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Abstract

Irregularly-sampled time series occur in many real-world applications, such as robots

movement, astronomy, medicine. In this master’s thesis, we concentrate on learning robot

movement trajectories with imitation learning type of algorithms. Recently, a huge inte-

rest has been in the methods that perform end-to-end trajectory learning directly using

irregularly-sampled time series as input without any additional data preparation steps

because data gaps are informative themself. Such methods are usually based on Recur-

rent Neural Networks (RNNs). In this thesis, we propose the new deep learning model

called Ordinary Differential Equations based Gated Recurrent Unit with Trainable Decays

(ODE-GRU-D), which is based on state-of-the-art RNN models ODE-RNN and Gated Re-

current Unit with trainable Decays (GRU-D). Additionally, three other commonly used

algorithms are selected for the experiments: one standard RNN model - Gated Recurrent

Unit (GRU), and two specific algorithms for irregularly-sampled time series - GRU-D

and ODE-RNN. The models are applied and compared on the irregularly-sampled Mu-

JoCo Hopper trajectories datasets. ODE-GRU-D showed several advantages: it is more

stable and converges faster than other investigated RNNs. Both ODE-based models no-

tably outperformed the other two. Also, the proposed algorithm achieved significantly

better results than the previous ODE-based model ODE-RNN on sparse time series cases.

Keywords: recurrent neural networks, irregularly-sampled time series, ordinary diffe-

rential equations, trajectory learning
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Santrauka

Nereguliarios laiko eilutės dažnai pasitaiko realaus pasaulio taikymuose, tokiuose kaip

robotų judėjimas, astronomija ar medicina. Šiame magistro baigiamajame darbe koncen-

truojamės į roboto judėjimo trajektorijų išmokimą naudojant imitacinio mokymosi tipo

algoritmus. Pastaruoju metu yra didelis susidomėjimas metodais, kurie atlieka mokymąsi

naudojant nereguliarias laiko eilutes kaip modelio įvedimo duomenis be jokių papildomų

duomenų paruošimo veiksmų, kadangi laikoma, kad duomenų spragos yra savaime in-

formatyvios. Tokie metodai paprastai yra pagrįsti rekurentiniais neuroniniais tinklais

(RNN). Šiame darbe mes pristatome naują gilaus mokymosi modelį – paprastosiomis

diferencialinėmis lygtimis pagrįstas sulaikomas rekurentinis vienetas su treniruojamais

nykimais (ODE-GRU-D), kuris yra paremtas naujausiais (angl. state-of-the-art) RNN mo-

deliais ODE-RNN ir sulaikomu rekurentiniu vienetu su treniruojamais nykimais (GRU-D).

Be to, eksperimentams parenkami kiti trys dažniausiai naudojami algoritmai: vienas stan-

dartinis RNN modelis – GRU ir du specifiniai algoritmai nereguliarioms laiko eilutėms –

GRU-D ir ODE-RNN. Modeliai yra taikomi ir lyginami ant nereguliariai atrinktų MuJoCo

Hopper trajektorijų duomenų. ODE-GRU-D parodė keletą privalumų: yra stabilesnis

ir greičiau konverguoja nei kiti nagrinėjami RNN. Abu paprastosiomis diferencialinėmis

lygtimis paremti modeliai gerokai pranoko kitus du. Be to, pasiūlytas algoritmas pa-

rodė reikšmingai geresnius rezultatus už ankstesnę modelio versiją ODE-RNN retų (angl.

sparse) laiko eilučių atvejais.

Raktiniai žodžiai: rekurentiniai neuroniniai tinklai, nereguliarios laiko eilutės, papras-

tosios diferencialinės lygtys, trajektorijų mokymasis
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Introduction

In the last few years, robots have increasingly become a natural part of daily life.

Nowadays, robots have a wide range of applications in almost all industries (from ma-

nufacturing to space exploration and health care) because of their precision and conve-

nience. However, most of the robotics applications are rather simple, where the tasks are

pre-programmed [3]. Human beings can explore the world in various environments, so

scientists and companies aim to make modern robots as capable as people. Therefore,

artificial intelligence (AI) has become an increasingly common presence in robotic so-

lutions, offering learning capabilities and flexibility in previously impossible applications.

Although robotics, thanks to deep learning (DL) and reinforcement learning (RL),

has gained vast progress in orientation in an environment [45], it is still a poor proxy for

human dexterity and reasoning. A reasonable solution to this problem could be imitation

learning (IL). IL is the process of learning from demonstrations (data) and the study of

such algorithms. While RL may produce a superhuman-level performance on competitive

tasks like games, IL is better suited to achieve human-level performance in real-world

tasks [23, 41, 50]. Although IL methods are applicable in many applications related to

robotics, we will concentrate on the Trajectory Learning task in this thesis. Trajectory

Learning is one of the most fundamental issues for robotic applications, and automa-

tion [15]. It is a major area in robotics because it paves the path for autonomous vehicles

and is widely used in different kinds of robots, such as industrial, flying, or humanoid.

A trajectory is a path that an object follows through space as a function of time [42].

We interpret the robot movement trajectories as time series in our case [19]. A large

part of sequential and time-series problems fall within the class of partially observable

systems, for example, such problems occur in sensor networks, movements of planets,

citizen science, multi-robot systems, and many others [44, 64]. While there are many

applications for irregularly-sampled time series, this thesis is dedicated to robotics exam-

ples. Most existing models assume that the observations are regularly sampled, and the

objects can be fully observed at each sampling time, which is impractical for many real-

world applications. As an example, when a robot wants to push a set of blocks into a

target configuration, only the blocks in the top layer are visible to the camera [24, 38].

What is even more challenging is that the visibility of some objects could change over

time, which means that observations can occur at non-uniform intervals for an agent, i.e.,

irregularly-sampled data. Various reasons can cause such data. The most common causes
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are - failed data transmissions, broken sensors, and damaged storage [24,61].

For a long time, machine learning algorithms only had worked for fully observable sys-

tems, requiring the observations of some object at each data sample timestamp. Recurrent

neural networks (RNNs) are the most popular choice for multidimensional, regularly-

sampled time series data, for example, speech and text related problems. Though, RNNs

are quite an awkward match for irregular time series data. Imputation or aggregation of

averages, smoothing, interpolation, and spline methods are widely used to deal with such

problems, but these methods destroy information about the timing of measurements,

which can be informative, do not capture variable correlations, and may not capture

complex patterns. Therefore, it is crucial to design models that can handle irregular mul-

tivariate time series. One of the most used such models is Gated Recurrent Unit with

trainable decays (GRU-D), proposed in 2018 by Che et al. [5]. An even more promi-

sing approach to this field was proposed in the second half of 2018 by Chen et al. [8]. The

authors of the paper introduced the new family of deep neural network models, which use

black-box ODE solvers as a deep neural network component (Neural Ordinary Diffe-

rential Equations). Rubanova et al. [54] extended this idea: introduced a family of time

series models, ODE-RNNs, which hidden state dynamics are specified by Neural ODEs.

These ODE-RNNs family models outperform earlier known RNN-based algorithms on

irregularly-sampled time series datasets [54].

The main aim of the master’s thesis is to propose changes and improve the Neural

Ordinary Differential Equations based Recurrent Neural Network algorithm (ODE-RNN)

and to apply the proposed model for robot movement trajectories learning when we have

irregularly-sampled data. To achieve the goal, the following tasks were performed:

• Make an overview of the needed theory and achievements in the field;

• Analyze and compare the selected common used in the field methods (GRU [9],

GRU-D [5], ODE-RNN [54]);

• Describe and implement ODE-based Gated Recurrent Unit with Trainable Decays

(ODE-GRU-D) model;

• Perform experiments on the MuJoCo Hopper trajectories dataset with different

percentages (90%, 70%, 50%, 30%) of observed time points. At first, with 300

epochs and secondly multiple times with the found optimal number of epochs;
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• Compare the proposed algorithm with selected neural netwroks using MSE and

RMSE performance measures;

• Apply appropriate t-tests to check if obtained test RMSEs for ODE-RNN and ODE-

GRU-D differ significantly.
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1 Methods for Robots Trajectory Learning

This chapter presents the general overview of the most relevant and often used methods

for robots movement trajectories learning. The first part of the chapter briefly introduces

Reinforcement Learning and Imitation Learning fields, and the second part is about classic

Recurrent Neural Networks architectures.

1.1 Reinforcement Learning

Reinforcement learning (RL) is a unique area of machine learning (ML) because

it does not learn from any data but the environment. RL is mainly based on rewarding an

agent for desired behaviors and punishing otherwise. It is also commonly called learning

through trial and error [31,60]. Most probably, the main application of RL is gaming, as

with this technique is possible to achieve a superhuman performance on various computer

games. The most famous example is the AlphaGo game, where the algorithm beats the

best human player [21]. Another widespread application of RL methods is in robotics [31].

For example, RL is often applied in trending problems nowadays as autonomous cars’

and robots’ trajectory planning, dynamic paths, trajectory optimizations, and similar

[11,33,65].

