most of the time, high-frequency financial data follows a pattern that yields a sum of α1 and β1

close to one, with α1 small and β1 large. Therefore, the effect of shocks on the conditional variance
diminishes very slowly. In these situations, Baillie et al. (1996) suggest the class of Fractionally
Integrated GARCH (FIGARCH) models. This model captures slowly decaying volatility and recognizes
conditional variance’s long memory and short memory characteristics (Chkili et al., 2014). Fractionally
integrated processes are significantly different from stationary and unit-root processes with persistence
and mean-reverting features. Formally, the FIGARCH (1, d, 1) can be defined with lag operator “L” as
follows:

ht = ω + βht−1 + [1− (1− βL−1)(1− λL)(1− L)d]ε2t ,

where ω > 0, β > 1 and λ < 1.
The fractional integration parameter d reflects the degree of long memory, or the persistence of

shocks to conditional variance, and satisfies the condition 0 ≤ d ≤ 1. If 0 < d < 1, the model implies
an intermediate range of persistence and indicates the volatility shocks only at a hyperbolic rate. If the
integration parameter d = 0, the model has a short memory and reduces to a GARCH (1, 1) model.
On the other hand, if d = 1, the model transforms to Integrated GARCH (IGARCH) (1, 1).
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4 Results

4.1 R/S Analysis

The entire cryptocurrency period was split into subperiods according to the schedule of V-statistics
of the financial series. A study was conducted in the presence of cycles to check for persistency. The
Criterion was the slope of the V-statistics curve. The Hurst index was calculated for each subperiod,
and the best fit was chosen for the FIGARCH model. After interpreting the obtained result, the cycles
for the investigated persistent financial series were determined:

An R/S analysis was performed from hourly data, and the Hurst index was calculated. The number
of elements in the subgroups was chosen to be 24. This division gave the best or better values of
the Hurst index for each cryptocurrency. In addition, this number of elements can indicate that
cryptocurrencies have some sort of dependency on the local hours. As a method for the study, a
program was written in the programming language R, see Appendix C. The result of the Hurst index
for Bitcoin is shown in Table 1. The value of the Corrected R over S Hurst exponent index is 0.55,

Table 1: Hurst index for cryptocurrencies

Cryptocurrency Bitcoin Ethereum Binance Coin XRP Cardano
Simple R/S Hurst estimation: 0.5366088 0.555031 0.552313 0.5207716 0.5476281

Corrected R over S Hurst exponent: 0.5575797 0.5659764 0.5722721 0.5407198 0.5599986
Theoretical Hurst exponent: 0.5271419 0.5282946 0.5331905 0.5331905 0.5331905

which is greater, but not by much, than the Corrected empirical Hurst exponent value 0.52. It allows
us to conclude that the hourly data of the Bitcoin price is persistent and possesses long-term memory.
However, the values of the indexes do not differ by much.

Next, we built a graph of V-statistics and a E((R/S)n) graph of theoretically calculated indicator
E((R/S)n) to the null hypothesis and shows the behaviour of a system that is a completely independent
process. For comparison, Appendix A, Figure 36 show the V- statistics graphs for the bitcoin series
under consideration. These graphs also confirm the presence of persistence for the financial series of
Brent crude oil price quotes and the dollar/ruble exchange rates.

The same R/S analysis was performed, and the Hurst index was calculated for the rest of the
cryptocurrencies. The number of elements in the subgroups was 24 as with bitcoin because the same
pattern was noticed in the rest. The Hurst index was the highest for Ethereum and Binance at
approximately 0.55, with the lowest and close to H = 0.5 for XRP.

