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Summary

The purpose of the thesis is to provide a different point of view to perform diabetic retinal
image classification problem and the influences of various preprocessing methods on deep learning
methods to solve the problem of the detection of diabetic retinopathy. To experiment the
preprocessing methods such as HSV, HSL, and Lab color spaces, EfficientNet and ResNet deep
learning architectures are used. Conclusions and detailed experimental results are provided at the

end of the research.
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Summary

Baigiamojo darbo tikslas — pateikti kitokj poziiirj j diabetinés tinklainés vaizdo klasifikavimo
problema ir jvairiy iSankstinio apdorojimo metody ijtakg giluminio mokymosi metodams,
sprendziant diabetinés retinopatijos nustatymo problemg. Norint eksperimentuoti su iSankstinio
apdorojimo metodais, tokiais kaip HSV, HSL ir Lab spalvy erdvés, naudojami EfficientNet ir
ResNet gilaus mokymosi architektiiros. ISvados ir iSsamils eksperimenty rezultatai pateikiami

tyrimo pabaigoje.

Pagrindiniai ZodZiai: vaizdo klasifikacija, iSankstinis vaizdo apdorojimas, spalvy erdvés,

ResNet, EfficientNet, diabetiné retinopatija, gilus mokymasis, masininis mokymasis.
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1. Introduction

Diabetic retinopathy is a complication caused by diabetes in the retinal part of our
body. This complexity is one of the main reasons for blindness [1]. High blood sugar levels cause
the reasons for retinopathy, destruction of the retina becomes easier with the help of sugar
anomalies inthe blood, and an eye with diabetic retinopathy can be seen in Figure 1. Diabetic

retinopathy has different stages, and early diagnosis plays an essential role to prevent blindness.

Diabetic Retinopathy

Healthy blood vessels Tiny blood vessels leak

fluid into the retina

Normal Eye Eye with Retinopathy

Figure 1. Comparison of healthy eye and eye with retinopathy [1]

With help of technology, it became easier to avoid these kinds of diseases year by year. The
application of machine learning algorithms makes much easier the diagnosis process of illnesses
including the possibility of blindness caused by diabetic retinopathy. In order to provide such an
opportunity, image classification methods will be taken into consideration in this thesis.
Classification of diabetic retinopathy is complex work and professionals should evaluate it.
However, with the help of Convolutional Neural Networks (CNN) algorithms, we have a chance to
predict the current situation of the disease. With the knowledge provided by previous research and
experiments on diseases that causes blindness and machine learning, data preprocessing methods

that might be useful for early diagnosis of diabetic retinopathy.



1.1 Problem Definition

Labeling images manually is one of the biggest problems while working on so much data
and image classification applications with deep learning methods play essential roles to reduce
workload and increase the efficiency and accuracy of the work. In the thesis, the aim is to
investigate the influences of preprocessing methods mainly color spaces and other basic methods
for the purpose of image classification with deep learning algorithms for eye fundus images. To
examine the problem, experiments will be handled with the preprocessed training images.
According to knowledge gained by previous research, different parts can affect the accuracy and
efficiency of models and image preprocessing is one of the most important elements for purpose of
image classification as well as blindness detection. Hereby, various image preprocessing methods
related to color spacing such as HSV, HSL, LAB, and other hue-based methods will be applied to
the images, and influences on the results obtained with deep learning methods will be evaluated at

the end of the training with EfficientNet and ResNet architectures

There are some main challenges needed to be solved during the research:

1. Investigation of Datasets

Some datasets like APTOS 2019 can have an imbalanced distribution of images
through training and test files and to prevent bad effects of this issue, it is important
to have a balanced dataset. Therefore, some image augmentation methods might

apply to balance the image sets.

2. Implementation of Preprocessing Methods

This task is the actual focus of the whole research and plays a crucial role in the
further improvements of the experimental results. All deep learning architectures
require different sizes of images and that’s why resizing and other basic

preprocessing methods will be used alongside color spacing methods.



3. Optimization of The Preprocessing Methods.

Most of the color spacing models focus on color in specific ranges that are
manually determined and it is important to find the best range of colors for most

images in the dataset.

4. Implementation of Deep Learning Architectures.

To have good test results, it is important to use some well-known and efficient
proven models. Thus, it is decided to use EfficientNet and ResNet algorithms to have
pieces of training. More explanations on this topic will be given in the further

section.

5. Experimental Analysis To Investigate Influences of Image Preprocessing

To test the results, various experiments will be handled with various types of
experiments with different image preprocessing methods mentioned in this thesis.

Visualization and interoperation of the test results will be handled.



2. Literature Review

Diabetic retinopathy (DR) [1] is one of the common and dangerous reasons that can lead to
blindness. The main complication is caused by high blood sugar in regards to diabetes and it
damages the back of the eye where the retina is placed. Many things can cause this disease such as
stress and life conditions. Early diagnosis of this treatment plays a crucial role to prevent blindness,
however, it was not very easy to diagnose it in its early stages back then. Developments in
technology and computer sciences have provided new opportunities for the diagnosis of DR as well

as other medical research.

During the early stages of computer-based predictions of DR, support vector machines
(SVM) [2] were popular to proceed. In 2013 Adarsh et al. [3] classified the severity levels of DR
from mild to proliferate into 4 different classes by using multi-class SVM. Another method they
used in that research was feature extraction but they handled this process manually based on
morphological operators. However, they could achieve 95% average accuracy on the final version
of the research. Another research held by J.Calleja et al. [4] has been completed by a two-stage
method. In comparison to previous research mentioned earlier, J. Calleja et al. have used local
binary patterns (LBP) for feature extraction and used SVM and random forest methods for
classification. The dataset used during this research consists of 71 images and they had 97.46%
accuracy by using the random forest for classification. Some other researchers are also focused on

manual feature extraction with different methods for DR detection.

As time progresses, different points of view showed up in different researches. Adityan
Jothiet al. [5] introduced a method to classify anomalies in the blood vessels that might cause
blindness in fundus photographs provided at DIARETDB [6] and STARE [7] datasets. The Frangi
filter technique is implemented in the algorithm for more accurate results in the research. Another
methodis used by 7. Karim et al. [8] and they could obtain improved sensitivity and accuracy results
by using MATLAB Neural Network Pattern Recognition Tool (NPRTOOL). This research aimed to
detect DR by detecting micro-aneurysm and the results are compared with other machine learning

(ML) methods such as Naive Bayes and SVM.



To increase efficiency and accuracy obtained from the research, deep learning approaches
became more popular over time. Many kinds of research are held with deep learning methods for
automatic computer-based feature extraction, predictions, and classification. 1. Sadek et al. [9]
studied the topic of automatic DR detection by using methods. They aimed to classify DR into
three different classes Normal, Exudates, and Drusen. To achieve this classification different
experiments were held with ResNet [10], GoogLeNet [11], VGG-VD, and VGG [12] convolutional
neural networks (CNN) on a custom dataset consisting of fundus images collected from six
different datasets such as STARE, MESSIDOR [13], and other datasets. At the end of the research,
they had 92% accuracy for the classification. Another research carried out by Xu et al. [14] has
implemented data augmentation techniques onto CNN networks for DR classification and obtained
results with 95% accuracy. Research carried out by D. Doshi et al. [15] completed the research with
the kappa metric as an evaluation metric and this metric is different from than metrics used in the
previous research mentioned before in this thesis. Their proposed method is completed by three
CNN models and an ensemble learning model trained with those CNN architectures. They also used
GPU computation and the aim of the research is to classify retinal images into 5 classes according
to their severity levels. The best result they have achieved is provided by an ensemble model with a

0.3996 kappa score.

Some other researchers are focusing on image preprocessing methods, Maya K. V. et al. [16]
used various image preprocessing methods such as Gaussian Noise, grey scaling, and green channel
to detect bright lesions in the fundus images on the MESSIDOR dataset. To predict DR, they used a
CNN architecture with 4 convolutional and 2 fully connected layers for the classification. The
results of this study were achieved with 98% accuracy and 94.52% sensitivity. G. Zago et al.
[17] also study on lesions. The purpose of the study is to design a lesion localization model with the
help of VGG-16 CNN architecture that is customized with three dense layers. The model is pre-
trained with the DIARETDB1 dataset and the tests were held with five different datasets, the best
result for the DR screening was obtained with the MESSIDOR dataset with 91% accuracy. Hagos et
al. [18] tried to use the transfer learning method by pre-training a model with InceptionNet-V3 and
fivedifferent classification layers on the ImageNet dataset at the end of the research they achieved
90.9% accuracy. Another research held by Sarki et al. [19] in 2019 focused on pre-training of a
model with ResNet-50, VGG, XceptionNets [20], and DenseNet [21] also with ImageNet dataset

and could achieve 81.3% accuracy as a result of experiments.



In other research done in APTOS 2019 competition on the Kaggle website, Guanshuo Xu
[22] has won that competition with 0.936129 Kappa score accuracy, and to get the first place in the
competition, the ensemble learning method is used by blending InceptionNet and ResNet
architectures. Resizing is the only preprocessing method used. It is noted that a larger input size
provides better performance. For the loss function nn.SmoothL1Loss() is used and basic
augmentation methods are used such as brightness, saturation, blur, mirror, rotation, and so on. The
training part is divided into two parts, in the first stage, all 8 networks are trained and validated. To
prevent overfitting, optimization of hyperparameters is handled in this stage. In the second stage,
MESSIDOR and The Idrid datasets are added to training and lastly, by changing quadratic weighted
kappa (qwk) thresholds from [0.5, 1.5, 2.5, 3.5] to [0.7, 1.5, 2.5, 3.5] best result is obtained.

For the second place, team [ods.ai] Eye of Private LB [23] got a 0.934310 kappa score by
using pre-trained models with the 2015 competition dataset, and the most they could get 0.75 qwk
score. Different network architectures are used but according to their research EfficientNet
architecture is the best performed one and the final solution contains EfficientNet b3, b4, and b5
networks. Cropping black background and resizing are used as preprocessing methods and various
augmentation methods are used such as blur, flip, random brightness, and others. Pre-training is
done with old competition data by training 80 epochs with b3 models and 15 epochs with b5
models. Then, normal training is done on the 2019 competition dataset 50 epochs on b3 and 15
epochs on b5 architectures. The most important process during this research is pseudo-labeling

previous competition test data and this process had a huge impact on the final result.

