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Abstract
In order to solve the problem of explainability of machine learning (ML) models,

many solutions have been suggested in the recent years. One of them is a technique
from robust statistics - influence functions (IF). However, many papers indicate that
IF return outliers and mislabelled data as the most influential points from training
set. In order to identify relevant examples that are more understandable for end
users, alternative method was suggested: relative influence functions (RelatIF). In
this paper, we compare how this method works on models where influence functions
fail.

Keywords: Influence functions, RelatIF, explainability
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1. Introduction

The growth of available data (Figure 1), less expensive data storage and more
powerful processing has influenced the growth of machine learning applications. The
more the need to identify profitable opportunities or avoid unknown risks is growing,
the more sophisticated models are created. Applications in diverse fields, an influence
in decision making and ability to solve problems in real-time systems (Ahmad and
Chen (2020),Wang et al. (2020)) made a significant impact on creation of black box
models.

Figure 1: The total amount of data created, captured, copied, and consumed globally in
recent years and forecast for upcoming years. Data from www.statista.com

Predictions made with complicated models are hard to explain and they might
lead to unfair and wrong decisions, causing problems, such as biased predictions
in criminal justice or wrong models in healthcare (Guidotti et al. (2018)). While
the formal definition for explainability has yet to be defined, legal requirements for
models applied in administration and justice are already in use (Bibal et al. (2021)).
Therefore, it becomes really important to be able to explain why certain conclusions
are drawn.

One of the ways to deal with black box models was proposed by Koh and Liang
(2017) – influence functions (IF). IF demonstrate the effect of removing an individual
training point on the model predictions at the test-time. It has been observed that
IF return outliers and mislabelled training points as the most influential. Outliers’
detection is an important part of data quality. As most of the real-world tasks have
data that drifts over time (i.e. has a non-stationary environment), it is important to
monitor quality of data.
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The ability to detect outliers is important for machine learning engineers as it helps
to debug the model itself. However, as highlighted by Bhatt et al. (2020), there is still
a need of explainability techniques for end users. In order to deal with this problem,
an alternative method has evolved – relative influence functions (RelatIF). They help
to identify examples from training set that are more intuitive and understandable for
end users.

However, it was indicated (Basu et al. (2020a)) that in non-convex environment
influence functions do not work properly. In this paper, we compare RelatIF with
IF. We conduct experiments in order to check whether RelatIF return more intuitive
influential points and to see the impact of loss functions used for models. Models
that are used have been chosen based on IF performance. Firstly, we analyse logistic
regression where exact Hessian can be computed, then we compare Convolutional
Neural Network (CNN) in binary classification problem and finally we analyse the
results produced by three different CNN models for classification problems that vary
in architecture, depth and width.

Paper is organized as follows. At first some preliminary information is introduced.
Then literature review is given. In the fourth section influence functions are presented.
In the fifth section we demonstrate why influence functions do not work on specific
ML algorithms. In the sixth section, we introduce RelatIF. The seventh section is
devoted to experimental findings. And finally, the conclusions are presented.
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2. Preliminaries

• Cross entropy is a quantity, commonly used to evaluate discrepancy between
two probability distributions. In ML, it is a measure of error for categorical
multi-class classification problems, usually used to describe loss functions.

• Let X be an n−dimensional random vector with a density pθ(x), x ∈ Rn which
depends on a parameter θ ∈ Θ ⊂ Rk. As usually, by LX(θ) we denote the
likelihood θ 7→ pθ(X) whereas lX(θ) stands for the log-likelihood ln(LX(θ)).
Finally, θ̂ML(X) denotes the Maximum Likelihood Estimator (MLE) of θ,
i.e., θ̂ML(X) = arg maxθ∈ΘLX(θ). MLE is a technique which helps to determine
the parameters of distribution that describe the given data the best.

• Let P(x|θ) be a probability model, where x is a data item, θ is a vector of the
model parameters, and ∇θ the gradient operator with respect to θ. Then the
Fisher score is defined as Ux = ∇θ loge P(x|θ).
The Fisher score gives us an embedding into the feature space RN . The Fisher
kernel refers to the inner product in this space, and is defined as K(xi, xj) =
UT
xi
I−1Uxj , where I is the Fisher information matrix.

