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Summary

This master’s thesis work proposes an approach to using stressed text instead of phonemes for TTS
neural network inputs to solve the pronunciation problem of synthesized speech for higher-degree
phonemic orthography languages. Tacotron 2 and VITS neural network architectures were used to
train neural networks on multiple Lithuanian language datasets. Three single-speaker Lithuanian
language speech corpora were collected to be used for the model training experiments, totaling 6,
27, and 92 hours of speech data, respectively. Finally, a survey is conducted to calculate MOS
scores and evaluate each trained TTS neural network.

Furthermore, the initial experimental results of training a neural network-based accentuation
model are detailed. The accentuation model is required as a pre-processing component for the TTS
model to solve the synthesized speech pronunciation problem. The best-trained model achieves an
accuracy (character-level) of 93%, but the model is not practical since it assigns stress marks to
all the letters in the input sequence instead of assigning a single pitch accent for each word in the
sequence.

The readers are provided a link to a website demonstrating the speech samples generated by
the developed synthesizers. Also, the base pre-trained neural network models are provided in the
links below.

Keywords: natural language processing, NLP, speech synthesis, text-to-speech, TTS, phone-
mic orthography, automatic text stressing, automatic accentuation, speech dataset, speech
corpus, Tacotron 2, Waveglow, VITS

Santrauka

Šiame magistriniame darbe siūlomas metodas naudoti kirčiuotą tekstą vietoj fonemų TTS neu-
roninio tinklo įvestims, siekiant išspręsti sintezuotos kalbos tarimo problemą aukštesnio laipsnio
foneminės ortografijos kalboms. Kalbos sintezės sistemoms paruošti naudojamos Tacotron 2 ir
VITS neuroninių tinklų architektūros. Šie neuroninių tinklų modeliai apmokyti naudojant skirtin-
gus vieno kalbėtojo duomenų rinkinius. Iš viso surinkti trys lietuvių kalbos duomenų rinkiniai,
kuriuos atitinkamai sudaro 6, 27 ir 92 valandos vieno kalbėtojo balso įrašai. Rezultatams gauti at-
likta apklausa, skirta apskaičiuoti MOS balus ir įvertinti kiekvieną apmokytą TTS neuroninį tinklą.

Darbe taip pat pateikiami pirminiai eksperimentų rezultatai apmokant neuroniniais tinklais
grįstą kirčiavimo modelį. Kirčiavimo modelis reikalingas kaip pirminio teksto apdorojimo kompo-
nentas TTS modeliui, siekiant išspręsti sintezuotos kalbos tarimo problemą. Geriausiai parengto
modelio tikslumas (simbolių lygmenyje) yra 93%, tačiau šis modelis nėra naudingas, nes jis
priskiria kirčius visoms įvesties sekos raidėms, kai iš tiesų tik vienas kirtis turėtų būti priskirtas
kiekvienam žodžiui įvesties sakinyje.

Skaitytojams pateikiama nuoroda į svetainę, kurioje demonstruojami sukurtų sintezatorių



generuojami kalbos pavyzdžiai. Be to, baziniai iš pre-treniruoti neuroninių tinklų modeliai pateiki-
ami žemiau esančiose nuorodose.

Raktiniai žodžiai: kalbos sintezė, sintezatorius, TTS, automatinis kirčiuoklis, kirčiuoklis,
kalbos duomenų rinkinys, Tacotron 2, Waveglow, VITS
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Introduction

Speech synthesis is artificially generated human speech. Speech synthesis systems (also called
speech synthesizers) generate speech either mechanically, or digitally (using computers). The most
common speech synthesis systems are text-to-speech (TTS) systems that use computers to convert
digital text into a speech waveform. TTS systems are used in virtual assistants [Hoy18], smart-home
systems [NLS+11], speech synthesizers are an important tool for the disabled [IC01; SW12].

It is a complex one-to-many problem, where an input sequence (usually phonemes, less com-
monly - graphemes) is converted to a much larger sequence of speech features or even audio wave-
form samples. The main goal of speech synthesis systems is to produce an artificial speech that
represents an actual human speech in terms of intelligibility, naturalness, expressiveness, etc. as
much as possible. Historically, various approaches to speech synthesis systems were proposed.
The very first machines emulating a human speech were produced as early as 1779 [Kra81], further
inventions followed [KB91; Lem+99]. These systems could only produce a few human-like sounds
resembling vowels or consonants. Currently, computer-based text-to-speech systems are capable
of generating speech that is difficult to distinguish from real human speech. For a long time, con-
catenative and statistical parametric synthesis systems reigned as the best performing synthesizers.
In recent years, neural network-based approaches to speech synthesis outperformed the traditional
concatenative and statistical parametric methods. Not only that the synthesized speech sound more
natural compared to traditional systems, but the training of the neural networks is also easier, elimi-
nating the need for expert domain knowledge and extensive manual engineering during development
since neural networks use data to learn to generate speech. The downside is that neural networks
still require a large amount of speech data to train a robust TTS model. This is a major problem for
languages that lack openly available speech data and tools for natural language processing. Such
languages are commonly referred to as low-resource languages.

Most of the research on neural-network-based TTS systems is conducted on English language
synthesizers. Because of that, a lot of natural language processing tools (text pre-processing,
grapheme-to-phoneme, speech alignment, etc.), speech datasets, and other resources are publicly
available for the English language. Thus, reproducing the results of academic research is less chal-
lenging for such a high-resource language. But that may not be the case for low speech-resource
languages. The biggest issue is that there are no publicly available datasets that are large enough
for TTS neural network training task. Besides that, tools like grapheme-to-phoneme converters that
are essential for tackling the pronunciation and other synthesis problems are not publicly available
for low-resource languages. Therefore it is still not trivial to build neural network-based speech
synthesis systems for low-resource languages.

Because of this, other approaches may be required to train a speech synthesis neural network
for low-resource languages. This work focuses on low-resource languages which are higher-degree
phonemic orthographies. For phonemic orthographies, graphemes (written symbols) correspond
to phonemes (spoken sounds), meaning that the graphemes are spoken pretty much the same way
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they are written. This fact is leveraged to argue that phoneme inputs to TTS neural network models
may be replaced by graphemes for phonemic orthographies. In reality, there are only a few actual
phonemic orthographies and more slightly defective phonemic orthographies (languages with a
higher degree of phonemic orthography). Most of the time, some graphemes in such languages are
not fully distinguished. By introducing accents, more information like vowel length (duration) is
provided. Therefore, in this work, a method is proposed to use stressed (accentuated) text instead of
a raw sequence of graphemes as model inputs to solve the pronunciation problem for higher-degree
of phonemic-orthography languages. Such a language is Lithuanian, which is used throughout the
paper to prove the claim.

During this master’s thesis work, three Lithuanian language speech corpora were collected,
totaling 6, 27, and 92 hours of speech data, respectively. The datasets were used to train TTS neu-
ral network models based on two architectures: Tacotron 2 and VITS. As mentioned above, many
academic papers claim to use phonemes as TTS model inputs to solve or at least ease the pronun-
ciation problem common for speech synthesizers. In this work, it is argued that phoneme input
representations are not necessary. A hypothesis is raised that using accentuated text as TTS model
inputs improves the pronunciation of speech generated by TTS neural networks for higher-degree
phonemic orthography languages, like Lithuanian. Multiple TTS neural network models are trained
on stressed (accentuated) and non-stressed text instead of phonemes to prove the claim. A survey
was conducted to calculate the mean opinion scores (a subjective TTS systems evaluation metric)
of each trained model to evaluate the trained models. The experimental results show that stressed
text inputs significantly improve the performance of neural network-based speech synthesizers and
therefore prove that different approaches may be suitable to build a speech synthesis system for
low-resource languages. In addition, the model that scored the highest MOS developed during this
work is compared with other known Lithuanian speech synthesizers in a supplementary MOS sur-
vey. Furthermore, since it is tedious to accentuate the model input text manually, a solution to build
an automatic stressing model based on neural networks is explored. Initial experiments and future
work on creating such a model are detailed in this work.

1. Literature Overview

An overview of the academic literature is necessary to explore the background of the researched
field and related work. Also, it may prove useful to review the possible neural network TTS ar-
chitectures and consider the potential candidates for training a Lithuanian speech synthesis model.
The subject area is actively developed, so it is necessary to stay updated on the latest works and
achievements. The knowledge may be used to help build a state-of-the-art text-to-speech neural
network in Lithuanian. So, in this section:

• The traditional and neural network-based TTS systems are reviewed

• An introduction to the concept of phonemic orthography is given
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• A background on automatic text stressing systems is provided

• The Lithuanian language synthesizers are overviewed

• Open-source text-to-speech datasets are described

• Methods for evaluating TTS systems are discussed

1.1. Text-to-speech Systems

Text-to-speech systems (TTS), also called speech synthesis systems, generate artificial human
speech given a text sequence input. It is a large-scale inverse problem: a highly compressed source
(text) is decompressed into audio waveform samples [WSS+17]. It is also a one-to-many prob-
lem: the same text can correspond to a different pitch, energy, phoneme duration, and other speech
properties, i.e. multiple speech variations correspond to the same text [RHQ+20]. The task is ac-
tively researched for many years and has many practical uses: in virtual assistants, smart homes,
voicing audio books, movies, games, auxiliary devices for the disabled, etc. The most popular
traditional approaches to solving the speech synthesis task are concatenative synthesis and statis-
tical parametric synthesis. In recent years, advances in the field of deep neural networks gave rise
to state-of-the-art neural network-based TTS systems, outperforming the traditional methods both
in naturalness, intelligibility, expressiveness, and other speech features. In addition, the process
of developing a TTS system for a new language has become easier. But, even though neural net-
works improved the performance of speech synthesis systems in many areas, there are still a lot of
challenges to be tackled.

First of all, a lot of audio and text pair data is needed to train a TTS neural network. Also, a large
amount of computational resources is required to train neural network models using these large
datasets. Furthermore, the TTS systems still depend on various third-party tools and algorithms
and may use them as architectural components, preventing the systems from being fully end-to-
end neural networks, and introducing dependency problems. Often, the aforementioned tools are
required for input text pre-processing.

Having said all that, research on speech synthesis is done mainly for the English language,
which is considered a high-resource language. Such high-resource languages have a number of
tools and huge amounts of speech data that are publicly available. But that is not the case for
low-resource languages like Lithuanian. So, different neural network training approaches may be
needed to build neural network TTS systems for low-resource languages.

1.1.1. Traditional TTS Systems

Historically, the first attempts at speech synthesis date back to the late 18th century. The very
first speech synthesis systems were mechanical ones, meaning the sound was generated by using
physical machines [KB91; Kra81; Lem+99]. Unsurprisingly, such systems could only synthesize
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very basic sounds like phonemes or, at best, individual syllables, words, or a specific sentence.
The introduction of computers led to many new approaches to speech synthesis. The most notable
traditional TTS systems are concatenative and statistical parametric synthesis systems. Before the
introduction of neural networks into the field, for decades the best-performing TTS systems were
developed using these two methods. In the following subsections, the concatenative and statistical
parametric methods are reviewed.

1.1.1.1. Concatenative synthesis

The concatenative approach to speech synthesis has been popular for many years [HB96; SBV+06;
ZLD21] before being outperformed by neural network-based approaches. In essence, the concate-
native synthesis systems workflow is the following: given a text sequence input, short audio seg-
ments corresponding to the units of the input text are selected from a big database of speech samples
and are concatenated together (hence the name concatenative synthesis) to form a final synthesized
speech output [HB96]. To be able to select the appropriate audio segments given a text, a concate-
native synthesis system may execute a linguistic, morphological, or other text analysis to extract lin-
guistic features, by which an appropriate audio segment can be assigned to a particular grapheme,
phoneme, syllable, word, etc. State-of-the-art concatenative systems produce high-quality syn-
thesized speech really fast, hence they are suitable for production use. But this approach has its
downsides [KKW18]. As may be guessed, the concatenation of audio segments extracted from
different sentences that may have a different pitch, duration, energy, and other speech properties
produces notable speech artifacts. This is especially true when observing the concatenation points
of the concatenated speech waveform. This problem is partly solved by increasing the size of the
speech database, using speech segments that have speech properties as monotonic (similar) as pos-
sible, and using different techniques for cost functions and weights. Furthermore, the development
of a concatenative speech synthesis system requires a lot of manual engineering and expertise in
the field of natural language which is highly expensive.

1.1.1.2. Statistical parametric synthesis

Another approach to building speech synthesis systems is using the statistical parametric synthesis
methods. Simply put, such methods work by averaging some sets of similarly sounding speech
segments. First, the parametric representations of speech are extracted from a speech database and
then modeled by using a set of generative models like hidden Markov models (HMMs) [TNT+13].
A maximum-likelihood criterion is usually used to estimate the model parameters. The parametric
representations of speech are later used to reconstruct a speech waveform. Building the HMM-
based statistical parametric synthesis system consists of training and inference (synthesis) stages
[ZTB09]. During the training stage, the maximum likelihood is estimated, and the synthesis is
performed by generating speech parameters and maximizing the output probabilities.

The main advantage of statistical parametric synthesis over the concatenative approaches is its
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flexibility in changing its voice characteristics, speaking styles, and emotions. Four main techniques
are used to achieve this: adaptation (obtain speaker-specific speech features with a small amount of
speech data [MTK+97]), interpolation (mixing voices - enables synthesis with voice characteristics
that the model was not trained on [IS95], eigenvoice (producing voices), and multiple regressions
(controlling voices)

When comparing the best examples of both traditional TTS systems, concatenative synthesis
systems outperform their parametric statistical counterparts in terms of speech quality and natu-
ralness. On the other hand, parametric approaches offer other previously mentioned benefits, like
controllability.

1.1.2. Neural network-based TTS systems

There were early attempts to introduce neural networks to the field of speech synthesis [FM06;
Vai+01], but the speech quality produced by such systems did not manage to outperform the speech
generated by traditional approaches at the time, so the methods did not grow popular. But, in the
mid-2010s, advances in the field of neural networks and easier access to more computational re-
sources (especially the widespread use of GPUs for neural network training) led to the development
of multiple TTS neural network architectures which surpassed the traditional approaches. In this
section, the literature on the most notable neural network-based TTS systems is reviewed. But be-
fore moving to the said systems, a brief overview of relevant concepts typical for neural speech
synthesis systems architectures will be reviewed, concretely - acoustic and vocoder models, autore-
gressive and non-autoregressive generation. Other neural network concepts like seq2seq, attention,
Transformers, etc. are not overviewed to avoid an over-detailed literature review. Also, note that
only the papers that have an open-source implementation available online are reviewed in this sec-
tion. Other papers, in the author’s opinion, are not worth investigating for practical reasons - the
implementation of the systems would take too much time.