In addition, this number of elements can possibly indicate that cryptocurrencies depend on the
local hours. It allows us to conclude that the hourly data of the other coin prices are persistent and
possesses long-term memory, see Appendix Figures 37-40, where (R/S) always surpasses E((R/S)n).
Nevertheless, the values of the indexes do not differ significantly.
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5 Models

The hourly return measures the price changes of the cryptocurrencies in a U.S. dollar price as a
percentage change of the previous hour closing price. A positive return means the cryptocurrency has
grown in value, while a negative return has lost value. Suppose there is a lot of movement in daily
returns. In that case, the cryptocurrency is more volatile and is riskier as an investment. Bitcoin prices
started to gradually increase at the beginning of 2020, as displayed in Figure 1. This large and sudden
increase corresponds to the beginning of the lockdown during the pandemic.

Hourly return series is calculated as log differences of price levels as follows:

rt = 100 · (lnPt − lnPt−1),

where Pt represents the price of the cryptocurrency at the moment t, Pt−1 represents the price of the
cryptocurrency at the previous hour and rt represents return at time t.

5.1 Bitcoin

5.1.1 Descriptive statistics

We discuss the modelling of time-series data obtained from the ”Binance” exchange rate for August
1, 2020, through December 12, 2021: a total of 11936 observations. Figure 6 represents the percentage
returns of the exchange rate series. It clearly indicates the high volatility in the series during the period
under consideration. Analysing short lag, up to 50 hours (see Figure 7), it can be observed that a lag
of 24 hours is significant. Hence it confirms a choice of parameter d = 24 for Hurst estimation. The
long autocorrelation function of the absolute returns, displayed in Figure 8, has got hyperbolic decay,
indicating the possibility of modelling the series with a long memory model.

Figure 6: Returns of Bitcoin

As it is hard to have a deterministic trend in the long run for financial data, we will not look for
trend models here and going to directly jump into GARCH models, more specifically FIGARCH and
GARCH, in order to capture the auto-correlation structure of historical prices.
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Figure 7: Autocorrelation of Bitcoin (lag 50) Figure 8: Autocorrelation of Bitcoin (lag 10000)

Figure 9 shows the Q-Q normal plot for return in Figure 6 with fat skewed tails and a significant
Shapiro-Wilk normality test, confirming the series is not normally distributed. Student-t and skewed
student-t distributions were used since the returns have heavier tails than the normal distribution.

Figure 9: Q-Q plot of Bitcoin

5.1.2 GARCH and FIGARCH models

Fitted GARCH model is written in form of:
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rt = 0.000125 + εt

εt = 0.000001σt

σ2t = 0.000001 + 0.077393ε2t−1 + 0.921267σ2t−1

Model’s results for volatility forecasting are observed in Figure 10. There is no significant difference
between the fitted values and the forecasted values. The model decently responds to volatility jumps.
However, post 2021 August, observation accuracy decreases.

We have fit the FIGARCH model to this data set:

yt = 100log(st/st−1) = 0.000202 + εt, εth
−1/2
t ∼ N(0, 1)

ht = 0.000000 + 0.957744ht−1 + [1− 0.957744L− (1− ψ1L)(1− L)d)]ε2t

It is seen in Figure 11 that the FIGARCH model approaches the same issues – further forecasting
decreases in accuracy and can not follow higher volatility periods in late periods. Compared to the
GARCH model described previously, the FIGARCH model is better for forecasting by Akaike estimate
(see Appendix B, Table 3) -7.3114 than the GARCH model and its Akaike estimate being equal to
-7.1065.

Figure 10: GARCH forecast of volatility Figure 11: FIGARCH forecast of volatility

Using the information criteria computations given in Table 3, we conclude that the FIGARCH
(p,d,q) process fits well for the cryptocurrency data. Thus, we propose FIGARCH (0,d,1) as a suitable
model for this data set. Model residual analysis shows degradation in model forecasting after only a
few months.

5.2 Ethereum

5.2.1 Descriptive statistics

The time-series data of Ethereum were obtained from the ”Binance” exchange rate for the period
of August 1, 2020, through December 12, 2021: a total of 11936 observations. Figure 12 represents the
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percentage returns of the exchange rate series. The hourly returns of the Ethereum had stayed within
the 20 percent range throughout the period, with only one case, where the returns of Ethereum were
down 14 percent just in one hour. During the pandemic, the volatility of the time series has increased
significantly, and it must be considered.