• Fisher information matrix is defined as I(θ) = E[ d
dθ
lX(θ)( d

dθ
lX(θ))T ]. It

shows how much information about θ is in the observation.

• A function f : 2E → R+, where E is a finite set, is submodular if for all
S ⊆ T ⊆ E, we have

f(T ∪ {l})− f(T ) ≤ f(S ∪ {l})− f(S)

for all l ∈ E \ T .

• Greedy is an algorithm paradigm that builds up a solution piece by piece,
always choosing the next piece that offers the most obvious and immediate
benefit.

• Cosine similarity measures the similarity between two vectors of an inner
product space. Given two vectors A and B, cosine similarity is defined as

follows: cos θ :=
A ·B
||A|| ||B||

.

• Let f : Rn → R be a scalar field. Gradient ∇f : Rn → Rn is a vector, such
that (∇f)j = ∂f/∂xj.

• Hessian is the matrix of second order mixed partials of a scalar field:
Hi,j = ∂2f

∂xi∂xj
.
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• Let A be a m×n matrix and B be a p×q matrix. Kronecker product A⊗B
is defined as pm× qn block matrix:

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB


• One-step Newton approximation estimates the change in parameters:

θ(1− w)− θ∗(1) ≈ ∇θN(t)(w)
def
= (Hλ,1(1− w))−1g1(w),

where Hλ,1(1 − w) =
( n∑
i=1

(1 − wi)∇2
θl(xi, yi; θ

∗(1))
)

+ λI is the regularized

empirical Hessian at θ∗(1) but reweighted after removing the subset w and λ
corresponds to regularization.

• Weight Decay is a regularization technique applied to the weights of a neural
network. It is used to prevent overfitting.

• Optimizers are algorithms or methods used to change the attributes of the neu-
ral network. In this paper Adaptive Moment Estimation (Adam) and Stochastic
Gradient Descent (SGD) optimizers were used.

Robust statistics

As described in Hampel et al. (2011) and Huber (1992), robustness is insensi-
tivity to small deviations from the assumptions. Robust statistics is used when the
model is fitted by the majority of the data but there is a fraction of observations -
called outliers or outlying observations - that follow a different distribution than the
assumed one.

There are three main principles in robust statistics:

1. A functional approach - parameter is described as a functional.

2. Neighbourhood of probability distributions - behaviour of functional is studied
for other models than the assumed one.

3. Equivariance properties - it is checked if estimator follows some equivariance
properties.
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Empirical risk minimization

Empirical risk minimization (ERM) is a principle that considers minimizing
the empirical loss on observed data.

Let us consider input space X and output space Y . Let h : X → Y (hypothesis)
be a function that outputs an object y ∈ Y , given x ∈ X. Also, let L(h(x), y) be the
loss function under consideration.

According to Vapnik (1992), expected value of the loss, given hypothesis h(x), is
as follows:

R(h) = E[L(h(x), y)] =

∫
L(h(x), y) dP (x, y),

here P (x, y) = P (y|x)P (x) is a joint distribution of a random variate (x, y) ∈ X × Y
and it is unknown.

As R(h) cannot be computed, the solution is to replace it with empirical risk
functional:

Re(h) =
1

n

n∑
i=1

L(h(xi), yi).

Therefore, the ERM is described as optimization problem:

h∗ = arg min
h

Re(h).

Implicit function theorem

Let F be a real-valued continuously differentiable function defined in a neighbour-
hood of (X0, Y0) ∈ R2. Suppose F satisfies the two conditions:

F (X0, Y0) = Z0,

∂F

∂Y
(X0, Y0) 6= 0.

Then there exist open intervals U and V , with X0 ∈ U , Y0 ∈ V , and a unique
function G : U → V satisfying

F [X,G(X)] = Z0,

for all X ∈ U , and this function F is continuously differentiable with

G′(X0) = −
[ ∂F
∂X

(X0, Y0)
]/∂F

∂Y
(X0, Y0).
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Activation functions

An activation function in a neural network defines how the weighted sum of the
input is transformed into an output from a node or nodes in a layer of the network.
It helps the neural network to use important information while suppressing irrelevant
data points. Activation functions are differentiable as neural networks are typically
trained using the backpropagation.