1.1.2.1. Acoustic and vocoder models

For traditional speech synthesis systems, the usual approach to synthesize speech is to first de-
velop a so-called front-end that can extract various linguistic features from the text, provide a dura-
tion model, an acoustic feature prediction model, and a complex signal-processing-based vocoder
[Ito17]. By introducing neural networks into the field, it became possible to replace some of these
components using a neural approach. Nevertheless, a two-stage flow is still widely used in neural
network-based TTS systems. Specifically, such a system is composed of acoustic and vocoder mod-
els. An acoustic model takes text as input and generates acoustic features as outputs. The most pop-
ular representation of such features is spectrograms and Mel-spectrograms. So, an acoustic model
in neural network TTS systems typically performs a text-to-spectrogram conversion. Next, the out-
puts of the acoustic model (acoustic features) are fed to a vocoder as input which then converts the
features to a speech waveform. In other words, the vocoder performs a spectrogram-to-waveform
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conversion.
Until quite recently such a two-step approach produced the best quality speech synthesizers. In

spite of that, it has its flaws [KKS21]:

• Training and inference pipelines can get complicated

• Both models need to be trained separately, so training time is increased

• Inference takes a longer time

• Such a system is not a fully end-to-end neural network, as it is composed of several compo-
nents

Recently, fully end-to-end neural TTS architectures were proposed. They are described in fur-
ther sections.

1.1.2.2. Autoregressive and non-autoregressive networks

Text-to-speech is a one-to-many problem, where a highly-compressed data representation such as
characters, graphemes, or phonemes is used to generate a Mel-spectrogram (speech features) or
an audio waveform (sequence of audio samples). One second of audio can contain 22 thousand
samples and more, thus a lot of computational resources are required for a neural network model
to predict such a sequence sample-by-sample. Neural network models that are conditioned on pre-
viously generated outputs in a sequence are called autoregressive models [Aka98]. It is hard to
parallelize the computations for such models since the previously generated outputs are needed at
each time step. On the other hand, non-autoregressive models are conditioned on the whole input
sequence [RLT+20]. Therefore, it is easier to parallelize such systems. As a consequence, the train-
ing and inference times can be greatly reduced. Also, since the generation is conditioned on the
whole input, a larger receptive field and context is available for the model [KKS21], thus allowing to
make use of more information on pitch, energy, and other features and generate a more expressive,
variable, and tunable speech.

1.1.2.3. Neural network architectures

Systems like DeepSpeech [HCC+14] imitate the flow of traditional TTS approaches, where multiple
components are combined to work as a front-end by extracting various linguistic features, providing
a duration model, an acoustic feature prediction model, and a complex signal-processing-based
vocoder [Ito17]. DeepSpeech simply replaces the rule-based traditional TTS components with
neural network models. This approach provides fair results, but the training and inference flow is
too complicated because each system component needs to be trained separately. Also, due to the
fact that the system consists of multiple independent components, errors easily propagate during
inference.
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The introduction of Tacotron [Ito17] had a huge impact on the field of speech synthesis. The
system pioneered a fully end-to-end neural approach to TTS systems. Tacotron is an autoregres-
sive end-to-end generative TTS model based on recurrent neural networks (specifically - gated
recurrent units, or GRU [CVG+14]) and a modified sequence-to-sequence (seq2seq) architecture
[SVL14] with attention [BCB14] paradigm. Tacotron can learn to synthesize speech at a character
level, meaning it does not require tools for converting text sequences to phonemes or similar rep-
resentations. This relaxed the pronunciation problem for the network. Trained on a dataset of text
and audio pairs (speech corpus), during inference Tacotron can output a raw spectrogram given
a character sequence as input. Still, even though at the time it outperformed the state-of-the-art
production parametric systems, it performed slightly worse than concatenative synthesis systems.
This is mainly due to the use of the Griffin-Lim [GL84] algorithm as a vocoder, that is known to
synthesize poor quality speech from spectrograms. Also, since not a lot of text data is provided
during training, the network cannot learn all the exceptions in pronunciation and suffers from occa-
sional mispronunciation errors. Besides, the model occasionally produces errors in prosody such
as word-skipping, generating silence or unintelligible speech, etc.

At the time the Tacotron paper was released, the authors noted that the use of the Griffin-Lim
algorithm as a vocoder was only a placeholder for the future development of a fast and high-quality
trainable spectrogram-to-waveform inverter. In the same year, the authors of Tacotron released a
sequel to the article - Tacotron 2 [SPW+18], that solves the aforementioned problem. The authors
use a similar feature-prediction architecture for generating spectrograms from text, instead this
time they chose to predict Mel-spectrograms that represent the human receptive field better and
are proven to provide better synthesis results. For the vocoder part, Tacotron 2 uses a modified
WaveNet [ODZ+16]. The WaveNet vocoder is modified to use Mel-spectrograms as inputs instead
of conditioning it on various extracted linguistic features to generate a speech waveform. This
modification resulted in a state-of-the-art end-to-end TTS neural network system that outperformed
the best concatenative and parametric synthesis systems of the time. Because of how easy it is to
train Tacotron 2 and its resulting synthesis quality, the system is still popular and widely used even
today. Overall, Tacotron 2 is a high-performance speech synthesis system, but it has its flaws.
The most notable ones are that it suffers from occasional mispronunciation and word skipping or
repeating. Also, because of its two-component pipeline - acoustic and vocoder models - it requires a
lot of time to train while the inference speed is slow. Besides, compared to traditional TTS systems,
it offers a relatively slow inference speed because the WaveNet vocoder predicts each sample one
by one. NVIDIA introduced its own implementation of Tacotron 2 1 by replacing the vocoder in
the original paper with WaveGlow, but the system is still relatively slow and especially struggles
with longer sequences since inference time increases linearly as the input sequence increases.

After the introduction of Transformer networks [VSP+17], a first attempt was made to incorpo-
rate the method in TTS systems by Microsoft Research [LLL+19]. Authors replaced the RRNs used
in Tacotron architecture to tackle the vanilla system’s problems of low efficiency during training

1https://github.com/NVIDIA/tacotron2
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and inference, and modeling long dependencies. The resulting system can be trained faster, but
just slightly improves on inference speed, while retaining a similar synthesized speech quality. Be-
sides, the authors use phoneme sequences as inputs to the model to solve pronunciation problem,
but the grapheme-to-phoneme conversion tools are not available for low-resource languages like
Lithuanian, so the system needs to be adapted to work for such languages.

The problems that the Tacotron model face can be observed in most autoregressive TTS sys-
tems: slow inference, non-robust synthesis (word skipping and repeating), and lack of controllabil-
ity. Further works like Parallel WaveNet [OLB+18], ClariNet [PPC18], and WaveGlow [PVC19]
solves these issues, but they still need to be conditioned on Mel-spectrogram features that are gen-
erated autoregressively. In other words, they act only as vocoders. Microsoft introduced one of the
first non-autoregressive TTS systems - FastSpeech [RRT+19]. The authors of the paper claim to
solve the aforementioned problems by generating Mel-spectrograms from phonemes in parallel by
utilizing a feed-forward Transformer network, phoneme duration predictor, and length regulator.
At a similar time, another TTS system that generates Mel-spectrograms in a non-autoregressive
manner was introduced [PPS+19], but it is based on an encoder-decoder framework with attention
mechanism, therefore requires more parameters and time for inference. Furthermore, it does not
solve the problem of word skipping and repeating.

Even though FastSpeech was a big improvement to the speech synthesis systems of the time
since it operates in a non-autoregressive manner, it can only generate acoustic features non-
autoregressively and needs an external vocoder to synthesize a speech waveform (the authors of
the original paper use WaveGlow), thus the system is not fully end-to-end. Further work from the
same authors produced FastSpeech 2s [RHQ+20] - the first attempt at a fully end-to-end phoneme-
to-waveform generating system. The main challenges of text-to-waveform generation specified in
the paper are a large information gap between input and output, and difficulties in training due to
long waveform samples and limited GPU memory. The authors solve these problems by employ-
ing adversarial training, a Mel-spectrogram decoder based on WaveNet and Parallel WaveGAN
[YSK20], and special waveform decoder losses: multi-resolution STFT loss and LSGAN discrimi-
nator loss. Again, FastSpeech 2 requires third-party tools to produce phoneme-to-audio alignments,
thus is too complex to implement for low-resource languages.

Glow-TTS [KKK+20] eliminates the need for an external phoneme-audio aligner. Inspired
by the fact that a human reads out text in order, without skipping any words, it is a flow-based
non-autoregressive generative model for parallel TTS that can internally learn its own alignment
by utilizing an efficient monotonic alignment search implemented with a dynamic programming
algorithm. Its architecture is composed of an encoder that follows Transformer TTS [LLL+19]
structure, a flow-based decoder that is partly based on WaveGlow [PVC19], and a duration predictor
similar to FastSpeech [RRT+19]. Glow-TTS synthesis is fast, high-quality, and controllable, but acts
only as an acoustic model to synthesize Mel-spectrograms given an input phoneme sequence, thus
it requires an external vocoder to generate audio speech (authors use WaveGlow).

Most of the aforementioned systems are two-stage acoustic-vocoder model systems. Other
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attempts at a fully end-to-end text-to-waveform neural speech synthesis system (e.g. FastSpeech
2s [RHQ+20], EATS [DDB+20], and Wave Tacotron [WSB+21]) reduce the training complexity
and significantly decrease the synthesis time, but lags behind the two-stage systems in terms of
speech quality. To solve this issue, the creators of Glow-TTS introduced VITS (Variational Infer-
ence with adversarial learning for end-to-end Text-to-Speech) [KKS21] - a parallel fully end-to-end
TTS method that generates more natural-sounding audio than the two-stage models of the time.
The authors of the paper achieve this by utilizing the variational auto-encoder (VAE), monotonic-
alignment search (MAS), and adversarial training. VITS architecture consists of a prior encoder,
posterior encoder, decoder, discriminator, and stochastic duration predictor. Originally, the authors
of the paper used phoneme sequences as inputs to the model, but since the phoneme-audio align-
ment is learned internally and does not require external tools, any text representation can be used
as input to the model.

1.2. Phonemic Orthography

A phonemic orthography is an orthography (system for writing a language) in which the graphemes
(written symbols) correspond to the phonemes (spoken sounds) [Sga87]. A true phonemic orthog-
raphy is one where each phoneme would invariably be represented by its corresponding grapheme.
In such a case, the spelling of a word would unambiguously and transparently indicate its pro-
nunciation. On the other hand, by knowing a pronunciation of a word its spelling can be inferred
confidently. In reality, there are few natural languages that are true phonemic orthographies and
relatively more defective or slightly defective orthographies. A defective orthography is one that
is not capable of representing all the phonemes or phonemic distinctions through graphemes. An
example of such language is English, e.g. a grapheme th can be pronounced different in each of
the following words: this, thin, goatherd. A language may also be a slightly defective orthogra-
phy (otherwise called a higher-degree phonemic orthography) if its vowels, tone and vowel length,
vowel phonation, etc. are not fully distinguished. An example of such a language is Lithuanian.
It is a slightly defective orthography as it does not fully distinguish tone and vowel length and is
classified as a pitch-accent language.

Previous sections show that most of the research in the field of text-to-speech neural network
systems is conducted using English as the target language. Since English is highly non-phonemic,
the systems are often built to generate speech from phonemes and not from graphemes. This way,
it is easier for the neural network to learn to pronounce the words correctly, instead of relying on
the network to learn all the pronunciation exceptions of the graphemes. Third-party tools or pro-
nunciation dictionaries are usually used to convert the text to phonemes that are fed into a network.
There were attempts to use raw letters as inputs to the TTS neural network [Ito17], but the authors
of the work note that pronunciation problems arise since usually there is not enough data for the
model to learn all the pronunciation exceptions in a language. Anyway, grapheme-to-phoneme tools
and pronunciation dictionaries are not available for most low-resource languages (including Lithua-
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nian). Thus, different pronunciation problem solutions may be required for such languages to build
a quality speech synthesizer. One approach to solving the problem is to use stressed text as model
inputs instead of phonemes as it would help the model distinguish between the length and tone
of the phonemes for the corresponding graphemes. It proved to be a good solution for languages
with a higher degree of phonemic orthography [RRK21]. In the latter paper, the TTS neural net-
works trained on Lithuanian language datasets with and without stressed text labels are compared.
The MOS survey showed that using pitch accents to train TTS neural networks for languages with
higher-degree of phonemic orthography improves the naturalness of the system considerably. On
the other hand, the results of the paper may seem unconvincing as only one neural network archi-
tecture was trained on a single dataset. In this work, the problem is explored in more detail.

1.3. Automatic Text Stressing Systems

Automatic text stressing (also commonly referred to as automatic accentuation, automatic stress
assignment, stress prediction, word accentuation prediction) task is responsible for assigning a
correct pitch accent for each word in a given input sentence. Some early works on such systems
note that an automatic text stressing system would be a valuable component to a TTS system as
a text pre-processor [Wil87]. Automatic accentuation systems were developed using multiple ap-
proaches. Algorithmic-approach systems use morphological and phonological analysis to stress
words in a sentence [Chu86; Wil87]. Multiple machine learning algorithms were used to solve the
problem: decision trees [Anb10; Šef06], support vector machines (SVMs) [DBJ+09], maximum
entropy ranking [HS13]. Notably, not much research was done on automatic accentuation using
neural networks. One early work uses 3 layers of feed-forward neural networks to classify whether
a word is accented or not [MPvS07], but it achieves a poor accuracy of 84% (only slightly better
than chance as measured by ROC analysis). Another work uses GRUs to predict word accents and
achieves a 94.4% accuracy [Mos20]. For now, machine learning approaches seemed to offer the
best results for text stressing with up to 98% accuracy [DBJ+09].

There were multiple attempts at an automatic Lithuanian language text stressing system. A
work by Pijus Kasparaitis proposed a rule-based approach to stress words using a dictionary [Kas00;
Kas01b]. Another work utilized decision trees to achieve 95.5% accuracy for the task [Anb10].
There is also an online tool developed by VDU researchers 2, but no paper providing details of the
work is published.

1.4. Lithuanian Language Synthesizers

This work describes the development of a Lithuanian language speech synthesizer, so it is relevant
to review the previous work done for such systems. While English language synthesizers were
developed for decades [HB96; TYM+00], a major breakthrough in Lithuanian synthesizers occurred

2http://donelaitis.vdu.lt/main.php?id=4&nr=9_1
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in 2013-2015. A production-level synthesizer followed in 2021. These synthesizers are briefly
reviewed in the following paragraphs.