RL methods aim to learn a policy π that maps the system’s state to the control input

so that the expected return, denoted as J(π), is maximized. The quality of the given

action, state, or trajectory at some time t is measured with the reward r(t) [50]. As an

example, the reward r(t) would be large if a robot is close to the needed trajectory and

small if it is far from the trajectory. The expected return is calculated by the following

formula [50]:

J(π) = E
[
T∑
t=0

r(t) | π
]
, (1)

here T denotes a finite horizon. If a horizon is infinite, the formula is in such form [50]:

J(π) = E
[ ∞∑
t=0

γtr(t) | π
]
. (2)

In formula (2), γt is a discount-rate which controls the trade-off between short-term
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and long-term rewards. The desired policy is found by the formula [50]:

π∗ = arg max
π

J(π) (3)

The value function attempts to find such a policy that maximizes the return by

maintaining a set of estimates of expected returns for the particular policy. The value

function of a state x under policy π is computed this way [50,63]:

V π(x) = E
[ ∞∑
t=0

γtr(t) | x0 = x, π

]
. (4)

1.2 Imitation Learning

Although RL methods have shown promising results in recent years, especially in

games, these methods are usually difficult to apply to some real-world tasks. The first

faced issue is that the game’s environment is fully observable for an agent, but the state

of the real world is only partially visible at any time. Secondly, there is often no di-

rect reward (e.g., teaching an autonomous car). Therefore, a reward function should

be designed manually in such tasks, which is usually very complicated. The solution to

these problems can be Imitation Learning (IL) [41]. IL is defined as learning from expert

demonstrations (instead from scratch as in RL) and the study of such algorithms. Expert

is often a human, but not necessary, it also can be demonstrations in the form of simu-

lated robotics examples. IL has two main forms: Behavioral Cloning - demonstrated

actions/trajectories are imitated (cloned) directly, and Inverse Reinforcement Lear-

ning - recovering the reward function from the data. Expert demonstrations are usually

given as a set of trajectories, so the dataset of such demonstrations is given this way:

D = {τ0, τ1, . . . , τm} [41, 50].

Assume that the behavior of the expert is observed as a trajectory in the form τ =[
φ(0), φ(1), . . . , φ(T )

]
- sequence of features φ. The features φ are measurements chosen

based on the given problem. Demonstrations are often recorded under some conditions.

These conditions are referred to as context vector s. This vector can contain any related

information to the investigated problem (e.g., the initial state of the robotic system). The

problem context is normally fixed during execution, and the only dynamic aspects of the

task are the features. A collected dataset of demonstration in IL consists of trajectories,
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contexts, and optionally reward, which is sometimes available in specific problems: D =

{(τ i, si, ri)}Ni=1. The selected optimization-based strategy learns a policy π∗ from the

dataset as follows [50]:

π∗ = arg minD(q(φ), p(φ)), (5)

here q(φ) denotes the experts’ induced distribution of the features, and q(φ) - the learner’s

induced distribution. D(q(φ), p(φ)) is a similarity measure between both distributions

[50].

Supervised learning of neural networks is often used in IL, especially in Behavioral

Cloning. Recurrent Neural Networks (RNNs) based models deserve special atten-

tion as they have made IL on complex, irregular time series data possible [50]. The main

reason for such a contribution of RNNs to IL is the ability to consider previous actions

during the learning process since many applications rely on performing trajectories of

dependent motion primitives. So, RNN-based models are especially useful in IL for par-

tially observable problems (irregularly-sampled time series case) and when observations

are non-markovian [25].

1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the state-of-the-art algorithms for va-

rious tasks with sequential data (speech synthesis, translating natural language, weather

forecasting, learning robot trajectories, etc.). The most common example of sequential

data is time series data. Time series can be defined as a sequence of data points collected

at successive time points over some time period. As in the case of many other machine

learning algorithms, the first ideas about RNNs appeared in the 1980s [13], but only during

recent years, these models show their real potential. The main reasons for it are the huge

amount of available data and an increment of computational resources. Other types of

NNs assume variables are independent. However, the independence assumption fails in

the sequential data case. RNNs are famous because of their ability to memorize previous

computations (sequential memory). This capacity allows them to remember meaningful

information about the input and be very precise in forecasting using sequential data like

time series [40].

RNNs are such types of Neural Networks that allow previous outputs to be used as

inputs while having hidden states [1]. The hidden state records historical information of
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some sequence up to the current time step. Nodes with recurrent edges, at timestamp

t, receive an input from the state x(t) and saved values from the previous hidden node

h(t−1). This way, the output y(t) is obtained based on the hidden layer h(t). Therefore,

an input x(t−1) at time t− 1 influences the later output y(t) what is already at time t [40].

This process can be described via the following equations:

h(t) = σ1(Whhh(t−1) +Whxx(t) + bh), (6)

y(t) = σ2(Wyhh(t) + by). (7)

Where bh, by are appropriate bias parameters, σ1 and σ2 are some nonlinear activation

functions (Table 1.1), Whh - this matrix consists of the weights between the hidden state

and itself at adjoining time steps, Whx is the matrix of weights between the input and the

hidden node and similarly Wyh is the weights matrix between the hidden node and the

output layer.

The described above architecture of such an RNN model is summarized in Figure 1.1

and the more detailed view of the RNN node structure in Figure 1.2.

Figure 1.1: The simple RNN model (left side) and its’ unfolded in time version (right
side).

At each time step, the activation functions σ1 and σ2 are applied in every hidden state

(Figure 1.2). The most widely used activation functions in RNNs are sigmoid, tanh,

and ReLU [1, 40]. These functions are described in Table 1.1.

Loss function evaluates how close is the predicted value ŷ(t) to actual value y(t). In

the case of an RNN model, the overall loss function L(ŷ, y) can be computed as the sum

of the losses at every time step (1, 2, ..., T ) [1]:

L(ŷ, y) =
T∑
t=1
L(ŷ(t), y(t)) =

T∑
t=1
L(t). (8)
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Figure 1.2: The structure of a Recurrent Neural Network Node.

Sigmoid Hyperbolic tangent
(tanh)

Rectified linear unit
(ReLU)

σ(z) = 1
1 + e−z

σ(z) = ez − e−z

ez + e−z
σ(z) = max(0, z)

Table 1.1: Commonly used activation functions in RNNs.

From the unfolded part of the scheme in Figure 1.1, it is clear that such a network

can be trained using the backpropagation (BP) technique [16]. However, in RNNs, the

algorithm called backpropagation through time (BPTT) is used because these types

of neural networks are trained across many time steps - a dependency between previous

and current time steps is faced [6]. In the BPTT algorithm case, the chain rule is applied

multiple times. At first, let’s compute the gradient with respect to the weight Whh. If

only the output y(t) is considered, the gradient w.r.t. Whh is following [6]:

∂L(t)

∂Whh

=
T∑
t=1

∂L(t)

∂y(t)
∂y(t)

∂h(t)
∂h(t)

∂Whh

. (9)

However, the hidden state h(t) partially dependents on the state h(t−1). Therefore, the
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equation (9) can be rewritten this way [6]:

∂L(t)

∂Whh

=
t∑

k=1

∂L(t)

∂y(t)
∂y(t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂Whh

. (10)

At this step, all gradients with respect to Whh should be aggregated over the given time

sequence. This way, the following gradient is obtained [6]:

∂L
∂Whh

=
T∑
t=1

t∑
k=1

∂L(t)

∂y(t)
∂y(t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂Whh

. (11)

Similarly, in the gradient w.r.t. Whx case. The hidden node h(t−1) and the input x(t)

both make contribution to state h(t). Hence, summing up all contributions via BP and

taking derivative w.r.t. Whx over the whole sequence such gradient is obtained [6]:

∂L
∂Whx

=
T∑
t=1

t∑
k=1

∂L(t)

∂y(t)
∂y(t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂Whx

. (12)

Despite all the advantages, classic RNN has several drawbacks. With the RNN model,

it is challenging to capture long-term dependencies, resulting in vanishing (most of the

time) or exploding (rarely) gradients problems. The gradient vanishing means that the

value of gradient can shrink layer over layer and vanish after some time steps. It causes

that the influence of previous events disappears, and the algorithm loses its memory. Ano-

ther scenario is the gradient explosion, which happens because of large values in matrix

multiplication. The gradient explosion can result in an unstable network that cannot

learn over long input sequences [1, 6, 40].

Such Recurrent Neural Networks also are widely used for robots trajectory learning

and paths planning because of their ability to consider previous actions during the learning

process. Some examples can be found in the articles [2, 4, 47,51].

1.3.1 Long Short-Term Memory

The Long Short-Term Memory (LSTM) algorithm first time was introduced in

1997 [20]. The main aim of this extended recurrent model is based on classic RNNs weak-

nesses - to overcome the vanishing gradients problem. The architecture of the LSTM is

basically the same as RNN (Figure 1.1). The main differences are that LSTM introduces
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memory cell and gates (forget, input, and output) concepts. This subsection is written

based on [1, 6, 40] sources.

The memory cell c(t) is a composite unit because it is built from simpler nodes, and

in this way, it can control information flow. As in the usual RNN case, it has h(t−1) and

x(t) as inputs and outputs h(t) but also has gates. The gating mechanism controls the

memoizing process in LSTMs. In the general case, the gate can be described as following:

Γ = σ(Wx(t) + Uh(t−1) + b), (13)

where W , U are corresponding weights, b is an appropriate bias term, and σ means here

sigmoid activation function.

The following equations describe the full LSTM algorithm [6,40]:

f (t) = σ(Whfh(t−1) +Wxfx(t) + bf ), (14)

i(t) = σ(Whih(t−1) +Wxix(t) + bi), (15)

g(t) = φ(Whch(t−1) +Wxcx(t) + bc), (16)

c(t) = f (t) � c(t−1) + i(t) � g(t), (17)

o(t) = σ(Whoh(t−1) +Wxox(t) + bo), (18)

h(t) = o(t) � φ(c(t)), (19)

where f (t) denotes a forget gate, i(t) is an input gate, o(t) - an output gate, in this work g(t)

denotes an input node, c(t) means a memory unit (cell), and bf , bi, bc, bo are appropriate

bias parameters. A symbol � represents element-wise multiplication, φ denotes tanh

activation function and σ - sigmoid function. Whf , Whi Wxf , Wxi, Whc, Wxc, Who, Wxo

are the weights matrices.

The purposes of the three LSTM gates are:

• Forget gate - responsible for what information to keep and what to forget from the

previous cell;

• Input gate - controls what parts of the new cell content are written to the cell;

• Output gate - controls what part of the information is output to the hidden state.

The structure of the LSTM algorithm is presented in Figure 1.3.
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Figure 1.3: The structure of a Long Short-Term Memory cell.

LSTM outperforms classic RNN in modeling long-term sequential dependencies. This

algorithm is also often used in robot trajectories-related tasks, especially when a longer

time period is considered [26, 49, 51, 68]. However, LSTM has several disadvantages: it

takes longer to train, requires much more memory resources, easy to overfit, and still can

have exploding gradients.

