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Santrauka 
Idėja, kad mes mokomės sąveikaujant su mūsų aplinka, tikriausiai pirmiausiai atsiranda, kai 

galvojame apie mokymosi procesą. Kai kūdikis žaidžia, moja rankomis ar žiūri, jis neturi aiškaus 

mokytojo, bet turi tiesioginį ryšį su savo aplinka. Naudojant šį ryšį gaunama daug informacijos 

apie veiksmo priežastį ir pasekmes ir apie tai, ką daryti siekiant tikslų. Visą gyvenimą žmogus mokosi 

iš sąveikos su aplinka. Nesvarbu, ar mokomės vairuoti automobilį ar parengti pokalbį, mes puikiai 

suprantame, kaip mūsų aplinka reaguoja į tai, ką mes darome, ir siekiame koreguoti savo veiksmus 

priklausomai nuo atgalinio aplinkos ryšio ir tai leidžia keisti ne tik mūsų supratimą, bet ir mūsų 

pasaulį. Mokymasis iš sąveikos yra pagrindinė idėja, kuria grindžiamos beveik visos mokymosi ir 

intelekto teorijos. Vienas iš tokių teorijų yra skatinamasis kompiuterinis mokymas. 

Dėl to, kad modelis yra apribotas vienos aplinkos aibėje, atsiranda klausimas, dėl savo ar 

eksperto patirties panaudojimo iš jau išspręstų uždavinių. Todėl, šis darbas bando nagrinėti 

skatinamojo mokymo problematika iš sekos apdorojimo paradigmos. Toks uždavinio formulavimas 

leidžia panaudoti perkėlimo strategijas ir mokytis ir skirtingos aibės žinių. Išeina, kad modelis tampa 

plečiamas, todėl panaudoti eksperto žinias ir integruoti į savo mokymą iš kitų uždavinių gali būti 

naudinga. Naujas metodo nagrinėjimas yra aktualus, nes gali būti taikomas įvairiose srityse, kur 

įprastai naudojamas skaistinamasis kompiuterinis mokymas: roboto-technikoje, medicinoje, 

chemijoje, ekonomikoje, inžinerijoje. 
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Abstract 
Reinforcement learning is a very rapidly growing field of research, where a lot of new 

innovations, state-of-the-art methods and technics are emerging because of never ending 

challenges for the artificial intelligence. RL gives an opportunity for researchers to investigate how 

an agent can learn a specific task by simply interacting with the environment. Step by step, after each 

positive and negative feedback, after millions or trillions of trials and errors in a closed environment, 

as a result the agent becomes an expert in the field of training. Consequently, the agent is capable to 

outperform human mind in a restricted domain.  

From this follows a problem about context switch. After learning to complete one task the 

agent needs to be retrained from the start again on the new environment. But is there a way to make 

an agent generalize the knowledge from previous challenges? To answer the question, the RL problem 

is transitioned to sequence analysis problem. Thesis emphasizes the problem and revolves around the 

reinforcement learning, transferring and deep learning of sequence analysis. 
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1. Introduction 
Artificial Intelligence is one of the most important topics of research of the 21st century. Robotics, 

medicine, chemistry, physics, economy, engineering – it is only a tip of an iceberg when it comes to 

application of AI in our modern age. Due to increase of the computational capability of an ordinary 

computer, it is now possible to construct sophisticated AI models and apply them to solve even more 

complex problems. One of such problems to solve are computer and board games from academical 

standpoint. In this paper, the term game AI is considered from the academic perspective. The main 

question is why it is important to apply AI in games? Let us look at the history of game AI.  

The history of game AI starts from a battle between a human mind and a computer, which had 

taken place in 1997, where Garry Kasparov was fighting against an AI opponent called Deep Blue on 

the battlefield of chess board [Dec97]. One of the reasons for creating AI in computer games is 

competition, it serves as an engine for research. The role and utility of “competitions” in driving and 

evaluating AI research seems to be getting increased acceptance in recent years [Dec97].  

In addition, the confrontation on the GO board in 2016 between world champion Lee Sedol and 

AlphaGo. The game of GO has long been viewed as the most challenging of classic games for AI due 

to its enormous search space and the difficulty of evaluating board positions and moves [Shm+16]. 

From development of AlphaGO researchers came up with a novel combination of supervised learning 

from human expert games, and RL from games of self-play [Shm+16]. The games in general serve as 

a simulation in which researchers can hone their skills of applying AI models for a specific problem, 

and to learn more about AI while searching for a solution.  

Furthermore, not only board games were the center of attention in research, but also computer 

games. First deep learning model to successfully learn control policies directly from high-dimensional 

sensory input using RL was created in 2013, which was implemented in seven Atari 2600 games 

[Mks+13]. The research found that it outperformed all previous approaches on six of the games and 

surpassed a human expert on three of them [Mks+13]. Knowledge obtained from solving Atari games 

was implemented later in development of self-driving cars. 

Finally, computer games served as a steppingstone for collaboration between different AI systems. 

The recent research on topic of AI team play was successfully applied in Dota 2 and StarCraft 2 games 

On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions teams of 

5 at an esports game Dota 2 [BBC+19]. In the same year, AlphaStar AI system was used to play 

against players all around the world and became better than 99,8% of officially ranked human players 
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in the game of StarCraft 2 [VBC+19]. The communication between AI systems in StarCraft 2 took 

place between different layers of AI in order to achieve victory in sophisticated real time strategy. 

The research achievements of the AI in computer games show that this field of study is very 

peculiar and significant for the development of intelligent systems. The controllable environment 

provides ease of tuning, experimenting, and evaluating the AI models. The models are training on 

different environments, which have contrasting rules. The main research topic of this paper revolves 

around the question of how well models from distinct environments can be transferred. 

2. Problem Definition 
To proceed the topic of research, the core of the thesis should be defined. The problem: transfer 

learning in the field of deep RL agents. 

As the Figure 1 suggests the main topic of this paper lies in the fields of RL, TL and DL. The 

problem with transfer learning is that it is hard to find what exactly needs to be transferred and how it 

effects results. To proceed with the research, a brief description of each related field must be given.  

A typical RL problem can be considered as training an agent to interact with an environment that 

satisfies the criterion of a Markov Decision Process (MDP) [Roz82] [Zlz09]. From each interaction 

with the MDP, the agent starts with an initial state and performs an action accordingly, which yields 

a reward to guide the agent actions. Once the action is taken the MDP transits to the next state by 

following the underlying transition dynamics of the MDP. The agent accumulated the time-discounted 

rewards along its interactions with the MDP [Zlz09]. In short, the agent learns about the environment 

by taking actions and receives output from the environment as a reward, the end goal of the agent is 

to improve the quality of the rewards in the system it interacts. To train the agent to operate in the 

 Reinforcement 

Learning 

Transfer 

Learning 
 

 

 

Deep Learning 

thesis 

Figure 1. Scope of the thesis [ZLZ09]. 
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MDP special algorithms are used such as Q learning (QL), Deep Q Learning (DQL), Double Deep Q 

Learning (DDQL) and Actor Critic methods (A2C) [Sb16].  

TL on the other hand, operates on the source and target domains. Given a set of source domain 

and a target domain, TL aims to learn an optimal policy for the target domain, by leveraging exterior 

information from source domain, as well as interior information from target domain [ZLZ09]. In other 

words, by choosing source and target models some information, configuration or a policy is moved 

from the source to the target model to improve the target domain. 

Despite the success of RL in solving games, there is a problem that the agents share, they fail to 

generalize, due to overfitting on the environments [Pag19]. 

3. Research Description 
The research object is representation of RL problem as a sequential decision-making problem to 

apply the successful generalization strategies of the NLP to the RL problems. 

The research goal is to train a target model to play Atari 2600 game, based on similar Atari 2600 

source RL environments, where the agent will use generative model to compute proper action on 

target domain while training on offline knowledge space of Markov trajectories from source and target 

environments, instead of using real time environment feedback loop. The expected outcome is to 

quantify the impact of discrete source environment data and justify the impact on the target domain. 

The research tasks: 
• To analyze the theoretical parts of RL, generative models, and TL. 

• To train the generative model in RL domain, with parameter tuning in a specific 

environment. 

• To train the generative model with mixture of source and target data. 

• To fine-tune the new model, evaluate the results and approaches, as well as quantify the 

benefits of pretraining and most impactful parameters. 

The novelty of approach is to merge natural language processing solutions with RL tasks. The 

generative model is a Transformer [Vsp+17], which has capability to generalize from big sequencies 

of data. It is a special sequence to sequence neural architecture relying entirely on an attention 

mechanism to draw global dependencies between input and output [Vsp+17]. The input to the 

Transformer will be trajectories generated from source models. As a result, generative model will be 

tuned to interact within the target game. Trajectory in RL is a sequence of states and actions of a given 

agent. 
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4. Reinforcement Learning 
RL is a subfield of ML, which addresses the problem of automatic learning of optimal decisions 

over time [Lap18]. In other words, it is a branch of ML, which learning occurs via interplay with an 

environment. Also, RL is the problem faced by an agent that learns behavior through trial-and-error 

interactions with a dynamic environment [Klm96]. Consequently, it is a discipline of learning, where 

an agent can learn from success and failure, from reward and punishment [Rnd16]. 