There were early works done by foreign companies (in some cases - in collaboration with for-
eign companies). The very first Lithuanian language speech synthesizer - Apollo - was introduced
in 1994 by UK company Dolphin Systems Inc [Kas+16]. It was based on a formant synthesis method
[Kla80]. Aistis synthesizer followed in 1996 [Kas01a]. This time, the system was based on concate-
native synthesis and utilized the accentuation and transcribing modules. The last two synthesizers
are no longer used.

In 2003, a Chech company RosaSOFT developed a multispeaker synthesizer WinTalker based
on the concatenative synthesis, which included 3 Lithuanian voices: Gintaras, Aistis, and Aistis 2
[Kas+16]. Some of the algorithmic solutions used to develop the system are not open to the public.
In the case of synthesizer Aistis 2, different synthesizers were developed using different approaches
to determine the sound duration and tone modifications using the method employed by RasaSOFT
in WinTalker, MBROLA algorithm [DPP+96], and TD-PSOLA algorithm [MC90].

In 2008, the Egidius synthesizer was developed by the Lithuanian and Belarussian companies
UAB Etalinkas and Sakrament respectively. Again, it is based on the concatenative synthesis, but
here it uses different approaches to text stressing [Kas+16].

Synthesizer SINT.AS was developed by dr. prof. Pijus Kasparaitis and UAB ”Algoritmų sis-
temos”, and deployed in production in 2013 [Kas+16]. It introduced two artificial voices: Marijus
(male) and Laima (female). Compared to previous Lithuanian synthesizers, SINT.AS is distinct
in that the narrators were specially selected to make the speech corpus, and that the unit-selection
method was used for synthesis. Neither the details about the work nor the synthesizer itself is
available publicly.

The project LIEPA 3 introduced a state-of-the-art Lithuanian speech synthesizer of the time
[Kas+16]. Developed in 2013-2015 by Vilnius University and its partners, it introduced 4 new
voices: Aistė, Edvardas, Regina, and Vladas. It uses the unit selection method and is publicly
available.

In 2021, VDU scientists collaborating with the LRT team developed a production-quality
Lithuanian speech synthesizer [Bla]. It is the first Lithuanian speech synthesizer deployed in pro-
duction that is based on neural networks. The synthesizer is deployed on the LRT website 4 to
narrate the published articles. The synthesized speech is very natural and comprehensible. Neither
the systems nor the details on how it was developed are open publicly, besides the fact that the TTS
system is based on neural networks 5.

Lastly, Microsoft’s Azure provides a service of Lithuanian speech synthesis in two voices
- Leonas and One (male and female, respectively) footnote https://azure.microsoft.com/en-
us/services/cognitive-services/text- to-speech. The synthesizer is also based on neural networks

3https://raštija.lt/liepa/paslaugos-vartotojams/sintezatorius-akliesiems/
4https://www.lrt.lt/
5https://www.lrt.lt/naujienos/tavo-lrt/15/1340747/nuo-siol-portale-lrt-lt-visus-straipsnius-galima-ne-tik-skaityti-

bet-ir-klausyti
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and is built in a low-resource setting using LR-UNI-TTS - Azure’s neural TTS production
pipeline footnote https://techcommunity.microsoft.com/t5/ai-cognitive-services-blog / neural-text-
to-speech-previews-five-new-languages-with / ba-p / 1907604. The speech produced by the syn-
thesizer

The reviewed literature suggests that until quite recently, most Lithuanian language synthesizers
were based on concatenative methods. As observed in the previously reviewed papers, currently
these methods are outperformed by neural network-based approaches to speech synthesis. The
recently created Lithuanian TTS systems based on neural networks - VDU and Microsoft’s synthe-
sizers - perform rather well, but no academic article was published on how the systems were built
and therefore these details are not publicly known.

1.5. Text-to-speech Datasets

The development of any TTS system - whether it is concatenative, parametric, or neural network-
based - usually requires a collection of a speech corpus. While the data may be more complex for the
concatenative or statistical parametric approaches as it may require more complex annotations, TTS
neural network systems can usually learn from text and the corresponding speech pairs data. In the
context of speech synthesis neural network models, the text is an input to the model, and the audio
waveform is the target. Datasets for text-to-speech neural network training may contain audio sam-
ples voiced by a single or multiple speakers. Such datasets are henceforth called single-speaker and
multi-speaker datasets, respectively. For different neural network architectures, different amounts
of speech data may be required to achieve satisfactory results. But it is common to see the use of the
same publicly available speech datasets in different articles. Usually, those are English language
speech corpora. This is done because it is much easier to compare the performance of the devel-
oped methods if different networks are trained on the same data. One such popular open-source
single-speaker dataset for the English language is LJSpeech 6. It contains nearly 25 hours of speech
data and is used in many papers where state-of-the-art neural network architectures are introduced
[Ito17; KKS21; RRT+19].

There are a few popular multi-speaker datasets for TTS systems. These datasets can differ in
duration, original sample rate, and number of speakers. One such popular multi-speaker dataset is
VCTK 7. It contains 44 hours of speech data spoken by 109 speakers. A much larger multi-speaker
dataset is Common Voice 8 [ABD+19], containing 1118 hours of audio recordings, narrated by
51072 speakers. It also contains data for multiple languages. Both these datasets are available at a
48 kHz sample rate, so it is possible to downsample the recordings to suit specific use cases. Other
notable datasets are LibriTTS 9 [ZDC+19] (586 hours, 2456 speakers, 24 kHz sample rate), and

6https://keithito.com/LJ-Speech-Dataset/
7https://datashare.ed.ac.uk/handle/10283/3443
8https://commonvoice.mozilla.org/en/datasets
9http://www.openslr.org/60/
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LibriSpeech 10 [PCP+15] (982 hours, 2966 speakers, 16 kHz sample rate).
All the mentioned datasets are in the English language. There are not many open-source data

available for the Lithuanian language. Although not entirely. Common Voice dataset offers 16
hours of validated labeled Lithuanian speech data. But the speech data is distributed between 232
speakers, therefore it is not sufficient for a single-speaker TTS system training. Project LIEPA
[LTK+18] offers 100 hours of speech data designed for speech recognition systems, and 13 hours
of speech data distributed between 4 speakers for text-to-speech systems. There are more papers
describing the publicly available Lithuanian speech corpora [DK09; RR02], but at the time this
paper is written the links to the published datasets do not seem to work and may be outdated.

While the aforementioned datasets contain unprocessed text labels for the corresponding audio
samples, it is common to pre-process the text to make it easier for the neural network to distinguish
between all the pronunciation intricacies. For neural network-based systems, it is common to use the
phoneme representation for the model so there is no ambiguity for the model as to how to pronounce
each input unit [KKK+20; KKS21; RRT+19]. Third-party grapheme-to-phoneme tools are used to
convert the grapheme (letter) sequence to a phoneme sequence. It is also not uncommon for some
speech synthesis systems to make use of third-party tools to extract the duration information from
the phoneme and audio pairs [RRT+19]. Other systems do that internally [KKK+20; KKS21].

1.6. Evaluation of TTS Systems

There are multiple objective and subjective metrics aimed at evaluating TTS systems. Objective
metrics are based on various algorithms to automatically evaluate a speech synthesis system and
provide a numeric value of its quality in terms of different aspects. Such a metric would be a
preferred choice when building TTS systems because the quality could be evaluated objectively
and quickly. However, in practice, such metrics are rarely applied. There are multiple reasons for
that. First, most of the objective evaluation metrics focus only on evaluating specific features of
synthesized speech, like intelligibility [URB+15; WWT+12]. Such evaluation would not represent
real-world scenarios where people may prefer one speech over others depending on multiple aspects
of speech like voice tone, expressiveness, and most importantly - naturalness, i.e., how much the
speech resembles an actual human speech. Secondly, most objective evaluation systems are not
publicly available or are hard to adjust for a specific use case. That may be true for TTS metrics
developed quite recently that is based on neural networks [CLS+20; JYB+22]. These networks
would need to be adjusted for a specific environment, for example, when evaluating the speech of
an unsupported language.

In practice, a subjective TTS evaluation metric - mean opinion score - is the most popular.
It is used in most of the scientific literature where speech synthesis systems need to be evaluated
[HCC+14; Ito17; KKK+20; KKS21; LLL+19; ODZ+16; OLB+18; RHQ+20; RRT+19; SPW+18].
Because of the reasons mentioned above, the mean opinion score subjective evaluation metric was

10https://www.openslr.org/12/
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Table 1. Mean opinion score table [RFZ+11]

Rating Quality Naturalness Distortion
5 Excellent Completely natural Imperceptible
4 Good Mostly natural Just perceptible, but not annoying
3 Fair Equally natural and unnatural Perceptible and slightly annoying
2 Poor Mostly unnatural Annoying, but not objectionable
1 Bad Completely unnatural Very annoying and objectionable

used to evaluate the TTS models created in this work. This metric is described below.

1.6.1. Mean Opinion Score

The mean opinion score (MOS) [Rec94] is a subjective evaluation metric calculated by collect-
ing the results of a subjective listening test. Various systems are evaluated using MOS, including
text-to-speech systems. Subjective listening tests are generally regarded as the most reliable and
definitive way of assessing speech quality and naturalness [RFZ+11]. In general, subjective quality
measures require that [RRK21]:

• There are enough listening subjects of sufficient diversity to produce statistically significant
results;

• Experiments are conducted in a controlled environment with specific acoustic characteristics
and equipment;

• Every subject receives the same instructions and stimuli.

In a MOS test, the listeners evaluate randomly selected samples (also called signals, or utter-
ances) from a pool of speech samples. In the case of TTS MOS, the pool of speech samples usually
contain audio samples generated by multiple TTS systems and ground truth (real human speech)
samples. The MOS score is calculated for each of the sources. Also, the limitation is that the same
listening test should never contain two samples created from the same utterance by the same source.

At the beginning of a test, respondents are asked to use headphones to achieve better results be-
cause people have a smaller discrimination capacity by using loudspeakers. They are also provided
with a MOS score table, similar to the one presented in table 1.

2. Lithuanian Speech Dataset

A speech corpus (dataset) meant to train a TTS neural network should contain pairs of short text
sentences and corresponding single speaker speech recordings. The quality of these text-audio pairs
should be as high as possible as experimental results provided in the results section of this work
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show that a neural network’s ability to learn to synthesize intelligible, comprehensible, and high-
quality speech, depends very much on the quality of the dataset on which it is trained. There are
multiple requirements for a good quality dataset. Some of them are noted below:

• The text labels should match the spoken sounds of the corresponding recording as much as
possible.

• The quality of the speech recordings produced by a TTS neural network corresponds to the
quality of the speech recordings that the network learned from. Therefore, The quality of the
speech recordings should be as high as possible.

• A speech corpus should be large enough for a neural network to learn various speech features
of a language. For now, most of the papers that introduce state-of-the-art speech synthesis
neural network models use speech datasets that contain as much as dozens of hours of speech
data [Ito17; KKS21; RRT+19]. Research is conducted on models that require less data (up
to a few minutes) to train a speech synthesizer, but such models do not compare to the state-
of-the-art models in terms of quality.

• The speech recordings should contain background noise, breathing sounds, and other sound
artifacts as little as possible. These artifacts are usually not preferred in a good-quality speech
synthesizer. The reasons are analogous to the previous point: the neural network will learn
to synthesize speech similar to the recordings it learned from.

One way to assemble such a dataset would be to hire a professional speaker, record well-
prepared text utterances in a recording studio, and post-process and validate the recordings to create
a dataset. This way, a high-quality dataset is guaranteed, but such a workflow is very expensive.
Since the open-source Lithuanian language datasets are too small to train a TTS neural network of
reasonable quality, for the purpose of this work, a solution was chosen to use pairs of large-sized
audiobooks narrated by a single speaker and respective digital books. Professional speakers usu-
ally narrate audiobooks in a recording studio with high-quality equipment, so the quality of such
audio clips is sufficient for neural network training. Also, there are many audiobook narrators in
the Lithuanian language, so there are multiple options for a preferred synthesizer voice. This work
collected three single-speaker speech datasets of different sizes and qualities. The speakers for each
dataset are Vytautas Radzevičius, Aurimas Nausėdas, and Giedrius Arbačiauskas. Some high-level
information about the datasets and the books they are comprised of are presented in table 2:
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Table 2. A list of the books used in creation of the speech datasets.

Speaker Title Author Year Recorded Duration
Vytautas Radzevičius Detektyvas Arthur Hailey 2003 18 val. 20 min.
Vytautas Radzevičius Ir padegė šiuos namus William Styron 2004 22 val. 58 min.
Vytautas Radzevičius Vakarykštis pasaulis Stefan Zweig 2005 16 val. 31 min.
Vytautas Radzevičius Meteoritas Dan Brown 2006 16 val. 43 min.
Vytautas Radzevičius Fenikso brolija J. K. Rowling 2006 25 val. 38 min.
Vytautas Radzevičius Hobitas arba ten ir atgal John R. R. Tolkien 2007 9 val. 51 min.
Aurimas Nausėdas Vakarų fronte nieko naujo Erich Maria Remarque 2019 7 val. 8 min.
Giedrius Arbačiauskas Altorių šešėly Vincas Mykolaitis Putinas 2020 32 val. 10 min.

Note that after processing the speech data, the resulting total duration of speech recordings in
each dataset is lower than the duration of the audiobooks. The following section describes the steps
required to process audiobook and digital book pairs into a speech corpus suitable for text-to-speech
neural network training.

2.1. Creating the Lithuanian Speech Dataset

As mentioned in the previous sections, audiobook and digital book pairs were used to create three
Lithuanian language speech datasets (corpora). A metadata validation was carried out to ensure
that the editions of each audiobook and digital book pair are equal. This way, there is less dis-
crepancy between the speech recordings and the text. Nevertheless, the beginnings and the ends
of audiobooks and digital books usually differ because of the introductory and concluding content.
These parts were cut out manually so that both the audiobook and the digital book start and end in
the same sentences.

In theory, text-to-speech neural networks can train on samples (audio-text pairs) of any audio
duration and text length. However, in practice, shorter samples are used for training because of the
lack of computational resources. Usually, the speech datasets contain audio samples of duration
ranging from 0.3 to 16 seconds. In this work, the samples in each dataset are collected in the range
of 0.3 to 15 seconds. For the experiments, shorter or longer samples are filtered out depending
on the neural network architecture. The sample filtering is done because some neural network
architectures perform worse when trained on too short or too long samples. Also, the max length of
the samples was set to 15 seconds to save computational resources (because the longer the samples,
the more VRAM is required by neural networks during training) and be able to set a larger batch
size during training.