1.3.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) model is a newer generation of Recurrent Neural

Networks and was introduced by Cho et al. in 2014 [9]. GRU and earlier described

LSTM algorithms are closely related variants. Similarly to LSTM, this algorithm also

has a long-term memory and deals with vanishing gradients problem. However, Gated

Recurrent Units have simpler architecture, which causes that they are much more time-

efficient (usually about 30 % faster). The main differences in architecture compared to

the LSTM model are that GRU has not a separate memory cell and two instead of three

gates [9, 10,27,66].

In a similar way as with the above recurrent neural networks, the GRU algorithm can

be described with the following equations [27]:
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z(t) = σ(Whzh(t−1) +Wxzx(t) + bz), (20)

r(t) = σ(Whrh(t−1) +Wxrx(t) + br), (21)

h̃(t) = φ(Whh(r(t) � h(t−1)) +Wxhx(t) + bh), (22)

h(t) = (1− z(t))� h(t−1) + z(t) � h̃(t), (23)

where z(t) denotes an update gate, r(t) - a reset gate, h̃(t) is a current memory content, and

h(t) - a hidden state (as above). Whz, Whr, Whh, Wxz, Wxh are weights matrices, bz, br,

bh are bias parameters, σ denotes sigmoid activation function, and φ is tanh activation

function [10,27].

Short explanations of new notations:

• Update gate - controls what parts of the information from the previous time steps

need to be passed to the future;

• Reset gate - controls what parts of the information from the previous hidden state

to forget;

• Current memory content - uses the reset gate to select relevant parts from the

previous hidden content.

The schematic representation of the GRU algorithm is visualized in Figure 1.4.

Figure 1.4: The structure of the Gated Recurrent Unit cell.
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GRU-RNN based models are also often used for robots’ movement trajectories learning

tasks [28,32,51,67]. GRU and LSTM both have their pros and cons, but as GRU consumes

less memory and is significantly faster than LSTM, that is why it is usually a better choice

for robotics related tasks. The reasons are that robots have weaker hardware, electricity

consumption, and in the robotics field are popular real-time tasks where the algorithm

speed is essential.

18



2 Methods for Irregularly-Sampled Time Series

The second chapter mainly presents the overview of the various methods for end-to-

end learning on irregularly-sampled time series and a short comparison of these methods.

Also, the new proposed in the thesis model, which is based on current state-of-the-art

methods, is described. Finally, performance measures and statistical tests used in the

practical part are described at the end of this chapter.

2.1 Irregular Time Series

As described in the introduction, irregularly-sampled time series are common

in a majority of fields where time-series data are met (astronomy, medicine, robotics,

financial market, citizen science, climatology, ecology, geology) [44, 64]. In this master’s

thesis, we will concentrate on applications in robotics. Thus, robot movement trajectories

will be treated as time series. In robotics, irregularly sampled data occur very often.

The main reasons for it are broken sensors, damaged storage, failed data transmissions,

etc. What is even trickier, for a robot, the visibility of some objects could change over

the investigated time, which means that observations can occur at non-uniform time

intervals [24, 61]. Smoothing, interpolation, and spline methods are widely used to deal

with such problems, but these methods do not capture variable correlations and may not

capture complex patterns. Unfortunately, there is limited work on exploiting the missing

patterns for effective imputation and improving prediction performance in such cases.

However, during the last years, there has been notable progress in developing specialized

algorithms that can accommodate sparse and unevenly spaced time series or time series

with missing values as an input [5, 24,54,57].

In short, irregularly-sampled time series can be described as a sequence with large and

irregular time periods between observations. Irregularly spaced data are called sparse

when the intervals between successive observations are often large. Also, a very close

problem to this one is time series with missing values [57]. The observation times are

strictly increasing (t1 < t2 < ... < tn, ∀n > 1). We denote irregular multivariate time

series of length T and with D variables as X = (x(1),x(2), ...,x(T )) ∈ RT×D, x(t) denotes

the t-th sample and x(t)
d is the measurement of d-th variable of x(t), where ∀t ∈ {1, 2, ..., T}

and ∀d ∈ {1, 2, ..., D}. Let’s describe s(t) ∈ R which denotes a time-stamp of the t-th

observations (example in Figure 2.1). We set an assumption that the first observation
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obtained at time-stamp 0 (s(1) = 0). [5, 12]

2.2 Gated Recurrent Unit with trainable Decays

The above described RNN-based models achieved state-of-the-art results in many ap-

plications with time series. Nevertheless, they are an inconvenient fit for irregular time

series [54]. A usual procedure for applying standard RNN methods to irregularly-sampled

time series data is to divide the timeline into equally-sized intervals and aggregate or

impute observations using the calculated averages. However, it destroys important infor-

mation about the timing of the measurements. In the last few years, a noticeable interest

has been in the methods that perform end-to-end learning directly using multivariate

irregularly sampled time series as input without the need for additional data preparation

steps, which were mentioned in Section 2.1. One of the main examples of such models

is Gated Recurrent Unit with trainable Decays (GRU-D), proposed in 2018 by

Che et al. [5]

GRU-D model deals well with informative missingness patterns by applying masking

and time interval. Masking aims to spot which inputs are missing and time interval

covers the original input data patterns. This algorithm has a decay mechanism which is

designed for the input time series data x(t) and hidden states h(t) to capture the essential

properties. First of all, let’s introduce masking vector and time interval concepts

[5,37]. A masking vector m(t) ∈ {0, 1}D shows which variables are missing at time step t,

more specifically it can be described this way [5]:

m(t)
d =


1, if x(t)

d is observed,

0, otherwise.
(24)

The time interval δ(t)
d ∈ R for each variable d since its last observation can be described

as following:

δ
(t)
d =



s(t) − s(t−1) + δ
(t−1)
d , t > 1,m(t−1)

d = 0,

s(t) − s(t−1), t > 1,m(t−1)
d = 1,

0, t = 1.

(25)
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A simple illustrative example of such data is given in Figure 2.1.

Figure 2.1: Example of the notations x(t), s(t), m(t), δ(t)
d [5].

What is more, decay rates were introduced to control mentioned decay mechanism

based on two factors. First, the decay rates should differ from variable to variable. Sec-

ondly, decay rates are learned from the training data and are not prefixed constants. This

way, useful information from the missing patterns is learned. In a general case, a vector

of decay rates γ can be expressed by the equation [5, 37]:

γ(t) = exp
{
−max

(
0,Wγδ

(t) + bγ
)}
, (26)

where parameters Whγ, Wxγ and bγ are trained together with other GRU model parame-

ters. The decay rate is always between 0 and 1. GRU-D model has two different trainable

decay mechanisms. The first one is called input decay γx, which deals with missing

values – decay an input over time towards the empirical mean. This trainable decay is

applied to the measurement vectors in such a way [5]:

x̂
(t)
d = m

(t)
d x

(t)
d +

(
1−m(t)

d

) (
γdxx

(t′)
d + (1− γdx) x̃d

)
, (27)

where x(t′)
d denotes the last observation of variable d and t′ < t. The empirical mean of

the d-th variable is denoted as x̃d, the weights matrix Wxγ is diagonal, and because it is

diagonal, the decay rate of each variable is independent from the other variables [5, 37].

The second decay mechanism in the GRU-D algorithm is a hidden state decay γh.

Sometimes, the input decay is not enough to catch all missing information, that’s why

the second type of decay is needed. This one is responsible for decaying the extracted

features from GRU hidden states. It is achieved by decaying the previous hidden state
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h(t−1) before computing the next hidden state h(t) [5]:

ĥ(t−1) = γh � h(t−1), (28)

here the weights matrix Whγ is not diagonal. Additionally, masking vectors are added

to standard GRU model equations. Summing up all described changes, the GRU-D

algorithm is described with the following equations [5]:

z(t) = σ
(
Wxzx̂(t) +Whzĥ(t−1) +Wmzm(t) + bz

)
(29)

r(t) = σ
(
Wxrx̂(t) +Whrĥ(t−1) +Wmrm(t) + br

)
(30)

h̃(t) = φ
(
Wxhx̂(t) +Whh

(
r(t) � ĥ(t−1)

)
+Wmhm(t) + bh

)
(31)

h(t) =
(
1− z(t)

)
� ĥ(t−1) + z(t) � h̃(t) (32)

From the equations above the main differences with GRU (described in subsection

1.3.2) can be spotted. First, standard x(t) and h(t−1) are replaced with x̂(t) and ĥ(t−1)

described in equations (27), (28). The second change - the masking vector m(t) (described

in 24) is fed into the model, and Wmz,Wmr,Wmh are new parameters for it. [5]

The structure of the GRU-D model and its changes in comparison with the GRU

structure are shown in Figure 2.2.

Figure 2.2: Graphical illustrations of the standard GRU model (left side) and the GRU-
D model (right side) [5].

2.3 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (Neural ODEs) first time were intro-

duced by Chen et al. in the year 2018 [8]. This paper received the Best Paper Award

at the prestigious NeurIPS 2018 conference and even is treated as a possible landmark

paper for a new era of the Deep Learning field [22]. Indeed, the article’s authors present
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an interesting and novel view on neural networks. The proposed new family of deep

neural network models uses black-box ODE solvers as a deep neural network component.

This idea has many advantages: memory efficiency, adaptive computations, parameters

efficiency, scalable and invertible normalizing flows, and is suitable for continuous time

series. Although the mentioned article is mainly theoretical, the authors proposed pos-

sible applications in supervised learning, density estimation, and irregular time-series

modeling (these applications are described in more detail at the end of the section). The

most important application for our work, and most probably the most significant one

in the mentioned paper, is time-series modeling through Ordinary Differential Equa-

tions (ODEs). In comparison to neural networks modeling, such as in earlier sections

described RNNs, Neural Ordinary Differential Equations enable flexibility for the tasks

related to irregularly and incomplete sampled time series data. [8, 29]

In such deep learning models as Recurrent Neural Networks, Normalizing Flows [53],

or Residual Networks (ResNet) [18] hidden layers allow transitioning from a state at time

t to the next layer at time t+ 1 [8]:

h(t+1) = h(t) + f
(
h(t),θ(t)

)
, (33)

where t ∈ {0, . . . , T}, h(t) ∈ RD and a function f(·) is differentiable. The equation (33)

is very similar to well known Euler’s scheme [69]:

h(t+1) = h(t) + f
(
h(t),θ(t)

)
∆t. (34)

So, it is clear that if in the equation above to set ∆t = 1, exactly the equation (33) will

be obtained.