In general, RL revolves around the idea of capturing the most important aspects of the real problem 

in the specific domain to achieve a long-term goal. This goal is stimulated by reinforcement technic, 

a feedback of reward signals. The essential part of learning in RL problems is to map situations to 

actions to maximize a numerical reward signal [Sb16]. These kinds of problems are identified as 

closed-loop problems, where the actions influence its later inputs [Sb16]. The agent must discover 

which actions yield the most reward by trying them out and not by having direct instructions. The 

primary characteristics of RL problems are closed-loop, not having direct instructions, consequences 

of actions, which play out over extended time period. Clearly, such an agent must be able to sense the 

state of the environment, take actions, and must have a primary goal. Sensation, action and goal are 

building blocks of RL models. 

In contrast with supervised learning (Figure 2), where an agent learns from a knowledgeable 

external teacher, which is represented by labeled examples, the agent is capable to solve interactive 

problems [Sb16]. Often it is impractical to label all the states to appropriate actions by some external 

supervisor and to maintain correctness and representation across of all the situations. As the [Sb16] 

states – in uncharted territory – an agent must be able to learn from its own experience. Finally, the 

supervised method is used to map examples of input and desired output, and we want to learn how to 

Supervised 

Learning 

Machine 

Learning 

Unsupervised 

Learning 

 

Reinforcement 

Learning 

 

Figure 2. Branching of disciplines. 

Interaction 
Classification Clustering 
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generate the output for some future, currently unseen inputs [Lap18]. In other words, the agent in 

supervised learning tries to extrapolate or generalize the knowledge in the already seen data for the 

new instances of data. RL uses such technics as well to apply them for approximation of states and 

rewards, but the learning is enforced by experience [Rnd16]. 

In addition, RL could be falsely identified as a kind of unsupervised learning. Because 

unsupervised learning is about finding structure hidden in collections of unlabeled data, while the RL 

is trying to maximize a reward signal instead [Sb16]. Uncovering the structure in an agent’s 

experience can certainly be useful in RL, but by itself does not address the reinforcement learning 

agent’s problem of maximizing a reward [Sb16]. 

RL is the third camp and lays somewhere in between full supervision and a complete lack of 

predefined labels [Lap18]. On the other hand, it uses many well-established methods of supervised 

and unsupervised learning such as DL methods. 

4.1. RL Application 
In order to understand RL as a structured system of learning, some examples and practical 

implications can be formulated. Firstly, RL has been used to solve the “curse of dimensionality 

problem” [Jjw17]. It is the problem where the increase of features leads to exponential growth for data 

samples to distinguish the target function. The problem is stated as solving high-dimensional partial 

differential equations, which are combined as a control theory problem and the gradient of the 

unknown solution is approximated by neural networks using RL, where gradient is acting as the policy 

function [Jjw17]. In addition, the author [Sb16] stated that the ability of some RL methods to learn 

with parameterized approximators addresses the classical “curse of dimensionality” in operations 

research and control theory. Furthermore, the RL methods are applied to optimize neural network 

parameters and search for best network configuration [Zl16]. 

RL has many examples. For instance, RL system can be associated with dopamine system in a 

brain. The biological limbic system of our brain has a reinforcement mechanics as a dopamine system, 

which toggles positive feedback to our brains and stimulates pleasure as a result [Sdm98]. Computer 

games, financial trading, web navigation, robotics are practical implications of RL methods. For 

understanding RL system in practice its core components should be defined. 
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4.2. RL Components and Relations 

4.2.1. Reward 
Reward is the building block of RL system. It is the bridge, which connects environment and 

agent together, giving the agent ability to comprehend the cause of its actions. This kind of feedback 

is called a reinforcement [Rnd16]. It is the mechanism, which is very similar to the experiences of 

pleasure and pain in human brain. The magnitude of the reward depends on the current state of the 

environment and action taken. For example, the biological human body receives rewards from of the 

brain based on its current hunger level, the psychological state, and the state of the environment that 

the subject operates in (temperature, safety and more) and action chosen (eat, sleep, drink and more). 

The key aspect of the agent is to maximize the reward in the long run (Equation 1). The only way the 

agent can influence that is to choose proper actions and yield higher rewards. The actions that agent 

picks form so called policy or in other words it is a mapping from perceived states of the environment 

to actions to be taken when in those states (in psychology would be called a set of stimulus-response 

rules or associations) [Sb16]. The agent’s job is to find a policy such that maximizes some long-run 

measure of reinforcement [Klm96]. 

 𝐺! = 𝑅!"# + 𝑅!"$ +⋯ =& 𝑅!"%"#
&

%'(
 ( 1 ) 

4.2.2. Value function 
The reward signal indicates what is good in an immediate sense, a value function specifies what 

is good in the long run. 

 𝑉(𝑠) = 𝔼[	𝐺|𝑆! = 𝑠	] ( 2 ) 

In contrast, the rewards determine the immediate, values indicate the long-term desirability 

[Sb16]. In other words, it is a problem of a delayed gratification. For example, a dilemma with a 

delayed gratification was studied in social experiment with marshmallows serving as a reinforcement 

model in preschools [Smp96]. The candidates, who neglected current reward, received more in the 

future, showing that receiving negative feedback in current situation could be a winning strategy. This 

refined and farsighted judgment could be expressed as a value function, which takes the state as an 

argument and gives its value, based on values of future states. The value of a state is the total amount 

of reward an agent can expect to accumulate from a given state (Equation 2) [Rnd16]. RL methods 

iteratively approximate value function for every state under certain policy. As the [Sb16] author states 

that the most important component of almost all RL algorithms is a method for efficiently estimating 

value functions. 
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4.2.3. Environment 
The environment is everything outside of the agent, the external model, which returns rewards 

for fired actions and its state. In other words, given a state and action the model might predict the next 

state and next reward. The environment can have many variations: deterministic, stochastic, fully 

observable, partially observable, discrete, continuous, episodic and non-episodic, single and multi-

agent [Klm96]. During the learning task the agent interacts with the model of the environment. The 

model (if it is given beforehand) is used for planning – any way of deciding on a course of action by 

considering possible future situations before they are experienced [Sb16]. This strategy is called 

model-based learning. RL methods based on environment model split into two categories model-based 

and model-free (Figure 3). Model-free deep reinforcement learning algorithms have been shown to be 

capable of learning a wide range of robotic skills, but typically require a very large number of samples 

to achieve good performance [Nkf+17]. Model-based algorithms, in principle, can provide for much 

more efficient learning, but have proven difficult to extend to expressive, high-capacity models such 

as deep neural networks [Nkf+17]. In other words, model-free methods are simpler, only requiring 

agent to understand the environment explicitly by trial-and-error. 

4.3. Discount Factor 
To enable agent to control the foresightedness a discount factor should be added inside the 

accumulated rewards (Equation 3). 

Figure 3 RL methods model-based, model-free 
https://spinningup.openai.com 
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 𝐺! = 𝑅!"# + 𝛾𝑅!"$ + 𝛾$𝑅!")… =& 𝛾%𝑅!"%"#
&

%'(
 ( 3 ) 

The discount factor decides how much importance we give to the future rewards and immediate 

rewards. The value of the discount factor lies within [0…1] interval. If gamma equals to 1, then return 

just equals a sum of all subsequent rewards and corresponds to the agent with perfect visibility of any 

subsequent rewards and corresponds to the agent with perfect visibility [Lap18]. On the other hand, 

if the gamma value is close to 0, then the agent considers only the immediate rewards – short-

sightedness. As a result, a discount factor gives control over the importance of reaching a sub-goal or 

of learning to reach the main objective. 

4.4. Markov Decision Process 
Markov Decision Process (MDP) can be expressed as a tuple of 4 elements (S, A, Pa, Ra). 

• S is a set of available states that the agent can be in 

• A is a set of actions that an agent can choose from 

• 𝑷𝒂(𝒔, 𝒔+) = 𝑷𝒓(𝒔𝒕"𝟏 = 𝒔+	|	𝒔𝒕 = 𝒔, 𝒂𝒕 = 𝒂)  a transition probability, which is the probability 

of moving from one state 𝑠 to another 𝑠′ by performing some action a. 

• 𝑹𝒂(𝒔, 𝒔+) is a probability of getting a reward from transitioning from a state 𝑠 to another 𝑠′ 

The name MDP refers to the fact that the system obeys the Markov property – transitions only 

depend on the most recent state and action, and no prior history. In addition, a trajectory is a sequence 

of states and actions in the world (Equation 4). 

4.5. Explore or Exploit problem 
The exploration-exploitation dilemma occurs when the agent needs to find an optimal policy by 

choosing between the two strategies. The agent must exploit what it already knows to obtain reward, 

but it also must explore in order to make better action selections in the future [Sb16]. The problem is 

that neither exploration nor exploitation can be pursued exclusively without failing at the task [Sb16]. 