2.1.1. Text pre-processing

As mentioned before, the digital book text needs to correspond to the audiobook recordings as
much as possible. The digital book needs multiple steps of processing to achieve this. Most digital
books are stored in EPUB, MOBI, or PDF formats. So, to begin with, they must be converted to
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a TXT format. This conversion usually introduces various artifacts in text. That is especially true
when converting a PDF book that does not contain text data (it contains only images) and needs to
be processed using optical character recognition (OCR) algorithms. Some of the most commonly
found artifacts are listed below:

• Misspelled letters. Text processing and conversion algorithms are most effective for the
English language. Therefore it recognizes the English language alphabet the best. When
converting other language text, the letters from the corresponding alphabet are sometimes
not recognized or misinterpreted. For example, the Lithuanian language letter ą (a with an
ogonek) is sometimes interpreted differently: a letter a with a comma (a,), letter q, or letter
a. A letter š (s with a caron) may be interpreted as simply a letter a, or even as a letter s with
an additional letter v placed one line above the letter. Many other letter misinterpretation
artifacts are found after converting a digital book to a TXT format.

• Page headers and footers. The artifacts caused by headers and footers are especially notable
when executing an OCR over a PDF file. The text repeated on every page in a digital book
is also repeated in the converted TXT file. That includes page/chapter numbering, chap-
ter/book/author names, and other symbols like horizontal lines and star symbols *. Since a
correspondence between text and audio recordings is desired, this repeated, not narrated text
needs to be removed.

• Out-of-vocabulary symbols. In the context of text-to-speech systems, a set of symbols sup-
ported by the synthesizer is called a vocabulary. More details on this will be presented in
later chapters, but for now, it is worth noting that book conversion to a TXT format often
produces many out-of-vocabulary (OOV) symbols. Some of these symbols may be replaced
automatically, but others need a manual examination to ensure that important text informa-
tion is not lost. A list of replaceable out-of-vocabulary symbols that were encountered the
most often during the collection of the datasets described in this work is shown in table 3.
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Table 3. Out-of-vocabulary symbols found after digital book conversion to a TXT format. The
table contains the symbols that the OOV symbols were automatically converted to. <blank> and
<whitespace> denote an empty and a whitespace characters respectively. Note that this is not a full
list of possible OOV symbols, but only those that were encountered the most often.

OOV symbol Replacement
_ <whitespace>
� <blank>
� <blank>
\ <blank>
® <blank>
· <blank>
◦ <blank>
◦ <blank>
2 <blank>

OOV symbol Replacement
— -
– -
 -
� -
’ ’
‘ ’
‚ ’
“ ”
” ”
„ ”
, , ”

It is possible to fix a part of the artifacts automatically (regular expressions help a lot), but
others need to be found and fixed manually, which is time-consuming.

Audiobooks are usually split into multiple audio files (chapters) of varied duration. On the
other hand, digital books are provided as a single file. The monolithic text file needs to be split into
chapters corresponding to the audiobook to be able to align text and audio later. It is preferred to
split the text into chapters rather than concatenate the audio files to save computational resources
during future processing steps.

After fixing the text conversion errors and splitting the text into respective audiobook chapters,
the text needs further processing to ensure that the speech recordings correspond to each symbol
as much as possible. This process involves a considerable amount of manual work, detailed in the
following sections. For now, an overview of the points that need to be fixed in the text is presented
below:

• The beginning and the end of a digital book. Both the audiobooks and the digital books
usually have information segments at the start, end, or both. In the case of an audiobook,
that may include the publisher, speaker, year narrated, etc. For a digital book - the edition,
author, publisher, year published, etc. These segments need to be removed to match the start
and end of both the audio and the text. For the digital book, simply delete the text that is not
narrated at the start and end of the audiobook. Similarly, in the case of the audiobook, audio
processing software may be used to cut the irrelevant segments.

• Footnotes. Books often include a number of footnotes. These may describe an event men-
tioned in a text, define terminology, translate foreign text, etc. These parts are sometimes
narrated, rephrased, or inaudible in a corresponding audiobook. Therefore, manually listen-
ing to these segments in the audiobook and accordingly editing the text is necessary. Most
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often, the footnotes in a text can be navigated by an asterisk (*) or, in other cases - by a
respective numbering.

• Digits. Digits are usually not included in the vocabulary of TTS neural networks but are
narrated in audiobooks. Therefore it is necessary to find digits in text and convert them to
corresponding word representations. This conversion is not a trivial task for some languages
because of multiple possible inflections of number words depending on the context (other
words in the sentence). To illustrate, the digit 7 in Lithuanian language sentences ”7 dienų
neužtenka” and ”savaitėje yra 7 dienos” expands respectively: ”septynių dienų neužtenka”
and ”savaitėje yra septynios dienos”. The task of automatically expanding the digits to words
is not researched in this work, and open-source tools solving this problem for the Lithuanian
language were not found. Therefore the digits in the text were converted to words manually.

• Narrated abbreviations. Most of the abbreviations found in the text are expanded and narrated
by speakers in a corresponding audiobook. Usually, it is necessary to listen to the recording
of the corresponding text segment containing an abbreviation to know its full-word repre-
sentation in confidence. However, sometimes it is sufficient to assume the expanded word
depending on the surrounding words in a sentence. Some of the most common abbreviations
and their corresponding expanded forms: kun. - kunigas, kan. - kanauninkas, prof. - profe-
sorius, a. - amžius, m. - metai, d. - diena, dr. - daktaras, Šv. - šventas/švenčiausias, pvz. -
pavyzdžiui, t.t. - taip toliau.

• Inaudible abbreviations. There are also abbreviations that the speaker does not narrate in an
audiobook. It is necessary to listen to these segments in an audiobook manually to know for
certain. If the abbreviation is not narrated - it must be removed from the text. Most often,
these are name abbreviations, e.g., J. K. Rowling - Rowling, George R. R. Martin - Martin,
etc., but other cases may occur, too.

• Foreign words. It is not uncommon for foreign words to be present in a book. That is espe-
cially true for translated books. These foreign words are usually (but not always) narrated by
following the phonology of the respective language. Therefore it is necessary to convert the
text segments where these foreign words are present to match the target language phonology.
Another option is to filter out such segments to save work time. That may be a preferred op-
tion if the foreign words appear in an audiobook frequently since editing all the occurrences
may prove too time-consuming. It is also worth noting that sometimes the foreign words
are not narrated by the speaker. Examples of foreign words converted to a form respecting
Lithuanian phonology: Stefan Zweig - Štefan Cvaig, Voltaire - Volteras, examen conscientiae
- egzamen konšiantiae, Browday - Brodvėjus, etc.

2.1.2. Audio and text alignment

After performing the text processing described above for each chapter text-audio pair, the text and
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the respective speech in the audiobook need to be aligned to get the start and end timestamps for
each text segment. As mentioned before, short samples are preferred to build a speech corpus.
For this reason, the text needs to be split into shorter segments. In this work, the text was split into
sentences. Next, sentences that take longer than 15 seconds for the speaker to voice were split again
at the time the narrator makes a pause. It is possible to split longer sentences in the way mentioned
above because most of the time, the speaker must take a breath sometime during 15 seconds of
non-stop talking. The sentences were split according to the official Lithuanian language sentence
punctuation directives 11.

Next, the prepared text and the respective audiobooks need to be aligned to produce the start
and end timestamps of each sentence in the audiobook. This process is called forced alignment
[MJV+98]. For this task, a third-party tool Aeneas 12 was used. The inputs to the tool are an audio
file (audiobook chapter) and a text file containing sentences corresponding to the audio recording.
Note that the order of the sentences must match the utterances in the audio file. The sentences in the
text file must be split by double new lines for Aeneas to consider it a separate entry. Aeneas forced
alignment is configurable. It is possible to set different output formats, like JSON or SRT (subtitle
file format). It is also possible to set the alignment boundary percent value so that the boundary
between two aligned segments would be closer to either the end of the first segment (boundary
< 50%) or closer to the start of the second segment (boundary > 50%). During the collection of
the datasets, it was noted that it is convenient to verify the audio-text pair samples using subtitle
processing tools, so the output format for the Aeneas forced alignment was set to SRT with a text
type - subtitle. The alignment boundary was set to 80% to allow more silence only on one side of
a boundary rather than on both sides. That was done for easier editing later. The Aeneas forced
alignment tool was used to align all the audio-text file pairs to output corresponding SRT files,
containing the start and end timestamps for each sentence in the audio files.

Usually, audiobook narrators make pauses between each sentence of the book. Because of that,
the aligned audio segments of sentences contain regions of silence at the beginning and endings.
These silent regions can sometimes get relatively long (more than 1 second). A neural network
that would learn from such a set of samples would also learn to synthesize silent regions at the
beginnings and endings of the synthesized utterances. This claim is verified by the TTS neural
network training experimental results discussed in later sections of this work. Redundant synthesis
of silence segments is undesirable in a TTS system. For this reason, a script was written to further
post-process the SRT files and automatically strip the silent region timestamps from each entry in
SRT files so that each dataset audio sample would contain a maximum of 10 milliseconds of silence
at the start and end of the sample. This way, the neural network would not learn to synthesize
unnecessary silence.

After performing the said steps, a set of audio and subtitle file pairs corresponding to book
chapters was produced. From here, it is possible to validate each dataset sample conveniently. For

11http://www.vlkk.lt/vlkk-nutarimai/nutarimai/nutarimo-del-lietuviu-kalbos-taisykles
12https://github.com/readbeyond/aeneas
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this purpose, the author of this work used a free subtitle editing software Aegisub. Each sentence
sample of each book chapter was validated using this tool for correct start-end time boundaries and
valid text-spoken sound correspondence. After validating the samples, it is finally possible to use
the timestamps in the SRT files to cut the long-duration audio files into a dataset of short audio-text
pairs, filtering out the samples that are too short (< 0.3 seconds) or too long (> 15 seconds). By
repeating the process for each audiobook, a collection of speech and text pairs was built.

The speech and text pairs were further processed into a zipped dataset format. That was done by
compressing the samples in batches of 1000 using a ZIP compression method resulting in multiple
zipped dataset files. Each zipped dataset file contains short audio segments and a manifest file
that provides the metadata on each audio segment in the ZIP file (text, sample_rate, id, group,
audio_format, etc.). Such a format was chosen for the following reasons:

• The zipped data is structured and is easier to analyze programmatically.

• Reusability: the dataset can be reused for multiple TTS system codebases, as the code for
loading the zipped data can be reused, and the manifest file contains all the potentially re-
quired metadata about the audio files so that it can be used according to the use case

• The datasets are stored in Google Storage (Google Cloud Platform), where the pricing de-
pends on the storage used, so by compressing the datasets, less data is stored in the Cloud,
thus reducing costs.

• It takes less time to transfer the zipped datasets over the network since fewer network requests
are required to send the batched ZIP files than thousands of files in an uncompressed format.
The file transfer speed is essential when working with multiple cloud virtual machines.

2.2. Stressing text labels

The reviewed literature shows that most of the models use phoneme representation as inputs to
the TTS neural network [KKK+20; KKS21; LLL+19; RRT+19]. An exception to this was the
Tacotron model [SPW+18; WSS+17] that generates Mel-spectrograms directly from text (grapheme
sequence). Regardless, the authors report that the model suffers from occasional mispronunciation
because of this reason. They argue that there may never be enough data for a neural network to
learn all the pronunciation nuances occurring in natural language. While grapheme-to-phoneme
and phoneme alignment tools are openly available for high-resource languages such as English,
this is not the case for low-resource languages, such as Lithuanian. Since grapheme-to-phoneme
mapping is not a trivial task, other solutions may be preferable. This work aims to prove that using
stressed text as speech synthesis neural network inputs improves the pronunciation of synthesized
speech for languages considered higher-degree phonemic orthographies. Therefore, in this master’s
thesis, the speech datasets are pre-processed to contain stressed text labels. In later sections, the
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results show that it improves the pronunciation as well as the naturalness of synthesized speech for
multiple neural network architectures.

A Lithuanian language stressing tool developed by the researchers of Vytautas Magnus Uni-
versity 13 (further referred to as the VDU stressing tool) was used to stress the text labels of the
collected speech corpora. The algorithm used by the tool is not revealed, but the author of this
work assumes that it is rule-based or exploits decision trees or other machine learning algorithms.
It uses a database of Lithuanian language word dictionaries with their respective morphological
information. The tool takes a text segment of up to 5000 characters as an input and outputs a cor-
responding stressed text. The tools can accentuate words if they exist in the application database,
while other words are left as-is. It is possible to select each stressed word and view its morpholog-
ical information alongside the possible accentuation options. The words for which the stressing is
ambiguous (words that can be stressed in multiple ways; hereafter referred to as homographs) are
marked with a colored-background font. It is possible to change the accentuation of such words by
selecting them and choosing the appropriate stressing option from the morphological information
list provided by the tool. Other words are stressed unambiguously. Only morphological information
can be inspected for these words, but the accentuation is fixed.

The tool tries to pick an appropriate accentuation for homographs automatically. The algorithm
responsible for this functionality is assumed to be based on machine learning algorithms. However,
its accuracy is not a perfect 100%, so these errors must be fixed. Furthermore, since the text labels
were narrated by a human speaker reading a text that was not stressed, pronunciation errors occa-
sionally occur when homographs are voiced in the recordings. These errors are harder to spot since
the accentuation is correct, but the speaker pronounces it differently. In these situations, the text
was stressed according to the speaker’s pronunciation to make sure that neural networks using the
datasets are misled as little as possible during training.

All the speech corpora text labels were exported to a TXT file first to simplify the dataset
stressing process, where each line corresponded to a dataset label. The stressing was carried out
by following these steps:

1. select, copy and paste multiple text labels (totaling up to 5000 characters) to the input text
area of the VDU stressing tool

2. verify homograph accentuation and fix the errors by choosing the correct accentuation from
the list provided by the tools

3. select, copy and paste the verified stressed text back to the TXT file, replacing the corre-
sponding text without accentuation

4. repeat step 1 by selecting the following text segment

Using this workflow, most of the words of each of the previously described speech corpora
sample labels were stressed. Each stress mark assigned to a particular character in a word is a

13https://kalbu.vdu.lt/mokymosi-priemones/kirciuoklis/
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UTF-8 combining character combined with a previous letter in a word character sequence to form a
stressed symbol. For example, two UTF-8 symbols e and \u0300 are combined into a stressed letter
è. The following three combining characters were used as accent symbol tokens in collected speech
corpora and later for TTS model training: \u0300 (grave), \u0301 (acute), and \u0303 (tilde).