If to add to mentioned well-known Neural Networks much more layers and take smaller

steps, the process will be dynamic. Let’s set ∆t→ 0, then such a limit is attained [34]:

lim
∆t→0

h(t+1) − h(t)

∆t = dh(t)
dt

= f(h(t), t,θ). (35)

By using the limit (35), a discretized ODE converts into a continuous ODE. The

main idea of such an approach is to parameterize the continuous dynamics of hidden
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states using ODEs together with the neural network:

dh(t)
dt

= f(h(t), t,θ), (36)

where function f(·) is the particular neural network parameterized by parameters θ, θ

consists of all the weights of the NN. Also, the obtained equation (36) can be treated as

the Initial Value Problem (IVP). With the given input layer h(0) (initial condition),

the output layer h(T ) can be defined as the solution to the ODE initial value problem at

time T . The value can be obtained by using the so-called Black-Box Differential Equation

Solver. In Figure 2.3, both discussed approaches (33) and (36) are presented. [8, 34]

Figure 2.3: In the first image, a Residual Network defines a discrete sequence of finite
transformations. The image on the right shows an ODE Network which defines a vector
field, which continuously transforms the state. In both cases circles represent evaluation
locations. [8]

The standard backpropagation technique, which is described in Section 1.3, is not

suitable for training continuous-depth neural networks with the ODE solver because solv-

ing differential equations is a numerically and memory costly task. In source [8], the ODE

solver is treated as a Black Box, and the Adjoint Sensitivity Method is proposed for

the computation of the gradients [52]. This method scales linearly with the problem size,

has significantly lower memory cost, and explicitly controls numerical error.

Let’s consider a loss function L(·) (defined in Section 1.3), which evaluates the
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distance between the output and desired measurement. The input to the loss function is

the result of an ODE solver [8, 34]:

L (h (t1)) = L
(

h (t0) +
∫ t1

t0
f(h(t), t,θ)dt

)
= (37)

L (ODESolve (h (t0) , f, t0, t1,θ)) ,

where the NN f(·) is trained with respect to parameters θ that minimize the loss function

L. The first thing which should be considered is how the gradient depends on the hidden

layer h(t) at each instant. For this aim, the quantity called adjoint is introduced:

a(t) = ∂L
∂h(t) . (38)

Later on, the instantaneous analog to the chain rule (used earlier in the backprop-

agation) is applied, and this way, dynamics of the adjoint are given via the following

ODE:

da(t)
dt

= −a(t)>∂f(h(t), t,θ)
∂h

. (39)

Now, partial derivative ∂L
∂h(t0) can be computed starting from the initial value of ∂L

∂h(t1) .

However, there is one complication. The value of h(t) should be known along the entire

trajectory. That’s why h(t) is recomputed backward in time, starting from the final value

h(t1).

Finally, we can compute the gradients with the respect to θ. In this case, the integral

depends on a(t) and h(t):

dL
dθ

= −
∫ t0

t1
a(t)>∂f(h(t), t,θ)

∂θ
dt. (40)

All mentioned integrals can be computed at once in a single call to the ODE solver [8].

Algorithm 1 presents how to do it.

The reverse-mode derivative is broken down into the sequence of separate solves, one

between each consecutive pair of output times because the investigated loss depends on

the intermediate states [8]. It is presented in Figure 2.4.
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Algorithm 1: Reverse-mode derivative of an ODE initial value problem
Input: dynamics parameters θ, start time t0, stop time t1, final state h(t1), loss

gradient ∂L
∂h(t1)

s0 =
[
h (t1) , ∂L

∂h(t1) ,0|θ|
]

// Define initial augmented state
// Define dynamics on augmented state

Def aug_dynamics ([h(t), a(t), ·], t,θ):
return

[
f(h(t), t,θ),−a(t)> ∂f

∂h ,−a(t)> ∂f
∂θ

]
// Compute vector-Jacobian

products[
h (t0) , ∂L

∂h(t0) ,
∂L
∂θ

]
= ODESolve (s0, aug_dynamics, t1, t0,θ) // Solve

reverse-time ODE
return ∂L

∂z(t0) ,
∂L
∂θ

// Return gradients

Figure 2.4: Reverse-mode differentiation of an ODE solution [8]. The upper image shows
the forward propagation. The image below illustrates the adjoint sensitivity method,
which solves an augmented ODE backwards in time.

Several applications are proposed in the discussed paper. The examples of applications

are on different generated "toy" datasets but show good results and look promising. The

first one is the Neural ODE usage in the field of supervised learning. A meaningful result

was achieved in this case. With three times fewer parameters, ODE-Net achieved roughly

the same results as the ResNets, and the memory complexity of ODE-Net is constant. The

second application is to use Neural ODEs to extend normalizing flows into the continuous
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domain. This approach also simplified the computation of the normalizing constant. The

last and the most significant application is the possibility to model irregularly-sampled

time series through Neural ODEs [8, 22]. This novel approach has already been tried on

time-series trajectories data in recent years [17, 39,54].

2.4 Ordinary Differential Equations based Recurrent Neural Net-

work

Recently, Rubanova et al. [54] extended the idea proposed in the article [8]. As men-

tioned earlier, standard Recurrent Neural Networks (described in Section 1.3) are an

awful fit for the irregular time series data. The timing of the data points is usually a

powerful predictor itself. What is more, RNNs are discrete-time models, but usually,

real-world trajectories are with continuous-time dynamics, in this thesis too [39]. So, the

authors generalized RNNs to have continuous-time hidden dynamics defined by Neural

ODEs. This novel model is called Ordinary Differential Equations based Recur-

rent Neural Network (ODE-RNN). The ODE-RNN model naturally handles time

gaps between observations. This ODE-based model is used in the study to solve numer-

ous real-world related problems with sparse data. In all the cases, the ODE-RNN model

performed better than several other RNN variants and even showed the new state-of-

the-art performance at both interpolation and extrapolation tasks on MuJoCo Hopper

trajectories simulation [62] and the PhysioNet [58] datasets. [54]

The conventional trick is to include the time gap ∆t between observations when using

RNNs on irregularly sampled time series data. Based on it, let’s rewrite the equation (6)

for the RNN’s hidden state computation in the following way [54]:

h(t) = RNNCell
(
h(t−1),∆t,x(t)

)
. (41)

However, such an approach is not effective because it is unclear how to define the

hidden state between observations. So, the solution to this problem was proposed by

earlier discussed Che et al. paper [5] and Mozer et al. [46]. The authors introduced an

exponential decay of the hidden state when no observations are made in the time interval:

h(t) = RNNCell
(
h(t−1) � exp {−τ∆t} ,x(t)

)
, (42)
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here τ denotes a decay rate parameter. Though, this strategy still did not improve

predictive performance.

Rubanova et al. [54] noted that the previous approach - RNN with exponentially-

decayed hidden state, implicitly obeys the following ordinary differential equation:

dh(t)
dt

= −τh(t), (43)

where τ is the parameter of the model and it is the IVP with the initial value h (t0) =

h(0). The solution to the differential equation (43) is as the pre-update term from the

equation (42): h(0) � exp {−τ∆t}. The ODE (43) is time-invariant, and it has the

special stationary point (zero-valued state). The Neural ODE can be used to describe

the hidden state. The Algorithm 2 summarizes this process [54].

Algorithm 2: The ODE-RNN model. The differences from the standard
RNNs are highlighted in cyan color.
Input: Data points and their timestamps

{(
x(i), ti

)}
i=1...T

h(0) = 0
for i in 1, 2, ..., T do

h′(i) = ODESolve
(
f,h(i−1), (ti−1, ti) ,θ

)
// ODESolve to get state at t(i)

h(i) = RNNCell
(
h′(i),x(i)

)
// Updating a hidden state given current

// observation x(i)

end for
o(i) = OutputNN

(
h(i)

)
for all i = 1...T

return
{
o(i)

}
i=1...T

; h(T )

From Algorithm 2 is seen what changes are made in the standard Recurrent Neural

Network. Therefore, the pre-activation states h′(i) evolve according to a Neural ODE

between observations instead of being fixed. Then, the next hidden state is updated

using the usual RNN approach: h(i) = RNNCell
(
h′(i),x(i)

)
.

2.5 Comparison of Algorithms

This section shortly sums up all the methods commonly used for irregularly-sampled

time series described in this thesis. The main difference between different kinds of RNNs

is the definition of their hidden state dynamics. Table 2.1 lists the hidden state dynamics

of the RNN models family, GRU-D and ODE-RNN.

From table 2.1 is seen that the hidden state remains the same between updates in

simple RNNs. In the ODE-RNNs models family case, the hidden state is defined by
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Model Hidden state between observations
Standard RNN h(t−1)

GRU-D h(t−1)e−τ∆t

ODE-RNN ODESolve
(
f,h(i−1), (ti−1, ti) ,θ

)
Table 2.1: Change of the hidden states in different types of RNNs between

observations ti−1 and ti.

ODE and updated at each observation. Also, ODE-based models allow more flexible

parameterization of the dynamics than RNNs with exponential decays like GRU-D [35,54].

Figure 2.5: Hidden states trajectories in different kind of models. Vertical lines mark
time points with observations [54].