Figure 12: Returns of Ethereum

Analysing short lag, up to 50 hours (see Figure 13), it can be observed that a lag of 24 hours is
significant. Hence it confirms a choice of parameter d = 24 for Hurst estimation. The long autocorre-
lation function of the absolute returns, displayed in Figure 14, has got hyperbolic decay, indicating the
possibility of modelling the series with a long memory model.

Figure 13: Autocorrelation of Ethereum (lag
50)

Figure 14: Autocorrelation of Ethereum (lag
10000)

As it is hard to have a deterministic trend in the long-run for financial data, we are not going to
look for trend models here and, as in the case of Bitcoin, we are directly jumping into GARCH models,
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more specifically FIGARCH and GARCH, to capture the auto-correlation structure of historical prices.

Figure 15: Q-Q plot of Ethereum

The Q-Q normal plot in Figure 15 for return of Ethereum with fat tails and significant Shapiro-Wilk
normality test confirms, that the series is not normally distributed. Student-t and skewed student-t
distributions were used since the returns have heavier tails than the normal distribution.

5.2.2 GARCH and FIGARCH models

Fitted GARCH model is written in form of:
rt = 0.000226 + εt

εt = 0.000002σt

σ2t = 0.000002 + 0.070181ε2t−1 + 9.147769σ2t−1

Results of the GARCH model for volatility forecasting are observed in Figure 16. There is no
significant difference between the fitted values and the forecasted values. The model decently responds
to volatility jumps. However, post August 2021, observation accuracy decreases.

We have fit the FIGARCH model to this data set:

yt = 100log(st/st−1) = 0.000289 + εt, εth
−1/2
t ∼ N(0, 1)

ht = 0.000000 + 0.954726ht−1 + [1− 0.954726L− (1− ψ1L)(1− L)d)]ε2t

It is seen in Figure 17 that the FIGARCH model approaches the same issues – further forecasting
decreases in accuracy and can not follow higher volatility periods in late periods. Compared to the
GARCH model described previously, the FIGARCH model is better for predicting by Akaike estimate
(see Appendix B, Table 3) -6.7019 compared to the GARCH model and its Akaike estimate being equal
to -6.5549.
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Figure 16: GARCH forecast of volatility Figure 17: FIGARCH forecast of volatility

Using the information criteria computations given in Table 3, we conclude that the FIGARCH
(p,d,q) process fits well for the cryptocurrency data. Thus, we propose FIGARCH (0,d,1) as a suitable
model for this data set. Model residual analysis shows degradation in model forecasting only after a
few months.

5.3 Binance Coin

5.3.1 Descriptive statistics

The time-series data of Binance Coin were obtained from the”Binance” exchange rate for the period
of August 1, 2020 through December 12, 2021: a total of 11936 observations. Figure 18 represents the
percentage returns of the exchange rate series. The hourly returns of the Binance Coin have been more
volatile than Bitcoin and Ethereum.

Figure 18: Returns of Binance Coin

During the pandemic, the volatility of the time series has increased significantly, and it must be
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considered. On several occasions the returns have reached over a 15% difference in the price in only
one hour. Analyzing short lag, up to 50 hours (see Figure 19), it can be observed that a lag of 24
hours is significant. Hence it confirms a choice of parameter d = 24 for Hurst estimation. The long
autocorrelation function of the absolute returns, displayed in Figure 20, has got hyperbolic decay,
indicating the possibility of modelling the series with a long memory model.