2.2.1. Results

To summarize the process described above, the steps taken to create a single speech dataset with
stressed text labels are the following:

1. Get an audiobook and a digital book pair

2. Convert the digital book to a TXT file format

3. Fix the conversion errors in the TXT file

4. Pre-process the book text

5. Split the book text into chapters corresponding to the audiobook

6. Force align the text and the audio files

7. Verify the samples

8. Export sample labels to TXT format files

9. Stress the text in TXT files

10. Replace the dataset labels with their stressed counterparts

11. Cut the audiobook audio and digital book TXT files into a sentence-long set of audio-text
pairs

12. Convert the samples into a zipped dataset

This process is very time-consuming, so it was carried out thoroughly only for two books from
table 2 that different speakers narrate - Aurimas Nausėdas (Vakarų fronte nieko naujo) and Giedrius
Arbačiauskas (Altorių šešėly). The text for books narrated by Vytautas Radzevičius was only par-
tially pre-processed and was not verified. Also, the text was stressed using the VDU tools but was
not reviewed, and the errors were not fixed. Therefore, this dataset includes a number of outliers,
which may impact the quality of the trained neural networks. On the other hand, the dataset con-
tains many speech data (91 hours after processing) and may be suitable to be used for a base TTS
model training. Even though the dataset contains outliers and may fail to produce natural-sounding
speech by itself, it may learn the primary language features well, which could be transferred by
fine-tuning the model on a higher-quality dataset. As shown in later sections, some neural network
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architectures are more tolerant of data outliers, so the low-quality dataset may still be helpful. The
quality of datasets is briefly reviewed in the following section.

In summary, three datasets of different sizes were assembled. Each dataset contains single-
speaker recordings voiced by Aurimas Nausėdas, Giedrius Arbačiauskas, and Vytautas Radze-
vičius, henceforth referred to as Aurimas, Giedrius, and Vytautas datasets, respectively. The
datasets totals 6.3, 26.6, and 91.9 hours of single-speaker speech data, respectively. More details
on each dataset are presented in table 4 (following statistics provided by the LJSpeech dataset 14)
and figures 1 and 2

Table 4. Collected Lithuanian language datasets statistics.

Dataset Name: Aurimas Giedrius Vytautas Total
Total samples 4968 18058 66643 89669
Total characters 338294 1600039 5327451 7265784
Total words 44255 203434 672269 919958
Mean words per clip 8.91 11.27 10.09 10.26
Distinct words 16358 52177 141266 179243
Total duration 6 h 20 min 26 h 33 min 91 h 53 min 124 h 47 min
Mean sample duration 4.59 s 5.29 s 4.96 s 5.01 s
Min sample duration 0.8 s 0.30 s 0.38 s 0.30 s
Max sample duration 14.98 s 14.98 s 13.96 s 14.98 s

2.3. Data quality

The importance of data quality is at the core of a data-centric AI - an approach to building AI
systems that are becoming mainstream in the AI community in recent years. Neural networks learn
from the data it is given, so it is of the utmost importance that the data is of good quality. Even
state-of-the-art deep learning algorithms perform poorly when using low-quality data to train the
models. On the other hand, besides having good quality data, having lots of data may also prove
beneficial [WRS+21]. For this reason, the poor-quality Vytautas dataset containing a large amount
of single-speaker speech recordings was used for model training in this work. Vytautas dataset
contains 91 hours of speech recordings. However, the dataset was not fully processed and cleaned,
as mentioned before. Therefore it contains lots of outlier samples. Some distinguishing features of
such samples are:

• Incorrect audio alignment with text: the speech at the start or the end of the sentence may
start or end in the middle of a word.

• The speech recordings may not correspond to the text labels, e.g., the words spoken in an
audio recording may differ from those in the corresponding text label.

14https://keithito.com/LJ-Speech-Dataset/
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Figure 1. Sample duration distributions in datasets (Aurimas - upper left, Giedrius - upper right,
Vytautas - lower left, total - lower right)

• Text labels may contain grammatical errors, out-of-vocabulary symbols, or other text arti-
facts.

• The speaker’s pronunciation of some words may not correspond to the correct language
phonemics. That is especially true for foreign language words that may occur in digital books
and are narrated by the speaker. Also, due to the ethnic background of the speaker, some
words may be mispronounced.

• Other unobserved anomalies.

Experiments in later sections show that training a TTS model on such a dataset may still produce
a reasonable-quality TTS system, although it can occasionally produce artifacts. Furthermore, it is
shown that using such a pre-trained model may significantly reduce the amount of time needed to
fine-tune a model on new, higher-quality datasets.

3. Automatic Lithuanian Text Stressing Model

The Lithuanian TTS neural networks described in this paper use short audio clips and stressed text

25



Figure 2. Letter frequency distributions in datasets (Aurimas - left, Giedrius - middle, Vytautas -
right, total - lower right)

label pairs for training. Therefore, accentuated word text sequence also needs to be fed to the trained
model for it to infer a speech waveform (synthesize speech). The accent marks can be assigned to
words manually if the speech synthesizer is used in a closed domain where a list of sentences
that needs to be synthesized is known. However, this becomes tedious if the synthesizer is used for
general purposes where the sentence may be different each time. In this case, the system user would
need to write the UTF-8 stress mark tokens to appropriate letters in each sentence’s words to be
synthesized. Such a workflow is not suitable for the production environment, and the words should
preferably be stressed automatically. As described in the literature review, such stressing models are
usually not open-source. The most successful systems are based on morphological analysis, but this
requires expert knowledge, time-consuming manual engineering, and development hours. Since a
stressed text dataset was built for text-to-speech system use, the same data may also be used to train
a neural network for the task. The task of training an automatic accentuation neural network is not
widely researched in academia, so multiple approaches were considered to build such a system.
The sections below describe the data used, the problem formulation, and experiments conducted to
train a Lithuanian language automatic text stressing model.

Note that the experiments described in this section do not provide the main results of the work
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and are only meant to explore the possibilities for future work on the topic.

3.1. Problem formulation

The purpose of an automatic text stressing system is to assign a correct stress mark to an appropriate
letter in a word given a context (nearby words in the sentence). That is a natural language processing
(NLP) problem since it concerns natural language text. Therefore, recurrent neural networks (RNN)
[HS97; RHW86] or Transformer networks [VSP+17] may work best for the task. In this case, the
problem would be formulated as a many-to-many problem, where the input tokens represent the
raw text, and the output tokens represent the corresponding stressed text. Multiple approaches to
the representations mentioned above are possible for a neural network to learn to perform such a
task. This work covers only one approach to model input and output representations to explore the
possibility of using neural networks for the task. However, it is worth noting that other approaches
to the problem may work better for the task (plans for potential future work are presented in the
final section below).

In this paper, a character-level many-to-many (N to N) problem is solved for the automatic
stressing model. The inputs are a sequence of tokens representing the text character sequence. The
model’s outputs are also a sequence of tokens, representing the classification of each input token.
The input vocabulary contains lowercase Lithuanian language alphabet letters, a whitespace token,
a comma token, and the following special tokens: padding and an unknown symbol. The output
vocabulary (or output classes) contains a token for padding, pitch accents (grave, acute, and tilde),
and a symbol token (that represents any other symbol - a letter, punctuation, or whitespace). The
input and output vocabularies are presented in the tables 5 and 6, respectively.

Table 5. Input vocabulary tokens. Symbols enclosed between angle brackets are special tokens
(e.g., padding, unknown, and whitespace tokens)

Symbol Token
<pad> 0
<unk> 1

<whitespace> 2
, 3
a 4
b 5
c 6
d 7
e 8

Symbol Token
f 9
g 10
h 11
i 12
j 13
k 14
l 15
m 16
n 17

Symbol Token
o 18
p 19
r 20
s 21
t 22
u 23
v 24
y 25
z 26

Symbol Token
ą 27
č 28
ę 29
ė 30
į 31
š 32
ų 33
ū 34
ž 35
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Table 6. Output vocabulary tokens.

Class Token
padding 0

other symbols 1
grave accent 2
acute accent 3
tilde accent 4

An illustration of possible inputs and outputs in human-readable and tokenized (machine-
readable) forms is presented below:

Human readable:
jei ji būtų sugavusi slogą

↓
jéi jì bū́tų sugãvusi slógą

Tokenized:
13 8 12 2 13 12 2 5 33 22 34 2 21 23 10 4 24 23 21 12 2 21 15 18 10 27

↓
1 3 1 5 1 2 5 1 3 1 1 5 1 1 1 4 1 1 1 1 5 1 1 4 1 1

3.2. Data

The data used to train an automatic stressing neural network was extracted from the described
speech corpora. As can be seen in table 4, in total, the resulting text corpus contains 919958 words
across 89669 samples. Further data pre-processing was needed to use it for model training.

3.2.1. Pre-processing

To begin with, foreign language letters, irrelevant punctuation, and other artifacts needed to be
replaced by alternatives. The corresponding sample was removed from the dataset if the alternatives
were not available for such artifacts. Next, the sentences were converted into a format suitable for
model training. The resulting list would contain a list of stressed text corpus samples. The text
dataset size is insignificant (compared to other production datasets containing 5 GB of text data and
more), so a simple CSV file format was chosen to store the dataset samples. The CSV file contains
the input and the target (label) columns. The original stressed text corpus was stripped from all
accent symbols to fill the input column with values. The values in the input column contain only
the characters from the input vocabulary described in the previous subsection. Next, the output
column was populated by mapping each symbol from the original dataset to the output vocabulary
tokens, e.g., accents were mapped to tokens 2, 3, and 4 (acute, grave, and tilde, respectively), and
other symbols were mapped to token 1. The resulting dataset was split into train, validation, and
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test sets by ratios of 98%, 1%, and 1%, respectively. These splits contain 87876, 897, and 896
sentences, respectively.

3.3. Experiments

At the time of writing, only vanilla GRU networks [CVG+14] have been used to train an automatic
accentuation neural network [Mos20]. The described network architecture is relatively simple, but
it achieves a decent accuracy of 95.5%. Knowing this, the research in this work also started by
training a simpler neural network architecture to have a comparable baseline model when more
complex models are trained in the future. Specifically, a vanilla LSTM neural network architecture
was used in the baseline experiment. Later, a more complex Transformer model (specifically, a
modification of BERT [DCL+18] model - BERT for token classification 15) architecture was used.
These networks are known to produce state-of-the-art results in NLP tasks and, in theory, should
provide better performance over the simple LSTM network. The details of the experiments are
provided below.

3.3.1. Hardware

For both experiments, the same computational resources were used. The details of the hardware
used are provided in table 7.

Table 7. Hardware used for stressing model training experiments.

Device Name
Processor Intel(R) Core(TM) i5-8600K CPU @ 3.60 GHz; 6 cores; 6 threads

GPU EVGA GeForce GTX 1080 SC 8GB GDDR5X
Memory 2x Corsair 8GB 2933MHz C15 DDR4 + 1x G-Skill 16GB 2933MHz C16 DDR4
Storage Samsung SSD 860

3.3.2. LSTM

The architecture for the LSTM neural network is relatively straightforward. First, the input tokens
go to the embedding layer, and the embedding vectors are fed to an LSTM layer. The outputs of the
LSTM layer are then fed to a linear layer. Finally, a softmax is used to calculate the probabilities of
each token belonging to a specific task (whether the token is a symbol or a stress mark). The model
architecture is illustrated in figure 3. Adam [KB14] is used to optimize a cross-entropy loss. Each
predicted class is compared to the respective label to calculate the loss. Full model hyperparameters
are presented in table 8.

15https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForTokenClassification
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Figure 3. LSTM accentuation model architecture

Table 8. LSTM stressing model hyperparameters.

Hyperparameter Value
embedding_dim 1024

hidden_dim 2048
lstm_layers 4
batch_size 64

learning_rate 1e− 5

epochs 10

3.3.2.1. Results

The LSTM network was trained for 32440 steps (23 epochs), which took 11 hours. The model
reached 93.4% accuracy on the test set. However, the accuracy and loss are both measured at a
character level, i.e., the weight of loss is the same for each character classification, whether that
is an incorrectly predicted or not-predicted accent mark for some character or any other symbol.
Therefore the score may not show the actual ability of the model to assign the stress marks to
words. A few inference results are presented in the table 9 below (the input text is shown before
tokenization):
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Table 9. LSTM stressing model inference results

Input Output (human-readable) Output tokenst
vienas lauke ne karys víeñãs lãùk̃è nè ḱár̃ỹs 131441114242012133441
kaip šauksi taip atsišauks kàĩp šãũksí tàĩp ̀atsíš̃ãũḱs 12411144113112412111344431
eikite tiesiai iki pastato galo éìkìtè tìèsiài ìk̀ì pàs̀tàt̀ò gàlò 3413131124113113421142124411414

The example shows that although the LSTM model tries to stress input tokens, it does not learn
the pattern that only one pitch accent token can be classified between whitespace tokens. In other
words, the model can assign multiple pitch accents to a single word. Although it can be confirmed
that a word can contain multiple pitch accents in some languages (Swedish, Serbo-Croatian, etc.),
that is not the case for the Lithuanian language. The data used for training did not contain words
with multiple pitch accents assigned, so it might be the case that the cause of this problem is the
loss function that may be too trivial for the task. By penalizing model predictions in case multiple
or no pitch accents are assigned to a word in a sentence, the model may learn to assign exactly one
stress mark for a word. That may be more easily implemented with bi-directional LSTMs, as in
that case, the model could recognize the boundaries (whitespaces) of the words. Nevertheless, the
research on this solution is left for future work.

It may be concluded that the model learned to predict the most probable accent assigned to
each token in the input. It does not take significant consideration of the context of each token.
Therefore, the model tends to assign a tilde accent for most a letters, an acute accent for most i
letters, etc. These accents are often assigned to the individual letters in the dataset, so the pattern
seems reasonable from the RNN network’s perspective. However, the model is not usable for TTS
input pre-processing cases and needs further improvements.