Figure 2.5 shows the hidden state trajectories of earlier discussed models types. It is

seen that simple RNNs have constant hidden states between observations when time series

are irregularly-sampled. In the case of RNN-Decay models (e.g., GRU-D) - the hidden

states decay exponentially to zero and are updated at time point with observations. Neural

ODEs can follow more complex trajectories than both previous algorithms but depend

on the initial state. The last ODE-RNN model’s hidden states follow an ODE between

observations and are modified at each observed point [35,54].
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2.6 ODE-based Gated Recurrent Unit with Trainable Decays

This section presents the new proposed model called Ordinary Differential Equa-

tions based Gated Recurrent Unit with Trainable Decays (ODE-GRU-D). As

the model’s name says, it is created based on earlier described GRU-D (section 2.2)

and ODE-RNN (section 2.4) models. The ODE-RNN model showed promising results

on irregularly-sampled time series data by combining Neural ODEs with standard RNN.

Instead of using standard RNN, we decided to combine Neural ODEs with the GRU-

D model, which is itself the method that performs end-to-end learning on multivariate

irregularly-sampled time series. The first reason such modification is selected is that the

decay part of the model allows spotting the information directly from irregular time series.

For example, the decay mechanism can spot that if the variable is missing for a while,

the influence of the input variables fades away over time [5]. Secondly, Lechner et al. [35]

proved the theorem which states that ODE-RNN suffers from a vanish or exploding gra-

dient similarly to standard RNN. This problem can be solved by replacing vanilla RNN

with LSTM or GRU neural networks variants. So, GRU-D is a suitable choice to avoid

those issues.

Algorithm 3 summarizes the ODE-GRU-D model. The main changes in compari-

son with Algorithm 2 is the state’s definition between observations as the ODE solution:

h′(i) = ODESolve
(
f,h(i−1)e−τ∆t, (ti−1, ti) ,θ

)
- simple h(i−1) changed to h(i−1)e−τ∆t as in

the standard GRU-D case. Also, instead of updating the hidden state using a standard

RNN as in the ODE-RNN algorithm, hidden states are updated with the GRU-D ap-

proach: h(i) = GRUDCell
(
h′(i),x(i),m(i)

)
.

Algorithm 3: The ODE-GRU-D model.
Input: Data points and their timestamps

{(
x(i), ti

)}
i=1...T

h(0) = 0{
m(i)

}
i=1...T

calculated based on formula (24)
for i in 1, 2, ..., T do

h′(i) = ODESolve
(
f,h(i−1)e−τ∆t, (ti−1, ti) ,θ

)
// ODESolve to get state at

time t(i)

h(i) = GRUDCell
(
h′(i),x(i),m(i)

)
// Update of the hidden state

end for
o(i) = OutputNN

(
h(i)

)
for all i = 1...T

return
{
o(i)

}
i=1...T

; h(T )
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In Algorithm 3, m(i) denotes masking vectors, θ are Neural Network’s parameters,

and τ is a decay rate parameter.

2.7 Performance Metrics and Statistical Tests

2.7.1 Performance Metrics

Performance measures are a crucial part of every deep learning pipeline. In this sub-

section, the performance metrics used to evaluate the investigated models are described.

Because our problem is of the regression type (models have continuous outputs), the per-

formance measurements based on calculating a distance between predicted and ground

truth should be chosen. Therefore, we are using the two most commonly used abso-

lute error metrics: Mean Squared Error (MSE) and Root Mean Squared Error

(RMSE).

The MSE metric finds the average of the squared difference between the target value

and the value predicted by the model. It is calculated based on the formula [56]:

MSE = 1
n

n∑
t=1

(
y(t) − ŷ(t)

)2
. (44)

Similarly, RMSE corresponds to the square root of the average of the squared difference

between the target value and the value predicted by some ML model [56]:

RMSE =
√√√√ 1
n

n∑
t=1

(y(t) − ŷ(t))2 =
√
MSE. (45)

Here n denotes the number of observations, y(t) is a ground-truth value at the time t, and

ŷ(t) - the predicted value by the model.

2.7.2 Statistical Tests

A statistical hypothesis test is a mathematical tool for analyzing quantitative

data. Such tests also can be useful in comparing machine learning models and choosing

the best or final model. There are many different statistical tests. For this master thesis,

two widely used tests are selected: Two-Sample t-Test and Welch’s t-Test based on

the data distribution, structure, and variable type (more details in Chapter 3). [36, 48]

The Two-Sample t-Test determines if two data samples means are equal or differ

significantly [59] . The null hypothesis states that the two samples’ means (µ1 and µ2)
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are the same, while the alternative hypothesis states that they are not [48]:

H0 : µ1 = µ2 (46)

H1 : µ1 6= µ2 (47)

If sample sizes are equal the t statistic to test the above hypotheses can be calculated this

way [59]:

t = Ȳ1 − Ȳ2

sp
√

2
n

, (48)

where

sp =
√
s2
Y1 + s2

Y2

2 . (49)

Here Ȳ1 and Ȳ2 are the observed two groups means, sp denotes the pooled standard

deviation when n = n1 = n2 (our case), s2
Y1 and s2

Y2 are the unbiased estimators of the

variances.

The Two-Sample t-Test has several assumptions [48]:

1. Independence. The observations are independently sampled - no relation in ob-

servations between the groups and within the groups.

2. Normality. Both groups are normally distributed. It can be checked with Shapiro-

Wilk test (52).

3. Homogeneity (homoscedasticity) of variance. Standard deviations of samples

are approximately equal. It can be checked with Levene’s or Bartlett’s Test (54).

The Welch’s t-Test has the same assumptions as listed above except the third.

The t statistic to check if the groups’ means are different is calculated by the following

formula [36,48]:

t = Ȳ1 − Ȳ2√
s2
Ȳ1

+ s2
Ȳ2

, (50)

where

sȲi
= si√

ni
(51)
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Here Ȳ1 and Ȳ2 are the samples means, sȲ1 and sȲ2 are standard errors, ni is the ith sample

size, and si denotes the ith sample standard deviation.

Earlier mentioned Shapiro-Wilk test calculates a W statistic that tests whether a

random sample is normally distributed (H0 - data are normally distributed) [55]. The test

statistic is calculated as follows [48]:

W =

(∑n
i=1 aix(i)

)2

∑n
i=1

(
xi − X̄

)2 , (52)

where x(i) is the ith smallest value in the sample, X̄ denotes a sample mean, and ai are

constants generated from the means, variances, and covariances of the order statistics of

a sample of size n drawn from a normal distribution (more details in the [55] article).

The Bartlett’s Test is used in this work for checking homogeneity assumption [59].

In this test case, the null hypothesis H0 states that all k samples have equal variances

against the alternative hypothesis H1 that at least two of them are different:

H0 : σ2
1 = σ2

2 = . . . = σ2
k

H1 : σ2
i 6= σ2

j for at least one pair (i, j).
(53)

Th Bartlett’s test statistic can be found by the formula [59]:

χ2 =
(N − k) ln

(
S2
p

)
−∑k

i=1 (ni − 1) ln (S2
i )

1 + 1
3(k−1)

(∑k
i=1

(
1

ni−1

)
− 1

N−k

) , (54)

here

N =
k∑
i=1

ni and S2
p = 1

N − k
∑
i

(ni − 1)S2
i . (55)

Also, ni denotes sample sizes and S2
i - sample variances.

In all the tests, we reject H0 if a p-value is less than or equal to the significance level

α. The most often used α values are 0.1, 0.05 or 0.01. We used α = 0.05 in the practical

part. The p-value is obtained by using the sampling distribution of the test statistic under

the null hypothesis, type of statistical test, and the sample data [36,48].

33



3 Experiments

In this work, all the experiments were performed using Python 3 high-level program-

ming language, PyTorch framework, Google Colaboratory, and NVIDIA Tesla K80 GPU.

Two main libraries for our experiments are torchdiffeq [8] which provides ODE solvers

implemented in PyTorch, and umap-learn [43] which provides techniques for dimension

reduction.

Four different models are selected for the experiments based on the overview of the

commonly used methods in the previous chapters. The first selected model is one of the

classic RNNs - GRU. It is selected to analyze if such a model can be useful in some cases of

irregular time series data. Also, two specific algorithms for irregularly-sampled time series

are chosen GRU-D and ODE-RNN. GRU-D is probably the most often used algorithm

in this field, and ODE-RNN is the current state of the art. The fourth model is the one

proposed in this thesis - ODE-GRU-D.

For all the models’ same hyperparameters are used. Hyperparameters were selected

mainly based on the article [54]. We are using Adamax optimizer (extension of the

standard Adam) [30] with the learning rate of 0.001. The batch size is 50, and the

models’ hidden states are 15-dimensional. In ODE-based models, ODE functions have 3

layers and 100 units, and the Euler method [69] is used in the ODE-Solver.

The experiments can be divided into two main parts. In the first part, the models

are trained with 300 epochs for each data case to select the optimal number of epochs

and compare the models during the training. In the second part, the experiments are

done with the optimal number of epochs. Each algorithm for each data case is trained

ten times, and averages with standard deviation are computed and compared between the

models.

3.1 Data

The MuJoCo Hopper trajectories dataset [7] is used for the experiments. Hopper

is a one-legged jumping robot. The dataset is taken from University of Toronto, Vector

Institute resources. The data were simulated using the advanced MuJoCo physics engine

for multi-body dynamics and DeepMind Control Suite [62]. 10000 trajectories with 100

regularly sampled time points for each are generated. The dataset is 14-dimensional, the

state space is 11-dimensional - position and velocity of each joint are tracked, the action

34



space is 3-dimensional [14]. In this set, the position of the body is uniformly sampled

from the interval [0, 0.5]. Also, the relative positions of the limbs are sampled from [-2,

2] and initial velocities are in [-5, 5] interval. The figures below show a small part of the

investigated data [54].

Figure 3.1: A small example from the MuJoCo Hopper trajectories dataset. [54]

Figure 3.2: Example of 2 dimensions of the MuJoCo Hopper data (10 first trajectories).

The MuJoCo Hopper dataset is subsampled before the experiments into the train set

where are 70% of the data (trajectories) and the remaining data are for validation 15%

and testing 15%.