With a 0.933720 kappa score team Best Over Fitting [24] got fourth place in the competition
with the method, “Crop From Gray” to the images of APTOS 2019 and APTOS 2015 datasets as
preprocessing method for both training and prediction processes then followed by classified images
into three different classes by their brightness of image boundaries of training images of both
datasets and applied transformation to those images to make the same type images. They have also
applied some augmentation methods such as Dihedral, RandomCrop, Rotation, Contrast,
Brightness, Cutout, PerspectiveTransform, and Clahe. It is noted that he noticed, that large model
training on high-resolution images tends overfitting due to the small size of the training set. So, he
used a small model for high resolution and a large model for low resolution. The team pretrained

the 2015 full dataset for 25 epochs without validation and then applied 5-fold cross-validation (CV)
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to the 2019 dataset. EfficientNet B2, B3, B4, B5, B6, and B7 architectures are used in this research.
Best results are obtained with an average of B7 and BS5 architecture. For the prediction Dihedral
Test-Time Augmentation (TTA) is used along with the CV. He did image preprocessing once for 40
tests (5 models X 8 Dihedral TTA) to save time.

Another competitor in the competition was Eugene Khvedchenya [25], he got the seventh
place with 0.933155 kappa accuracy on the leaderboard, and he used, SeResNext50, SeResNext101,
and InceptionV4 architectures are used. For the preprocessing different methods are used including
Clahe, red channel dropping, and spherical image unwarping, but their performance was not as
expected. According to the author’s theory, all models are more complex than it seems (in several
parameters) and have bigger capacity and generalization power so it leads vanishing impact on data.
As a result, a simple preprocessing method is used by applying crop black areas out of the eye’s
boundaries, padding the image to a square size, and resizing it to 512x512 pixels. APTOS 2015 and
a test set of IDRID datasets are pretrained. Before the training process, the sufficiency of the
pooling method is considered and various pooling methods are tested. The global average pooling
(GAP) method is performed better and applied for the rest of the research. In the training process,
APTOS 2019, IDRID (train set), and MESSIDOR datasets are trained then, the Pseudo-labeling
technique is applied to test datasets with MESSIDOR and APTOS 2014 datasets. Horizontal flip

TTA is used for the final prediction.

The last competitor is reviewed in this report is team Eye of Stars [26], they got an eighth-
place with 0.932106 accuracies by using datasets of APTOS 2019 and APTOS 2015 are combined
and tried to improve the generalization part of this research so, this method has a different approach
than the previous ones mentioned in this report. As other competitors did, also on this project the
team have removed the black backgrounds of images. One other important task for them was to
remove duplications and confusing labels from the datasets as the final preprocessing. Before the
training, they applied some augmentation methods such as rotation, flip, zoom up to 1.35x, and
lightning. It is noted that these augmentation techniques play a crucial role to generalize better and
not overfitting. One cycle learning policy is taken into consideration for the training process and
started with low-resolution images and continued with the high-resolution image. EfficientNet B4

and B5 architectures are used to train models and 5-fold cross-validation is applied.



According to observations I claimed during my research on previous works, most of the
competitors that won prizes, focused on ensemble learning methods and did not focus a lot on
preprocessing part of their research. Cropping images from black backgrounds and resizing are the
most popular preprocessing methods that have been used during competition. Additionally,
augmentation methods play a crucial part to have good experimental results due to imbalanced
dataset issues. However, simple augmentation methods such as random rotating and mirroring
images are applied commonly by competitors, it looks like they have good effects on the results. To
train a model, EfficientNet, ResNet, and InceptionNet architectures are mostly used and combined
to computer better and receive better results. To the words and results of research, ResNet has
more stable and provides more satisfying results. However, they have mostly used basic image
preprocessing methods as it is mentioned earlier. Hereby, it is hard to see the effects of color

spacing methods on deep learning image classification for diabetic retinopathy diagnosis.



3. Preprocessing Methods

In this section, methods used for the purpose of preprocessing the retinal images are
explained. Grey scaling, auto-crop, resizing and Gaussian blur methods are used for several small
experiments to have an idea about the effects of preprocessing on the fundus images. However, the
main aim of the thesis focuses on diabetic retinopathy detection by deep learning image
classification, accordingly, to evaluate this topic, the effects of color spaces on image classification
will be taken into consideration and some of the color space algorithms that will be used for

experiments are explained in this section.

3.1 Grey Scaling

Grey scaling helps to reduce color differences between samples, thus makes easier to spot
anomalies. With the help of the OpenCV library, this method is implemented in the research.
Diagnose 3-severe sample is shown below, Figure 2 represents the original version of the image

from the dataset, and Figure 3 denotes the converted version of the same sample.

Figure 2. Original Severe Diagnose Figure 3. Grey Scaled Version of Image

As it can be seen from the examples in Figure 3, It is possible to observe blood vessels and
leaks more clearly on the grey scaled fundus image. This method was the initial technique for

preparing the dataset for model training.



3.2 Gaussian Filter

Gaussian filter is a 2D convolutional operator to blur and reduce noises from the images

[27]. This method can be calculated with equation (1) which is given below;

| L)

e 202 §))

G(x, y) - 2o’

Where shows the standard deviation of the distribution, x and y represent distances to the
origin of the pixels and o is the standard deviation of the Gaussian distribution. Depending on, the
blurring level changes, greater values increase the blurring degree. In this part of preprocessing

Gaussian filter is applied to the images that were converted into greyscale.

Figure 4. Gaussian Filter Applied Image

In comparison to Figure 3, observation of details becomes easier on the Gaussian filter
applied version of the grey scaled image in Figure 4. Some unseen or hard-to-see anomalies are
easier to detect but there are still some useless parts that might affect the result of the model

training process.

3.3 Auto Crop and Re-Coloring

To focus on the retinal part of the image, all the unnecessary parts like grey or dark zones
out of the fundus might be cropped for better training results. This process is followed by re-
coloring part of the grey-scaled images. According to research on the Kaggle website I have seen
the previous winner of the 2015 APTOS competition on diabetic retinopathy, Ben Graham [35] has

used a method to improve lighting quality. During the application process of color cropping,
10



sigmaX parameter plays a crucial role in color images. It is noted that Ben Graham used sigmaX =
10 during his experiments and that parameter is not changed in the experiments performed in this
thesis.. This method applies color to every part of the image with the grey color according to the
depth of the grey color’s scaler dimensions. Examples of recolored and cropped images for different

sigmaX values from the train set are attached to Figure 5 and Figure 6 below.

Figure 5. Recolored and Cropped Figure 6. Recolored and Cropped
Image with sigmaX =10 Image with sigmaX =30

Effects of the sigmaX parameter can be seen easily on the indicated images. Damages and
blood vessels on the retina become more visual than in the previous versions of the samples from

the dataset. With the methods applied for preprocessing, it is expected to have meaningful results at

the end of the initial experiments.

3.4 HSV Color Space

HSV color space is a color model like the RGB model to describe the way colors combine to
create the spectrum we see. The difference between RGB and HSV is, that HSV is more
close to how humans see the world and H stands for hue, S saturation and V is value. The main
reason to use this method is actually to spot the anomalies easier on the fundus images provided on
the dataset. With the help of the HSV method, separation and segmentation of different parts of the

images become easier but thresholding colors is should be taken into consideration to have proper

results.

Figure 7 shows a fundus image from APTOS 2019 dataset in order to have an idea
about the threshold values we need to examine the image in more detail with RGB and HSV

histograms.
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Figure 7. Fundus Image From APTOS 2019

Figure 8. RGB Histogram Figure 9. HSV Histogram

Figure 8 and Figure 9 show color histograms of the fundus image provided in Figure 7. To
decideon threshold values, the HSV histogram gives an idea. Here in Figure 9, we can easily see
that our boundaries should be between grey and orange color but it can change for other images in

the dataset, however, most of the images have this color scale so thresholds will be in this range.

12



500 500

1000 1000

1500 1500

2000 2000

2500
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

2500

Figure 10. Masking

Figure 10 shows two different masks of the fundus images after thresholds are applied. With

masking, we will be able to capture white and orange colors on the intended areas of the retina.
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Figure 11. An Example of Thresholded Fundus Image

We can see a good result provided after HSV color spacing in Figure 11. However, some of

the photos are not that successful but promising.
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3.5 HSL Color Space

HSL is a cylindrical color model and has similarities with HSV color space. Hue and
Saturation values are the same with HSV, however, the L letter stands for the value of light and it is
the difference between HSV and HSL color spaces. The role of the hue is to specify the angle of the
color on the RGB space as well as HSV and purity of the color check by saturation and this is also
the same in HSV color space. As mentioned earlier, lightness is the only difference between HSV
and HSL and the role of that value is to control the luminosity of the color if the color has a 0%

value it means that the color is black, when that value gets higher color gets close to white.
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Figure 12. RGB Fundus Image Figure 13. HSL Filtered Image

Figure 12 and Figure 13 show the difference between RGB fundus images and HSL filtered
images. It is easy to observe the color difference between example images. HSL filter takes hue in

the red channel, saturation in green, and luminosity in the blue channel and converts it as can be

seen in Figure 13.
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Figure 14. RGB Histogram Figure 15. HSL Histogram

Figure 14 and Figure 15 show the histogram of the distribution histogram of the values of

both RGB and HSL filters. These pieces of information can be used while deciding the threshold

values if desired to have images in Figure 16.

Image: 76b950c6ed5e.png Image: 9868_right.png Image: 4f46d7ee6led.png Image: 28093 _right.png Image: 25d069089c5e.png
Label = 0 Label =1 Label = 2 Label = 3 Label = 4

Figure 16. HSL Thresholded Fundus Images

Figure 16 shows the HSL filter applied and thresholded fundus images from every label

from the preprocessed custom dataset (see section 6.3). With this method, it is easier to focus on the

problematic parts of the diabetic retinal images.
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3.6 L*a*b Color Space

The L*a*b* color space is invented by Richard Hunter in the 1900s. This method is proper
to quantify the colors. 3 axis of the LAB color space represents light (L), red to green (a), and green
to yellow (b). If values of the axis a* are negative, it means the color is green else red and the same
thing can be said for the axis b* but the color blue is negative and yellow is positive. Axis L
changes between 0 and 100 and shows the value of the lightness. Moreover, the L value shows the
contrast between gray and black colors where the a and b axes show chromatic colors of the
respective elements of the colors by showing the closest color and it is good to understand which
side is the color closer on the color scale. Figure 17 and Figure 18 show the difference between

RGB and Lab filter on fundus images from APTOS 2019 dataset.
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Figure 17. RGB Fundus Image Figure 18. L*a*b* Filtered Image

Figure 19 and Figure 20 show the histogram of the colors on the fundus images and those

histograms help us a little more to understand color values on the provided retinal images.
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Figure 19. RGB Histogram Figure 20. LAB Histogram