3.3.2.2. Motivation for choosing LSTM networks

As mentioned before, GRU networks were used to train an automatic text stressing model. Released
decades after the introduction of LSTM networks, the architecture of GRUs is similar to LSTMs,
but is relatively less complex and needs fewer parameters. Because of that, GRU networks offer
faster convergence and inference speeds while retaining similar performance to LSTMs. Regard-
less, empirical research [YYZ20] shows that it only holds when the network is trained on smaller
datasets where samples contain shorter sequences and fewer computational resources are used. In
other scenarios, GRU networks demonstrate performance loss. The datasets and computational
resources used during the experiments described in this work are relatively not small, so LSTM
networks were chosen in hopes of gaining better model performance.

3.3.3. BERT

A modified version of the BERT model was used to solve the same problem as the LSTM accen-
tuation model case - BERT for token classification. The model is made openly available by the

31



HuggingFace community 16. The architecture deviates from vanilla BERT in that it stacks a linear
layer on top of BERT’s hidden state outputs. That way, the model can use the benefits provided
by BERT to classify a sequence of input tokens. Originally, the model was created for tasks like
named entity recognition (NER), where tokens are at a word level, but experiments are conducted
using the model in the automatic accentuation domain to classify character-level tokens. A high-
level overview of the architecture is illustrated in figure 4. The embedding layer is not represented
since the BERT block includes it. More details on BERT architecture can be found in the original
paper [DCL+18]. As in the LSTM model case, Adam was used to optimize a cross-entropy loss.
Full model parameters are provided in table 10.

Figure 4. BERT accentuation model architecture

16https://huggingface.co/
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Table 10. BERT stressing model hyperparameters (used in the original BERT paper [DCL+18])

Hyperparameter Value
hidden_size 768

num_hiden_layers 12
num_attention_heads 12

intermediate_size 3072
hidden_dropout_prob 0.1

max_position_embeddings 5122
attention_probs_dropout_prob 0.1

batch_size 8
learning_rate 1e− 5

epochs 10

3.3.3.1. Results

The BERT model was trained for 259500 steps (23 epochs) with a batch size of 8, which took 14
hours. Metrics show that the model reaches 44.8% accuracy after 10 epochs, which seems false
since the model learns to output every input token as a letter token, as seen in the inference result
table 11. The same cross-entropy loss is used in the LSTM example, so the accuracy should be
higher. That allows concluding that the experiment failed. The failure may be caused by the fact
that incorrect representations of inputs and outputs - the same as in the LSTM example - were
chosen, and the BERT model requires a specific format for these.

Table 11. BERT stressing model inference results

Input Output (human-readable) Output tokenst
vienas lauke ne karys vienas lauke ne karys 111111111111111111111
kaip šauksi taip atsišauks kaip šauksi taip atsišauks 11111111111111111111111111
eikite tiesiai iki pastato galo eikite tiesiai iki pastato galo 1111111111111111111111111111111

To conclude, similarly to the LSTM model experiment, the BERT model is not usable as a
component for the TTS pipeline.

3.4. Summary

This section details the experiment of using two architectures based on LSTM and BERT neural
networks to train models to accentuate text. The models work at the character level - each char-
acter in the input sequence is classified as either a non-accent symbol or grave, acute, and tilde
symbols. The experiment proved to be a failure since both types of networks failed to produce
reasonable stressing results. In conclusion, further work is needed to explore the possibilities of
neural networks for the task of automatic accentuation.
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4. Lithuanian Speech Synthesis

The literature review section provided an overview of multiple TTS neural network architectures
with open-source code. In this work, two of the systems were trained on the collected Lithuanian
language datasets: NVIDIA’s implementation of Tacotron 2 17 and VITS 18.

The decision to use Tacotron 2 is based on the reasoning that the system is highly regarded
among the TTS community and offers high-quality speech synthesis. Moreover, the model can be
trained using grapheme (character) representations as inputs. The downside of the system is that it is
based on an acoustic-vocoder model architecture (meaning extended training and inference times),
and the system is known to produce speech artifacts during synthesis due to its autoregressive
nature.

On the other hand, VITS is a relatively new system, offering a complete end-to-end TTS model
(no acoustic-vocoder model flow). The system is non-autoregressive and can utilize parallel com-
putations for synthesis, so the inference speed is much faster than the Tacotron model. On the other
hand, training VITS requires more computational resources. Also, in the original paper, the authors
use phonemes as model inputs. However, the experiment results of this work show that stressed text
works just as well.

This section describes multiple experiments of training Tacotron 2 and VITS models. We
reasoned in the previous sections that there is no straightforward way to evaluate TTS models using
objective metrics reliably. Therefore, a survey was conducted to collect subjective model scores
and calculate a MOS (mean opinion score) - a subjective TTS evaluation metric. More details
on synthesis evaluation are in the following sections. Nevertheless, the speech synthesis samples
produced by each trained model can be found here 19, so the reader can form subjective conclusions.

4.1. Tacotron 2

Two neural network components need to be trained to build a Tacotron 2 TTS system: acoustic and
vocoder models (Tacotron and Waveglow, respectively). The models were not trained from scratch
using the collected Lithuanian language datasets in this work. Instead, the pre-trained acoustic 20

and vocoder 21 models provided by NVIDIA in their official Tacotron 2 Git repository were used to
fine-tune on the Lithuanian speech data. The decision was made to reduce the computational costs
since the authors of the original Tacotron paper state that 8 Nvidia V100 GPUs were used to train
the model for 580000 iterations from scratch with a batch size of 24 on each GPU.

For this work, the Tacotron and Waveglow models were first fine-tuned on the 92-hour Vytautas
dataset to create base Lithuanian TTS models, which were later used to fine-tune on higher-quality
datasets (specifically - Aurimas and Giedrius datasets). The same hyperparameters were used for the

17https://github.com/NVIDIA/tacotron2
18https://github.com/jaywalnut310/vits
19https://arnasrad.github.io/lithuanian_synthesis_samples/index.html
20https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view
21https://drive.google.com/file/d/1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF/view
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experiment as in the original Tacotron 2 paper (besides the learning rate, batch size, and vocabulary
size). The Tacotron and Waveglow hyperparameters for training are provided in table 12. Adam
optimizer and mean squared error (MSE) loss combined with binary cross-entropy (BCE) loss with
logits were used during training.

Table 12. Tacotron 2 training hyperparameters (acoustic model - left, vocoder model - right)

Hyperparameter Value
Character embedding dimension 512
Encoder kernel size 5
Encoder number of convolutions 3
Encoder embedding dimension 512
Decoder number of frames per step 1
Decoder RNN dimension 1024
Decoder pre-network dimension 256
Max decoder steps 1000
Decoder gate threshold 0.5
Pre-attention dropout 0.1
Pre-decoder dropout 0.1
Attention RNN dimension 1024
Attention dimension 128
Attention location number of filters 32
Attention location kernel size 31
Mel-post-net embedding dimension 512
Mel-post-net kernel size 5
Mel-post-net number of convolutions 5

Hyperparameter Value
Mel-spectrogram channels 80
Coupling layers 12
Invertible 1x1 convolutions 12
Coupling layer dilated convolutions 8
Residual connections 512
Skip connections 256
Early channel output every N layers 4
Number of early channel outputs 2

The Tacotron acoustic and the Waveglow vocoder models were fine-tuned on three datasets -
Aurimas, Giedrius, and Vytautas. Nevertheless, the models were trained using both the stressed
and non-stressed text labels in the acoustic model case. So, nine models in total were trained for
the Tacotron 2 experiment (6 acoustic and 3 vocoder models). During inference, the vocoder model
was used to match the acoustic model target speaker, i.e., if the acoustic model was trained using
the Aurimas dataset, then the vocoder model that was fine-tuned on the Aurimas dataset was used
alongside during inference. The vocoders were fine-tuned for the target speaker to improve the
quality of the final synthesized speech [HWH+19].

4.1.1. Experimental Setup

To train the Tacotron 2 speech synthesis model, the code from the original NVIDIA repo was
forked and adapted to accept the zipped dataset format 22. Next, to train the acoustic Tacotron
model, the input vocabulary was modified to contain the Lithuanian alphabet letters and the three
accent symbols (grave, acute, and tilde). The total vocabulary size then is 79. The support for
ARPABET symbols available for the English synthesizer in the original repository was removed

22https://github.com/arnasRad/tacotron2
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to reduce the vocabulary size and ease the training since the symbols would not be used for the
Lithuanian language. The complete list of symbols supported by the Tacotron models is provided
in table 13.

Table 13. Symbols supported by the Tacotron model for the Lithuanian language. <whitespace> is
the whitespace symbol. \u0300, \u0301, and \u0303 are the combining characters corresponding
to the grave, acute, and tilde accent, respectively.

Symbol
_

<whitespace>
!
’
(
)
,
.
:

Symbol
;
?
-
A
a
Ą
a
B
b

Symbol
C
c
Č
č
D
d
E
e
Ę

Symbol
ę
Ė
ė
F
f
G
g
H
h

Symbol
I
i
Į
į
Y
y
J
j
K

Symbol
k
L
l

M
m
N
n
O
o

Symbol
P
p
R
r
S
s
Š
š
T

Symbol
t
U
u
Ų
ų
Ū
ū
V
v

Symbol
Z
z
Ž
ž

\u0300
\u0301
\u0303

The datasets were split into training, validation, and test sets by 98% - 1% - 1%. A relatively
small number of samples for validation and test sets were used because the datasets contain many
samples (4968, 18058, and 66643 samples for Aurimas, Giedrius, and Vytautas datasets, respec-
tively). The test set does not require a large number of samples when evaluating TTS systems using
a MOS metric because each sample needs to be evaluated manually, so testing a large number of
samples may be too costly. The training, validation, and test set split sizes are shown in table 14.

Table 14. Sample number in training, validation, and test sets of each speech dataset used in this
paper.

Set Aurimas Giedrius Vytautas
Training 4869 17697 65310
Validation 50 181 667
Test 49 180 666

Training Tacotron and Waveglow models require less computational resources compared to
VITS model training, so all the training experiments were carried out on the machine detailed in
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table 7.

4.1.2. Training on Vytautas dataset

The training results for both the acoustic (using stressed and non-stressed text labels) and vocoder
models are shown in table 15.

Table 15. Results of training a Tacotron 2 model on Vytautas dataset (non-stressed denotes the
training on a dataset containing no accentuation, while stressed denotes the training on stressed
text labels).

Acoustic (non-stressed) Acoustic (stressed) Vocoder
Batch size 16 16 12
Iterations 82000 89000 84000
Epochs 20 21 15
Training duration (hours) 62 67 111

The models trained on stressed and non-stressed text labels are hereafter referred to as stressed
and non-stressed models, respectively.

The resulting stressed model produces intelligible speech with solid pronunciation features,
although both the acoustic and vocoder models produce various artifacts. For example, the acoustic
model occasionally skips words, synthesizes noise until the decoder reaches max steps, and makes
unnecessary pauses during speech. Also, the vocoder model does not synthesize high-quality audio,
as the speech sometimes sounds robotic. Moreover, the non-stressed model often generates speech
with pronunciation errors, making the speech unintelligible.

It is worth noting that the training was only executed to obtain a model that can capture major
Lithuanian language prosody features at this stage. The model was not expected to perform well
and was meant to be used as a baseline model for fine-tuning on other, better-quality datasets.
The quality of the Vytautas dataset is relatively poor. Therefore, it is not expected that a good
synthesis model would be trained using it. Because of this, the training was stopped early to save
computational resources. Usually, the training would take more epochs.

4.1.3. Training on Aurimas dataset

The pre-trained model described in the previous subsection was fine-tuned using the Aurimas
dataset first. The training results for both the acoustic and vocoder models are shown in table
16.

Table 16. Results of training a Tacotron 2 model on Aurimas dataset.

Acoustic (non-stressed) Acoustic (stressed) Vocoder
Batch size 16 16 4
Iterations 20000 30000 24000
Epochs 65 98 20
Training duration (hours) 17 26 23
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The resulting stressed model produces a relatively natural-sounding speech. The artifacts from
which the model trained on the Vytautas dataset suffers rarely occur when synthesizing utterances
using this model. On the other hand, these artifacts are not entirely gone, as the model still oc-
casionally makes unnecessary pauses and produces noise. Furthermore, the non-stressed model
makes similar (compared to the Vytautas model) pronunciation errors, reducing the naturalness of
the synthesized speech.

4.1.4. Training on Giedrius dataset

Similarly, the base model was fine-tuned on the Giedrius dataset. The training results for both the
acoustic and vocoder models are shown in table 17.

Table 17. Results of training a Tacotron 2 model on Giedrius dataset.

Acoustic (non-stressed) Acoustic (stressed) Vocoder
Batch size 16 16 8
Iterations 25000 17500 50000
Epochs 22 15 22
Training duration (hours) 22 15 23

The fine-tuned model often synthesizes low-quality speech in terms of audio quality, intelli-
gibility, and naturalness. These are exciting results as the dataset used to fine-tune the model was
cleaned and validated, unlike the Vytautas dataset. After multiple experiments, it is argued that
poor synthesis quality may arise for two reasons. First, Giedrius (the speaker of the dataset) has
a lower voice tone. Because of this, the lower frequency sounds dominate in the speech produced
by Giedrius, and the corresponding spectrograms have a higher concentration of frequency inten-
sities in the lower part of the spectrogram. In contrast, the upper part provides less information
for the neural network to learn from. Other speaker spectrogram frequencies are distributed along
the y-axis of the spectrograms more evenly. Therefore neural networks may receive more infor-
mation. Secondly, poor results may be caused because Giedrius uses very expressive speech when
narrating audiobooks. Because of such a variety in prosody, the neural network may struggle to
learn to synthesize certain utterances unambiguously. A more monotonic speech may be required
to improve the model performance. The two claims mentioned earlier were not validated in this
work and maybe a topic for further research. Nevertheless, the pronunciation of speech generated
by the stressed model is relatively good. However, similar to the Tacotron 2 experiments described
above, the non-stressed model performance suffers from pronunciation errors.

4.1.5. Summary

Nine models in total were trained during the Tacotron 2 experiment using three one-speaker datasets
of different sizes: three Waveglow vocoder models, three acoustic models using text labels without
accentuation, and three acoustic models using text labels with accentuation. Examples of attention
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alignment plots of speech synthesized by stressed acoustic models are presented in figure 5. In the
figure, the sentences used for synthesis are the following (left to right):

• - Jūs klausote sintezuoto teksto.

• Vilniaus universiteto Matematikos ir informatikos fakultetas.

• Vasara paskutinių kursų studentams kasmet prasideda įtemptai - laukia baigiamųjų darbų gy-
nimai. Vilniaus universiteto Matematikos ir informatikos fakultete šiais metais jie prasideda
gegužės trisdešimt pirmąją ir baigsis birželio dešimtą dieną.