Figure 19: Autocorrelation of BNB (lag 50) Figure 20: Autocorrelation of BNB (lag 10000)

The autocorrelation function of the absolute returns has got hyperbolic decay (see Figure 20), when
more data values are taken. As a result, it indicates the possibility of modelling the series with a
long memory model. It is hard to have a deterministic trend in the long run for financial data. We
will not look for trend models here and going to directly jump into GARCH models to capture the
auto-correlation structure of historical prices.

Figure 21: Q-Q Plot of Binance Coin

The Q-Q normal plot for returns in Figure 21 with fat tails and significant Shapiro-Wilk normality
test confirms, that the series is not normally distributed. Student-t and skewed student-t distributions
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were used since the returns have heavier tails than the normal distribution.

5.3.2 GARCH and FIGARCH models

Fitted GARCH model is written in form of:
rt = 0.000125 + εt

εt = 0.000002σt

σ2t = 0.000002 + 0.107997ε2t−1 + 0.891003σ2t−1

Results of the GARCH model for volatility forecasting are observed in Figure 22. There is no
significant difference between the fitted values and the forecasted values. The model decently responds
to volatility jumps. However, post August 2021, observation accuracy decreases.

We have fit the FIGARCH model to this data set:

yt = 100log(st/st−1) = 0.000206 + εt, εth
−1/2
t ∼ N(0, 1)

ht = 0.000001 + 0.926249ht−1 + [1− 0.926249L− (1− ψ1L)(1− L)d)]ε2t

It is seen in Figure 23 that the FIGARCH model approaches the same issues – further forecasting
decreases in accuracy and can not follow higher volatility periods in late periods. Compared to the
GARCH model described previously, the FIGARCH model is better for forecasting by Akaike estimate
(see Appendix B, Table 3) -6.4959 compared to the GARCH model and its Akaike estimate being equal
to -6.0615.

Figure 22: GARCH forecast of volatility Figure 23: FIGARCH forecast of volatility

Model residual analysis shows degradation in model forecasting only after a few months. Using the
information criteria computations given in Table 3, we conclude that the FIGARCH (p,d,q) process
fits well for the cryptocurrency data. Thus, we propose FIGARCH (0,d,1) as a suitable model for this
data set.
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5.4 XRP

5.4.1 Descriptive statistics

The time-series data of XRP were obtained from the ”Binance” exchange rate for the period August
1, 2020 through December 12, 2021: a total of 11936 observations.

Figure 24: Returns of XRP

Figure 24 represents the percentage returns of the exchange rate series. The hourly returns of the
XRP had stayed within a 40% change throughout the period, with only a few cases where the returns
of the XRP were more than 20% up and more than 20% down in one hour. During the pandemic, the
volatility of the time series has increased significantly, and it must be considered.

Figure 25: Autocorrelation of XRP (lag 50) Figure 26: Autocorrelation of XRP (lag 10000)
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Analyzing short lag, up to 50 hours (see Figure 25), it can be observed that a lag of 24 hours is
significant. However, it is not the biggest spike in the autocorrelation of XRP. Nevertheless, it confirms
a choice of parameter d = 24 for Hurst estimation. The long autocorrelation function of the absolute
returns, displayed in Figure 26, has got hyperbolic decay, indicating the possibility of modelling the
series with a long memory model.

Figure 27: Q-Q Plot of XRP

The Q-Q normal plot for return in Figure 27 with fat tails and significant Shapiro-Wilk normality
test confirms, that the series is not normally distributed. Student-t and skewed student-t distributions
were used since the returns have heavier tails than the normal distribution.

5.4.2 GARCH and FIGARCH models

Fitted GARCH model is written in form of:
rt = 0.000279 + εt

εt = 0.000002 · σt
σ2t = 0.000002 + 0.120534ε2t−1 + 0.875746σ2t−1

Results of the GARCH model for volatility forecasting are observed in Figure 28. There is no
significant difference between the fitted values and the forecasted values. The model decently responds
to volatility jumps. However, post 2021, observation accuracy decreases.