4. Deep Learning Algorithms

In this section, network architectures that will be used during experiments are explained.
According to the literature review and APTOS 2019 competition solutions mentioned in the earlier
sections of this report, it is seen that some deep learning architectures are used more than others and
their accuracy levels are higher and more effective in the classification of images. Most of the
solutions in the APTOS competition are considered ensemble learning methods and combined
couple algorithms such as ResNet, EfficientNet, InceptionNet, and so on to increase accuracy and
efficiency. D. Doshi et al. [15] were another ensemble learning method appliers for their research
and they took help from three different architectures and applied ensemble learning. 1. Sadek et al.
[9] made research with ResNet, GoogleNet, and VGG algorithms on the custom dataset and had
good accuracy results at the end of the research. Modern image classification methods and
architectures for diabetic retinopathy detection will be taken into consideration to complete the
tasks. Figure 12 represents the performances of the deep learning architectures below. ResNet, and
EfficientNet has the best results for most of the research, so these architectures are implemented
into the research to make reasonable recommendations for diabetic retinopathy detection.
Additionally, different methods like pseudo labeling test time augmentations are the other methods

that might have a crucial role to increase and make observations over the data.
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Figure 21. Network Accuracy Comparisons [28]

4.1 ResNet Architecture

Residual Network (ResNet) was introduced first in a paper named Deep Residual Learning
for Image Recognition [29] in 2015 by Kaiming He, Jian Sun, Shaoqing Ren, and Xiangyu Zhang
and the popularity and success of the model have increased since then. In the paper, the authors are

also explained residual blocks, and ResNet is created by these blocks.
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weight layer

X

identity

Figure 22. Residual Block [29]
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Figure 22 shows the architecture of residual blocks. One of the most important parts of these

blocks is a type of connection called “skip connection”. This method has an essential role to solve

the vanishing gradient problem by letting gradients use a shortcut to flow. The stop process applies

to negative weights, preventing them to pass to the convolutional layer. Those negative weights pass

to the ReLu activation function and in this way, we are able to reduce calculation steps and

parameters. Figure 23 shows the relations between VGG-19, 34 layer plain network, and 34 layers

residual network. Basically, the plain network is inspired by the VGG-19 network, and then skip

connections are added to the plain network to create a residual network.
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Figure 23. ResNet Architecture [29]
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4.2 EfficientNet Architecture

According to the research made in the previous research work report, EfficientNet is a
Convolutional Neural Network (CNN) model that achieves high accuracy level after its release in
comparison to other CNN methods. It is first described by Mingxing Tan and Quoc V. Le in [28]
and relies on the AutoML framework. This framework has provided an opportunity to create
EfficientNet BO then it's improved by the compound scaling method to develop the rest of the
EfficientNet family from BO to B7. EfficientNet uses a compound coefficient to scale all
dimensions of depth, width, and resolution. However, scaling can cause some effects on accuracy.
Scaling up dimensions, width, depth, or resolution may increase accuracy, also, it is important to
have better accuracy and efficiency, and it is essential to balance all mentioned aspects. In the paper
proposed for EfficientNet by Mingxing Tan and Quoc V. Le, the compound scaling method is used
to scale the dimensions of the network. The researchers have executed a grid search method to find
out the relations between various scaling sizes within the fixed resource constraints of networks
with the help of this strategy they were able to find convenient scaling coefficients for every
dimension to be scaled-up. Depending on these coefficients, the baseline network is scaled to the
desired size. At the end of their experiments, they claimed that the compound scaling method has

improved the model accuracy and efficiency. The method of compound scaling is illustrated in

Figure 24.
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Stage Operator Resolution Channels Layers

i Fi Hi x Wi Ci Li
1 Conv3x3 299 x 299 40 1
2 MBConvl, k3x3 150 x 150 24 2
3 MBConv6, k3x3 75x75 32 3
4 MBConv6, k5x5 38 x 38 48 3
5 MBConv6, k3x3 19x 19 96 5
6 MBConv6, k5x5 19x 19 136 5
7 MBConv6, k5x5 10x 10 232 6
8 MBConv6, k3x3 10x 10 384 2
9 Convlxl 10x 10 1536 1
10 AveragePooling & dropout 2x2 1536 1
11 Dense Ix1 8 1
12 Sigmoid Ix1 8 1

Figure 25. EfficientNet Structure [30]

The model in Figure 25 was designed by Jing Wang et al. [30] for the purposes of

classification of the fundus images.

5. Performance Metrics

It is important to calculate the performances of the models used to train the datasets. To
perform a good performance test, accuracy, sensitivity, and specificity should be calculated. The
confusion matrix gives chance to find values of true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN). To explain these values we can give example from the retinal image
classification process from the Messidor dataset [31]. This dataset consists of four different types of
attributes such as healthy retina, DR. Stages 1,2, and 3. If an image is predicted correctly from a
specific class then it represents true positive and it will be true negative for all other correct
predictions for alternative attributes. When a healthy retina image is predicted as a DR image of any
stage then it is termed a false positive. And lastly, if a DR input image of any stage is predicted as a
healthy retina, so it represents a false negative. We can calculate all metrics from the following
equations (2,3,4).
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|TP|+|TN|

Accuracy = 2)
|TP| + |TN| + |FP| + |FN)|
TN
Specificity = | | (3)
|TN| + |FP]
. | 7P|
Sensitivity = 4)
|TP| + |FP|

With the help of the knowledge mentioned earlier in this section, it is possible to calculate
desired metrics such as precision, recall, and F1 score. These three metrics can be counted as a part
of a union and should be evaluated together. Precision gives the answer of between all positive

predictions how many of them are really positive can be calculated on the equation (5),

TP
Precision = ——m8
7 1S101 ,],P r FP (5)

Recall, answers how much data is predicted positive between all real positive cases and can

be calculated with the help of formula (6) as follows,

Recall — —LF ©)
TP+ FA

The final part of this union is the F1 score which takes into account both

precision and recall to calculate its value as on the equation (7) below,

Pl'(‘('isi()ll X R('(';lll
Fl-score = 2 x — (7)
Precision + Recall
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F1 score or also called F-measure basically combines precision and recall as can be seen in
formula (7) and changes between 0 and 1 depending on precision and recall. The higher the F1
score goes, means better model we have to evaluate. Another metric is called F-beta score (8), this
metric allows us to decide how to weight the balance between precision and recall using
the beta parameter. When beta=1, the F-beta score is equivalent to the F-1 Score. When beta=0.5,

this score is the F-0.5 score.

1 +beta®)sPrecisionsRecall
F-betascore = ((1+beta*)+Precisions Recall) @)

beta?=Precision+Recall

5.1 Quadratic Weighted Kappa

This is another metric used during the experiment part of the research and this method will

be explained in this section.

Quadratic weighted kappa (QWK) is a kind of classification accuracy and works well with
unbalanced data by guessing randomly according to the frequency of each class, so it reduces the
problems caused by imbalanced data. It basically tells how well the classifier performs and QWK
calculates relations between two parameters. In order to measure kappa value, attribute parameters
should be assigned by a researcher. Additionally, predicted results are also needed to calculate the

kappa score. This metric might vary between 0 and 1. Interpretation of kappa scores is given in

Figure 26 below;
Value of Kappa Level of Agreement % of Data that are Reliable

0-.20 None 0-4%
.21 -.39 Minimal 4-15%
.40 - .59 Weak 15-35%
.60 -.79 Moderate 35-63 %
.80 - .90 Strong 64-81%

Above .90 Almost Perfect 82 -100 %

Figure 26. Interpretation of Cohen’s Kappa [32] 23



Calculation of quadratic weighted kappa is handled as follows:

k vk
B Lio1Xj—1Wijoij

K=1
k k ’
Li—1 =1 Wijeij

9)

Y
_ =i (10)

where k represents the number of categories o,; that stands with observed ¢;; and is expected
matrices (9). To calculate QWK, we need to calculate the confusion matrix to find prediction results
for the classification problem. It is mentioned in previous researches that the calculation of the
weight matrix w; (10) plays a crucial role to have proper calculation. A couple of problems like

raters with the same percentage of an agreement, but different proportions of ratings might cause

drastic changes in the kappa score.

6. Datasets

Here in this section, the datasets used for the research will be explained. Explained datasets
are chosen concerning factors of quality and quantity of images, and detailed labels of diagnosis.
Additionally, those datasets are newer in comparison to most of the other datasets and that was

another reason to choose explained datasets in upcoming parts of the thesis.

6.1. APTOS 2019 Dataset

This dataset is published by the Asia Pacific Tele-Ophthalmology Society (APTOS) for the
competition held on the Kaggle platform to detect diabetic retinopathy. The image set contains 3662
24
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train and 1928 publicly available test images. Imbalanced training images in this dataset are the

biggest problem for the training and can be seen in Figure 27.
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Figure 27. APTOS 2019 Dataset Training Images
Distribution

Figure 27 shows the labels from 0 to 4, label 0 represent the healthy samples, and label 4
proliferative DR samples and it is easy to observe that label 0 has much more samples than the
others and it causes an imbalance dataset problem as it is mentioned earlier. In order to prevent this
issue, basic augmentation methods are applied before the training such as rotation, and horizontal

and vertical flips. Images from every label can be seen in Figure 28.

Image: 2::0'138“76 -PNg  Image: 7bfsu1d9c7fe PNO  |mage: 524f240e0c90.png  Image: ,9156“"‘_“ png  |mage: 8596.24.14!)1! png

Label = 2

Figure 28. APTOS 2019 Dataset Example Images
From Every Label

Since every specific deep learning architecture requires a specific image size, it is important
to resize the images before the training as a part of preprocessing part of the experiments.
Furthermore, it is possible to observe that the images have some differences in their sizes and it is
essential to make them equal. From label 2 to label 4 it is easy to detect the anomalies that cause

retinopathy on the images.
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6.2 APTOS 2015 Dataset

This dataset was also published by APTOS and used for the diabetic retinopathy detection
competition 2015 as well as the 2019 dataset. Images are collected by the fundus photography
method and published publicly. As mentioned in the APTOS 2019 dataset explanation part, this

dataset also has a big imbalanced data problem and it can be seen in Figure 29.

Label Distribution (Training Set)
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Figure 29. APTOS 2015 Dataset Training Images

In comparison to the 2019 dataset, this dataset has significantly much more images. Figure
29 shows the labels of the dataset and again label 0 has over 25000 images in training images and
has very few labels 4 and 3 to have good results at the end of the training. Figure 30 shows example

images from the dataset.

Image: 37792 _right.,
Image: 27820_left.jpg 9 Label = 1g P9

Image: 38914_left.jpg Image: 31426_right.jpg Image: 40893 _left.jpg
Label = 0 Label = 2 Label = 3

Label = 4

Figure 30. APTOS 2015 dataset example images
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Apart from the images from the 2019 dataset, the 2015 dataset has images with different
color scales and this is important to define thresholds for the color spaces, more information will be

shared in the following sections.