In other words, agents must try each action empirically to progressively favor most appealing strategy. 

If the environment is stochastic the agent must approximate the expected reward by exploiting every 

action. Exploitation is the right thing to do to maximize the expected reward on the one step, but 

exploration may produce the greater total reward in the long run [Sb16]. To solve this dilemma several 

exploration strategies could be applied: epsilon-greedy policy, softmax exploration, upper confidence 

bound algorithm, Thomson sampling technique and optimistic initialization of the states [Lap18]. 

4.6. Learning loop 

 𝜏 = (𝑠(, 𝑎(, 𝑠#, 𝑎#, … ) ( 4 ) 
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For the agent to start approximating and playing with the environment, the main reinforcement 

learning algorithms are wrapped around learning loop, where the agent collects environment’s 

response (states and rewards) inside its memory, while using exploration or exploitation strategies. 

This technic allows agent after reaching so called threshold value of the transitions, to sample 

randomly the states from memory inside a batch, which is used as an input for the RL algorithm. 

4.7. RL algorithm 
The main objective of RL algorithm is to find an optimal policy 𝜋: 𝑆	 ↦ 𝐴, which includes best 

reward accumulation during the experiment. 

 𝑉∗(𝑠) = max
/
𝑉/ (𝑠) ( 5 ) 

This property can be expressed in several value functions under certain policy of learning. The 

value function as stated above described the value of a state, whereas the function can be adjusted as 

a state action pair 𝑄: 𝑆	 × 𝐴	 ⟼ ℝ, which is formulated as a quality function 𝑄(𝑠, 𝑎) . 

 𝑄(𝑠, 𝑎) = 𝔼[	𝐺|𝑆! = 𝑠, 𝑎! = 𝑎] ( 6 ) 

For finding such an optimal policy a technique of a dynamic programming can be used to 

approximate the value function (Equation 7). 

 𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒	[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒] ( 7 ) 

In addition, the equation 6 can be viewed as an interpolation rule between the target value and the 

starting point and expressed as follows (Equation 8). 

 𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	 ← (1 − 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒) ∗ 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 ( 8 ) 

Furthermore, an update rule could be formulated as an interpolation between a previous state and 

a target state and greedily choosing the most rewarding actions. As a result, the update rule will be 

called a temporal difference learning rule, where Q greedy function update (Equation 9) is called Q-

learning [Wd92] and Sarsa as state value iteration [Ss96] (Equation 10). 

 𝑄(𝑠! , 𝑎!) ← (1 − 𝛼)𝑄(𝑠! , 𝑎!) + 𝛼(𝑟! + 𝛾max0 𝑄(𝑠!"#, 𝑎)) 
 

( 9 ) 

 𝑉(𝑠) ← (1 − 	𝛼)	𝑉(𝑠!) + 𝛼 ∗ (𝑟! + 𝛾𝑉(𝑠!)) ( 10 ) 

 

4.8. Q-learning 
The quality of a state and action is updated using Q-learning algorithm. The Q function or value 

function can be implemented as a simple table of states. In addition, the environment’s states and 

rewards can be processed by deep neural network, when the environment state space is too large. The 
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neural network provides the program with the ability to generalize from its experience, so that in new 

states it selects moves based on information saved from similar states faced in the past, as determined 

by its network [Sb16]. As a result, the value function adds a new parameter 𝜃, which represents neural 

network weights 𝑄(𝑠, 𝑎, 𝜃), in order to specify the approximation via network. As a result, a larger 

state space can be processed by using neural network as a function. In addition, the learning value of 

alfa is integrated inside the network and predefined beforehand. This configuration allows the agent 

to perform update of the model using its target state, which is calculated by the same model. When 

learning in a large environment space, it could cause instabilities in learning, may be harmful to 

training performance and sometimes lead to suboptimal policies. That is why, small improvement can 

be made by introducing a double deep q learning strategy [Hgs15]. The authors proposed an idea to 

modify the equation, by introducing a second neural network called target network. After some 

iterations, the target network is updated by original trained network (Figure 4). The authors of the 

paper proposed choosing actions for the next state using the trained network but taking values of Q 

from the target net [Hgs15]. 

The examples above were practically implemented and results gathered using a Cartpole 

environment (https://gym.openai.com/envs/CartPole-v0/). Figure 4 represents accumulation of 

Figure 5. A dueling network architecture for double Q learning approach, where 
final quality value is calculated [Hgs15]. 

Figure 4 Results obtained from training on the Cart Pole environment, by 
launching small experiments by thesis author. Y-axis score, X-axis epoch. Es0 – 
DDQL, Es1- DQN, es2 – DDQL with target update on every iteration. Orange 

line (DQN) is compared with Blu line(DQN). 
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rewards obtained during the training of the agent. Figure 5 depicts the target network usage. From the 

graph es0 represents DDQL algorithm, es1 simple DQL, while es2 DDQL with target update on every 

iteration. All the runs used epsilon decay strategy for the explore and exploit problem. The orange 

line had the higher reward values during training epochs, which shows that the double network 

architecture can improve RL agent training performance. 

5. Transfer Learning in RL 
The previous sections described core components of the RL paradigm and algorithms. Using RL 

learning models as a source and target domains, the question about improving the performance by 

similar model is defined. The core idea of transfer is that experience gained in learning to perform one 

task can help improve learning performance in a related, but different, task [Ts09]. In other words, the 

transfer learning goal is to apply knowledge from previous environments to learn faster and more 

efficiently our target domain. Given a set of source domain 𝑀1 and a target domain 𝑀!, TL aims to 

learn an optimal policy 𝜋∗ for the target domain, by leveraging exterior information 𝐷1 from 𝑀1 as 

well as interior information 𝐷! from 𝑀! and inject both inside a deep learning model 

𝜑23(𝐷1~𝑀1, 𝐷!~𝑀!) [Zlz09]. 

5.1. Transfer Measurement 
For the transfer learning approach to be useful, it needs to answer certain questions: 

• What are the goals of the transfer method? By what metric(s) will success be measured? 

• What assumptions, if any, are made regarding the similarity between the tasks? 

• How does a transfer method identify what information can/should be transferable? 

• What information is transferred between tasks? 

A key challenge in TL research is to define evaluation metrics, precisely because there are many 

possible measurement options (Graph 1). First, in order to evaluate the performance of a transfer 

learning method several metrics are considered [Ts09]. 

1. Jumpstart: The initial performance of an agent in a target task may be improved by transfer 

from a source task (Graph 2). 

2. Asymptotic Performance: The final learned performance of an agent in the target task may be 

improved via transfer (Graph 2). 

3. Total Reward: The total reward accumulated by an agent, may be improved if it uses transfer, 

compared to learning without transfer. 

4. Transfer Ratio: The ratio of the total reward accumulated by the transfer learner and the total 

reward accumulated by the non-transfer learner. 
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5. Time to Threshold: The learning time needed by the agent to achieve a pre-specified 

performance level may be reduced via knowledge transfer (Graph 1).  

In addition, the training time can be used as another parameter for the transfer performance 

measurement. To successfully transfer the knowledge, the agent would have to learn the entire 

sequence of tasks faster than if it had spent its time learning the final target task directly (Figure 6). 

5.2. TL Categories 

Graph 1. Many different metrics for measuring TL are possible. This graph show benefits to the 
jumpstart, asymptotic performance, time to threshold, and total reward (the area under the learning curve) 

[Ts09]. 

Figure 6.  Successful TL methods may be able to reduce the total training time (left). In some scenarios, it is more appropriate to 
treat the source task time as a sunk cost and test whether the method can effectively reuse past knowledge to reduce the target task 

time.[Ts09] 
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As the evaluation criteria is defined, it is important to distinguish several TL approaches. In order 

to generalize different TL methods main variance along algorithm approaches should be defined. The 

problem of transferring the knowledge from contrasting models has lots of configurable parameters 

and alternatives of the approach. The main dimensions for modifications are: 

1. Task difference assumptions: What assumptions does the TL method make about how the 

source and target are allowed to differ? Examples of things that can differ between the source 

and target tasks include different system dynamics (i.e., the target task becomes harder to solve 

is some incremental way), or different sets of possible actions at some states. Such assumptions 

define the types of source and target tasks that the method can transfer between. Allowing 

transfer to occur between less similar source and target tasks gives more flexibility to a human 

designer in the human-guided scenario. In the fully autonomous scenario, more flexible 

methods are more likely to be able to successfully apply past knowledge to novel target tasks 

[Ts09]. 

2. Source task selection: In the simplest case, the agent assumes that a human has performed 

source task selection (the human-guided scenario), and transfers from one or more selected 

tasks. More complex methods allow the agent to select a source task or set of source tasks. 