We have fit the FIGARCH model to this data set:

yt = 100log(st/st−1) = 0.000064 + εt, εth
−1/2
t ∼ N(0, 1)

ht = 0.000002 + 0.712234ht−1 + [1− 0.712234L− (1− ψ1L)(1− L)d)]ε2t

It is seen in Figure 29 that the FIGARCH model approaches the same issues – further forecasting
decreases in accuracy and can not follow higher volatility periods in late periods. Compared to the
GARCH model described previously, the FIGARCH model is not better for forecasting by Akaike
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estimate (see Appendix B, Table 3) -6.3381 compared to the GARCH model. Its Akaike estimate is
equal to -6.3717.

Figure 28: GARCH forecast of volatility Figure 29: FIGARCH forecast of volatility

Using the information criteria computations given in Table 3, we conclude that the FIGARCH
(p,d,q) process fits almost equally as good as the GARCH model. Thus, we propose FIGARCH (0,d,1)
as a still suitable model for this data set.

5.5 Cardano

5.5.1 Descriptive statistics

The time series data of Cardano were obtained from the ”Binance” exchange rate for the period
of August 1, 2020 through December 12, 2021: a total 11936 observations. Figure 30 represents the
percentage returns of the exchange rate series.

Figure 30: Returns of Cardano
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During the pandemic, the volatility of the time series has increased significantly, and it must be
considered. The hourly returns of Cardano have been more volatile compared to Bitcoin and Ethereum.
On one occasion, the value of the coin dropped over 20% in only one hour.

Analyzing short lag, up to 50 hours (see Figure 31), it can be observed that a lag of 24 hours is
significant. Hence it confirms a choice of parameter d = 24 for Hurst estimation. The long autocorre-
lation function of the absolute returns, displayed in Figure 32, has got hyperbolic decay, indicating the
possibility of modelling the series with a long memory model.

Figure 31: Autocorrelation of Cardano (lag 50) Figure 32: Autocorrelation of Cardano (lag 10000)

As it is hard to have a deterministic trend in the long run for financial data, we will not look for
trend models here and going to directly jump into GARCH models to capture the auto-correlation
structure of historical prices.

Figure 33: Q-Q Plot of Cardano

The Q-Q normal plot for return in Figure 33 with fat tails and significant Shapiro-Wilk normality
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test confirms the series is not normally distributed. Student-t and skewed student-t distributions were
used since the returns have heavier tails than the normal distribution.

5.5.2 GARCH and FIGARCH models

Fitted GARCH model is written in form of:
rt = 0.000123 + εt

εt = 0.000004σt

σ2t = 0.000004 + 0.128723ε2t−1 + 0.863925σ2t−1

Results of the GARCH model for volatility forecasting are observed in Figure 34. There is no
significant difference between the fitted values and the forecasted values. The model decently responds
to volatility jumps. However, post August 2021, observation accuracy decreases.

We have fit the FIGARCH model to this data set:

yt = 100log(st/st−1) = −0.000029 + εt, εth
−1/2
t ∼ N(0, 1)

ht = 0.000002 + 0.766887ht−1 + [1− 0.766887L− (1− ψ(L))(1− L)d)]ε2t

It is seen in Figure 35 that the FIGARCH model approaches the same issues – further forecasting
decreases in accuracy and can not follow higher volatility periods in late periods. Compared to the
GARCH model described previously, the FIGARCH model is better for forecasting by Akaike estimate
(see Appendix B, Table 3) -6.1549 compared to the GARCH model and its Akaike estimate being equal
to -5.9728.