6.3 Custom Balanced and Preprocessed Dataset

To prevent or reduce to chances of overfitting and other reasons for bad training results, this
dataset is created by a Kaggle user called Alinusik [33] and used in this research to have a bit more
reliable results. The image set consists of both APTOS 2019 and 2015 images, as it can be observed
from the Figure 27 and Figure 29, labels except from 0 do not have many images and with the

combination of these two datasets this problem is solved and it is possible to see it in Figure 31.
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Figure 31. Custom Dataset Training Images Distribution

There are 7243 training images in total in this dataset and 2500 images for the testing. In
comparison to previous image sets, this dataset is much more balanced as it is shown in Figure 23.
But, it is not the only difference between the datasets. Images in this dataset are preprocessed with
various methods such as conversion into gray, cropping unnecessary parts outside the fundus,
resizing, and lastly gaussian blur to reduce noises on the images. Examples can be seen in Figure

32.
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Image: a73d012c4¢38.png Image: 6cdd0f985270.png Image: bfed67b7e997.png Image: 16651 right.png Image: 24019 _right.png
Label = 0 Label = 1 Label = 2 Label = 3 Label = 4

Figure 32. Custom dataset example images

7. Experimental Investigation

In this section, improvements in preprocessing methods, training, and prediction issues will
be evaluated and explained. To execute experiments TensorFlow Framework is used and Cloud
GPU is implemented provided by Kaggle Platform. Trainings are done with EfficientNet-Bl,
EfficientNet-B2, EfficientNet-B3, EfficientNet-B4, EfficientNet-B5 and ResNet50 architectures.
Each experiment took approximately two hours to complete. The main focus of the experiments is
to compare and combine the HSV, HSL, and L*a*b* color spacing methods with some other
preprocessing methods. On the network part of the images, batch size was mostly equal to 4. For the
normalization process, the group normalization method is applied, the Rectified Adam (RAdam) is
a variant of the Adam stochastic optimizer that introduces a term to rectify the variance of the
adaptive learning rate [34]. optimizer is used, and also to avoid overfitting as much as possible, an
early stopping function is applied as well as updating the learning rate depending on validation loss.
As mentioned in the problem definition part, the main focus of the experiments is to investigate the
effects of color spaces on deep learning techniques in image classification problems. Results will
be visualized and evaluated from different perspectives. Information and results of the experiments

are explained in the following parts of the thesis.

28



7.1 Custom Dataset Experiments

7.1.1 Custom Dataset Experiment With EfficientNet
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Figure 33. Accuracy and Loss Results of Custom Dataset
Experiment

Figure 33 represents experiment accuracy and loss results held with the plain custom
dataset. In order to collect these results, experiments are done with 5 epochs and batch size 4 to
check high-sized images easier and the mean square error loss function is used to calculate loss
values.

Both results actually had optimal results and they are not overfitted and still have a tendency
to increase their accuracies if they would have more epochs to train. Figure 34 shows Cohen kappa
scores of the experiments and EfficientNet B4 is performed better for training and validation
processes however it does not represent the correct predictions in Figure 35, B4 architecture was

able to predict label 4 images in comparison to EfficientNet B5 architecture.

The Training Cohen Kappa Score is: 0.87795 The Training Cohen Kappa Score is: 0.81879
The Validation Cohen Kappa Score is: 0.72498 The Validation Cohen Kappa Score is: 0.66711

EfficientNet B4 results EfficientNet B5 results

Figure 34. Kappa Score Results of Custom Dataset
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Figure 35. Prediction Label Distribution of Custom Dataset Experiment
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val_loss
1.086804
0.963811
0.769392
0.984212
0.800263
0.854660
0.999098
0.641155
0.882263
0.750525
0.664521
0.816924
0.622756
0.703314
0.741625
0.774808
0.673579
0.723704
0.653686
0.735336
0.674696
0.673877
0.709299
0.644574
0.718063

7.1.2 Custom Dataset Experiment With ResNet50

Image: f4d3169b468a.png Image: 1077_right.png Image: 9568eb7e9c08.png Image: 36740_right.png
Label = 1 Label = 2 Label = 3

Image: 22894 _left.png
Label =0 Label = 4

Figure 36. Custom dataset example train data images from every label

This experiment was held with 25 epochs and is not used any extra preprocessing methods
than the mentioned ones in the dataset explanation section. Figure 36 shows training images from
every label and Figure 37 presents the training report. Although the model has high F1, precision,

and real values, the training accuracy is not good enough for the classification in comparison to

EfficientNet experiments.

val_acc val_mean_pred val_precision val_recall val_fi_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall f1_score fbeta_score fmeasure
0.382841 2.119095 1.027675 0.943727 0.977860 0.977860 0.977860 1.494519 0.351689 1526976 0.825590 0.932857 0.847665 0.847665 0.847665
0.428835 1976824 1.011091 0.979667 0.992782 0.992782 0.992782 0.985059 0.433447 1.578021 0.867707 0.954331 0.885820 0.885820 0.885820
0.423432 2.325319 1.003690 0.992620 0.997364 0.997364 0.997364 0.780177 0.494556 1.5698816 0.893114 0.960561 0.906585 0.906585 0.906585
0.416821 1.846957 1.030191 0.913124 0.961623 0.961623 0.961623 0.683145 0.525110 1.606906 0.910179 0.963324 0.921099 0.921099 0.921099
0.471402 1.864326 1.005535 0.971402 0.985591 0.985591 0.985591 0.631966 0.548513 1.597206 0.921014 0.961861 0.928109 0.928109 0.928109
0.427911 1.921885 1.024646  0.925139 0.965285 0.965285 0.965285 0.611056 0.552576 1.5696167 0.927136 0.966954 0.933942 0.933942 0.933942
0.429889 1727091 1.020295 0.948339 0.977860 0.977860 0.977860 0.581451 0.563953 1.594158 0.931849 0.968362 0.938542 0.938542 0.938542
0.523105 2.054027 1.000000 0.992606 0.995775 0.995775 0.995775 0.496137 0.595482 1.599677 0.943496 0.976109 0.951030 0.951030 0.951030
0.479705 1.872124 1.012915 0.949262 0.975400 0.975400 0.975400 0.478754 0.610434 1.601762 0.951839 0.978547 0.957401 0.957401  0.957401
0.487061 2.227886 1.001232 0.978743 0.988029 0.988029 0.988029 0.456557 0.631237 15691736 0.949943 0.975838 0.955006 0.955006 0.955006
0.513838 2.087594 1.009840 0.969557 0.986646 0.986646 0.986646 0.435528 0.632862 1.604045 0.960128 0.981635 0.964471 0.964471 0.964471
0.483364 1.958120 1.010474 0.952865 0.976763 0.976763 0.976763 0.437618 0.632374 1.5693964 0.954927 0.972750 0.956356 0.956356 0.956356
0.523148 2.219029 1.002469 0.990741 0.995767 0.995767 0.995767 0.395894 0.654315 1.598292 0.966845 0.978655 0.967260 0.967260 0.967260
0.511091 2.157766 1.001232  0.980591 0.989173 0.989173 0.989173 0.379562 0.651227 1597193 0.966629 0.979631 0.967773 0.967773 0.967773
0.525926 2.109137 1.006173 0.983333 0.993034 0.993034 0.993034 0.373722 0.668129 1.601814 0.968091 0.978764 0.968082 0.968082 0.968082
0.500000 2.034470 1.012939  0.961183 0.982572 0.982572 0.982572 0.361717 0.668779 1.592855 0.965220 0.973021 0.964148 0.964148 0.964148
0.540665 2.088738 1.008010 0.986137 0.995247 0.995247 0.995247 0.356511 0.674793 1.595680 0.975676 0.982881 0.974860 0.974860 0.974860
0.523105 2146012 1.007394 0.987985 0.996303 0.996303 0.996303 0.350794 0.679018 1.596021 0.968850 0.977680 0.968437 0.968437 0.968437
0.529630 2.263081 1.003704 0.991667 0.996825 0.996825 0.996825 0.328803 0.697058 1.5697804 0.968091 0.977626 0.968074 0.968074 0.968074
0.521257 2.090446 1.008010 0.976895 0.989790 0.989790 0.989790 0.326102 0.691695 1.600230 0.971234 0.976651 0.969198 0.969198 0.969198
0.515741 2.203600 1.009259 0.975926 0.989153 0.989153 0.989153 0.312075 0.703722 1.593619 0.975080 0.978980 0.973269 0.973269 0.973269
0.541590 2177774 1.002465 0.983364 0.991550 0.991550 0.991550 0.310454 0.699496 1.602618 0.970096 0.977626 0.969537 0.969537 0.969537
0.512015 2.218692 1.005545 0.977819 0.989262 0.989262 0.989262 0.299097 0.708597 1.695607 0.977193 0.978710 0.974459 0.974459 0.974459
0.560998 2142076 1.003697 0.989834 0.995775 0.995775 0.995775 0.302210 0.711848 1599428 0.974972 0.976922 0.972099 0.972099 0.972099
0.516636 2130886 1.004929 0.976895 0.988909 0.988909 0.988909 0.300783 0.709410 1.698923 0.978547 0.983964 0.977631 0.977631 0.977631

Figure 37. Experiment summary report
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Figure 38. Experiment plots

Another proof to perform poor training can be seen in Figure 38. According to the validation
and training loss plot, the model is overfitted obviously. The biggest difference between the
EfficientNet model and the ResNet model is the image sizes. For this architecture, a lower input

size might be led to the overfitting issue.