Such a selection mechanism may additionally be designed to guard against negative transfer, 

where transfer hurts the learner’s performance. The more robust the selection mechanism, the 

more likely it is that transfer will be able to provide a benefit. While no definitive answer to 

this problem exists, successful techniques will likely have to account for specific target task 

characteristics. [Ts09] 

3. Task Mappings: Many methods require a mapping to transfer effectively: in addition to 

knowing that a source task and target task are related, they need to know how they are related. 

Inter-task mappings are a way to define how two tasks are related. These mappings could be 

implemented as a bridge or an adapter between two domains. If a human is in the loop, the 

method may assume that such task mappings are provided; if the agent is expected to transfer 

autonomously, such mappings must be learned. Different methods use a variety of techniques 

to enable transfer, both on-line (while learning the target task) and offline (after learning the 

source task but before learning the target task). Such learning methods attempt to minimize 

the number of samples needed and/or the computational complexity of the learning method, 

while still learning a mapping to enable effective transfer. [Ts09] 

4. Transferred Knowledge: What type of information is transferred between the source and target 

tasks? This information can range from very low-level information about a specific task (i.e., 
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the expected outcome when performing an action in a particular location) to general heuristics 

that attempt to guide learning. Different types of knowledge may transfer better or worse 

depending on task similarity. For instance, low-level information may transfer across closely 

related tasks, while high-level concepts may transfer across pairs of less similar tasks. The 

mechanism that transfers knowledge from one task to another is closely related to what is 

being transferred, how the task mappings are defined, and what assumptions about the two 

tasks are made. [Ts09] 

5. Allowed Learners: Does the TL method place restrictions on what RL algorithm is used, such 

as applying only to temporal difference methods? Different learning algorithms have different 

biases. Ideally an experimenter or agent would select the RL algorithm to use based on 

characteristics of the task, not on the TL algorithm. Some TL methods require that the source 

and target tasks be learned with the same method, other allow a class of methods to be used in 

both tasks, but the most flexible methods decouple the agents’ learning algorithms in the two 

tasks. [Ts09] 

TL algorithms can be considered to differ along these five dimensions, but most important 

dissimilarity comes from the specific knowledge transferred. In further sections, examples of 

contrasting methods (sequential tasks, reward shaping, demonstrations) by transferable knowledge 

will be defined. 

5.3. Sequence of Tasks 
One of the examples of TL learning was presented in an experiment, where the agent was trained 

to balance a pole on a cart by changing the dynamics of the environment. As a result, presenting a TL 

framework [Ssb85]. The authors [Ssb85] use a learning scheme previously developed and analyzed 

to achieve performance through reinforcement and extend it to include changing to new requirements. 

For example, the length or a mast of the pole can change, the bias of the force, its strength, and so on. 

In this way, authors explore the learning system’s ability to adapt to changes and to profit from a 

selected training sequence, both of which are of obvious utility in practical robotics applications 

[Ssb85]. The agent was first trained on a long and light pole, afterwards, when the task was 

successfully accomplished, the balances of the pole were made harder. The results of the experiment 

were that the total time training on the sequence of tasks was faster, than training on the hardest task 

directly. 

Furthermore, [Ant+94] authors presented an experiment, where a mobile robot learned to shoot a 

ball into the goal by using vision-based RL. All the information about the changes of the environment 
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is only the image captured from a single TV camera mounted on the robot. To get towards the goal, 

the agent was taught incrementally, progressively to solve the problem of scoring maximum points. 

For instance, the authors began to learn to shoot the ball by setting the ball and the robot near the goal. 

After many iterations of success and failures, after the robot finally managed to score the points, the 

authors [Ant+94] placed the robot slightly further from the goal and repeat the robot learning again 

[Ant+94].  

These tactics of solving incrementally simple tasks to achieve a bigger one is a way of transferring 

knowledge in the RL domain. 

5.4. Reward Shaping 
Reward shaping, derived from behavioral psychology, is a popular way of including prior 

knowledge into the learning process in order to alleviate this problem [Bhs+15]. It provides a learning 

agent with extra intermediate rewards, much like a dog trainer would reward a dog for completing 

part of a task [Bhs+15].  This extra reward can enrich a sparse base reward signal, providing the agent 

with useful gradient information (Equation 11).  This shaping reward F is added to the environment’s 

reward R to create a new composite reward signal that the agent uses for learning [Bhs+15]. 

 𝑅4(𝑠, 𝑎, 𝑠+) = 𝑅(𝑠, 𝑎, 𝑠+) + 𝐹(𝑠, 𝑎, 𝑠+) 
 

( 11 ) 

 𝐹(𝑠, 𝑎, 𝑠+) = 	𝛾Φ(𝑠+) − 	Φ(𝑠) ( 12 ) 

Shaping function F as the difference between two potentials. The function F is a defined as a 

difference between two Φ(𝑠), or so-called potentials, where the value comes from the knowledge of 

expertise and evaluates the quality of a given state [Bhs+15]. Rather than taking all the information 

from the source or the sub tasks, the TL approach of reward shaping takes into consideration only the 

reward signals from the previous environments [Zlz09]. The approach provides an extra reward signal 

that is added to the environment’s reward, making the agent learn on the combined signal. In addition 

to learning on the environment feedbacks, RS learns a reward-shaping function to generate auxiliary 

rewards, provided that the additional rewards contain prior knowledge to guide the agent for better 

action choices [Zlz09]. As a result, by reward shaping the agent learns its policy in a modified MDP 

where the only difference is the reward function [Zlz09]. 

5.5. Demonstrations 
The external demonstrations from the previous similar environments can be useful for the agent 

to converge towards more efficient results. The [Tcs11] authors did introduce Human-Agent Transfer, 

an algorithm that combines transfer learning, learning from demonstration and RL to achieve rapid 

learning and high performance in complex domains. [Tsc11] showed that human demonstrations 
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transferred into a baseline policy for an agent and refined using RL significantly improve both learning 

time and policy performance. From this example, expert domain can vary from human to another 

agent performing a task with optimal or even suboptimal policy. The author [Zlz09] states that such 

demonstrations form a set, which each element is a tuple of transition, or so-called trajectory 

(𝑠, 𝑎, 𝑠′, 𝑟). This technic can be seen as a subset of Supervised Learning, in that the agent is presented 

with labeled training data and learns an approximation [Tsc11]. In general, learning from 

demonstrations is a technique to assist RL by utilizing provided demonstrations for more efficient 

exploration. Knowledge conveyed in demonstrations encourages agents to explore states which can 

benefit policy learning procedure [Zlz09]. The method is divided into offline and online depending 

on when the demonstrations are used. Offline - before the main update of the value function, so called 

pre-trained via initialization of policies and value functions with demonstrations. Online – when 

demonstrations are directly used in the RL stage to influence or bias the agent actions for efficient 

explorations [Zlz09]. However, this approach is limited by the quality of the information provided by 

the supervisor. 

6. Generative models in RL 

6.1. Transformer 
Transformer is a deep neural network architecture introduced in 2017 by researchers at Google 

Brain [Vsp+17]. Like recurrent neural networks (RNNs), transformers are designed to process 

sequences such as natural language text and solve problems – machine translation, automatic 

abstraction. The RNN takes up the input of the data and the previous state. Because of this, the network 

is slow to train, and long sequence leads to vanishing gradient – the problem of long-term 

dependencies. The memory becomes weak to save information from old connection. 

Another alternative is LSTM (long short-term memory) a special kind of RNN, which possesses 

special branching rules for passing previous state [Hos97]. This allows to skip unnecessary 

information and retain important features for a longer period. This rule helps to improve the situation 

of the vanishing gradient problem, but it all depends on the length of the input. If the input is increased 

drastically the LSTM will start to fail, introducing the same problem as with vanilla RNN. 

The previous versions of sequence processing models were having problems with large scale of 

data. That is why, transformer was introduced. The new architecture tries to address this problem and 

generalize information despite huge amounts of data. 

Comparing transformer with previous solutions, transformer does not require sequences to be 

processes in order. For example, if the input is text, the transformer does not need to process the end 
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of the text after processing the beginning. Because of this, transformers are easier to parallelize than 

RNS and can be trained faster. As well as special kind of memory mechanism allows to distinguish 

and hold information across long range of input data. 

Going into the details, the building blocks of transformer architecture are encoder and decoder. 

The encoder and decoder consist of layers. The encoder layers sequentially pass the result to the next 

layer as its input (Figure 7). The architecture can contain both encoder and decoder, or only one of 

them. First, an input sequence of tokens is mapped to a sequence of embeddings, which is then passed 

to the encoder. Additionally, a positional information is provided. The encoder consists of a stack of 

blocks, each consisting of two subcomponents: a self-attention layer followed by a small feed-forward 

network. The layer normalization step is applied to the input of each subcomponent as well as dropout 

layer. The partial output of this structure is passed to the decoder stack (Figure 9). 

The decoder receives a part of decoder output and the processed sequence as input. Decoder layers 

sequentially pass the result to the next layer along with the encoder result as its input. 

Furthermore, each encoder consists of a self-attention mechanism (input from the previous layer) 

and a feed forward neural network with direct connection (input from the self-attention mechanism). 