In this paper we use two activation functions: Sigmoid Linear Unit (SiLU) and
Rectified linear unit (ReLU). They are compared in Figure 2.

SiLU is defined as:
f(x) =

x

1 + e−x

ReLu is defined as:

f(x) =

{
0 if x ≤ 0

x if x > 0

Figure 2: Activation functions: SiLU - red, ReLU - blue

Models

Models that are used in this paper:

• Logistic regression is a type of statistical analysis that models the probabil-
ities for classification problems with two possible outcomes.

• Convolutional Neural Network (CNN) is a type of artificial neural network
that requires a convolutional layer and can have other types of layers, such as
nonlinear or pooling. In this paper we use three different CNNs: CNN for binary
classification, shallow CNN, EfficientNet and ResNet-50.
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Explainable AI (XAI)

Explainability of AI has not been clearly defined yet. It can be viewed as
characteristics of a model that are used for demystifying model’s internal functions.
Explainability is related to interpretability: if operations of the systems are under-
stood by human, then interpretable systems are called explainable. By Adadi and
Berrada (2018) reasons of XAI are given:

• explain to justify,

• explain to control,

• explain to improve,

• explain to discover.

Even though interpretability concerns mathematical interpretation of how inputs
are mapped to outputs, the explainability is considered to be under discussion in
multiple disciplines, including social science and philosophy.

By Arrieta et al. (2020), XAI is divided into two classes: transparent models (e.g.
logistic/linear regression, decision trees, Bayesian models) and post-hoc explainabil-
ity. The later is divided into model-agnostic (e.g. feature relevance explanation) and
model-specific (e.g. visual explanations of convolutional neural networks).

As concept of explainability is still on ongoing discussion, in this paper we compare
different methods with each other and their results are defined as less/more intuitive
based on their differences.
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3. Literature review

Influence functions are a method from robust statistics. The main goal of IF is
to estimate the effect of training points on a model’s predictions by using first-order
Taylor approximations. IF were first addressed in the 70s and 80s (Hampel (1974),
Cook and Weisberg (1982)). Mostly, IF were applied in outliers detection (Campbell
(1978)). In this paper, the criteria for examining multivariate data for outliers in
discriminant analysis is developed using influence functions.

IF applications in explaining black box models was first introduced by Koh and
Liang (2017). Some additional work followed (Koh et al. (2019)) where the effect
of computations of corresponding groups were analysed. The setting of removing a
constant fraction α of the training data has been empirically studied. Analysis centres
on the one-step Newton approximation. Additional insights were proposed by Basu
et al. (2020b). Because of the effect that removal of a large group of training points
might have on model’s parameters, the second-order approximations are studied in
this paper.

Alternative methods for computing importance of training points without comput-
ing parameters use Data Shapley values (Ghorbani and Zou (2019)). In this proposed
framework, the value depends on the three properties: learning algorithm, evaluation
metric and other points in the training set. The Shapley values come from game the-
ory, where game can be understood as collaborative game, the task as prediction, the
gain as the distance between the prediction and baseline prediction, and the players
are the features.

In Khanna et al. (2019), Fisher kernels were used in order to define sets of influ-
ential training points. The main goal there is to approximate the empirical test data
distribution using samples from the training data. Therefore, all the points in the
space induced by the Fisher kernels are embedded. If loss function in this method is
negative log-likelihood, it recovers IF.

Additional insights about IF and their value in explainability of black box models
were introduced. In Barshan et al. (2020), the idea of constraints for the change of
parameters was proposed. Basu et al. (2020a) discussed the diverse influential points
and suggested the alternative way of selecting regions without repetition.