Optimized Thresholds:
[0.49959717 1.67501221 2.11083984 3.5494751 ]

The Training Cohen Kappa Score is: 0.90623 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.71967 with optimized rounding thresholds is: 0.74037

This is an improvement of 0.02069
over the unoptimized rounding

Figure 39. Kappa score summary reports

Figure 39 shows the kappa agreement results, in comparison to loss values this metric shows
some positive side of the experiment but it is still possible to have a good kappa score for an
overfitted model as can be seen in this experiment. Figure 40 shows how training set label
distribution and predicted labels are evaluated with the test set of the dataset. The performance of
the model for labels 1 and 3 look meaningful but it is hard to say it for label 0 and 2. But still, in
comparison to prediction results obtained by EfficientNet models, the ResNet experiment has a

more reasonable prediction session.
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7.2 APTOS 2019 Dataset Experiment

7.2.1 ResNet50 Experiment

Image: 2b10f138¢67d png Image: 7b9981d9¢7fe png Image: 524f240e0c90.png Image: f9156aeff:5¢ png Image: 8596]24.14bd png
Label = 2

Figure 41. Example training images from every sample from the dataset

The training images used for this experiment can be seen in Figure 41. The only pre-
processing methods used for this experiment are resizing and cropping from grey. The main reason
to have this test is to have an initial idea and make a comparison with color space applied
experiments. The experiment is planned to execute with 25 epochs but because of the validation

loss values, it stopped training at the 22nd epoch, details of the experiment are shown in Figure 42

below,
val_loss val_acc val_mean_pred val_precision val_recall val_f1_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall f1_score fbeta_score fmeasure
0.650543 0.478102 1106598 0.900243 0.913625 0.902051 0.902051 0.902051 1.397047 0.351221 1100459 12854.166881 0.881534 0.738622 0.738622 0.738622
0.529064 0.532110 1.350052 0.879511 0.959633 0.905950 0.905950 0.905950 0.856967 0.439691 1164179 12866.630213 0.919803 0.803596 0.803596 0.803596
0.463163 0.687956 1179016 0.939781 0.964720 0.945429 0.945429 0.945429 0.652408 0.542940 1135316 0.806905 0.917122 0.839415 0.839415 0.839415
0.451457 0.680734 112019 0.973700 0.948012 0.953622 0.953622 0.953622 0.507630 0.615632 1117130 12866.697652 0.916908 0.853951 0.853951 0.853951
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Figure 42. Experiment summary report
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According to Figure 42, it is possible to observe that some good results are obtained with
this experiment. At the end of the model training, reasonable training and validation accuracies can
be seen in the report. Additionally, F1, precision, and recall values give a more detailed idea about
the performance of the classifier and the results are good enough to classify diabetic retinopathy.

Experiment plots are presented in Figure 43.
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Figure 43. Experiment plots

Despite having reasonable results in Figure 37, things change when the results are
visualized. One of the most important plots to evaluate here is the loss graph of the training,
validation loss has a slightly higher value than training loss and also has an unstable line, which
means the model tends to overfit. Another metric to evaluate is the kappa score, Figure 44 shows

the kappa performance of the training.

Optimized Thresholds:
[0.46418259 1.38766788 2.66730066 3.73869309]

The Training Cohen Kappa Score is: 0.94627 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.90952 with optimized rounding thresholds is: 0.91429

This is an improvement of 0.00477
over the unoptimized rounding

Figure 44. Kappa score summary reports

Except for the overfitting issue, the kappa score also tells that model has a good
classification perforce since it has over 0.90 kappa value. Another method to increase the validation
kappa score is optimizing the validation data and making an evaluation again. On the right side of

Figure 39 optimized kappa score and an increase in the validation kappa can be seen.

35



Label Distribution (Training Set)

1750
1500 |
1250 1

Frequency
[
~ o
w o
o o

2 3 4
Label

APTOS 2019 Dataset Training Images Distribution

Label Distribution (Predictions)

1000

800

600

Frequency
8
o

200

2
Label

Predicted Label Distribution
Figure 45. APTOS 2019 Dataset Training Images Distribution
Figure 45 represents the difference between the predicted label distribution obtained with
test data and training data labels. Except for label 0 images prediction process looks reasonable in

comparison to the training set. It is possible to say that the model has poor prediction performance

for the label 0 and label 2 images but overall it is okay to classify the retinopathy.
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Figure 46. Example training images from every sample from the dataset
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7.2.2 EfficientNet B1 Experiment
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In this experiment performance of the EfficientNet B1 model is tested with APTOS 2019

imbalanced dataset. After having slightly different results on the custom dataset experiments, it is

planned to test out closer architectures by input sizes chosen and the required input size for

EfficientNet B1 and ResNet50 architectures are the closest ones. Figure 46 shows training images

of the dataset and experiment details with various metrics are represented in Figure 47. As well as

the ResNet experiment this test section also has proper F1 score and accuracy results for both

validation and training images. However, the investigation of loss values represented in Figure 48

tells some other stories as we met in previous experiments.
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Figure 47. Experiment summary report
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Figure 48. Experiment plots of B1 architecture
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Experiment plots shown in Figure 48 give some hints that the model is also overfitted for

that model too in the first plot for the accuracies it is possible to observe that the model reached

nearly maximum accuracy levels for both training and validation sets. The second plot shows us

how the model is actually poorly trained and overfitted. If the validation loss would not be that

much unstable and would be closer to the training loss value a little more, it would be possible to

say the experiment is handled quite well with the values of accuracy, F1, and the Kappa score

results explained in Figure 49 but this test had similar results with ResNet50 experiment.

Optimized Thresholds:
[0.49959717 1.67501221 2.11083984 3.5494751 ]

The Training Cohen Kappa Score is: 0.90623 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.7196 with optimized rounding thresholds is: 0.74037

This is an improvement of 0.02069
over the unoptimized rounding

Figure 49. Kappa score summary reports of B1 architecture
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Figure 50. APTOS 2019 Dataset Training Images Distribution for B1 Architecture

Figure 50 shows the predicted image labels and comparison to the previous experiment held
with ResNet architecture, this model has much more predicted results for label 1. Again for this

experiment prediction of label 0 images is hard for the models so far for both datasets have been

used.
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7.3 HSV Color Spacing Experiment

7.3.1 EfficientNet-BS and EfficientNet-B4 Experiments

Image: f4d3169b468a.png Image: 1077 _right.png Image: 9568eb7e9c08.png Image: 36740 _right.png Image: 22894 _left.png
Label = 0 Label = 1 Label = 2 Label = 3 Label = 4

Figure 51. Thresholded Fundus Images B5-B4 Experiments

In this experiment effects of HSV color spacing on accuracy are examined and images in
Figure 51 are used and examples from every label in the dataset can be seen above. Except for a
number of epochs and image sizes, all other parameters were the same as in the previous
experiment. Here in Figure 52. we can see that the 10 epoch experiment with EfficientNet B4 looks

overfitted according to the loss plot of that experiment and the BS model had more stable training in

comparison to B4.
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Figure 52. Experiment Plots of B4-B5 Architectures
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Kappa scores are shown in Figure 53 and despite having more training time EfficientNet

B4 algorithm has very close results in comparison to the BS model.

The Training Cohen Kappa Score is: 0.8076 The Training Cohen Kappa Score is: 0.75425
The Validation Cohen Kappa Score is: 0.53548 The Validation Cohen Kappa Score is: 0.46227

EfficientNet B4 results EfficientNet BS results

Figure 53. Kappa Score Results of Custom Dataset B4-B5 Architectures

Another improvement in comparison to the previous custom dataset experiment can be
seen in Figure 54, this experiment had more meaningful label distribution plots than the previous

experiment.
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Figure 54. Custom Dataset Training Images Distribution B4-B5 Architectures 41



© 0®© N O O B W N A

7.3.2 EfficientNet-BS Experiments with Different Thresholds

Image: 9a159d4674cd.png Image: 98fbe56dcc2c.png Image: 3192_right.png Image: 31984 right.png Image: 367_left.png
Label = 2 Label = 3 b

Label = 0 Label = 1 Label = 4

Figure 55. Training images after preprocess

This experiment was held with EfficientNet B5 architecture and different threshold values
than the previous experiment. It is aimed to observe how different threshold values affect the results
in training. This experiment has done with 10 epochs and the previous experiment was done with 5
epochs. It is possible to say that the results until the fifth epoch look similar and can be seen in

Figures 56 and 57 below.

val_loss val_acc val_mean_pred val_precision val_recall val_f1_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall f1_score fbeta_score
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11671564 0.395564 1.760431 1.008626 0.982440 0.993486 0.993486 0.993486 1.254118 0.335771 1.578922 0.785741 0.974701 0.848090 0.848090
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Figure 56. Experiment Summary Report of Updated B5 Experiment

Despite having a high F1 score, accuracy levels for both training and validation images are
low. Figure 57 gives an idea of what would happen if more epochs were applied to the test. While
training accuracy has a tendency to increase, validation accuracy has unstable and low values
duration of the experiment. However, it is possible to comment positively by looking training and

validation loss graph, the model is trained well enough and did not overfit but is close to overfitting.
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Figure 57. Experiment Plots of Updated B5 Experiment

Another metric to investigate is the kappa score presented in Figure 58,

The Training Cohen Kappa Score is: 0.72019
The Validation Cohen Kappa Score is: 0.51164

Figure 58. Experiment Kappa Results of Updated B5 Experiment

While having a higher kappa score on the training set, the validation kappa score has lower
values parallel to accuracy results so it shows that the dataset has difficulty having an agreement on
validation images. Figure 59 shows the comparison of predicted results distribution and training set
labels. Despite having a more proper predicted label distribution compare to previous experiments,

this model does not give so much trust in the purpose of image classification.
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Figure 59. Experiment prediction label distribution of updated B5 experiment

7.3.3 EfficientNet-B3 Experiments

Image: f4d3169b468a.png Image: 1077 _right.png Image: 9568eb7e9c08.png Image: 36740_right.png Image: 22894 _left.png
Label = 0 Label' =1 Label = 2 Label = 3 Label = 4

Figure 60. Training images after preprocess for B3 architecture
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This experiment is planned to be done 25 in epochs but it has stopped at the 24th epoch and

it took two hours to complete. Figure 60 shows the preprocessed training images by HSV color

space. Figure 60 demonstrates the experiment result by consisting of metrics like F1, precision, and

recall values. According to the results obtained, F1 values look proper enough to evaluate as well

performed while validation accuracy stays stable at low levels as in the previous thresholded

experiments. Figure 61 shows the performance of the experiment visually.
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Figure 61. Experiment summary report for B3 architecture
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Figure 62. Experiment Plots for B3 architecture

45



According to the plots represented in Figure 62, validation accuracy reached the top level
and will not increase anymore and early stop is quite proves that. Loss graphs look a little more
stable than in the previous experiments but there is a difference more than it should be between
validation and training loss values so, this model also tends to overfit. Figure 63 shows the kappa

evaluation of the model and again validation kappa score is lower than it should be.

Optimized Thresholds:
[0.53999677 1.68110177 2.17038298 2.98358497]

The Training Cohen Kappa Score is: 0.84651 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.51585 with optimized rounding thresholds is: 0.56516

This is an improvement of 0.04932
over the unoptimized rounding

Figure 63. Experiment kappa results for B3 architecture
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Figure 64. Experiment prediction label distribution for B3 architecture
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Accuracy %

Figure 64 represents the predictions at the end of the training and in compare to the

EfficientNet B5 experiment prediction labels look so similar. Despite having different input sizes

image quality does not affect the results significantly in EfficientNet architecture, this information

might be commented on according to obtained results.