Each decoder consists of a self-attention mechanism (input from previous layer), an attention 

mechanism to the encoding results (input from self-attention mechanism and encoder), and a neural 

network with direct connection (input from attention mechanism) (Figure 9).  

Going further into details, the primary part of stack like architecture of transformers is the 

attention mechanism. From top-down perspective, it serves as a working memory that gives the 

ability to assess and generalize the important aspects of the information from the whole sequence. 

Every attention layer consists of several weight matrices: query 𝑊5, keys 𝑊%, and the values 𝑊6. The 

Figure 7. A top-down view of the transformer architecture [Vsp+17] 
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input token 𝑋 is multiplied by each matrix respectively and 𝑄,𝐾, 𝑉 values are the result. After that, 

the attention score is calculated as follows: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 i

𝑄𝐾7

j𝑑%
k𝑉 ( 13 ) 

From the Figure 8 and the equation 13, Q is a matrix that contains the query (vector representation 

of one word in the sequence), K are all the keys (vector representation of all the words in the sequence) 

and V are the values, which are again representation of all the words in the sequence. Looking at the 

calculation, it can be noticed that the values in V are multiplied and summed with some attention-

weights that are put inside softmax function, which maps distribution between 0 and 1. In other words, 

self-attention is a variant of attention that processes a sequence by replacing each element by a 

weighted average of the rest of the sequence. Consequently, the attention can be expressed as 

relevance between queries and keys described as a dot product (Equation 13). 

Basically, if the input token is the size of 512, and the number of tokens is 9 (length of the 

sentence), and the number of heads is 8, then each attention head receives 9x64 (512 / 8) dimensional 

vector. The results of attention are spanned across the input sequence, by using the selected query and 

Figure 9 Building blocks of each layer [Vsp+17] 

Figure 8 Attention calculation for the paper 'Attention is All You Need'. Left is 
scaled Dot-Product Attention. Right multi-head attention consisting of several 

attention layers running in parallel. 
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multiplying it by each corresponding K of each token. The division by the square root of dimension 

key is used in order achieve easier gradient propagation. The gathered scores are multiplied by the 

value and finally the results are summed up to pass to the further layers. Finally, the attention 

calculation is scaled across multiple attention heads, leading to a vector of corresponding matrices and 

values. Introduction of heads gives the ability to comprehend the sequence in several dimensions and 

extrapolate more information.  

The Figure 11 represents a bird eye view on the multi-head attention between different layers. The 

lines in each cell represent the attention from one token (left) to another (right), with line weight 

proportional to the attention value (ranges from 0 to 1). A more zoomed in example of such model is 

presented in Figure 10. In this example the input consists of two sentences: “the cat sat on the mat” 

   
Figure 10 Example of visualization of the attention heads between different tokens. The left is the input to output, middle and 

right is the visualization of combination of input and output. The right one is the visualization of the selected word only. From 
https://github.com/jessevig/bertviz. 

 

Figure 11 the view of attention throughout the model. The rows are the layers and the heads as the 
columns. From https://github.com/jessevig/bertviz 
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and “the cat lay on the rug”. The [SEP] and [CLS] symbols are special kind of symbols to indicate a 

sentence boundary and [CLS] is a symbol appended to the front of the input that is used for 

classification tasks, it is used to summarize the sentence and indicate the end of the sequence.  

From the figures, it can be noticed, which parts of the sentence information the model is focusing 

on in the given layer and the head. Roughly speaking, attention could be comprehended to assign 

scores for the input features based on their importance on the context. Basically, the model will pay 

attention to some parts of the sentence containing more valuable information for predicting the next 

word in the sentence. In the Figure 10, the figure on the left has more attention on the word pair of 

“the” and “cat” indicating that these words are more meaningful for the prediction. It is that 

understanding the relationship between these words might help the model determine that this is a 

description of a cat and grab the context. 

6.2. The Width or Height 
One of the problems for transformer neural models is how to choose the right architecture. In the 

paper [Wlj+21] the author is describing the problem of choosing the proper architecture for the 

transformer. As the author stated, there is a choice between the width and the height of the transformer 

architecture depending on the input data. The number of self-attention layers is described as the depth 

of the model and the dimension of the internal representation as the width, also known as number of 

embeddings and the vocabulary size. The main question is, does the optimal depth-to-width ratio 

depend on the data modality or is it a consequence of architecture expressivity considerations? In 

other words, does the data modality influence the best ratio for main parameters for transformer 

architecture. [Wlj+21] authors identify a vocabulary bottleneck in self-attention, proving that the rank 

of the input embedding matrix caps the network width’s contribution to expressivity.  

As the use of Transformer architectures was extended to different modalities, the effect of this 

architectural element was overlooked. For instance, in the bioinformatics domain [Wsl+17] the 

RaptorX benchmark for protein long-range contact precision with a Transformer model that has width 

1280, but a vocabulary size 33, equivalent to a character-level model. The experimental results 

[Wlj+21] indicate that this is very sub-optimal, as the width is severely capped by the low rank of the 

embedding matrix. 

Furthermore, [Wlj+21] shows that when the width exceeds the input embedding rank, deepening 

is exponentially favorable over widening. The experiments show by the authors that when decreasing 

the vocabulary size below the value of the network width, depth becomes more important than width 

also depending on data modality. All in all, the fine tuning of the transformer on the data should 
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consider architectures which prioritize width or height, there is a possibility that in this way an optimal 

result could be obtained. The author [Wlj+21] empirically demonstrate the problem of not properly 

choosing the architecture by: 

1. A degradation when the input embedding rank is smaller than the network width [Wlj+21]. 

2. An advantage of depth over width when the input embedding rank is smaller than the 

network width [Wlj+21]. 

3. A degradation when the network width is smaller than the internal attention representation 

[Wlj+21]. 

6.3. Decision Transformer 

To solve RL problem with a sequence modeling approach an architecture of DT was presented in 

recent research [Clr+21]. Figure 12 shows an example of such solution which takes as input the 

trajectories generated by offline RL agent environments. While conventional work in RL has utilized 

specialized frameworks relying on Bellman backups, [Clr+21] propose to instead model trajectories 

with sequence modeling, enabling to use strong and well-studied architectures such as transformers 

to generate behaviors. This is done in offline RL domain, where model is trained from a fixed dataset 

rather than online feedback experience in the environment. This enables to train RL policies using the 

NLP solutions with minimal changes. 

The input trajectories are first passed to convolutional encoder for images and linear layer for 

continuous states. The embeddings are then processed by an autoregressive transformer model 

Figure 12 Architecture of a DT presented in paper [Clr+21] 



22 

([Clr+21 uses GPT), trained to predict the next action given the previous tokens using a linear output 

layer. What authors are suggesting predicting is a desired target return by initializing with a starting 

state of the environment and unrolling the sequence (the same approach with standard autoregressive 

generation in language models). As a result, it yields a sequence of actions to execute in the 

environment. On the other hand, if the model does not unroll the desired target return than, the mode 

is called behavioral cloning, which simply clones the actions and rewards of the dataset. 

6.4. Approach 
As stated above the main solution is to change the overall approach of the RL training algorithm. 

By using a generative model, the most important distinction from a casual RL algorithm with bellman 

equation is the conditioning on the reward. In this setup, the DT with given target reward, current 

and previous state is trying to predict the action that leads to this target reward. In contrast, the main 

RL algorithms such as TD and others are trying to maximize the reward by going into the target state 

(Equation 9). As a result, the discount factor is not needed. The suggested approach is discussed in 

more detail [Sch20], where author suggests turning RL task into a form of SL. 

Additionally, the [Clr+21] states that it is nontrivial to model rewards since the main priority is to 

model based on future desired returns, rather than past rewards. That is why, instead of modeling the 

rewards directly, the returns-to-go are used: 

 
𝑅! = & 𝑟!+

7

!!'!

		𝜏 = (𝑅#, 𝑠#, 𝑎#, 𝑅$, 𝑠$, 𝑎$, … , 𝑅7 , 𝑠7 , 𝑎7) ( 14 ) 

The transformer is trained by using the context length parameter K, which defines the number of 

timestamps for each parameter, in total of 3K for each parameter. To obtain token embeddings, a linear 

layer is presented for each input, which projects raw inputs to the embedding dimension, followed by 

layer normalization. For visual inputs, a convolutional encoder is used as mentioned earlier [Clr+21]. 

Additionally, positional embedding is added as a timestamp number. As a result, the tokens are then 

processed by a GPT model, which predicts action tokens via autoregressive modeling. 
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6.5. Credit assignment 

Transformers can perform credit assignment directly via self-attention, in contrast to Bellman 

backups which slowly propagate rewards and are prone to “distractor” signals [Hl19].  The (temporal) 

credit assignment problem (CAP) is the problem of determining the actions that lead to a certain 

outcome (in case of RL, the higher rewards). In other words, the model is trying to evaluate the 

contribution of actions and to determine the most essential actions or states lead to more optimistic 

future. This can enable transformers to still work effectively in the presence of sparse or distracting 

rewards [Clr+21]. Furthermore, a transformer modeling approach can model a wide distribution of 

behaviors, enabling better generalization and transfer [Clr+21]. 