In this paper, we will more deeply discuss some of the alternative methods men-
tioned above and how they work on models were IF does not return understandable
examples from training set.
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4. Influence functions

4.1 Background

Let us consider a ML model with parameters θ ∈ Θ ⊂ Rk. Then let X be model’s
input space (e.g. images) and Y be the output space (e.g. labels). Moreover, let a
set S = (z1, z2, ..., zn), where zi = (xi, yi) ∈ X× Y, be a training set. Then for any z
and θ let L(z, θ) be a loss and 1

n

∑n
i=1 L(zi, θ) be the empirical risk.

The parameters are learnt by weighted empirical risk minimization. For that
reason each training point zi is assigned a weight ωi. Primarily, parameter θ∗ =
θ(1/n, ..., 1/n) is obtained by weighting all points equally, that is ωi = 1

n
for all

i. Then we modify i’th weight so that θ∗i,εi = θ(1/n, ..., 1/n + εi, ..., 1/n), where εi is
deviation from ωi, meaning that εi = ωi−1/n. Therefore, when εi = 1/n, then ωi = 0
and that corresponds to dropping the point zi from S. In other words, we upweight
a training instance by an infinitesimally small step ε. After these modifications the
model needs to be retrained and its loss needs to be calculated.

As retraining for different weight configurations is prohibitively slow and computa-
tionally expensive, the influence functions from robust statistics (Cook and Weisberg
(1980) and Hampel (1974)) can be used for determining first-order approximation of
change in θ∗ around εi = 0.

Then according to Koh and Liang (2017), under the assumptions that:

1. θ(ω1, ..., ωn) is a differentiable function of weights at ω1 = ... = ωn = 1/n, and

2. L(z, θ) is strictly convex and twice continuously differentiable in θ

the influence of zi on test sample ztest = (xtest, ytest) is defined to be:

Itest,i
def
= −

dL(ztest, θ
∗
i,εi

)

dεi

∣∣∣∣
εi=0

= −gTtest
dθ∗i,εi
dεi

∣∣∣∣
εi=0

, (1)

where gtest = ∇θ∗L(ztest, θ
∗) is the loss gradient with respect to the parameters for

the upweighted training instance.

4.2 Influence for General Loss Functions

By applying implicit function theorem (Cook and Weisberg (1982)) it can be
shown that:

dθ∗i,εi
dεi

∣∣∣∣
εi=0

= −H−1
θ∗ gi, (2)

where gi = ∇θ∗L(zi, θ
∗) and Hθ∗ = 1

n

∑n
i=1∇2

θ∗L(ztest, θ
∗) is a Hessian matrix - a

second derivative of the loss with respect to the model’s parameters, meaning that
Hessian matrix describes the curvature of the loss.

Then equation 1 can be rewritten in this way:

Itest,i = gTtestH
−1
θ∗ gi. (3)
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The above formula demonstrates how the influence depends on the gradients for the
training and test loss.

Then by applying first-order Taylor series approximation

f(x) =
∞∑
n=0

fn(a)

n!
(x− a)n

and noticing that θ∗i,εi
∣∣
εi=0

= θ∗, the change of parameters’ weights can be written
as:

θ∗i,εi − θ
∗ ≈ θ∗ − θ∗ +

dθ∗i,εi
dεi

∣∣∣∣
εi=0

εi = −H−1
θ∗ giεi. (4)

Similarly, the difference in loss is approximated like this:

L(ztest, θ
∗
i,εi

)− L(ztest, θ
∗) ≈

dL(ztest, θ
∗
i,εi

)

dεi

∣∣∣∣
εi=0

εi = −gTtestH−1
θ∗ giεi. (5)

5. Why don’t influence functions work all the time?

In order to define influence of test sample there were two strict assumptions applied
in Section 4. In this section we will discuss how assumption of convexity cause
problems while applying influence functions on some of the ML models. Additionally,
tendency to return outliers as the most influential is also analysed.

5.1 Convexity

An importance of convexity in loss function comes from a convex function defini-
tion. As it has an increasing first derivative, making it appear to bend upwards (all
pairs of points on the function graph lies above function curve), the minimum of a
convex function is also a global minimum.

This is a usual case in deep learning that loss function violates convexity assump-
tion. However, expressing learning models in a way that non-convex optimization
problems are solved, gives tremendous modelling power (Jain and Kar (2017)).