7.3.4 EfficientNet-B2 Experiments

Image: f4d3169b468a.png
Label = 0

Image: 9568eb7e9c08.png
Label = 2

Image: 1077 _right.png
Label = 1

Image: 36740_right.png
Label = 3

Image: 22894 _left.png
Label = 4

To have a better idea of EfficientNet architecture it is aimed to have experimented with most
of the models in EfficientNet. This experiment is executed with 25 epochs and took two hours to
complete. Training images are used in the experiment represented in Figure 65. As well as the
previous experiments, this test also has proper results for the F1, precision, and recall results
represented in Figure 67. Also for this experiment, validation accuracy is not good enough to use for
the classification of diabetic retinopathy images. Figure 66 shows the graphical results of the

experiment the results are very similar to the previous experiments and this model is also close to

overfit.

Accuracy

Figure 65. Training images after preprocess for B2 architecture

CNN Performance
Loss

Train Accuracy
Validation Accuracy

//‘/\7 -

~

18 \ Train Loss
Validation Loss

20

b3 0 5 10 15 20 %
Epoch

Figure 66. Experiment plots for B2 architecture
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val_loss val_acc val_mean_pred val_precision val_recall val_f1_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall f1_score fbeta_score fmeasure

1780081 0.330258 1.489130 1.047355 0.949262 0.989457 0.989457 0.989457 1.833593 0.275016 1.380085 77973.479370 0.925439 0.808289 0.808289 0.808289
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1.089752 0.377079 2.008955 1.013555 0.950092 0.976411 0.976411 0.976411  0.641911 0.529173 1.600397 0.913863 0.970313 0.929026 0.929026 0.929026
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Figure 67. Experiment summary report for B2 architecture
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Investigation of the kappa score is shown in Figure 68 and also is not very different from the

previous one's validation score has undesired results for this experiment too.

Optimized Thresholds:
[0.5256871 1.61853298 2.54488175 3.30201876]

The Training Cohen Kappa Score is: 0.82422 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.50007 with optimized rounding thresholds is: 0.53408

This is an improvement of 0.03401
over the unoptimized rounding

Figure 68. Experiment kappa results for B2 architecture

The distribution of the predicted image labels is given below in Figure 69.
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Figure 69. Experiment prediction label distribution for B2 architecture

According to the plots provided in Figure 69, it is possible to mention that the B2

architecture has behaved slightly better than previous models to predict labels for every class in

comparison to the provided training set.
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7.3.5 EfficientNet B1 Experiment

Among the EfficientNet architectures, this model has the lowest input size with

240x240 and the training images are shown in Figure 70.

Image: f4d3169b468a.png Image: 1077_right.png Image: 9568eb7e9c08.png Image: 36740 _right.png Image: 22894 _left.png
Label = 1 Lal La

Label = 0 Label = 2 bel = bel =

Figure 70. Training images after preprocess for B1 architecture

The first experiment held with B1 architecture is done with 10 epochs and details of the
experiment can be seen in Figure 71. Related to having experiment with fewer epochs than the
previous experiments, the F1 score has lower results than the other experiments but validation
accuracy does not show a big difference from the experiments held with more epochs. Overall this

architecture also shows similarities to other models of EfficientNet.

val_acc val_mean_pred val_precision val_recall val_f1_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall f1_score fbeta_score
0.314576 1.450306 1.0256830 0.944649 0.977333 0.977333 0.977333 1.965923 0.282489 1.295456 168941.660927 0.899394 0.807565 0.807565
0.313309 1.670862 1.084504 0.954713 0.986093 0.986093 0.986093 1.423493 0.305217 1.5668347 0.771114 0.968633 0.834343 0.834343
0.321956 1.784177 1.0156375  0.951107 0.977157 0.977157 0.977157 1.293292 0.333658 1.584669 0.781299 0.973726 0.843578 0.843578
0.333641 1.865296 1.016020 0.971349 0.990318 0.990318 0.990318 1.218096 0.346173 1.677757 0.785091 0.978330 0.848809 0.848809
0.348708 1.784638 1.015375 0.953875 0.979441 0.979441 0.979441 1.177088 0.355761 1.583904 0.791267 0.974376 0.852168 0.852168
0.338262 1.887883 1.010474 0.970425 0.987149 0.987149 0.987149 1.098559 0.372501 1.589964 0.806273 0.978276 0.862262 0.862262
0.358856 1.884076 1.019680 0.943727 0.974697 0.974697 0.974697 1.032372 0.395254 1.591244 0.815104 0.980877 0.870426 0.870426
0.357671 2.019092 1.019100 0.963031 0.985829 0.985829 0.985829 1.010516 0.407931 1.682304 0.821225 0.977301 0.872431 0.872431
0.351476 1.916737 1.027675 0.946494 0.979265 0.979265 0.979265 0.959100 0.422721 1.694684 0.839861 0.976380 0.883971 0.883971
0.354898 2.252102 1.009858 0.983364 0.994367 0.994367 0.994367 0.909550 0.438485 1.586553 0.851617 0.974267 0.892183 0.892183

Figure 71. Experiment summary report for B1 architecture
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Optimized Thresholds:
[0.4200412 1.81790732 2.54448922 3.25718652]

The Validation Quadratic Weighted Kappa (QWK)
with optimized rounding thresholds is: 0.5184

The Training Cohen Kappa Score is: 0.74479 This is an improvement of 0.03165
The Validation Cohen Kappa Score is: 0.48675 ,yer the unoptimized rounding

Figure 72. Experiment kappa results for B1 architecture

Figure 72 shows the kappa performance of the first experiment and once again validation

kappa result is not enough to make a good comment on this experiment.

The second experiment done with B1 architecture has different inputs than the first one.

Figure 73 shows the training images used for the second experiment.

Image: 1fddd7c98fd2.png Image: 487 _right.png Image: 48fdad2bd5d4.png Image: 8248 _left.png Image: 23422 _right.png
Label = 0 Label =1 Label = 2 Label = 3 Label = 4

Figure 73. Updated training images after preprocess for B1 architecture

To obtain these training images, different threshold values were applied than the first one
and it is aimed to observe the influences of the threshold values on results. The experiment is
planned to be done with 25 epochs but the early stop function has cut the experiment at the 24th
epoch. Details of the experiment are shown in Figure 75 below. This experiment has one of the
highest F1 score and training accuracy among all experiments done by thresholding. However, it is
hard to say the same thing for the validation accuracy. Figure 74 shows the Kappa score

performance and also for this test kappa values are so low to consider as good.

Optimized Thresholds:
[0.54992805 1.65315561 2.11150351 3.20372412]

The Validation Quadratic Weighted Kappa (QWK)
with optimized rounding thresholds is: 0.56622
The Training Cohen Kappa Score is: 0.84381

The Validation Cohen Kappa Score is: 0.52211 This is an improvement of 0.04411
over the unoptimized rounding

Figure 74. Experiment Kappa results for updated B1 experiment 51
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val_acc val_mean_pred val_precision val_recall val_f1_score val_fbeta_score val_fmeasure loss acc mean_pred precision recall fl_score fbeta_score fmeasure
0.320111 1.379452 1.039975 0.934502 0.976805 0.976805 0.976805 1.990080 0.288661 1.279441 181937.110624 0.895657 0.804818 0.804818 0.804818
0.346580 1511265 1035736 0.930684 0.971059 0.971059 0.971059 1.369580 0.323745 1579365 0.776478 0.969771 0.835818  0.835818 0.835818
0.343173 1.698810 1.018450  0.962177 0.985943 0.985943 0.985943 1.240733 0.348773 1.682646 0.793542 0.975947 0.851021 0.851021  0.851021
0.332717 1625977 1043130 0.928835 0.975178 0.975178 0975178 1175158 0.356574  1.581553 0.798635 0.972046 0.853657  0.853657 0.853657
0.334871 1.807586 1.043050 0.953875 0.989808 0.989808 0.989808 1.089590 0.376727 15690882 0.804648 0.973780 0.858448 0.858448 0.858448
0.327172 1.866489 1017252 0.955638 0.981516 0.981516 0981516 1017731 0.398830  1.588143 0.819979 0.977084 0.869519  0.869519 0.869519
0.365314 1.848463 1.030750 0.945572 0.980671 0.980671 0.980671 0.933799 0.421258 1.687305 0.834606 0.974213 0.878246 0.878246 0.878246
0.365989 1915420 1007394  0.987061 0.995775 0.995775 0995775 0.881798 0.446449  1.589779 0.851292 0.978168 0.890468  0.890468 0.890468
0.343808 2116087 1.027726 0.968577 0.992606 0.992606 0.992606 0.864296 0.448074 1.5696683 0.850371 0.975838 0.891095 0.891095 0.891095
0.373383 2.008268 1019717 0.963031 0.985741 0.985741 0985741 0.813875 0.455713 1588927 0.864023 0.972750 0.897659  0.897659 0.897659
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Figure 75. Experiment summary report for updated B1 experiment
. . , .
Figure 76 presents the both experiment’s graphical summary and can be seen below,
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It is possible to observe that the results show similarities, the first experiment has more
optimal loss values and is less likely to have overfitting issues until the 10th epoch, in the second
experiment, the loss graph shows less stable validation loss and is more likely to overfit. Also
having more epochs did not affect the validation accuracy for this experiment. Another comparison

might be handled in Figure 77. The prediction results are given for both experiments.
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7.3.6 ResNetS0 Experiment

This experiment is done with ResNet50 architecture to compare models from EfficientNet

experiments. The experiment took almost three hours to complete and it was one of the slowest test

among the types of experiments held previously.
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Figure 78. Training images of ResNet50 after preprocess
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The same threshold values were used in the second experiment of the EfficientNet Bl

experiment for the training images for this experiment, preprocessed images can be seen in Figure

78. As well as the second experiment of the B1 experiment, this experiment also has a high F1 score

and training accuracy. However, validation accuracy is not good enough to perform trustful

classification. Details about the experiments are presented in Figure 79 below,
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Figure 79. Experiment summary report of ResNet50

recall
0.920403
0.9756730
0.973671
0.976001
0.972588
0.969879
0.97125
0.970367
0.971775
0.972642
0.967279
0.969337
0.971559
0.973888
0.971342
0.970638
0.971071
0.978818
0.972209
0.972425
0.967062
0.971775
0.977355
0.974917

0.973346

f1_score fbeta_score

0.807073

0.841914

0.855736

0.865837

0.872627

0.884108

0.884886

0.892587

0.894667

0.906913

0.909576

0.914015

0.919762

0.920414

0.922091

0.920093

0.925186

0.932341

0.933869

0.926473

0.929445

0.939066

0.942018

0.938960

0.943179

0.807073

0.841914

0.855736

0.865837

0.872627

0.884108

0.884886

0.892587

0.894667

0.906913

0.909576

0.914015

0.919762

0.920414

0.922091

0.920093

0.925186

0.932341

0.933869

0.926473

0.929445

0.939066

0.942018

0.938960

0.943179

fmeasure
0.807073
0.841914
0.855736
0.865837
0.872627
0.884108
0.884886
0.892587
0.894667
0.906913
0.909576
0.914015
0.919762
0.920414
0.922091
0.920093
0.925186
0.932341
0.933869
0.926473
0.929445
0.939066
0.942018
0.938960