3.2 Experiment 1: Choice of the suitable number of epochs

The first experiment aims to select the optimal number of epochs for training. Before

running the models, we subsampled some percentage of time points to have irregularly-

sampled data. This way, four different data cases are obtained. In the first case, 90%

of time points are observed, so the irregularity of the data is small. In the second case,

training and test datasets have 70% of time points with the observations, and in the third

case - 50% of the observations are successive. Only 30% of the time points are observed
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in the last case - such data are called sparse because the intervals between successive

observations are large.

All selected models were trained with 300 epochs (recommended in the article [54])

for each mentioned data case. Tables 3.1-3.4 present the results of all the trials every 50

epochs. The best results for the particular epoch are marked as bold.

Model/Epoch 50 100 150 200 250 300
GRU 0.00235 0.00189 0.00181 0.00199 0.00167 0.00171
GRU-D 0.00225 0.00211 0.00191 0.00197 0.00169 0.00169
ODE-RNN 0.00147 0.00141 0.00137 0.00133 0.00143 0.00141
ODE-GRU-D 0.00133 0.00132 0.00129 0.00137 0.00129 0.00137

Table 3.1: Models validation MSE during the epochs - 90% case.

Model/Epoch 50 100 150 200 250 300
GRU 0.00546 0.00493 0.00491 0.00509 0.00443 0.00464
GRU-D 0.00545 0.00467 0.00461 0.00546 0.00458 0.00422
ODE-RNN 0.00411 0.00407 0.00406 0.00393 0.00394 0.00403
ODE-GRU-D 0.00401 0.00368 0.00401 0.00369 0.00396 0.00405

Table 3.2: Models validation MSE during the epochs - 70% case.

Model/Epoch 50 100 150 200 250 300
GRU 0.00938 0.00876 0.00848 0.00883 0.00786 0.00778
GRU-D 0.00808 0.00751 0.00778 0.00761 0.00734 0.00719
ODE-RNN 0.00692 0.00684 0.00687 0.00659 0.00666 0.00685
ODE-GRU-D 0.00688 0.00655 0.00677 0.00653 0.00671 0.00669

Table 3.3: Models validation MSE during the epochs - 50% case.

Model/Epoch 50 100 150 200 250 300
GRU 0.01465 0.01373 0.01290 0.01391 0.01225 0.01198
GRU-D 0.01234 0.01308 0.01225 0.01326 0.01319 0.01168
ODE-RNN 0.01026 0.01011 0.01005 0.01012 0.00995 0.01018
ODE-GRU-D 0.01041 0.01004 0.00989 0.00971 0.00995 0.01011

Table 3.4: Models validation MSE during the epochs - 30% case.

The proposed ODE-GRU-D model showed the best validation MSE in almost all si-

tuations, but the ODE-RNN model achieved slightly better MSE in table 3.1 with 200

epochs, 250 and 300 in table 3.2, with 250 epochs in 50% case (table 3.3). Also, from

the tables above, we see that the proposed in this thesis model needs a smaller amount
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of epochs than ODE-RNN algorithm, but validation MSEs become closer between these

two models after more epochs. A similar pattern can be spotted between GRU and GRU-

D models. So, it can be concluded that such an effect is achieved by adding a decay

mechanism (26) to the RNNs. Interesting that simple GRU in a few scenarios showed

even better results than more advanced GRU-D model, although it is a simpler model

and much faster to train, especially on more irregular data.

The learning curves are plotted to determine the optimal number of epochs for each

model and dataset. From the figures 3.3 - 3.6, similar conclusions can be made as from

the tables. The ODE-GRU-D notably converges faster than the original ODE-RNN. The

gap between ODE-GRU-D and ODE-RNN learning curves, which is at the beginning of

training, seems to decrease when data become more irregular, nevertheless, just in the

case with 30% of successive observations, the ODE-GRU-D learning curve is almost whole

the time below the ODE-RNN curve. Additionally, we can spot that ODE-based models

are much more stable (losses are less deviated) than simple recurrent networks, especially

on more irregularly-sampled time series. Obviously, losses start to converge earlier than

after 300 epochs in all the investigated cases. Therefore, based on the learning curves, 75

is selected as the optimal number of epochs for the 90% case, for all the others - 50 seems

to be enough.

Figure 3.3: Learning curves when 90% of time points are observed.
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Figure 3.4: Learning curves when 70% of time points are observed.

Figure 3.5: Learning curves when 50% of time points are observed.

Finally, we tested all four fully trained models. Table 3.5 summarizes the results. The

best test MSE for each data case is marked as bold. In all the situations, our proposed

ODE-GRU-D showed slightly better test MSE than the rest of the algorithms. It can

be seen that in the cases of more irregular time series data (where 50% and 30% of time

points are observed) the distance between two ODE-based models losses is bigger, than
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Figure 3.6: Learning curves when 30% of time points are observed.

in less irregular cases (90% and 70%). That can mean that our proposed implementation

is more beneficial for sparse time series cases. When comparing GRU with GRU-D, the

same trends emerge. Also, when data are more sparse the difference between the ODE-

based and simple RNNs losses becomes more significant too.

Model/Data 90% 70% 50% 30%
GRU 0.00165 0.00465 0.00781 0.01198
GRU-D 0.00163 0.00421 0.00721 0.01168
ODE-RNN 0.00140 0.00404 0.00687 0.01018
ODE-GRU-D 0.00136 0.00401 0.00671 0.01010

Table 3.5: Models test MSE on the different percentage of observed time points.

Shortly, from the first experimental part can be concluded:

• A simple GRU recurrent neural network is a better choice than the GRU-D algorithm

for time-series data with small irregularity. They both achieve similar MSE values

on the test set, but GRU is much easier to implement and to train;

• ODE-based models are a notably better choice for all the cases of irregularly-sampled

time series data than models without ODE part;

• The proposed in this work ODE-GRU-D model starts to converge after fewer epochs

than earlier proposed ODE-RNN;
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• ODE-GRU-D achieved slightly better results on all four irregularly-sampled time-

series datasets. This implementation looks to be especially useful on more sparse

data cases.

3.3 Experiment 2: Models evaluation

Even though we got quite many conclusions from the first practical part, and it showed

some benefits of the proposed ODE-GRU-D algorithm, these experiments are not enough

to claim that the proposed new neural network is always better. To achieve more reliable

results, in this experimental part we train the models with the optimal numbers of epochs

found in the previous section (75 for 90% case and 50 for all the rest). Each model is

trained 10 times on each case of the data (90%, 70%, 50%, and 30% of time points with

the observations). Time points are randomly sampled from different parts of the timeline

before every experiment on every data case. So, every time we obtain a different dataset,

but with the same percent of the observations. In sum, 160 such experiments are done.

Box plots 3.7 - 3.10 are created to interpret obtained results for all 4 investigated

irregularly-sampled time series data cases. These graphs provide a short, visual summary

of how the losses are distributed. The information that we get from the box plot is the

five-number summary: minimum, first quartile, median, third quartile, and maximum.

Figure 3.7: Boxplot of the models test MSEs for 90% case.
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From the plot 3.7 it is seen that simple RNNs test MSEs values differ significantly in

comparison with ODE-based RNNs. Generally, boxplots for GRU and GRU-D models

look similar, but the GRU model even looks more stable. So again we can claim that GRU

is better choice for the 90% case than its modification. Also, boxplots for ODE-RNN and

ODE-GRU-D models look similar. The median value is a bit lower for the ODE-RNN

model than for the ODE-GRU-D, but it is difficult to make strong conclusions only based

on it.

Figure 3.8: Boxplot of the models test MSEs for 70% case.

Figure 3.8 shows more interesting results. Again, ODE-based models are much better

choice than simple RNNs. However, the GRU-D model is much less deviated than the

simple GRU in this data case. Also, the proposed ODE-GRU-D model looks to perform

better than in the previous 90% case - losses are more stable, and the median is lower

than those obtained with ODE-RNN.

Figure 3.9 presents the box plots for the data case with 50% of observed time points.

Generally, the insights are the same as in earlier situations. Based on the figure, some

advantages are achieved by adding a decay mechanism to RNNs models, and of course

Neural ODEs improve the models significantly. The proposed in the thesis model is the

best choice for this case.

The last graph (Figure 3.10) of this type presents the boxplots for the sparse time

series case where only 30% of time points had observations. Here, the GRU-D algorithm
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Figure 3.9: Boxplot of the models test MSEs for 50% case.

Figure 3.10: Boxplot of the models test MSEs for 30% case.

already shows much better results than GRU (less deviated and lower median, minimum,

maximum values). ODE-based models are more stable than simple RNNs, as in all the

cases, but in this one especially. Furthermore, the ODE-GRU-D model is better than

others in all the measures provided by the boxplots.

Another type of experiments summary is depicted in table 3.6. In this table, average
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test RMSEs together with standard deviations are calculated for all the investigated

cases. Basically, it shows similar trends which we discussed above based on the boxplots.

In all the cases except the 90% case, the best average test RMSE was obtained with the

ODE-GRU-D algorithm. What is more, all the standard deviations are the lowest with

the proposed in this paper algorithm, which means this model is even more stable than

the ODE-RNN.

Model/Data 90% 70% 50% 30%
GRU 0.0458± 0.0015 0.0759± 0.0053 0.0936± 0.0024 0.117± 0.0034
GRU-D 0.0461± 0.0016 0.0738± 0.0013 0.0926± 0.0025 0.1127± 0.003
ODE-RNN 0.0366± 0.0011 0.0636± 0.0013 0.0829± 0.0008 0.1019± 0.0006
ODE-GRU-D 0.0369± 0.001 0.0631± 0.0004 0.0820± 0.0004 0.1012± 0.0004

Table 3.6: RMSE (mean ± std) on the different percentage of observed time points.

Based on this practical part, we can make similar conclusions as in Section 3.2, but

now they are more substantiated. However, the ODE-GRU-D achieved slightly worse

results on the test sets than the ODE-RNN on the least sparse time series case. The

new conclusion from these repetitive experiments is that the new proposed model is less

deviated in general than the earlier proposed variant.