The loss function in deep learning models might have a number of loss maxima and
minima. Example of such case is demonstrated in Figure 3). It happens because of
the permutation of the nodes which are assigned to different parameters to minimize
loss function. Therefore, it is possible to have multiple solutions of the parameters
resulting to the same loss in the subsequent layers. Nevertheless, having multiple
minima in the search space is not a problem in deep learning as all of them happen
to be very close.

Although, having non-convex loss function, is not proven to do a lot damage
for evaluation of model’s parameters, the problem for influence function still occurs,
as it was described in Basu et al. (2020a). In that paper, it has been empirically

12



Figure 3: Example of function with multiple minima

demonstrated that network architecture, its depth and width, related to non-convex
loss functions, cause the inaccuracy of explainability using IF.

5.2 Outliers and mislabelled points

Influence functions initially have been used as an empirical diagnostic tool in
order to identify outliers (Cook and Weisberg (1982), Campbell (1978)). Therefore,
IF applications as a solution for ML models explainability can be misleading for end
users as returned points cannot be understood intuitively.

According to Barshan et al. (2020), using IF, training points that are defined as
the most influential are also highly overlapping. This means that small set of training
points that greatly affects the predictions is the same for many different inputs. These
points are said to have global effect.

13



6. Alternatives

In this section we will briefly discuss the methods suggested as the alternatives to
influence function and solving the problems mentioned in the previous section.

6.1 RelatIF

In Barshan et al. (2020), an alternative representation of IF in terms of Fisher in-
formation using cross entropy loss and maximum likelihood estimation was presented.

The main goal of Relative influence functions (RelatIF) is to constrain the change
of model parameters. This means that local influence that a testing point has on a
prediction is compared to its global effect on the model.

6.1.1 Influence of Maximum likelihood

Firstly, the influence in terms of Fisher information is defined. Let us consider a
parametric statistical model pθ(y|x). Then let l((x, y), θ) = − log pθ(y|x).

According to Ting and Brochu (2018), it can be shown that influence function
then can be written in this form:

Itest,i = gTtestF
−1
θ∗ gi, (6)

where Fθ = 1
n

n∑
i=1

Epθ∇θ log pθ(y|xi)∇θ log pθ(y|xi)T is the Fisher information matrix.

Then after applying Taylor series we get:

θi,εi − θ∗ ≈ −F−1
θ∗ giεi, (7)

and

l(ztest, θ
∗
i,εi

)− l(ztest, θ∗) ≈ −gTtestF−1
θ∗ giεi. (8)

6.1.2 Constraints

In order to get top-k influential examples |Itest,i| is maximized. In Barshan et al.
(2020), there was introduced alternative method with additional constraints on how
the model may change. Now we briefly introduce these constraints.

θ-Relative Influence

Firstly, the direct constraint of model parameters is presented. Therefore, the
below problem is being solved:

arg max
i∈{1,...,n}

max
εi
|l(ztest, θ∗i,εi)− l(ztest, θ

∗)|

s.t.||θi,ε∗i − θ||
2 ≤ δ2.

(9)
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In Barshan et al. (2020) it is shown that equation 9 can be rewritten as follows:

arg max
i∈{1,...,n}

|Itest,i|
||H−1

θ∗ gi||
(10)

and the answer, the θ-relative influence of training example zi on the loss of test
sample ztest is defined as:

Itest,i

||H−1
θ∗ gi||

.

l-Relative Influence

In this part constraint for model’s interpretation in terms of maximum likelihood
with the output pθ(y|x) is analysed. The change in squared loss is of interest.

Similarly as before, Barshan et al. (2020) describes the problem:

arg max
i∈{1,...,n}

max
εi
|l(ztest, θ∗i,εi)− l(ztest, θ

∗)|

s.t.Epθ∗ (l(z, θ∗i,εi)− l(z, θ
∗))2 ≤ δ2.

(11)

The problem is rewritten:

arg max
i∈{1,...,n}

|Itest,i|√
Ii,i

(12)

and the answer, the l-relative influence of training example zi on the loss of test
sample ztest is defined as:

Itest,i√
Ii,i
.