0.943179

54

Ir
0.000050
0.000050
0.000050
0.000050
0.000050
0.000050
0.000050
0.000050
0.000050
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000025
0.000012
0.000012
0.000012

0.000012



Optimized Thresholds:
[0.53486729 1.67251255 2.20000711 3.18059527]

The Validation Quadratic Weighted Kappa (QWK)

The Training Cohen Kappa Score is: 0.83077 ,ith timiz roundina threshol is: 0.56114
The Validation Cohen Kappa Score is: 0.55181 ith optimized rounding esholds is: 0.56

This is an improvement of 0.00933
over the unoptimized rounding

Figure 80. Experiment kappa results of ResNet50

In Figure 80 Kappa scores are shown and this experiment has one of the highest training and
validation kappa scores but unfortunately below 0.65 kappa values do not consider as good so this
experiment is not successful for classification. Figure 81 shows more information about the details

of the experiment.
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Figure 81. Experiment Plots of ResNet50

With regard to graphs, it is easy to say that the model is heavily overfitted and trained
poorly. So this model is also not appropriate to use for classification purposes. Figure 82 shows the
predicted labels at the end of the experiment with the test set and the prediction distribution is close

to previous experiments.
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Figure 82. Experiment prediction label distribution of ResNet50
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7.4 SigmaX Function Experiment
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Figure 83. Training images of SigmaX experiment after preprocess

In order to execute this experiment, SigmaX = 10 function is used to get samples
represented in Figure 83. As it is handled during previous experiments, except for image sizes,
every other parameter was the same also in this experiment. As can be seen in Figure 84, both
architectures had quite well training and were less likely to overfit in comparison to the B4 model in
the HSV experiment. But again, the EfficientNet B5 model had a more balanced training and
validation sessionthan the B4 model also in this experiment. According to kappa scores given
in Figure 85 both models have led in some parts but with the combination of loss accuracy and
kappa scores, EfficientNet B5 did a better job during this experiment and had better label
distribution (Figure 86) than B4 architecture.
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Figure 84. Accuracy and Loss Results of SigmaX Experiment
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The Training Cohen Kappa Score is: 0.87454 The Training Cohen Kappa Score is: 0.83839
The Validation Cohen Kappa Score is: 0.7155 The Validation Cohen Kappa Score is: 0.72319
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Figure 85. Kappa Score Results of SigmaX Experiment
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7.5 EfficientNet B1 Experiments with Color Spaces Without Threshold

During this series of experiments, it is aimed to test the color spaces mentioned in
the earlier sections without thresholding the images. As can be observed from the previous
experiments done in the thesis, it is very hard to obtain good results with threshold applications in
many ways. For the final experiments, HSV and HSL cylindric color spaces and Lab chromatic
color space is used. Figure 87 represents the training images after preprocessing. Conversion of
filters to the custom dataset images from RGB color filter to desired color space has significantly
changed the colors of the training images. Figure 88 shows the details of both three experiments and
among the preprocessed experiments the best results are obtained so far in these tests for the HSV
and HSL filters. However, it is not possible to say the same thing for the Lab filter. The lab filter has
very poor results and it can easily be seen in Figures 89 and 90. Loss graphs in Figure 88 show that
while HSV and HSL filters have proper training and F1 scores, the Lab filter is totally overfitted
and trained extremely badly. In figure 89, observation of the kappa scores tells similar stories as the
other metrics. Despite having the same parameters for the experiments, the Lab filter once again has
a very bad score as the Kappa score too and the other two filters have good agreement scores in
comparison to the thresholded experiments. Figure 91 presents the final predictions of the
experiments. HSV and HSL filters performed almost similarly and the Lab filter naturally made

predictions very bad as well as the other scores. All figures are demonstrated below,
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Figure 87. Training images of experiments after preprocess
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Figure 88. Summary report of experiments
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Figure 89. Graphical summaries of the experiments
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Optimized Thresholds:
[0.53891451 1.79040709 2.24831516 2.98099956]

The Training Cohen Kappa Score is: 0.90341 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.70918 with optimized rounding thresholds is: 0.71796

This is an improvement of 0.00878
over the unoptimized rounding

HSL Kappa Results

Optimized Thresholds:
[0.48764457 1.50449718 2.65621859 3.38538001]

The Training Cohen Kappa Score is: 0.9085 The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.71135 with optimized rounding thresholds is: 0.7331

This is an improvement of 0.02176
over the unoptimized rounding

HSYV Kappa Results

Optimized Thresholds:
[0.5058568 1.52260668 2.65610393 3.19573754]

The Training Cohen Kappa Score is: 0.24904  The Validation Quadratic Weighted Kappa (QWK)
The Validation Cohen Kappa Score is: 0.11289 with optimized rounding thresholds is: 0.12202

This is an improvement of 0.00913
over the unoptimized rounding

LAB Kappa Results

Figure 90. Kappa results of experiments
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8. Conclusion and Result Evaluation

According to information shared in various resources about diabetic retinopathy detection, it
is realized that many researchers did not use a lot of preprocessing methods and they have only
used just basic methods such as crop from the gray area and resizing. The main reason to execute
these experiments is to find out that is it possible to have good results also with more complex
preprocessing methods. The main problem to resolve in this thesis was to investigate the influences
of the color space methods on deep learning methods. Some researchers considered color spacing
methods but they did not use modern architectures so testing these methods with deep learning

algorithms was the main part of the thesis.

During the experiments, it is decided to use EfficientNet B1 to B5 and ResNet50
architectures due to their successful performance in the APTOS 2019 competition and other
research. Various types of experiments are done with the deep learning architectures mentioned
earlier to have an idea of the purpose of image classification with desired preprocessing methods.
On the thresholding process of the images, it is seen that the color differences on images in APTOS
2019 dataset trained models badly and it is a very difficult challenge to assign private threshold
values to every image in the dataset. Another problem was an imbalanced data problem in APTOS
2019 dataset. With regards to these two main problems, a custom dataset that consists of both
APTOS 2019 and 2015 preprocessed to grey images and a balanced dataset is used for most of the
experiments held in this thesis. For the initial experiments, a comparison of both datasets is done
without applying any preprocessing method, and the performances of the models obtain similar

results for this experiment.

After having experiments with plain datasets, training with preprocessed images by HSV
color space with different threshold values, and deep learning architectures, it is seen that the
method is not good enough for the purpose of retinal image classification to detect diabetic

retinopathy.

Experiments at the end of the research with HSV, HSL, and Lab filters without thresholds

show some hopeful results represented in the earlier sections.
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At the end of the research held in this thesis, it is possible to make conclusions as follows

below,

1. EfficientNet architectures mostly performed better than ResNet50 architecture to make
predictions.

2. Input size does not have a big influence on the training performances for the images that
are preprocessed in the desired way by thresholding the training images by color spaces.

3. Values of the thresholds have essential effects on the trainings, it is observed that
balancing the color of the images is a very big challenge to resolve.

4. The results obtained by preprocessed images with HSV color spacing by thresholding
are not trustable for the purpose of retinal image classification with deep learning methods.

5. Cylindric color space filters without thresholds like HSV and HSL performed
significantly better than Lab chromatic color space. While HSV and HSL filters have validation
kappa scores over 0.70, the Lab filter failed with a 0.11 kappa score. Additionally, F1 scores
and other accuracy metrics show similar impacts to kappa metrics.

6. It is believed that more improvements can be done with HSV and HSL color spaces to
improve the classification performances with deep learning methods in the research will be held