3.4 Comparison using statistical tests

In Section 3.3, we compared the average losses between the models. In this section,

we will analyze if these means differ statistically significantly using samples with test

RMSE losses obtained in the second experiment (Section 3.3). The proposed ODE-GRU-

D model showed lower test RMSEs in the cases with time series where 30%, 50%, and

70% of time points have observations, and slightly worse only in the case with 90% of the

observed data. Obviously, both ODE-based models achieved much better results than

RNNs without ODE parts (GRU and GRU-D). Therefore, it will be enough to test ODE-

GRU-D against ODE-RNN to claim if our introduced model is significantly better in some

irregularly-sampled time series cases. The analysis will be done using the statistical tests

described in Subsection 2.7.2, and α = 0.05 is selected as a significance level.

First of all, we should check the assumptions introduced in Subsection 2.7.2 to know

which t-test to use. The first independence assumption is fulfilled - observations between

the samples are not related. The second assumption claims that samples should be drawn

from the normal distribution. We used the Shapiro-Wilk test (52) to check it on the data
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(losses) groups. Table 3.7 shows obtained p-values on all cases samples using this test.

All the groups are drawn from normal distribution because p-values are non-significant

(> 0.05). Therefore, the second assumption is also matched.

Model/Data 90% 70% 50% 30%
ODE-RNN 0.3081 0.2659 0.8563 0.9724
ODE-GRU-D 0.0638 0.9261 0.8953 0.1214

Table 3.7: p-values obtained with Shapiro-Wilk test on the models test RMSE losses.

The last assumption is about the homogeneity (homoscedasticity) of variances. Bartlett’s

test (54) for homogeneity of variances is used to check this point. If this assumption is

met, the Two-Sample t-test (47) should be applied to test if means differ statistically

significantly. Otherwise, Welch’s t-test (50) can be used to test the hypothesis. These

tests outcomes are summarised in table 2.7.2.

Test/Data 90% 70% 50% 30%
Bartlett’s Test 0.9576 0.0012 0.0480 0.2910
Two-Sample t-Test 0.4557 - - 0.0041
Welch’s t-Test - 0.2899 0.0088 -

Table 3.8: p-values obtained with Bartlett’s Test, Two-Sample t-Test, and Welch’s t-
Test.

From table 3.8, we see that in cases where 90% and 30% of the time points with suc-

cessive observations, the homogeneity assumption is fulfilled (p-value>0.05). Therefore,

the Two-Sample t-Test should be used for these two cases. In the other cases (70% and

50%), variances are not approximately equal (p-value<0.05). So, it means that Welch’s

test should be selected to check if ODE-RNN and ODE-GRU-D test losses means differ

significantly.

The ODE-RNN and ODE-GRU-D test RMSEs averages do not differ significantly

(p-value=0.9576) in 90% of the irregularly-sampled time series case. So, even though

the ODE-RNN model showed slightly better losses in the previous section, they are not

significantly better than those obtained with the new proposed model. In the second

(70%) case, we got p-value=0.2899>0.05 with Welch’s t-Test. So, although the ODE-

GRU-D algorithm showed a bit better results in the experiments on this case, the losses

are not significantly better than obtained with the ODE-RNN model. In two more sparse

time series cases (50% and 30% of observed points), p-values obtained with t-tests, 0.0088
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and 0.0041, are lower than significance level alpha. Therefore, our proposed ODE-GRU-D

recurrent neural network achieved significantly better results than the earlier ODE-RNN

model variant on these datasets.

Based on the analysis done in this section, we can conclude that our proposed ODE-

based model implementation is useful on relatively sparse time series data cases. In less

irregular investigated time series cases, the difference between the ODE-GRU-D model

and the current ODE-RNN model results is not significant.
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Conclusions

In this thesis, the new model called ODE-GRU-D for irregularly-sampled time series

data is proposed. The idea of the proposed algorithm is similar to the state-of-the-art

ODE-RNN, but instead of using standard Recurrent Neural Network as in the original

model, we used Gated Recurrent Unit with trainable Decays (GRU-D) in the architecture.

Such combination is not considered earlier in related works. What is more, the suggested

algorithm was applied to the irregularly-sampled robot trajectories data (MuJoCo Hopper

dataset). Based on the literature overview of the field, four different models are selected for

the experiments: one classic RNN model - GRU, two specific algorithms for irregular time

series - GRU-D and ODE-RNN, and the proposed one. With these selected models, two

experiments were done. In the first experiment, before training, we randomly subsampled

some percentage of time points to have four different irregularly-sampled time series data

cases: 90%, 70%, 50%, and 30% of time points with the observations, and then we trained

and tested all the implemented models on such datasets. All the models were trained

with 300 epochs to select the optimal number of epochs. In the second one, training

was done with optimal numbers of epochs found in the previous part. Similarly, in this

part are four irregular time series data cases, but time points are randomly sampled from

different parts of the timeline before every experiment. The models are trained ten times

in each case (every time datasets differ, but with the same percent of the observations).

The average test RMSEs and standard deviations are calculated and compared. Finally,

means obtained in the second part were compared using appropriate t-tests to find if they

differ significantly.

The main conclusions obtained in the thesis are:

1. ODE-based RNNs are a notably better choice for all the cases of irregularly-sampled

time series data than other investigated RNNs (GRU and GRU-D).

2. The proposed ODE-GRU-D model starts to converge faster than ODE-RNN - it

needs fewer epochs. This advantage was achieved because of the added decay me-

chanism.

3. In the data case with 90% of successful observations, the previous model variant

ODE-RNN slightly outperforms the suggested ODE-GRU-D (average test RMSE

0.0366 against 0.0369). However, in the other three data cases (70%, 50%, 30%),

the new algorithm showed better test RMSEs.
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4. The proposed model is generally more stable than other considered RNNs variants -

it shows notably lower standard deviations on different cases of irregularly-sampled

time series.

5. Our proposed ODE-GRU-D recurrent neural network achieved significantly better

results than the earlier ODE-RNN model variant on the two most sparse time series

cases based on appropriate t-tests (p-values 0.0088 and 0.0041).

In future researches, the proposed in this master’s thesis ODE-GRU-D model can

be applied to different types of robot trajectories datasets that have more joints and

dimensions, for example, Walker, Cheetah, or Humanoid from MuJoCo physics engine.

Also, it would be valuable to consider longer trajectories with more time points. If the

results on such datasets would also be satisfactory, it is even possible to apply the model

to real-world robots trajectories tasks.

47



References

[1] Afshine Amidi and Shervine Amidi. Recurrent Neural Networks. https://

stanford.edu/~shervine/teaching/cs-230/, 2018.

[2] Ni Bin, Chen Xiong, Zhang Liming1, and Xiao Wendong. Recurrent Neural Network

for Robot Path Planning. Parallel and Distributed Computing: Applications and

Technologies, 2004.

[3] Bastian Bischoff, Duy Nguyen-Tuong, Herke van Hoof, Andrew McHutchon, Carl E.

Rasmussen, Alois Knoll, Jan Peters, and Marc P. Deisenroth. Policy Search For

Learning Robot Control Using Sparse Data. IEEE International Conference on

Robotics and Automation (ICRA), 2014.

[4] Hajer Brahm, Boudour Ammar, and Adel M. ALimi. Intelligent path planning al-

gorithm for autonomous robot based on Recurrent Neural Networks. IEEE 2013

International Conference on Advanced Logistics and Transport (ICALT), 2013.

[5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu.

Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci-

entific Reports, 2018.

[6] Gang Chen. A Gentle Tutorial of Recurrent Neural Network with Error Backpropa-

gation. arXiv preprint arXiv:1610.02583v3, 2018.

[7] Ricky T. Q. Chen. MuJoCo Hopper Physics dataset. http://www.cs.toronto.edu/

~rtqichen/datasets/HopperPhysics/training.pt., 2019.

[8] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural

Ordinary Differential Equations. arXiv preprint arXiv:1806.07366v5, 2019.

[9] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

2014.

48

https://stanford.edu/~shervine/teaching/cs-230/
https://stanford.edu/~shervine/teaching/cs-230/
http://www.cs.toronto.edu/~rtqichen/datasets/HopperPhysics/training.pt.
http://www.cs.toronto.edu/~rtqichen/datasets/HopperPhysics/training.pt.


[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. NIPS 2014

Workshop on Deep Learning, 2014.

[11] Josiah Coad, Zhiqian Qiao, and John M. Dolan. Safe Trajectory Planning Using

Reinforcement Learning for Self Driving. arXiv preprint arXiv:2011.04702v1, 2020.

[12] Andreas Eckner. A Framework for the Analysis of Unevenly Spaced Time Series Data.

http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf, 2014.

[13] David E.Rumelhart and James L. McClelland. Learning Internal Representations by

Error Propagation, pages 318–362. 1986.

[14] Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Sergey Levine Yutaka Matsuo,

Ofir Nachum, and Shixiang Shane Gu. Policy Information Capacity: Information-

Theoretic Measure for Task Complexity in Deep Reinforcement Learning. Proceedings

of the 38th International Conference on Machine Learning, 2021.

[15] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni. Tra-

jectory Planning in Robotics. Mathematics in Computer Science, 2012.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[17] Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu.

Liquid Time-constant Networks. arXiv preprint arXiv:2006.04439v4, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning

for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[19] Sven Hellbach, Julian P. Eggert, Edgar Korner, and Horst-Michael Gross. Time Series

Analysis for Long Term Predictionof Human Movement Trajectories. Advances in

Neuro-Information Processing, 2009.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 1997.

[21] Sean D. Holcomb, William K. Porter, Shaun V. Ault, Guifen Mao, and Jin Wang.

Overview on DeepMind and Its AlphaGo Zero AI. Proceedings of the 2018 Interna-

tional Conference on Big Data and Education, 2018.