Interpretation

By rewriting influence like this:

Itest,i =
〈
− gtest,

dθ∗i,εi
dεi

〉
=
〈
− gtest,−H−1

θ∗ gi
〉
,

where 〈·, ·〉 is the inner product operator, one sees that |Itest,i| is equal to the projection
length of the change in parameters vector onto the test sample’s loss gradient. θ-
RelatIF, however, uses cosine similarity projection. Similarly, l-RelatIF uses cosine
similarity under the inner product 〈a, b〉 = aTF−1

θ∗ b.
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Figure 4: Geometric interpretation of RelatIF. Figure from Barshan et al. (2020)

In Figure 4 thick blue line corresponds to the outlier training example that is
the most influential. Meanwhile, RelatIF returns red dotted circles. This happens
because RelatIF uses cosine similarity in order to identify influential points.

6.2 DIVINE

In Bhatt et al. (2021), alternative method is suggested – DIVINE (DIVerseIN-
fluEntial) training points are selected. Differently from RelatIF, DIVINE does not
solve a problem of atypical data, it focuses on receiving influential data points from
different regions, so that the same region would not be selected repeatedly.

The main objective described in Bhatt et al. (2021) is as follows:

max
S∈D,|S|=m

I(S) + γR(S). (13)

Here:

• m are influential points,

• D is a given data set,

• S is a subset of m points from data set D,

• I(S) is a normalized function, (I(∅) = 0),

• γ controls the trade-off between two terms. Therefore, when γ = 0 we get
traditional m points that are returned by IF.

The solution for this optimization problem is m diverse influential (DIVINE)
points. In Bhatt et al. (2021), there are three submodular R(S) expressions sug-
gested:

1. Sum-Redundancy RSR(S) = κ −
∑

u,v∈S φ(u, v), where κ =
∑

u,v∈D φ(u, v),
is penalty-based diversity. It finds diverse m influential points and penalizes
similarity between points in S;
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2. Facility-Location RFL(S) =
∑

u∈D maxv∈S φ(u, v) maximizes the average simi-
larity between a training point and its most similar point in S;

3. Maximum mean discrepancyRMMD(S) = c1

∑
u∈D,v∈S φ(u, v)−c2

∑
u,v∈S φ(u, v),

where c1 = 2
n|S| and c2 = 1

|S|2 , ensures the m points are similar to the training
data while being different from each other.

Here φ is the radial basis function kernel and I(S) =
∑

i∈S Ii is the sum of impor-
tant scores of points in S.

For solving optimization problem, the greedy algorithm is given in Bhatt et al.
(2021):

1. Influence Ii for xi is calculated for all xi ∈ D.

2. A set of m DIVINE points is found by computing arg max
xi∈D\S

[IS + Ii + γR(S)].

3. IS is set to be the sum of all Ii.

17



7. Experiments

In order to identify differences between estimations of influential points, few mod-
els are compared: logistic regression trained on MNIST data set (LeCun and Cortes
(2010)), CNN for binary classification, and three CNN models trained on CIFAR-10
data set (Krizhevsky et al.). We show how deeper architecture makes an impact on
explainability. Moreover, we conduct the experiments using different loss functions
and varying weight-decay regularization. While training models, we seed all sources
of randomness to be able to compare results between methods.

For both methods we select top 3 influential points in all cases. In the last sub-
section we present the running times. In all cases, to compute the most influential
points for one class took less than 24 hours.

As it was discussed in Barshan et al. (2020), for illustrative examples we use
θ-RelatIF as it produces similar results as RelatIF.

7.1 Logistic regression

To find influential points in models where exact Hessian can be computed, first
setup included logistic regression trained on MNIST data set. Model is trained with
stochastic gradient decent, without weight-decay. In Figure 5 we can see top 3 influ-
ential points for two randomly selected test points: 3 and 8.

Then we select 1000 test points and their most influential training points. In
Table 1 the loss of retraining the model (i.e., leave-one-out retraining) is compared.
In the results, it is demonstrated that change in loss after removing IF points is a
little higher than removing RelatIF points.