The Figure 13 shows the problem with credit assignment in transformers. The problem lies in the 

size of the context window, when important action or state is outside of the context length, that is why 

the model will miss the game changing action and continue to work with not optimal actions. The 

authors [Clr+21] empirically stated that the increase in the window size improves the quality of the 

results. 

6.6. Key Takeaways 
The authors [Clr+21] present important aspects of introduced architecture and several conclusions: 

• Using sequence modeling the longer context length improves performance. 

• DT can perform long-term credit assignment for sparse reward tasks. 

• Unlike other offline RL methods, no regularization is used. 

• Return-to-go conditioning avoids need for discounting. 

Additionally, [Clr+21] stated, that this solves the following problems: 

• Poor modeling of large distributions – catastrophic forgetting [Clr+21]. 

• Nonstationary cause by learning of both actor & critic networks. 

The cons of this approach: 

• The performance does not align with the state-of-the-art online RL solutions 

Figure 13 Example of limitation of context length of generative model. 
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7. Online Decision Transformer 
The improvement of DT is presented in paper [Zlz22], where authors provide an online setup for 

transformer training. The team of researchers from Facebook AI Research, UC Berkeley and UCLA 

present an approach of improvement of offline decision transformer, by introducing data from the real 

time environment. This enables the transformer, or in this case an agent, get a real time feedback from 

the training environment allowing it to perform additional exploration and thus improving results. It 

incorporates both offline pretraining and online finetuning in one single framework and achieves 

performance competitive with state-of-the-art models on the D4RL benchmark [Fkn+20]. 

RL policies trained purely on offline datasets are typically sub-optimal as the offline trajectories 

might not have high return and cover only a limited part of the state space [Zlz22]. Online interactions 

are thus essential for improving model performance. Unfortunately, the introduction of online signal 

is not so simple and straightforward for improvement of results. 

The problem is that introduction of a naïve application of offline or off-policy RL methods to the 

offline pre-training (simply adding an additional signal from the real time environment) and online 

finetuning regime often does not help, or even hinders, performance [Zlz22]. This poor performance 

in off-policy methods can be attributed to off-policy bootstrapping error accumulation [Klf+19]. In 

offline RL methods, poor performance in the online finetuning regime can be explained by excess 

conservatism, which is necessary in the offline regime to prevent value overestimation of out-of-

distribution states [Zlz22]. Authors [Ngd+20] were the first to propose an algorithm that works well 

for both the offline and online training regimes [Zlz22]. Recent work, [Kft+21] proposes an expectile-

based implicit Q-learning algorithm for offline RL that also shows strong online finetuning 

performance, because the policy is extracted via a behavior cloning step that avoids out-of-

distributions actions [Zlz22]. 

The ODT builds on the DT architecture and incorporates changes due to the stochastic policy. The 

authors [Zlz22] predict the policy mean and log-variance by two separate fully connected layers at the 

output. The basic building blocks are described in Algorithm 1, which summarizes the overall 

finetuning pipeline in ODT, where the detailed inner training steps are described in Algorithm 2. 

7.1. Training pipeline 
The default DT architecture is then modified with several changes in training pipeline as well as 

the introduction of a new replay buffer, called hindsight experience replay (HER) buffer. Due to 

problematic online fine tuning, the generalized stochastic learning objective is introduced in ODT 

[Zlz22]. 
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In the probabilistic setup, the goal is to learn a stochastic policy that maximizes the likelihood of 

the dataset. The authors introduce a special stochastic selection for policy or in other words extraction 

of next action is made probabilistic (Algorithm 1). The results are obtained and compared with 

deterministic variant (Figure 14), where the stochastic policy selection obtains better results. After 

shifting from deterministic to stochastic policies for defining exploration objectives during the online 

phase, the [Zlz22] develops a novel replay buffer that stores trajectories and is populated via online 

rollouts from the ODT. The buffer is populated with trajectories generated from the online 

environment during online training episodes. 

Figure 14 The results obtained by the authors [Zlz22] presents a 
comparison of ODT (red) with a deterministic variant (blue) in terms of 

training in Hopper benchmark. Left is small and Right is large architectures. 
For both, ODT is stable, whereas the performance of the deterministic policy 

declines and exhibits high variability. 
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Authors [Zlz22] use a replay buffer to record past experiences and update it periodically. For most 

existing RL algorithms, the replay buffer is composed of transitions [Zlz22]. After every step of online 

interaction within a rollout, the policy or the Q-function is updated via a gradient step and the policy 

is executed to gather a new transition for addition into the replay buffer [Zlz22]. For ODT however, 

the replay buffer consists of trajectories rather than transitions [Zlz22]. After offline pretraining, it 

initializes the replay buffer by the trajectories with highest returns in the offline dataset (Algorithm 1 

line 2). Every interaction with the environment, it completely rollout an episode with the current 

policy, then refresh the replay buffer using the collected trajectory in a first-in-first-out manner 

[Zlz22]. Afterwards, update the policy and rollout again, as shown in Algorithm 1 [Zlz22]. Similar to 

[Hza+18] , [Zlz22] observe that evaluating the policy using the mean action generally leads to a higher 

return, but it is beneficial to use sampled actions for online exploration since it generates more diverse 

data. 

7.2. Hindsight Return Relabeling 
The authors present a modification for the overall reward-based replay buffer with returns-to-go 

as previously defined in DT. They present an extension to the returns-to-go, because during online 

fine tuning the overall chain of total rewards obtained from a specific state is not known. That is why, 

the hindsight return relabeling comes into play. It is a method for improving the sample-efficiency of 

goal-conditioned agents in environments with sparse rewards [Ggr+19]. The key idea here is to relabel 

the agent’s trajectories with the achieved goal, as opposed to the intended goal [Zlz22]. In the case of 

ODT, we are learning policies conditioned on an initial RTG [Zlz22]. The return achieved during a 

policy rollout and the induced RTG can however differ from the intended RTG. Inspired by HER, 

[Zlz22] relabel the RTG token for the rolled out trajectory τ with the achieved returns, such that the 

RTG token at the last timestep g|τ | is exactly the reward obtained by the agent r|τ |, see Line 6 of 

Algorithm 2. Like DT, Algorithm 2 uses a two-step sampling procedure to ensure that the sub-

Figure 15 Results obtained by the authors [Zlz22], that 
indicate the improvement from previous DT, by introducing the 

new labeled hindsight return to go reward. 
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trajectories of length K in the replay buffer are sampled uniformly. The first step is to sample a single 

trajectory with probability proportional to its length, then uniformly sample a sub-trajectory of length 

K. This return relabeling strategy applies to environments with both sparse and dense rewards. The 

results obtained show, that there is an improvement in performance by introducing a new hindsight 

label (Figure 15). 

7.3. Comparisons 
In their empirical study [Zlz22] evaluated ODT against other state-of-the-art approaches for 

finetuning pretrained policies and investigated how the individual ODT components influence its 

overall performance. They compared ODT’s offline performance with DT and implicit Q-learning 

(IQL) [Kft+21], a state-of-the-art algorithm for offline RL; and compared ODT’s online finetuning 

performance to an IQL finetuning variant. For a purely online baseline, the team also reported the 

results of the soft actor critic (SAC) algorithm [Hza+18]. Empirically, it is shown that ODT is 

competitive with the state-of-the-art in absolute performance on the D4RL benchmark, outperforms 

DT and achieves nearly the same performance as IQL. 

8. Transferring in Atari 
This section describes different strategies that authors use to implement transferring in Atari 

domain. The introduction of the sequences and flipping reinforcement learning to a supervised 

learning domain to generalize knowledge is one of many ways to solve the problem. 

8.1. Actor-Mimic 
The primary approach of [Pbs15] is to spawn, create new network knowledge from already trained 

experts. The paper [Pbs15] views problem of training agent to play multiple environments by 

introducing a multitask and transfer learning. The authors [Pbs15] design a method called “Actor-

Mimic” that leverages techniques from model compression to train a single multitask network using 

guidance from a set of game-specific expert networks [Pbs15]. The form of guidance can vary, and 

several different approaches are explored and tested empirically [Pbs15]. Given a set of source games, 

the primary objective is to acquire a policy network for multitask play on any given source game. To 

achieve this [Pbs15] divides networks into students and experts. For diminishing the impact of 

different scales of Q-values a standardization of guidance is needed. The mathematical notion of 

guidance is to present a squared loss that would match Q-values between the student network and the 

experts. The [Pbs15] authors decide to unify the output from networks of Q-values into softmax 

function, consequently mapping the results into one unified interval. 
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Intuitively, softmax is used from the perspective of forcing the student to focus more on mimicking 

the action chosen by the guiding expert at each state, where the exact values of the state are less 

important [Pbs15]. The authors call this method “Actor-Mimic” as it is an actor, i.e., policy, that 

mimics the decisions of a set of experts 

The transferring part of this setup is when AMN weights are copied for the initialization of next 

DQN agent, that will be trained on the target task. This DQN is now pretrained to work on the next 

task. The author [Pbs15] presents a policy and feature initialization transfer strategies of defined 

networks. 