49

http://eckner.com/papers/unevenly_spaced_time_series_analysis.pdf
http://www.deeplearningbook.org


[22] Branislav Holländer. Paper Summary: Neural Ordinary Differential Equa-

tions. https://towardsdatascience.com/paper-summary-neural-ordinary-

differential-equations-37c4e52df128, 2018.

[23] Jiang Hua, Liangcai Zeng, Gongfa Li, and Zhaojie Ju. Learning for a Robot: Deep

Reinforcement Learning, Imitation Learning, Transfer Learning. Sensors, 2021.

[24] Zijie Huang, Yizhou Sun, and Wei Wang. Learning Continuous System Dynamics

from Irregularly-Sampled Partial Observations. arXiv preprint arXiv:2011.03880v1,

2020.

[25] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imita-

tion Learning: A Survey of Learning Methods. Association for Computing Machinery

(ACM) Computing Surveys, 2018.

[26] Masaya Inoue, Takahiro Yamashita, and Takeshi Nishida. Robot Path Planning by

LSTM Network Under Changing Environment. Advances in Computer Communica-

tion and Computational Sciences, 2018.

[27] Ian D. Jordan, Piotr Aleksander Sokół, and Il Memming Park. Gated Recurrent

Units Viewed Through the Lens of Continuous Time Dynamica Systems. Frontiers

in Computational Neuroscience, 2021.

[28] Abdul Rehman Khan, Ameer Tamoor Khan, Masood Salik Masood, and Sunila

Bakhsh. An Optimally Configured HP-GRU Model Using Hyperband for the Con-

trol of Wall Following Robot. International Journal of Robotics and Control Systems,

2021.

[29] Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff

Neural Ordinary Differential Equations. Chaos: An Interdisciplinary Journal of Non-

linear Science, 2021.

[30] Diederik P. Kingma and Jimmy Lei Ba. ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION. arXiv preprint arXiv:1412.6980v9, 2017.

[31] Jens Kober, J. Andrew Bagnell, and Jan Peters. The International Journal of

Robotics Research. Proceedings of the 2018 International Conference on Big Data

and Education, 2013.

50

https://towardsdatascience.com/paper-summary-neural-ordinary-differential-equations-37c4e52df128
https://towardsdatascience.com/paper-summary-neural-ordinary-differential-equations-37c4e52df128


[32] Philipp Kratzer, Marc Toussaint, and Jim Mainprice. Motion Prediction with Re-

current Neural Network Dynamical Models and Trajectory Optimization, 2019.

[33] Geesara Kulathunga. A Reinforcement Learning based Path Planning Approach in

3D Environment. arXiv preprint arXiv:2105.10342v1, 2021.

[34] Zhilu Lai, Charilaos Mylonas, Satish Nagarajaiah, and Eleni Chatzi. Structural

identification with physics-informed neural ordinary differential equations. Journal

of Sound and Vibration, 2021.

[35] Mathias Lechner and Ramin Hasani. Learning Long-Term Dependencies in

Irregularly-Sampled Time Series. arXiv preprint arXiv:2006.04418v4, 2020.

[36] Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Sprigner,

third edition, 2005.

[37] Qianting Li and Yong Xu. VS-GRU: A Variable Sensitive Gated Recurrent Neural

Network for Multivariate Time Series with Massive Missing Values. MDPI Applied

Sciences, 2019.

[38] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, and

Russ Tedrake. Propagation Networks for Model-Based Control Under Partial Obser-

vation. International Conference on Robotics and Automation (ICRA), 2019.

[39] Yuxuan Liang, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger

Zimmermann. Modeling Trajectories with Neural Ordinary Differential Equations.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence

(IJCAI-21), 2021.

[40] Zachary C. Lipton, John Berkow, and Charles Elkan. A Critical Review of Recurrent

Neural Networks for Sequence Learning. arXiv preprint arXiv:1506.00019v4, 2015.

[41] Zoltán Lőrincz. A brief overview of Imitation Learning. https:

//smartlabai.medium.com/a-brief-overview-of-imitation-learning-

8a8a75c44a9c.

[42] Ellips Masehian. The Role of Motion Planning in Robotics. Applied Mechanics and

Materials, 2015.

51

https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c


[43] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uni-

form manifold approximation and projection. The Journal of Open Source Software,

2018.

[44] Erich Merrill, Stefan Lee, Li Fuxin, Thomas G. Dietterich, and Alan Fern.

Deep Convolution for Irregularly Samples Temporal Point Clouds. arXiv preprint

arXiv:2105.00137v1, 2021.

[45] Radouan Ait Mouha. Deep Learning for Robotics. Journal of Data Analysis and

Information Processing, 2021.

[46] Michael C. Mozer, Denis Kazakov, and Robert V. Lindsey. Discrete-Event

Continuous-Time Recurrent Nets. arXiv preprint arXiv:1710.04110v1, 2017.

[47] Ramya S. Nair and P. Supriya. Robotic Path Planning Using Recurrent Neural

Networks. 2020 11th International Conference on Computing, Communication and

Networking Technologies (ICCCNT), 2020.

[48] Danielle Navarro. Learning Statistics with R - A tutorial for Psychology Stu-

dents and other Beginners. LibreTexts, 2020. https://stats.libretexts.org/

Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-

_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro).

[49] Fiorato Nicola, Yasutaka Fujimoto, and Roberto Oboe. A LSTM Neural Network

applied to Mobile Robots Path Planning. 2018 IEEE 16th International Conference

on Industrial Informatics (INDIN), 2018.

[50] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel,

and Jan Peters. An Algorithmic Perspective on Imitation Learning. Now Foundations

and Trends, 2018.

[51] Raj Patel, Meysar Zeinali, and Kalpdrum Passi. Deep Learning-based Robot Control

using Recurrent Neural Networks (LSTM; GRU) and Adaptive Sliding Mode Control.

Proceedings of the 8th International Conference of Control Systems, and Robotics

(CDSR’21), 2021.

[52] Lev Semenovich Pontryagin, Evgenij Frolovich Mishchenko, Vladimir Grigorevich

Boltyanski, and Revaz Valerianovic Gamkrelidze. The mathematical theory of optimal

processes. Gordon and Breach Science Publishers, 1986.

52

https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)


[53] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normaliz-

ing flows. arXiv preprint arXiv:1505.05770, 2015.

[54] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs for

Irregularly-Sampled Time Series. Advances in Neural Information Processing Sys-

tems, 2019.

[55] Samuel Sanford Shapiro and Martin Bradbury Wilk. An analysis of variance test for

normality (complete samples). Biometrika, 1965.

[56] Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna Shcherbakova,

Anton Pavlovich Tyukov, Timur Alexandrovich Janovsky, and Valeriy Anatol’evich

Kamaev. A Survey of Forecast Error Measures. World Applied Sciences Journal 24,

2013.

[57] Satya Narayan Shukla and Benjamin M. Marlin. Interpolation-Prediction Networks

for Irregularly Sampled Time Series. The International Conference on Learning Rep-

resentations (ICLR), 2019.

[58] Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predict-

ing In-Hospital Mortality of ICU Patients The PhysioNet Computing in Cardiology

Challenge. Computing in cardiology, 2012.

[59] George W. Snedecor and William G. Cochran Ames. Statistical Methods. Iowa State

University Press, eighth edition, 1989.

[60] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2015.

[61] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and

Suhang Wang. Joint Modeling of Local and Global Temporal Dynamics for Multi-

variate Time Series Forecasting with Missing Values. AAAI Conference on Artificial

Intelligence (AAAI-20), 2020.

[62] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,

David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy

Lillicrap, and Martin Riedmiller. DeepMind Control Suite. arXiv preprint

arXiv:1801.00690v1, 2018.

53



[63] Martijn van Otterlo and Marco Wiering. Adaptation, Learning, and Optimization.

Reinforcement Learning and Markov Decision Processes. Springer Berlin Heidelberg,

2012.

[64] Arun Venkatraman. Training Strategies for Time Series: Learning for Prediction,

Filtering, and Reinforcement Learning. PhD thesis, Carnegie Mellon University, The

Robotics Institute, 2017.

[65] Kyle R. Williams, Rachel Schlossman, Daniel Whitten, Joe Ingram, Srideep Musu-

vathy, Anirudh Patel, James Pagan, and Kyle A. Williams. Trajectory Planning

with Deep Reinforcement Learning in High-Level Action Spaces. arXiv preprint

arXiv:2110.00044v1, 2021.

[66] Shudong Yang, Xueying Yu, and Ying Zhou. LSTM and GRU Neural Network Per-

formance Comparison Study: Taking Yelp Review Dataset as an Example. 2020 In-

ternational Workshop on Electronic Communication and Artificial Intelligence (IWE-

CAI), 2020.

[67] Jianya Yuan, Hongjian Wang, Changjian Lin, Dawei Liu, and Dan Yu. A Novel GRU-

RNN Network Model for Dynamic Path Planning of Mobile Robot. IEEE Access,

2019.

[68] Xuan Zhao, Sakmongkon Chumkamon, Shuanda Duan, Juan Rojas, and Jia Pan.

Collaborative Human-Robot Motion Generation using LSTM-RNN. 2018 IEEE-RAS

18th International Conference on Humanoid Robots (Humanoids), 2018.

[69] Raimondas Čiegis. Diferencialinių lygčių skaitiniai sprendimo metodai. Technika,

2003.

54


	Introduction
	Methods for Robots Trajectory Learning
	Reinforcement Learning
	Imitation Learning
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit


	Methods for Irregularly-Sampled Time Series
	Irregular Time Series
	Gated Recurrent Unit with trainable Decays
	Neural Ordinary Differential Equations
	Ordinary Differential Equations based Recurrent Neural Network
	Comparison of Algorithms
	ODE-based Gated Recurrent Unit with Trainable Decays
	Performance Metrics and Statistical Tests
	Performance Metrics
	Statistical Tests


	Experiments
	Data
	Experiment 1: Choice of the suitable number of epochs
	Experiment 2: Models evaluation
	Comparison using statistical tests

	Conclusions
	References