Loss of retrained models
Model Loss
Originl dataset 1.567
Dataset without IF 1.599
Dataset without RelatIF 1.577

Table 1: Loss of retrained models without top 1000 randomly selected influential
points
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Figure 5: Top 3 most influential points produced by IF and RelatIF

7.2 CNN for binary classification

In this subsection we examine the performance of IF and RelatIF using CNN
architecture for binary classification. As data set we used two classes of images of
motorcycles and apples. In Figures 6 and 7 we can see the comparison of influential
points produced by IF and RelatIF using binary cross entropy and negative log-
likelihood respectively. Experiments with hinge loss have not returned significant
results as influence was equal to 0 for most of the data points.

We also compare the most influential points without weight-decay regularization,
meaning we are interested in effect of adding a small penalty to the loss function.
Similar results for explainability were returned (Figure 8).
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Figure 6: Top 3 most influential points produced by IF and RelatIF using BCE loss

Figure 7: Top 3 most influential points produced by IF and RelatIF using NLL loss
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Figure 8: Top 3 most influential points produced by IF and RelatIF using BCE loss
with weight decay
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7.3 CNN for classification

In this setup we analyse three CNN models trained on CIFAR-10 data set: shallow
CNN, EfficientNet and ResNet-50. We can see top 3 most influential points in each
case.

EfficientNet is a convolutional neural network architecture and scaling method
that uniformly scales all dimensions of depth/width/resolution using a compound
coefficient. ResNet-50 model is a deep residual convolutional neural network that is
50 layers deep.

Models were selected to check the effect that network’s architecture has in deter-
mining influential points. Networks vary in depth, weight, activation functions (ReLu
and SiLu) and optimizers (Adam and SGD). Same Cross Entropy loss was used for
all models.

It can be observed that in shallow CNN RelatIF returned influential points with
higher quality. However, with EfficientNet and ResNet-50 results do not return train-
ing points that would be easy to understand for end users.

Figure 9: Small CNN results for influential points
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Figure 10: EfficientNet results for influential points

Figure 11: ResNet-50 results for influential points
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7.4 Running times

In Table 2 the times for calculating influence function and relative influence func-
tions on different models are compared.

Average running times
Model IF RelatIF Training sample

size
Logistic Regression 168.917 750.457 50,000
CNN for binary classification 17.342 46.841 612
CNN 424.087 11,731.303 10000
EfficientNet 139.767 10759.267 3,500
ResNet-50 835.111 34960.431 50,000

Table 2: Average running time (in seconds) for calculating influential points of one
test sample.

It can be noticed that RelatIF requires additional approximation in order to reduce
the time for computations. As suggested by Barshan et al. (2020), Kronecker-factored
Approximate Curvature (K-FAC) could be considered (Martens and Grosse (2015)).
It is based on approximation of Fisher information matrix of neural network. K-
FAC can be derived by approximating various large blocks of the Fisher as being the
Kronecker product of two much smaller matrices.
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8. Conclusions

In this paper, we tried to answer a question why the model makes a certain pre-
diction for a particular test sample based on the training data set. We compared
relative influence functions (RelatIF) in models where IF were found to encounter
difficulties. In order to demonstrate this, we compared different models (logistic
regression, convolutional neural network for binary classification, small CNN, Effi-
cientNet and ResNet-50 for classification), using multiple loss functions. It was found
that influential points can be intuitively understood by end users in models were ex-
act Hessian can be computed with both, IF and RelatIF. However, influential points
do not appear to explain model when deeper neural network models are used. In
binary classification case, we observe that regularizer (weight-decay) used in model
has made no significant change for intuitive explanations.

In addition to that, we presented the running times for RelatIF and IF. RelatIF
were found to run at least several times longer than IF in small models and 20 to 40
times longer than IF in large models. In order to reduce the time, approximations
motivated by K-FAC could be considered in the future analysis. However, additional
approximations might impact the quality of estimates.

The experiments were not conducted on the third, DIVINE (DIVerseINfluEntial),
method as it was originally planned due to technical problems. Mastering of unknown
software and debugging the code took more time than expected at first. Additionally,
calculations of inverse Hessian-Vector product that are used in influence functions
estimation, are computationally expensive.
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