This approach can be viewed as a pipeline of agents training iteratively to behave on a target 

environment based on the experts and using the previous agent as a weight initialization. 

The overall transferring results indicate that AMN provides a definite increase in learning speed 

for 3 games of Breakout, Star Gunner and Video Pinball [Pbs15]. Authors indicate that the possible 

reasoning for such a performance is the source game Pong having very similar mechanics to both 

Video Pinball and Breakout. 

8.2. Progressive Networks 
Introduced recently by Google Deep Мind, it is architectural solution for neural networks 

[Rrd+16] for application in specific transfer learning domain. This approach considers the architecture 

of neural network and presents an interesting approach that is applicable for leveraging information 

across tasks. 

The problem of transfer learning is the loss of information while finetuning on the next task. This 

phenomenon is called catastrophic forgetting [Kpr+17]. There is a problem, that while learning a new 

task a model can dispose information that is important or essential for the target task and simply forget 

learned experience.  

The issue of transfer learning can be seen in biology as well. In marked contrast to artificial neural 

networks, humans and other animals appear to be able to learn in a continual fashion [Kpr+17]. Recent 

evidence suggests that the mammalian brain may avoid catastrophic forgetting by protecting 

previously acquired knowledge in neocortical circuits [Kpr+17]. When a mouse acquires a new skill, 

a proportion of excitatory synapses are strengthened; this manifests as an increase in the volume of 

individual dendritic spines of neurons [Ypg09]. Critically, these enlarged dendritic spines persist 

despite the subsequent learning of other tasks, accounting for retention of performance several months 

later [Ypg09]. When these spines are selectively “erased,” the corresponding skill is forgotten 

[Cig+15]. This provides causal evidence that neural mechanisms supporting the protection of these 
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strengthened synapses are critical to retention of task performance [Kpr+17]. These experimental 

findings—together with neurobiological models such as the cascade model [Fda05]—suggest that 

continual learning in the neocortex relies on task-specific synaptic consolidation, whereby knowledge 

is durably encoded by rendering a proportion of synapses less plastic and therefore stable over long 

timescales [Kpr+17]. 

Taking biology into the account, the primary objective of strengthening the circuits in the brain is 

moved to architecture for progressive networks. The result is that the network itself is immune to 

forgetting and can leverage prior knowledge via lateral connections to previously learned features 

[Rrd+16]. Basically, it takes the approach of freezing weights for specific tasks while learning on the 

target domain. Catastrophic forgetting is prevented by instantiating a new neural network (a column) 

for each task being solved, while transfer is enabled via lateral connections to features of previously 

learned columns (Figure 16). From the Figure 16, the building blocks of progressive network are 

columns, which represent a single neural network model. Each such columns consists of L blocks 

(layers), with hidden activations h and lateral connections a. Each lateral connection with weights W, 

received input from prievious column U.  The activition calculation is shown in equation 14. 

 ℎ8% = 𝑓(𝑊8
%ℎ89#% +	&(𝑈8

%:;ℎ89#
; )

;<%

) ( 15 ) 

It could be noticed that first column does not have lateral connections. While training on the 

first task and transitioning to the second one, the weights of the first column (model, or network) are 

frozen. The h0 does not have previous connections that is why the sum part of equation 14 is omitted 

leaving only the first step. For the incoming task k, a new column is added and lateral connections are 

provided. In the paper [Rdr+16] athors consider lateral connections as special adapters, which 

Figure 16 From [Rrd+16]. An example of progressive network consisting of 
three columns. The dashed arrows of first two columns on the left were trained on 

task 1 and 2 respectively. The grey box labelled a representation of the adapter 
layer. A third column is generated and added for the final task having access to all 

previously learned features 
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genereliaze information presented in the previous layers of input, by introducing a dimenionality 

reduction.  

The continuos architecture gives an ability to introduce a continual learning agent. This is 

possible because every block of the specific column has the information provided from the previous 

columns and access to the according layer index. From the Figure 16, for instance, taking the third 

column the output 3 block can pick information provided by ℎ$
(#) and ℎ$

($). This gives an opportunity 

to consider the important inputs and ignore the ones that do not influence the target environment. By 

creating lateral adaptive connections, it allows the model to pefrorm trasferring information between 

the tasks and allowing to distiguish best suited input. 

The practical usage of this architecture was done in several domains. The progressive networks 

were applied in transfering for emotinal recognition [Gka+17] and robotics, where progressive neural 

nets could be used to transfer between generated simulations to the real hardware [Rvr+17].  In atari 

domain, across the games it was observed that progressive nets result in positive transfer in 8 out of 

12 target tasks, with only two cases of negative transfer [Rvr+17]. 

From the analysis of the results, the paper stated that progressive networks is not a silver bullet 

for transferring problem. The first issue is that the number of parameters of such network is very large, 

that is why it is parameter-wasterful. Each block requires a full layer for each column, which leads to 

very large scaling. Furthermore, the data feeded to the network requires labeling for specific tasks, 

which requires an additional step to execute. One of the most problematic issue is the sequantiality of 

learning. The model needs to learn tasks in a specific order (to allow the freezing of weights), and the 

ordering of learning affects the results. 

In summary, the progressive networks provide a competative solution to the problem, by 

enabling the ability to distinguish information and provide correct protection of sensative source data 

to prevent catastrophic forgetting. 

9. Object based RL 
The approach of transferring can be applied by implementing a change in overall state of MDP. 

An integral part of every RL is MDP, where every state is encoded in some way. The shift in 

interpretation of state data, leads to more flexible training environment. Majority of RL algorithms in 

simulation domain are using an approach of parsing raw pixel data using convolutional neural 

networks to retrieve an essential information about the environment. Instead of using pixel array of 

data, the new paradigm is to use object-oriented Markov decision process (OMDP) [Dcl+08] and pass 

objects to the model. In this way, data will contain information about the objects that the model must 
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comprehend and extract knowledge from and operate on different domains. The authors [Wc18] 

presented a framework for the setup for object embedding network.  

Current state-of-the-art DRL approaches to videogames learn directly from raw video data, using 

deep convolutional neural networks (CNNs) [Wc18]. Unfortunately, this approach has certain 

limitations. For example, many games (e.g., Starcraft) feature controllable cameras, meaning much of 

the game-state is obscured from the agent at any given point [Wc18]. Working around this, e.g., by 

putting the camera under the agent’s control, adds additional complexity to the agent [Wc18]. 

Additionally, in many cases it may be undesirable, or even impossible to produce a video-output for 

the agent to consume [Wc18]. Rendering videos for multiple agents may be prohibitively expensive, 

and in some cases, there may be no obvious way to produce a good visual representation for NPCs 

(non-player characters) [Wc18]. Considering the interpretation of visual input and how agents learn, 

the paper [Dap+18] presented research about how humans learn to play video games and how 

transferring knowledge from modified environments impacts the result on the target game. The 

authors stated [Dap+18], in case of human players the change in textures, despite structurally the 

same, took twice as long to finish the game, while in comparison the performance of an RL agent was 

approximately the same for the modified and target game. That indicates the difference of 

interpretation of raw video data. 

That is why, a motivation for an alternative approach rises. Comparing with other many other RL 

tasks, the ground-truth information about the current state of the environment is often available in 

videogames, although such information needs to be organized and presented to an agent in some way 

[Wc18]. Hence, the use of this direct information about the current game-state could be alternative to 

working directly on raw video data [Wc18]. Authors [Spl+15] presented a solution that has 

environment dependencies, a set of general features: a number of tokens collected, distance to nearby 

enemy and so on. Unfortunately, the instantiation of such features needs to be done prior to model as 

well as it has a rather strong dependency on the environment.  

To overcome this problem, an object representation of the environment is presented. That means 

the game internals could be used as an object representation of the current state to the learning agent. 

In an object representation, each game-state observation is given as a list of objects, and their classes 

and attributes [Wc18]. For example, the state of one round of the game Pong might be represented by 

two objects of the class bat, with attributes of x-coord, y-coord, and player, and an object of the class 

ball with attributes x-coord, y-coord, x-velocity, and y-velocity [Wc18]. Most of the modern 

applications are written in object-oriented paradigm, that is why, this interpretation of data could be 

applied to any application domain. 



32 

The main advantage of object world is that agents can reuse and share the information of objects 

between each-other as well as the objects provide a good steppingstone for strategic thinking and 

planning for agent. Despite the benefits, the environment internals need to be accessible to the learning 

model. 

The building blocks of object reinforcement learning are classes, objects, and attributes [Dcl+08]. 

In the OMDP domain there is a set of classes which has their own set of attributes, a set of 

corresponding objects [Dcl+08]. The relations between objects are mapped in a relation class, or a 

function. In recent studies, the object relations could be formulated as graph networks [Wmb+19].. It 

is an interesting solution of the problem needs future research. 