Figure 34: GARCH forecast of volatility Figure 35: FIGARCH forecast of volatility

Model residual analysis shows degradation in model forecasting only after a few months. Using the
information criteria computations given in Table 3, we conclude that the FIGARCH (p,d,q) process
fits well for the cryptocurrency data. Thus, we propose FIGARCH (0,d,1) as a suitable model for this
data set.
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6 Conclusions

To conclude, the main goal of this paper was to investigate whether the time series of the cryp-
tocurrencies are persistent and predictable by using fractal analysis. The persistence hypothesis of the
studied series was tested using R/S analysis, and the Hurst index of fractal analysis and cycles were
also found there. The results showed that most of the cryptocurrencies’ returns depend on the local
hours. The most significant Hurst index was acquired with subgroups of 24 elements, with the hourly
returns. The Hurst index was higher than 0.5 for 4 out of 5 cryptocurrencies, indicating that processes
are not random. However, the value of the Hurst index never reaches more than 0.6, which concludes
that cryptocurrencies are not strongly persistent with the given data.

Moreover, the GARCH and the FIGARCH models were fitted on the hourly cryptocurrencies’
returns. The Fractionally Integrated GARCH models slightly improved the accuracy of forecasting for
Bitcoin, Ethereum, Binance Coin and Cardano, according to information criteria.

Apart from regular equities, commodities, and precious metals, cryptocurrency may become a main-
stream financial tool in the future of global financial markets. The blockchain as a technology is still in
the development process, and all cryptocurrencies have not yet reached their stabilized values. There-
fore, future studies could analyze at what level of stability cryptocurrencies could be predicted with
former methods. As a result, this study will give investors a better understanding of the cryptocurrency
markets and stimulate more research.

For the future works the similar R/S analysis could be applied for the other cryptocurrencies and
different periods of time. In addition, analysis of the returns of cryptocurrency during the specific hour
could be performed, since, the evidence of the a lag of 24 hours were observed.
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Appendices

Appendix A

Figure 36: V-Statistics of Bitcoin Figure 37: V-Statistics of Ethereum

Figure 38: V-Statistics of Binance Coin Figure 39: V-Statistics of XRP
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Figure 40: V-Statistics of Cardano Coin

Appendix B

Table 2: Information Criteria of GARCH models

Information Criteria Bitcoin Ethereum Binance Coin XRP Cardano
Akaike -7.1065 -6.5549 -6.0615 -6.3717 -5.9728
Bayes -7.1009 -6.5493 -6.0559 -6.3661 -5.9671

Shibata -7.1065 -6.5549 -6.0615 -6.3717 -5.9728
Hannan-Quinn -7.1046 -6.5530 -6.0595 -6.3698 -5.9708

Table 3: Information Criteria of GARCH models

Information Criteria Bitcoin Ethereum Binance Coin XRP Cardano
Akaike -7.3114 -6.7019 -6.4959 -6.3381 -6.1549
Bayes -7.3036 -6.6940 -6.4881 -6.3302 -6.1470

Shibata -7.3114 -6.7019 -6.4959 -6.3381 -6.1549
Hannan-Quinn -7.3087 -6.6992 -6.4932 -6.3353 -6.1521
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Appendix C

r.s.function = function(n){
# Find A
A = length(r.df)/n

N.ka = matrix(r.df, ncol = A, nrow = n)

# Calculate e.a which is means
e.a = colMeans(N.ka)

# Step 3, series of accumulated deviations are compiled for each sub-period

X.ka = matrix(rep(0), ncol=A, nrow=n)
for (k in 1:n){

for (a in 1:A){
X.ka[k,a] = sum(N.ka[1:k,a]) - e.a[a]

}
}

# Step 4, the range of the accumulated frequency of each sub-period is determined
R.a = matrix(0, nrow=1,ncol=A)

for (a in 1:A){
R.a[1,a] = max(X.ka[,a]) - min(X.ka[,a])

}

# Step 5, we calculate the sample standard deviation for each sub-period according to the
S.a = matrix(0, nrow=1,ncol=A)

S.a_initial = colSums((N.ka - e.a)^2)
S.a = sqrt(S.a_initial / n)