Figure 5. Tacotron 2 inference alignment plots. Models used for inference (top to bottom): Vytau-
tas, Aurimas, Giedrius.

We can conclude that the trained Tacotron 2 models attend to appropriate tokens rather well by
observing the attention alignment plots. Although ideally, the alignment should be as diagonal as
possible. Multiple flaws may be observed in the plots provided above. To begin with, the models
cannot synthesize utterances longer than approximately 11 seconds (see the last column). Next, the
models occasionally skip words and generate silence (see the last column of the first row). Also,
if most dataset samples contain segments of silence at the beginning and end, a model trained on
such a dataset learns to generate analogous segments of silence. Finally, some alignment plots are
rather noisy, which causes lower quality synthesized utterances.
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By comparing utterances synthesized by stressed and not-stressed models (see the samples pro-
vided on the website referenced above), we can clearly distinguish the pronunciation superiority of
the stressed model, which dramatically impacts the naturalness of synthesized speech. Besides, by
comparing utterances synthesized by the Aurimas model to the utterances synthesized by Vytautas
or Giedrius models, we can see that a Tacotron 2 synthesis model works better for some speech
data than others. That may be due to prosody or audio features of dataset speech recordings, like
speech tone, expressiveness, etc. Overall, the speech generated by the trained Tacotron 2 models
described above has various artifacts: ‘noisy‘ voice, word/letter skipping, generating noise, etc.
The artifacts impact the preferability of the models drastically. On the other hand, in most cases,
the stressed models overcome the pronunciation errors that arise when generating speech without
using accentuation.

As a last note, fewer computational resources are required to train the Tacotron 2 model, but
two models (acoustic and vocoder) need to be trained to perform better quality inference. Because
of this, the training takes more time overall compared to the VITS model described in the next
section.

The Tacotron 2 base models (Waveglow vocoder, stressed and non-stressed acoustic models)
are provided here 23.

4.2. VITS

Another neural network architecture used to train a TTS model on the datasets described above is
VITS. Even though the original VITS paper authors claim to have used phonemes as inputs to the
model, the experimental results provided in this work show that stressed text inputs also work. There
is an open-source phonemizer tool 24 that can supposedly convert the Lithuanian language text to
phonemes. A model was trained using the phonemized text labels by the author of this master’s
thesis. The phonemizer for Lithuanian languages provides poor results as the speech using the
converted phonemes is unintelligible. The synthesized samples (Paulius dataset) can be seen by
following the above link. The details on the Paulius dataset are not described here because it is out
of scope for this work.

Similar to the Tacotron experiments, the VITS model was trained on Vytautas, Aurimas, and
Giedrius datasets in this work. The difference here is that the models were only trained using
stressed text labels because VITS training proved highly time-consuming. The reason is that the
base stressed model was trained from scratch without fine-tuning on a pre-trained English model
(unlike the Tacotron 2 experiment). The training consumed a huge amount of time. On the other
hand, VITS was only trained from scratch once. The training was done using the Vytautas dataset.
The resulting model was used as a baseline model to fine-tune on higher-quality Aurimas and
Giedrius datasets. For both experiments, the same model hyperparameters were used as in the

23https://drive.google.com/drive/folders/1c7Y2H1ch0GeNLjrf0kWaZgoTZV hktNW?usp = sharing
24https://github.com/bootphon/phonemizer
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original repository. The hyperparameters are provided in table 18.

Table 18. VITS training hyperparameters

Hyperparameter Value
Inter channels 192
Hidden channels 192
Filter channels 768
Number of heads 2
Number of layers 6
Kernel size 3
Dropout 0.1
Resblocks 1
Resblock kernel sizes [3, 7, 11]
Resblock dilation sizes [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
Upsample rates [8, 8, 2, 2]
Upsample initial channel 512
Upsample kernel sizes [16, 16, 4, 4]
Number of layers q 3

The Tacotron experiment has shown that the Lithuanian language TTS models make similar
pronunciation errors during inference when using non-stressed text inputs regardless of whether
the models were trained using accentuated text labels or not. Since VITS needed to be trained from
scratch, and the training of a single VITS model took almost a month using the available resources,
as shown in the later sections, the models described below were only trained using stressed text
labels to save computational resources. Later, the stressed VITS model synthesized the non-stressed
utterances in the MOS survey by feeding it text inputs without accentuation.

Non-stressed text labels were not used for training in this experiment. Also, the VITS model
does not require separate acoustic and vocoder models for inference and can synthesize speech
from a single generator model. Because of these reasons, only three VITS models were trained.
The models were trained using the same Aurimas, Giedrius, and Vytautas datasets analogous to
previous experiments.

4.2.1. Experimental Setup

Similar to the Tacotron experiment, the VITS code was forked from the original repo and adapted
to support the zipped dataset format 25. The input vocabulary was also modified for the Lithuanian
alphabet (including stress marks). The resulting vocabulary is equivalent to the one used in Tacotron
2 experiment and is provided in table 13. The training, validation, and test set splits are also the
same as in the Tacotron experiment (table 14.)

Training the VITS model requires more computational resources, so the computer setup used
in the Tacotron experiment (table 7) is not sufficient. Therefore, all the VITS training experiments

25https://github.com/arnasRad/vits
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were conducted using a paid cloud-based virtual machine (VM) provided by the GCP (Google
Cloud Platform) Compute service. High-level VM hardware specifications are the following: 2-
core CPU, 1 x Nvidia Tesla T4 GPU (16 GB VRAM), and 12 GB of RAM.

4.2.2. Training on Vytautas dataset

As in the Tacotron 2 experiment, a base Lithuanian speech synthesis model was trained using the
92-hour Vytautas dataset. The difference here is that the model was trained from scratch without
using a pre-trained English speech synthesis model for fine-tuning. Likewise, VITS is not based
on acoustic-vocoder model inference flow, so only a single model was trained. Furthermore, only
stressed text labels were used to train the model. The resulting training information is provided in
table 19.

Table 19. Results of training a VITS model on Vytautas dataset.

Discriminator/Generator
Batch size 16
Iterations 3000000
Epochs 735
Training duration (hours) 946

The trained model produce high-quality audio that is almost identical to that of the speech
recordings that were used to train the model, and relatively natural-sounding synthesized speech.
On the other hand, the model generates a number of speech artifacts: reverb-like sounds, skipping
letters, and pronunciation errors.

4.2.3. Training on Aurimas dataset

Again, similar to Tacotron 2 experiment, the base model was used to fine-tune it on higher-quality
data. First, the Aurimas dataset was used for fine-tuning. The resulting training information is
provided in table 20.

Table 20. Results of training a VITS model on Aurimas dataset.

Discriminator/Generator
Batch size 16
Iterations 150000
Epochs 492
Training duration (hours) 70

As later observed from the MOS results, the fine-tuned model generates near-human naturalness
and quality speech. The pronunciation, intonation, quality, and other speech features are pretty solid
in this case. Also, artifacts are pretty rare in the speech generated by the model.
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4.2.4. Training on Giedrius dataset

Finally, the VITS base model was fine-tuned on the Giedrius dataset. The resulting training infor-
mation is provided in table 21.

Table 21. Results of training a VITS model on Giedrius dataset.

Discriminator/Generator
Batch size 16
Iterations 525000
Epochs 474
Training duration (hours) 192

Unlike the Tacotron case, the resulting speech synthesized produces speech that has a quality
similar to the original recordings. On the other hand, compared to the model trained on the Aurimas
dataset, the model produces more speech artifacts and does not sound as natural. A subjective
opinion for the potential reason for this is that the speaker of the dataset (Giedrius) is expressive
and the speech tone variety in dataset samples is more significant than in the Aurimas dataset.
Because of the variety, the model struggles to figure out the correct prediction for each phoneme
during inference. Note that this is only an educated guess, and the claim is not validated. A possible
way to evaluate the claim is to filter the dataset, leaving only the samples that sound as similar as
possible, and train the VITS model on the filtered dataset.

4.2.5. Summary

Three VITS models were trained using the same datasets as in the Tacotron 2 experiment. VITS
model requires more computational resources to train compared to Tacotron 2. It is also very time-
consuming: training the base model took more than a month. On the other hand, the inference
process is more straightforward, as only one model is used to synthesize speech instead of the
acoustic and vocoder models in the Tacotron 2 case. Examples of the attention alignment plots of
speech synthesized by the stressed VITS models are presented in figure 6. The sentences used to
generate the alignments are the same as the ones used in table 5.

By inspecting the alignment plots, we can see that the VITS model produces more diagonal
alignments (except for the parts where the models react to punctuation). It also overcomes some of
the flaws produced by the Tacotron 2 model:

• It can generate utterances longer than 11 seconds.

• It does not skip words or generate silence in place of words.

• The alignments are less noisy.

On the other hand, it learns to generate segments of silence the same as the Tacotron 2 model.
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Figure 6. VITS inference alignment plots. Models used for inference (top to bottom): Vytautas,
Aurimas, Giedrius.

Again, by comparing utterances (provided in the website referenced above) synthesized with
and without accents, we can see that stressed text labels significantly improve the pronunciation of
the synthesized speech.

The VITS base model can be downloaded here 26.

5. Results

As mentioned before, in practice, a mean opinion score (MOS) is used to evaluate TTS systems
[RFZ+11]. It is a subjective evaluation metric that works by conducting a survey where participants
are presented with a list of audio samples generated by multiple sources (ground-truth, various
synthesis methods) and are asked to rate them by some arbitrary score (usually, 5-scale scoring is
used).

In this work, a MOS survey was conducted to evaluate the models described in previous sec-
tions. The participants from various professional backgrounds were selected to conduct the survey.
Before starting the survey, all the respondents received the same brief information about the context

26https://drive.google.com/drive/folders/1sDqsDlrzdSx12hOPQ89zelJWoksoIFth?usp=sharing
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of the survey, its goals, and the instructions on how to complete it. The participants were instructed
to use headphones for the duration of the survey.

Each survey question consists of a set of samples generated by different sources to be evalu-
ated. Measures were taken to ensure that the participants were not biased towards particular speech
sources. Some of them are provided below:

• The respondents did not receive any information about the speech sources

• Multiple samples generated by the same source cannot be present on the same question

• A unique sentence is used in exactly one sample set throughout the survey

• The same sentence generated by different sources is evaluated in the same sample set

• Exactly one ground-truth sample must be present in each question

In this work, two MOS surveys were conducted. The first one evaluated the trained TTS neural
network models described in this work. The survey aimed to prove the main point of this work that
stressed text labels improve the pronunciation, and therefore naturalness, of speech synthesis neural
network models. The second survey also analyzes the best current Lithuanian speech synthesizers.
The model that received the highest MOS score in the first survey was compared to other Lithuanian
speech synthesizers. A free survey Web tool QuestionPro 27 was used to build both surveys and
collect the results.

5.1. Trained Models Evaluation

First, a survey was conducted to evaluate the trained models described in the previous sections
and tackle the primary goal of this work - whether the stressed text labels improve the quality
of speech synthesis systems for higher degree phonemic orthography languages. The survey was
created following the guidelines described above. 15 speech sources were evaluated: 12 TTS neural
network model sources and 3 ground truth sources from the datasets used to train the models. The
sources produce 3 different speakers’ voices that narrated the 3 datasets: Aurimas, Giedrius, and
Vytautas. Six Tacotron 2 and three VITS models were evaluated. These models are described in
the previous sections. Note that only three VITS models were trained (using stressed text dataset
labels). For the survey, three additional VITS speech sources were used by feeding the stressed
models non-stressed text for synthesis.

30 unique sentences from each of the test sets of the Aurimas, Giedrius, and Vytautas datasets
were randomly sampled to generate samples for the survey. In total, 90 unique sentences were
used to generate 450 samples evaluated in the survey (30 utterances for each speech source). The
duration of the samples ranges from 1 to 17 seconds. The duration of the samples alone makes up
approximately 45 minutes, and the time it takes to complete the actual survey is approximately 1

27https://www.questionpro.com
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hour and 30 minutes. Because of this, it was hard to find respondents who were willing to complete
the survey, so only 11 respondents participated. For reference, the link to the survey is provided in
the footnotes 28.

Note that the synthesis of all the utterances from all the sources was done in one go without
fixing the errors. As a result, the generated samples reflect the robustness of each model. Also,
some answers contained missing values (scores assigned to samples). These were replaced by the
average of other participants’ scores

The results of the MOS survey were grouped by the ground-truth sources (Vytautas, Aurimas,
and Giedrius) and are provided in the tables 22, 23, 24 below.

Table 22. Comparison of evaluated mean opinion score with 95% confidence intervals on the
Vytautas dataset.

Model MOS ±CI
Tacotron 2 (non-stressed) 1.77 ±0.09
Tacotron 2 (stressed) 1.88 ±0.10
VITS (non-stressed) 1.88 ±0.10
VITS (stressed) 2.61 ±0.12
Ground truth 3.68 ±0.11

Table 23. Comparison of evaluated mean opinion score with 95% confidence intervals on the
Aurimas dataset.

Model MOS ±CI
Tacotron 2 (non-stressed) 3.26 ±0.13
Tacotron 2 (stressed) 4.31 ±0.10
VITS (non-stressed) 2.62 ±0.13
VITS (stressed) 4.42 ±0.08
Ground truth 4.73 ±0.06

Table 24. Comparison of evaluated mean opinion score with 95% confidence intervals on the
Giedrius dataset.

Model MOS ±CI
Tacotron 2 (non-stressed) 2.19 ±0.13
Tacotron 2 (stressed) 2.94 ±0.13
VITS (non-stressed) 2.33 ±0.12
VITS (stressed) 3.97 ±0.10
Ground truth 4.58 ±0.07

The results show that the samples generated by stressed text models outperform their non-
stressed counterparts in all cases by a significant margin. That is especially true for the VITS
models, possibly because its architecture was built to support phonemes as inputs that comprise

28https://questionpro.com/t/ASd5gZsp35
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a more extensive vocabulary size, so grapheme representations provide too little information for
the network. Also, the VITS models were trained using stressed text labels, so feeding them a
text with no accentuation may have significantly impacted their performance. On the other hand, 3
additional accentuation tokens seemingly fix the problem. That proves the central claim of this work
- stressed text improves the performance of speech synthesis systems based on neural networks for
higher-degree phonemic orthography languages.

Another interesting observation is that the ground-truth samples of the Vytautas dataset (table
22) score rather poorly. That may be because the participants also considered how much they
preferred each speaker when rating the samples. Overall, the respondents seem to prefer certain
voices or speakers over others. Therefore we can conclude that it is imperative to consider the
speaker’s voice seriously before collecting a speech dataset for TTS model training.