in the same purpose of this thesis.
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	1. Introduction
	1.1 Problem Definition
	Labeling images manually is one of the biggest problems while working on so much data and image classification applications with deep learning methods play essential roles to reduce workload and increase the efficiency and accuracy of the work. In the thesis, the aim is to investigate the influences of preprocessing methods mainly color spaces and other basic methods for the purpose of image classification with deep learning algorithms for eye fundus images. To examine the problem, experiments will be handled with the preprocessed training images. According to knowledge gained by previous research, different parts can affect the accuracy and efficiency of models and image preprocessing is one of the most important elements for purpose of image classification as well as blindness detection. Hereby, various image preprocessing methods related to color spacing such as HSV, HSL, LAB, and other hue-based methods will be applied to the images, and influences on the results obtained with deep learning methods will be evaluated at the end of the training with EfficientNet and ResNet architectures
	There are some main challenges needed to be solved during the research:
	Investigation of Datasets
	Some datasets like APTOS 2019 can have an imbalanced distribution of images through training and test files and to prevent bad effects of this issue, it is important to have a balanced dataset. Therefore, some image augmentation methods might apply to balance the image sets.
	Implementation of  Preprocessing Methods
	This task is the actual focus of the whole research and plays a crucial role in the further improvements of the experimental results. All deep learning architectures require different sizes of images and that’s why resizing and other basic preprocessing methods will be used alongside color spacing methods.
	Optimization of The Preprocessing Methods.
	Most of the color spacing models focus on color in specific ranges that are manually determined and it is important to find the best range of colors for most images in the dataset.
	Implementation of Deep Learning Architectures.
	To have good test results, it is important to use some well-known and efficient proven models. Thus, it is decided to use EfficientNet and ResNet algorithms to have pieces of training. More explanations on this topic will be given in the further section.
	5. Experimental Analysis To Investigate Influences of Image Preprocessing
	To test the results, various experiments will be handled with various types of experiments with different image preprocessing methods mentioned in this thesis.  Visualization and interoperation of the test results will be handled.
	2. Literature Review
	3. Preprocessing Methods
	In this section, methods used for the purpose of preprocessing the retinal images are explained. Grey scaling, auto-crop, resizing and Gaussian blur methods are used for several small experiments to have an idea about the effects of preprocessing on the fundus images. However, the main aim of the thesis focuses on diabetic retinopathy detection by deep learning image classification, accordingly, to evaluate this topic, the effects of color spaces on image classification will be taken into consideration and some of the color space algorithms that will be used for experiments are explained in this section.
	3.1 Grey Scaling
	Grey scaling helps to reduce color differences between samples, thus makes easier to spot anomalies. With the help of the OpenCV library, this method is implemented in the research. Diagnose 3-severe sample is shown below, Figure 2 represents the original version of the image from the dataset, and Figure 3 denotes the converted version of the same sample.
	As it can be seen from the examples in Figure 3, It is possible to observe blood vessels and leaks more clearly on the grey scaled fundus image. This method was the initial technique for preparing the dataset for model training.
	3.2 Gaussian Filter
	Gaussian filter is a 2D convolutional operator to blur and reduce noises from the images [27]. This method can be calculated with equation (1) which is given below;
	(1)
	Where shows the standard deviation of the distribution, x and y represent distances to the origin of the pixels and σ is the standard deviation of the Gaussian distribution. Depending on, the blurring level changes, greater values increase the blurring degree. In this part of preprocessing Gaussian filter is applied to the images that were converted into greyscale.
	In comparison to Figure 3, observation of details becomes easier on the Gaussian filter applied version of the grey scaled image in Figure 4. Some unseen or hard-to-see anomalies are easier to detect but there are still some useless parts that might affect the result of the model training process.
	3.3 Auto Crop and Re-Coloring
	To focus on the retinal part of the image, all the unnecessary parts like grey or dark zones out of the fundus might be cropped for better training results. This process is followed by re-coloring part of the grey-scaled images. According to research on the Kaggle website I have seen the previous winner of the 2015 APTOS competition on diabetic retinopathy, Ben Graham [35] has used a method to improve lighting quality. During the application process of color cropping,
	sigmaX parameter plays a crucial role in color images. It is noted that Ben Graham used sigmaX = 10 during his experiments and that parameter is not changed in the experiments performed in this thesis.. This method applies color to every part of the image with the grey color according to the depth of the grey color’s scaler dimensions. Examples of recolored and cropped images for different sigmaX values from the train set are attached to Figure 5 and Figure 6 below.
	Effects of the sigmaX parameter can be seen easily on the indicated images. Damages and blood vessels on the retina become more visual than in the previous versions of the samples from the dataset. With the methods applied for preprocessing, it is expected to have meaningful results at the end of the initial experiments.
	3.4 HSV Color Space
	Figure 8 and Figure 9 show color histograms of the fundus image provided in Figure 7. To decide on threshold values, the HSV histogram gives an idea. Here in Figure 9, we can easily see that our boundaries should be between grey and orange color but it can change for other images in the dataset, however, most of the images have this color scale so thresholds will be in this range.
	4. Deep Learning Algorithms
	In this section, network architectures that will be used during experiments are explained. According to the literature review and APTOS 2019 competition solutions mentioned in the earlier sections of this report, it is seen that some deep learning architectures are used more than others and their accuracy levels are higher and more effective in the classification of images. Most of the solutions in the APTOS competition are considered ensemble learning methods and combined couple algorithms such as ResNet, EfficientNet, InceptionNet, and so on to increase accuracy and efficiency. D. Doshi et al. [15] were another ensemble learning method appliers for their research and they took help from three different architectures and applied ensemble learning. I. Sadek et al. [9] made research with ResNet, GoogleNet, and VGG algorithms on the custom dataset and had good accuracy results at the end of the research. Modern image classification methods and architectures for diabetic retinopathy detection will be taken into consideration to complete the tasks. Figure 12 represents the performances of the deep learning architectures below. ResNet, and EfficientNet has the best results for most of the research, so these architectures are implemented into the research to make reasonable recommendations for diabetic retinopathy detection. Additionally, different methods like pseudo labeling test time augmentations are the other methods that might have a crucial role to increase and make observations over the data.
	4.1 ResNet Architecture
	Residual Network (ResNet) was introduced first in a paper named Deep Residual Learning for Image Recognition [29] in 2015 by Kaiming He, Jian Sun, Shaoqing Ren, and Xiangyu Zhang and the popularity and success of the model have increased since then. In the paper, the authors are also explained residual blocks, and ResNet is created by these blocks.
	Figure 22 shows the architecture of residual blocks. One of the most important parts of these blocks is a type of connection called “skip connection”. This method has an essential role to solve the vanishing gradient problem by letting gradients use a shortcut to flow. The stop process applies to negative weights, preventing them to pass to the convolutional layer. Those negative weights pass to the ReLu activation function and in this way, we are able to reduce calculation steps and parameters. Figure 23 shows the relations between VGG-19, 34 layer plain network, and 34 layers residual network. Basically, the plain network is inspired by the VGG-19 network, and then skip connections are added to the plain network to create a residual network.
	4.2 EfficientNet Architecture
	According to the research made in the previous research work report, EfficientNet is a Convolutional Neural Network (CNN) model that achieves high accuracy level after its release in comparison to other CNN methods. It is first described by Mingxing Tan and Quoc V. Le in [28] and relies on the AutoML framework. This framework has provided an opportunity to create EfficientNet B0 then it's improved by the compound scaling method to develop the rest of the EfficientNet family from B0 to B7. EfficientNet uses a compound coefficient to scale all dimensions of depth, width, and resolution. However, scaling can cause some effects on accuracy. Scaling up dimensions, width, depth, or resolution may increase accuracy, also, it is important to have better accuracy and efficiency, and it is essential to balance all mentioned aspects. In the paper proposed for EfficientNet by Mingxing Tan and Quoc V. Le, the compound scaling method is used to scale the dimensions of the network. The researchers have executed a grid search method to find out the relations between various scaling sizes within the fixed resource constraints of networks with the help of this strategy they were able to find convenient scaling coefficients for every dimension to be scaled-up. Depending on these coefficients, the baseline network is scaled to the desired size. At the end of their experiments, they claimed that the compound scaling method has improved the model accuracy and efficiency. The method of compound scaling is illustrated in Figure 24.
	The model in Figure 25 was designed by Jing Wang et al. [30] for the purposes of classification of the fundus images.
	5. Performance Metrics
	It is important to calculate the performances of the models used to train the datasets. To perform a good performance test, accuracy, sensitivity, and specificity should be calculated. The confusion matrix gives chance to find values of true positive (TP), true negative (TN), false positive (FP), and false-negative (FN). To explain these values we can give example from the retinal image classification process from the Messidor dataset [31]. This dataset consists of four different types of attributes such as healthy retina, DR. Stages 1,2, and 3. If an image is predicted correctly from a specific class then it represents true positive and it will be true negative for all other correct predictions for alternative attributes. When a healthy retina image is predicted as a DR image of any stage then it is termed a false positive. And lastly, if a DR input image of any stage is predicted as a healthy retina, so it represents a false negative. We can calculate all metrics from the following equations (2,3,4).
	With the help of the knowledge mentioned earlier in this section, it is possible to calculate desired metrics such as precision, recall, and F1 score. These three metrics can be counted as a part of a union and should be evaluated together. Precision gives the answer of between all positive predictions how many of them are really positive can be calculated on the equation (5),
	Recall, answers how much data is predicted positive between all real positive cases and can be calculated with the help of formula (6) as follows,
	The final part of this union is the F1 score which takes into account both precision and recall to calculate its value as on the equation (7) below,
	F1 score or also called F-measure basically combines precision and recall as can be seen in formula (7) and changes between 0 and 1 depending on precision and recall. The higher the F1 score goes, means better model we have to evaluate. Another metric is called F-beta score (8), this metric allows us to decide how to weight the balance between precision and recall using the beta parameter. When beta=1, the F-beta score is equivalent to the F-1 Score. When beta=0.5, this score is the F-0.5 score.
	5.1 Quadratic Weighted Kappa
	This is another metric used during the experiment part of the research and this method will be explained in this section.
	Quadratic weighted kappa (QWK) is a kind of classification accuracy and works well with unbalanced data by guessing randomly according to the frequency of each class, so it reduces the problems caused by imbalanced data. It basically tells how well the classifier performs and QWK calculates relations between two parameters. In order to measure kappa value, attribute parameters should be assigned by a researcher. Additionally, predicted results are also needed to calculate the kappa score. This metric might vary between 0 and 1. Interpretation of kappa scores is given in Figure 26 below;
	Calculation of quadratic weighted kappa is handled as follows:
	where k represents the number of categories  that stands with observed  and is expected matrices (9). To calculate QWK, we need to calculate the confusion matrix to find prediction results for the classification problem. It is mentioned in previous researches that the calculation of the weight matrix  (10) plays a crucial role to have proper calculation. A couple of problems like raters with the same percentage of an agreement, but different proportions of ratings might cause drastic changes in the kappa score.
	6. Datasets
	Here in this section, the datasets used for the research will be explained. Explained datasets are chosen concerning factors of quality and quantity of images, and detailed labels of diagnosis. Additionally, those datasets are newer in comparison to most of the other datasets and that was another reason to choose explained datasets in upcoming parts of the thesis.
	6.1. APTOS 2019 Dataset
	This dataset is published by the Asia Pacific Tele-Ophthalmology Society (APTOS) for the competition held on the Kaggle platform to detect diabetic retinopathy. The image set contains 3662 train and 1928 publicly available test images. Imbalanced training images in this dataset are the biggest problem for the training and can be seen in Figure 27.
	Figure 27 shows the labels from 0 to 4, label 0 represent the healthy samples, and label 4 proliferative DR samples and it is easy to observe that label 0 has much more samples than the others and it causes an imbalance dataset problem as it is mentioned earlier. In order to prevent this issue, basic augmentation methods are applied before the training such as rotation, and horizontal and vertical flips. Images from every label can be seen in Figure 28.
	Since every specific deep learning architecture requires a specific image size, it is important to resize the images before the training as a part of preprocessing part of the experiments. Furthermore, it is possible to observe that the images have some differences in their sizes and it is essential to make them equal. From label 2 to label 4 it is easy to detect the anomalies that cause retinopathy on the images.
	6.2 APTOS 2015 Dataset
	This dataset was also published by APTOS and used for the diabetic retinopathy detection competition 2015 as well as the 2019 dataset. Images are collected by the fundus photography method and published publicly. As mentioned in the APTOS 2019 dataset explanation part, this dataset also has a big imbalanced data problem and it can be seen in Figure 29.
	In comparison to the 2019 dataset, this dataset has significantly much more images. Figure 29 shows the labels of the dataset and again label 0 has over 25000 images in training images and has very few labels 4 and 3 to have good results at the end of the training. Figure 30 shows example images from the dataset.
	Apart from the images from the 2019 dataset, the 2015 dataset has images with different color scales and this is important to define thresholds for the color spaces, more information will be shared in the following sections.
	6.3 Custom Balanced and Preprocessed Dataset
	To prevent or reduce to chances of overfitting and other reasons for bad training results, this dataset is created by a Kaggle user called Alinusik [33] and used in this research to have a bit more reliable results. The image set consists of both APTOS 2019 and 2015 images, as it can be observed from the Figure 27 and Figure 29, labels except from 0 do not have many images and with the combination of these two datasets this problem is solved and it is possible to see it in Figure 31.
	There are 7243 training images in total in this dataset and 2500 images for the testing. In comparison to previous image sets, this dataset is much more balanced as it is shown in Figure 23. But, it is not the only difference between the datasets. Images in this dataset are preprocessed with various methods such as conversion into gray, cropping unnecessary parts outside the fundus, resizing, and lastly gaussian blur to reduce noises on the images. Examples can be seen in Figure 32.
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