# Step 6, The average value is determined for length n according to the following
RS.n = (1/A) * sum(R.a / S.a)

return(RS.n)
}
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Appendix D

library(xts)
library(rugarch)
#hourly data
df <- read.csv("C:/...", header=TRUE, sep= ";", dec=",")

plot(df, xlab="Time", ylab="Price in US dollar", main="Price of Bitcoin")
df$date = paste0(df$date, ":00")
df$date <- as.POSIXct(df$date,

format = "%d/%m/%Y %T", tz = "UTC")
# Removing non-numeric characters in the series
df$close <- (as.numeric(df$close))

inds = seq(
from=as.POSIXct("01/08/2020 23:00:00","%d/%m/%Y %T", tz="UTC"),
to=as.POSIXct("13/12/2021 00:00:00", "%d/%m/%Y %T", tz="UTC"),
by="hour"

)

df$close[2:11936] = diff(log(df$close), lag=1)
plot(r.df, xlab="Time", ylab="Return in %", main="Returns of Bitcoin")

df.ts = xts(df$close, inds[1:11936])

plot(df.ts,as.POSIXct("01/08/2020 23:00:00","%d/%m/%Y %T", tz="UTC"), xlab="Time",

ylab="Price in USD",
main="Bitcoin Price from 2020 to 2022")

r.df =df.ts # Continuous compound return
plot(r.df, xlab="Time", ylab="Return in %", main="Returns of Bitcoin")

r.df = r.df[-1]
out_of_sample <- round(length(r.df)/2)
dates_out_of_sample <- tail(inds, out_of_sample)

df = df$close[-1]
setwd("C:/...")
AutoCorrelation = acf(df, lag = 2, lag.max = 10000)
plot(AutoCorrelation , main = "Autocorrelation of Bitcoin")
jpeg(’BTC1autocorrelation.jpg’)
plot(AutoCorrelation, main = "Autocorrelation of Bitcoin")
dev.off()
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setwd("C:/...")
PartialAutoCorrelation = pacf(df, lag = 1, lag.max = 50)
plot(PartialAutoCorrelation , main = "Partial Autocorrelation of Bitcoin")
jpeg(’pavadinimas.jpg’)
plot(AutoCorrelation, main = "Partial Autocorrelation of Bitcoin")
dev.off()

garch_spec2 <- ugarchspec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE),
variance.model = list(model = "sGARCH", garchOrder = c(1,1)))

garch_spec3 = ugarchspec(variance.model=list(model="fiGARCH", garchOrder=c(1,1), submodel="GARCH"),
mean.model=list(armaOrder=c(1,0), include.mean=TRUE), distribution.model="std")

garch_fit <- ugarchfit(spec = garch_spec3, data = r.df, out.sample = out_of_sample)
garch_fit
coef(garch_fit)

# forecast log-returns along the whole out-of-sample
garch_fore <- ugarchforecast(garch_fit, n.ahead = 1, n.roll = out_of_sample-1 )
#?ugarchfit
forecast_log_returns <- xts(garch_fore@forecast$seriesFor[1, ], dates_out_of_sample)
forecast_volatility <- xts(garch_fore@forecast$sigmaFor[1, ], dates_out_of_sample)

fitted_garch = xts(fitted(garch_fit), inds[1:out_of_sample-1])
colnames(fitted_garch) = "fitted"

# plot of log-returns
plot(cbind("fitted" = sigma(garch_fit),

"forecast" = forecast_volatility,
"original" = r.df),

col = c("blue", "red", "black"), lwd = c(0.5, 0.5, 2),
main = "Forecast of volatility", legend.loc = "topleft", ylim = c(-0.15,0.15))

# plot of log-returns
plot(cbind("fitted" = fitted(garch_fit)*exp(1),

"forecast" = forecast_log_returns*exp(1),
"original" = r.df),

col = c("blue", "red", "black"), lwd = c(0.5, 0.5, 2),
main = "Forecast of log-returns", legend.loc = "topleft", ylim = c(-0.15,0.15))
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