Finally, the mean opinion score evaluation shows that overall the models trained using the
Aurimas (table 23), following Giedrius (table 24), datasets were preferred the most. The models
trained on the Vytautas dataset (table 22) scored significantly lower. It could be argued that this is
since other speakers were preferred more by the respondents, but we can observe from the MOS
tables that the best model trained on the Vytautas dataset lags behind the ground-truth score the most
compared to the other two datasets. As described earlier, the Vytautas dataset was not validated
and, therefore, low quality. This fact concludes that the quality of a dataset is of great importance
when training TTS neural networks.

5.2. Lithuanian Speech Synthesizers Evaluation

The second survey aimed to compare the performance of the best-known Lithuanian speech syn-
thesizers with the best model developed in this work. Here, 4 speech sources were evaluated: the
Aurimas model (stressed) developed for this work, LIEPA’s Edvardas 29, Microsoft’s Leonas 30,
and a synthesizer developed by the VDU (Vytautas Magnus University) scientists in collaboration
with LRT (Lithuanian National Television and Radio), henceforth - the VDU synthesizer. The Au-
rimas, Microsoft’s Leonas, and VDU synthesizers are based on neural networks, while the LIEPA’s
Edvardas is based on traditional concatenative synthesis methods.

36 unique sentences were used to generate samples for the survey by each source. In total, 144
samples were evaluated in the survey (36 utterances for each speech source). The duration of the
samples range from 1 to 17 seconds. The survey takes approximately 30 minutes to complete. 12 re-
spondents completed the survey in total. To reduce additional bias, the respondents that completed
the first survey described above were not allowed to participate in this survey. Again, for reference,
the link to the survey is provided in the footnotes 31. The results of the survey are provided in table
25.

Before describing the survey setup and results, it is paramount to note that the VDU synthesizer
29https://liepa.rastija.lt/Ie%C5%A1kotuvas/Teksto-sintezatorius
30https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech
31https://questionpro.com/t/ASd5gZsxe5
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is not openly available. The only way to listen to the speech synthesized by the model is to listen
to the synthesized articles available at the official LRT news website 32. This circumstance may
introduce bias favoring the VDU synthesizer in the survey results. The samples generated for the
survey by the VDU TTS system are the segments of the synthesized articles mentioned earlier.
Therefore, other speech sources needed to generate the same sentences as the cut article segments.

Some subtle noises like mouse-clicking are heard in the complete article recordings that the
VDU model synthesized. In addition, in some cases, the tone of the speaker changes in the middle of
a spoken utterance. That may lead to assuming that the synthesized text was edited or the utterances
that comprise the full recording were re-synthesized at the least. The utterances generated by the
other three evaluated synthesizers (LIEPA’s Edvardas, Microsoft’s Leonas, and Aurimas model)
were not edited or re-synthesized.

Furthermore, the VDU synthesizer was developed for the media domain to synthesize the text of
the news articles specifically. In contrast to the VDU synthesizer, the Aurimas model was trained
to synthesize more expressive language that may resemble casual conversations or audiobooks.
Since all the utterances used to generate speech samples for the survey use text from actual news
articles, the respondents may have assumed that the synthesizers were meant to speak in a formal
tone representing a news reporter. This circumstance may have swayed their preference toward the
VDU synthesizer since the tone of the speech synthesized by the Aurimas model is informal.

Table 25. Comparison of evaluated mean opinion scores with 95% confidence intervals. Four
speech sources were evaluated: the stressed Aurimas model described in this work and three other
Lithuanian synthesizers selected either because of their popularity or performance: LIEPA’s Ed-
vardas, Microsoft’s Leonas, and a synthesizer developed by VDU (Vytautas Magnus University)
scientists in collaboration with LRT (Lithuanian National Television and Radio), henceforth - VDU
synthesizer.

Model MOS ±CI
Aurimas 4.27 ±0.07
LIEPA Edvardas 1.72 ±0.08
Microsoft’s Leonas 4.01 ±0.08
VDU 4.30 ±0.07

We can see that the participants have chosen the VDU as their favorite synthesizer. According
to the evaluation results, the VDU synthesizer only slightly beats (by 0.03 points) the synthesizer
developed in this work. Again, note that the survey results may be biased in favor of the VDU syn-
thesizer, and the actual preference results may differ in a different evaluation environment. How-
ever, by observing the results, we can see that all the synthesizers perform rather well except for the
LIEPA synthesizer, which is relatively outdated and based on concatenative synthesis methods.

For a final note, this survey’s results are not accurate as some good practices of conducting a
MOS survey were violated when creating it. However, the survey was not meant to provide accurate
results and was meant to give a rough estimate of how much the current Lithuanian synthesizers

32www.lrt.lt
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differ in terms of quality. Nevertheless, the survey provided a reasonable estimate of user preference
over a speech synthesizer in a news articles domain.

5.3. Summary

The MOS evaluation of multiple TTS neural network models proved the central claim of this work
- stressed text improves the TTS model performance for higher-degree phonemic orthography lan-
guages. Also, the following other conclusions were drawn:

• The preferability of a trained TTS neural network depends significantly on a speaker that
voices the recordings of a dataset that is used to train the model.

• The quality of a dataset is of great importance when training TTS neural networks.

6. Conclusions

This master’s thesis work proposes an approach to using stressed text instead of phonemes or
graphemes as TTS neural network inputs when training models for higher-degree phonemic or-
thography languages. Two TTS neural network architectures were used to train the models on
Lithuanian language datasets with and without stressed text labels. These architectures are Tacotron
2 and VITS. The experimental results prove the central hypothesis of this work - using stressed text
labels improves the pronunciation of speech synthesized by neural network models. The link to
speech samples synthesized by the developed models may be found here 33.

Three single-speaker Lithuanian language speech corpora were collected to train the neural
network models needed for the experiments: Aurimas, Giedrius, and Vytautas totaling 6, 27, and 92
hours of speech data, respectively. The Aurimas and Giedrius datasets were processed and manually
validated for quality, but some processing and validation steps were skipped while collecting the
Vytautas dataset. Therefore, the dataset contains many outliers.

Multiple Lithuanian speech synthesis neural network models were trained using earlier datasets.
The experiments resulted in 9 trained TTS neural networks: six Tacotron 2 (stressed and non-
stressed) and 3 VITS (stressed) models. A MOS survey was conducted to evaluate the trained
models. The base Lithuanian language Tacotrons 2 and VITS models are open-sourced for the
reader.

The results of evaluating the models show that using a low-quality dataset for TTS neural
network training considerably impacts the performance of the resulting speech synthesizer. So,
promising results were not expected from the models trained on the Vytautas dataset, and they
were used mainly as base models. The base models were fine-tuned on better quality Aurimas and
Giedrius datasets. The experimental results indicate that training TTS neural network models on a
larger but lower-quality dataset and fine-tuning on smaller but higher-quality datasets decreases the

33https://arnasrad.github.io/lithuanian_synthesis_samples/index.html
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time required to train the models. Lastly, it was concluded that it is imperative to choose a speaker
with good prosody and other speech features when collecting a single-speaker speech corpus for
the TTS system use case.

In addition, to explore future work possibilities for the topic, the initial experimental results of
training a neural network-based stressing model are provided. Labels extracted from the collected
speech corpora were used as a dataset in the automatic stressing model experiment. The data was
used to train models of two neural network architectures: a multi-layer LSTM network and a BERT
model modified for token classification. Although the LSTM experiment showed relatively good
performance in terms of accuracy metric (93.4% accuracy), both experiments failed to produce
valuable results. Therefore the model was not included in the TTS pipeline and will require further
research.

In conclusion, using stressed text as the inputs to the Lithuanian TTS neural network mod-
els, the speech produced by the best synthesizer (Aurimas) developed during this master’s thesis
work generates near-human sounding speech. The MOS evaluation results comparing the model
to other best-known Lithuanian speech synthesizers suggest that the Aurimas model performs the
best. However, further work is needed to create a high-accuracy automatic accentuation model if
the synthesizer is to be used for general use cases.

7. Future work

Using stressed text to train TTS neural networks provides a significant performance boost to TTS
neural networks. However, the models are not provided with a pre-processing component that auto-
matically stresses the input text. When creating the datasets described in this work, the labels were
accentuated manually using a third-party tool developed by VDU. A text also needs to be stressed
manually to perform the model inference. Such workflow is highly inconvenient if a synthesizer
is to be used in a production environment. So it is essential to improve the performance of the
automatic stressing model, of which the initial experiments and results are described in the earlier
sections. Below, the authors’ thoughts and notes on possible future work directions to improve the
performance of the stressing model are provided

Try more hyperparameter combinations. Analyze what hyperparameters impact the perfor-
mance the most, try to find the optimal set of hyperparameters.

Improve the LSTM architecture. The current LSTM architecture is trivial: it is straightfor-
wardly composed of embedding, LSTM, and linear layers. Additional components, like a dropout
layer or different combinations and ordering of the layers, may improve the network performance.
Using a bi-directional version of the LSTM network is bound to be helpful, too, since the model
may learn to capture word boundaries and infer that only one pitch accent should be assigned to a
word. Also, it may be worthwhile to train a similar model but using GRUs instead of LSTM units.

Try out different loss functions. Currently, the system works at a character level, calculating
the cost by comparing whether each predicted token corresponds to label tokens. On the other hand,
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the objective is to penalize the model when it incorrectly predicts the letter position or the type of
accent assigned at the word level. A custom loss function may be required for the system to work
at the character level.

Fix the BERT model. In theory, Transformer networks should perform better than a trivial
LSTM network, especially if it is uni-directional. There might be flaws in the current architecture
of the BERT stressing model. For example, the format in which the input/label pairs are fed to the
BERT model may be incorrect. Further analysis of the model is required.

Try word-level or word-piece-level tokens. Use the Tokenizer code infrastructure provided by
HuggingFace to train the input and target tokenizers. The BERT model is known to work best with
word-piece tokens, so doing the modification may improve the model’s performance considerably.
In this case, publicly available pre-trained language models like LitLat 34 [UR20] may be utilized
to further increase the model’s performance.

Make use of a pre-trained BERT model. BERT models are also known to demonstrate the
best performance when a pre-trained model is used for transfer learning or fine-tuning in a new
domain.

Reformulate the problem solved by the stressing model. Currently, a token classification task
is performed. An important observation is that most of the words in Lithuanian (and other higher-
degree of phonemic orthography languages) are accentuated unambiguously. The main problem
is the pronunciation of homographs - words that may be pronounced differently depending on the
context (nearby words in the sentence). By collecting a list of unambiguously-stressed words and a
list of homographs, the problem may be reformulated to use the neural network to predict a masked
token in a sequence. In this case, the masked token would be a stressed homograph. Nearby words
would give context to the model. If the model would learn to assign a correct pitch accent to a
correct letter of a homograph, the other words in the sentence that are stressed unambiguously
could be stressed programmatically.

34https://huggingface.co/EMBEDDIA/litlat-bert
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assessment of text-to-speech systems through utterance verification. In Proceedings
of Interspeech, number CONF, 2015.

[Vai+01] Martti Vainio et al. Artificial neural network based prosody models for finnish text-
to-speech synthesis, 2001.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pp. 5998–6008, 2017.

[Wil87] Briony Williams. Word stress assignment in a text-to-speech synthesis system for
british english. Computer Speech & Language, 2(3-4):235–272, 1987.

[WRS+21] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection
and quality challenges in deep learning: a data-centric ai perspective. arXiv preprint
arXiv:2112.06409, 2021.

[WSB+21] Ron J Weiss, RJ Skerry-Ryan, Eric Battenberg, Soroosh Mariooryad, and Diederik
P Kingma. Wave-tacotron: spectrogram-free end-to-end text-to-speech synthesis. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5679–5683. IEEE, 2021.

[WSS+17] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, et al. Tacotron: towards
end-to-end speech synthesis. arXiv preprint arXiv:1703.10135, 2017.

[WWT+12] Linfang Wang, Lijuan Wang, Yan Teng, Zhe Geng, and Frank K Soong. Objective
intelligibility assessment of text-to-speech system using template constrained gen-
eralized posterior probability. In Thirteenth Annual Conference of the International
Speech Communication Association, 2012.

57



[YSK20] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: a fast
waveform generation model based on generative adversarial networks with multi-
resolution spectrogram. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6199–6203. IEEE, 2020.

[YYZ20] Shudong Yang, Xueying Yu, and Ying Zhou. Lstm and gru neural network perfor-
mance comparison study: taking yelp review dataset as an example. In 2020 Interna-
tional workshop on electronic communication and artificial intelligence (IWECAI),
pp. 98–101. IEEE, 2020.

[ZDC+19] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and
Yonghui Wu. Libritts: a corpus derived from librispeech for text-to-speech. arXiv
preprint arXiv:1904.02882, 2019.

[ZLD21] Xiao Zhou, Zhen-Hua Ling, and Li-Rong Dai. Unitnet: a sequence-to-sequence
acoustic model for concatenative speech synthesis. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 29:2643–2655, 2021.

[ZTB09] Heiga Zen, Keiichi Tokuda, and Alan W Black. Statistical parametric speech synthe-
sis. speech communication, 51(11):1039–1064, 2009.

58


	Introduction
	Literature Overview
	Text-to-speech Systems
	Traditional TTS Systems
	Concatenative synthesis
	Statistical parametric synthesis

	Neural network-based TTS systems
	Acoustic and vocoder models
	Autoregressive and non-autoregressive networks
	Neural network architectures


	Phonemic Orthography
	Automatic Text Stressing Systems
	Lithuanian Language Synthesizers
	Text-to-speech Datasets
	Evaluation of TTS Systems
	Mean Opinion Score


	Lithuanian Speech Dataset
	Creating the Lithuanian Speech Dataset
	Text pre-processing
	Audio and text alignment

	Stressing text labels
	Results

	Data quality

	Automatic Lithuanian Text Stressing Model
	Problem formulation
	Data
	Pre-processing

	Experiments
	Hardware
	LSTM
	Results
	Motivation for choosing LSTM networks

	BERT
	Results


	Summary

	Lithuanian Speech Synthesis
	Tacotron 2
	Experimental Setup
	Training on Vytautas dataset
	Training on Aurimas dataset
	Training on Giedrius dataset
	Summary

	VITS
	Experimental Setup
	Training on Vytautas dataset
	Training on Aurimas dataset
	Training on Giedrius dataset
	Summary


	Results
	Trained Models Evaluation
	Lithuanian Speech Synthesizers Evaluation
	Summary

	Conclusions
	Future work
	References