The authors presented a practical solution as OEN (Figure 17). This network can not only take a 

list of object-feature vectors of arbitrary lengths as input to produce just a single, yet unified, fixed-

length representation of all the objects within the current game-state, but also be trained on a given 

task simultaneously [Wc18]. Hence, OEN-based approach provides an alternative way to apply DRL 

algorithms within videogames, based on object information [Wc18].  

 
 

Figure 17 Object embedding network architecture on the right, on the left example of object feature extraction process [Wc18] 
Green networks represent embedding networks of objects and the red one is the DRL task network while global pooling is for 

calculating the combined environment state. 

The authors use as training input the game internals, which are converted into object feature 

networks, presented on Figure 17 on the right. For the agent, the process of identification and 

extraction of objects is handled by the environment [Wc18]. That is, the object extraction can be done 

directly via access to the ground internals of the environment. Hence, the wide-spread use of object-

oriented programming languages should help with this process, as many objects are likely to be treated 

as such in code [Wc18]. Thus, the description of a game state is given in an object-oriented format, 

that is the observation from the environment game-state is a list of objects. The process of feature 
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extraction needs to be performed for obtaining object feature vectors from the raw objects based on 

their attributes. 

From the experiments [Wc18], it is observed from all the experimental results reported above that 

the object-based agent is capable of learning in all five games that testing was performed. 

Additionally, across all the games, the agent performs comparably with the feature and image 

representation. [Wc18] experiments demonstrate that OEN-based DRL agent can be an effective 

alternative to the existing agents for playing general video games. 

Due to flexible object representation the naïve transferring algorithm due to simple addition of 

previously generated object knowledge. The transferring knowledge from one task in the setup of 

OEN is the feature vectors of previously selected objects, that could in theory be generalized. 

10. General Task Transformer 
In summary of previous section about object Markov representation, the primary bottleneck of the 

general models is the proper representation of the data. During the writing of the thesis, a general 

based task solving agent GATO was introduced by Google Deep Mind, proving that the DT 

transformer and overall transformer models can be generalized not only across the single ALE domain, 

but across text, image, and robotic data [Rzp+22]. The theoretical assumption about one model to 

operate on several different domain was achieved.  

The primary solution is to introduce learning only on tokenized data. Different kind of raw input 

(text, image, game actions, robot position) was unified by passing special tokenization step on each 

case. To enable processing this multi-modal data, authors serialize all data into a flat sequence of 

tokens. In this representation, GATO can be trained and sampled from akin to a standard large-scale 

Example 1 The GATO general model operating on different data types on 
the left, on the right the top down representation of general GATO model. From 

https://www.deepmind.com/publications/a-generalist-agent. 
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language model [Rzp+22]. During deployment, sampled tokens are assembled into dialogue 

responses, captions, button presses, or other actions based on the context [Rzp+22]. 

• Text is encoded via SentencePiece [Kr18] with 32000 subwords into the integer range [0, 

32000) [Rzp+22]. 

• Images are first transformed into sequences of non-overlapping 16 × 16 patches in raster 

order, as done in [Dbk+20] Each pixel in the image patches is then normalized between 

[−1, 1] and divided by the square-root of the patch size (i.e. √16 = 4) [Rzp+22].. 

• Discrete values, e.g. Atari button presses, are flattened into sequences of integers in row-

major order. The tokenized result is a sequence of integers within the range of [0, 1024) 

[Rzp+22]. 

• Continuous values, e.g. proprioceptive inputs or joint torques, are first flattened into 

sequences of floating point values in row-major order. The values are mu-law encoded to 

the range [−1, 1] if not already then discretized to 1024 uniform bins. The discrete integers 

are then shifted to the range of [32000, 33024) [Rzp+22]. 

After the tokenization part, the model with 1.2B parameters is trained via online interactions. The 

training of GATO is accomplished by online interaction of the environment and the interesting feature 

is that previously selected actions are serving as an input to the generative model. 

In ALE Atari GATO achieves the average human (or better) scores for 23 Atari games, achieving 

over twice human score for 11 games [Rzp+22]. While the single-task online RL agents which 

generated the data still outperform GATO, this may be overcome by adding capacity or using offline 

RL training rather than purely supervised [Rzp+22]. As operating on different tasks between ALE 

domain, at the same time model is showing strong performance in solving 604 distinct tasks. 

Another example of multitask solver was presented again, by Google Deep Mind [Aab+22]. In 

this paper, the agent under the hood uses transformer architecture to generalize knowledge from 

different task domains. Authors strengthen the performance by using hierarchical RL, that is included 

for better action selection. The authors presented a peculiar approach of self-supervised learning, 

where agent learns from a human teacher and consequently extrapolates knowledge from human 

representations. Slowly the model reduces the dependency on human supervision and starts to operate 

on the own. The results are incredible, because the agent learns to operate on virtual environment 

generated by Unity3D engine – recognize the environment, answer specific questions, execute 

commands, observe, and exploit the environment internals (Example 2). This is a small, but firm step 

towards the generalization of models to solve various tasks. In this approach, the model is given a set 
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of trajectories generated by the human teacher and the domain of RL now slowly enters imitation 

learning. The raw input is presented as an image array of 92x72 array values and text-based tokens. 

 

  

Example 2 The multimodal environment presented as virtual generated world with human and agent interaction 
using actions and text. From https://www.deepmind.com/publications/a-generalist-agent. 
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11. Practical Research 
The Atari Learning Environment (ALE) is one of the most popular benchmarks with D4RL. The 

Atari 2600 problem set is picked due to its popularity in academia research [Hgs15], as it stands a 

good benchmark for the RL methods with overall number of 60 environments. Additionally, it 

provides with sufficient range span of simple to complex environments. Only recently, some of more 

complex environments such as Montezuma Revenge and Pitfall were solved, testing the novel 

approach of first return, then explore [Ehl+21]. Also, the Atari environments are suitable due to small 

frame and memory size. 

The environment interpretation is perception of the input signal as a frame image without knowing 

anything about the Atari internals, and choosing actions like a human player, but via the programming 

interface. That is why, it is theoretically possible to switch the environment and use the model free 

nature of RL algorithms. The result of action presents itself as a new observation.  

11.1. Learning dataset 
For practical experiments the offline RL dataset (https://github.com/google-research/batch_rl)  

was used. The learning dataset is a collection of gathered trajectories from 60 Atari Environments 

using a standard learning DQN agent. The learning instance (trajectory) is a tuple of (state, action, 

reward, next state). The tuple consists of numerical data. The state is saved as a numerical 

representation of 160x192 frame, it is eventually resized to 84x84 as done in most of the papers 

[Hgs15]. The reward is a simple integer representing score, which can be normalized between all the 

environments using gamer score values per domain. Finally, action is a simple integer that maps to 

corresponding game input. The training dataset was a size of 500000 states. During the experiments 

different environments (21 in total) and its combinations from the Atari game collection were used: 

“Breakout”, “Seaquest”, “Qbert”, “Pong”, “Alien”, “Amidar”, “Assault”, “Asterix”, “Asteroids”, 

“BankHeist”, “BattleZone”, “BeamRider”, “Bowling”, “Boxing”, “CrazyClimber”, “Freeway”, 

“Frostbite”, “Gravitar”, “Kangaroo”, “MsPacman”, “PrivateEye”, “Spaceinvaders”. The 

Example 3. Collection of Atari game screenshots. The primary input data of the 
model is the game screenshot. From https://www.deepmind.com/blog/agent57-

outperforming-the-human-atari-benchmark. 
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environments were picked according to the most used ones in DQL papers and referencing target 

environments from [Clr+21]. The total number of learning dataset was 1.7 terabyte of data. 

11.2. Related Work 
In order to obtain practical results, DT surfed as a baseline for experiments [Clr+21]. DT was 

improved to obtain results of transferring using a spectrum of environments with different action and 

reward space: 

• The model was configured to be able to train on source and target domains. As a result, an 

initial transferring experiment was performed. 

• The model was scaled to support training input from different kind of environments and 

fine-tuned on the target domains. 

• The model was trained using default parameters using [Clr+21] configuration. The model 

architecture was slightly fine-tuned to improve the quality of results. The authors of 

[Clr+21] stated that there is a room for improvement, regarding the parameter tuning. 

To unify the Atari game different action sizes, the vocabulary number was increased. The primary 

motivation for this setup was to perform the transferring experiment and create a model that could 

work on any given environment from set of Atari. 

11.3. Training pipeline 
For obtaining different results from memory heavy datasets, a training pipeline was introduced. A 

sequence of training on different environments, serializing the information as input due to high model 

RAM usage for the next process and freeing resources to be able to continue the pipeline. The DT was 

trained using two stages. The first phase is pretraining phase. This step launched experiments on 

environments to gather the source environment knowledge and the second stage was training on the 

target domain. The training phase was launching experiments on a parametrized number of trajectories 

from the offline RL datasets and at the same time on every epoch evaluating the model performance 

by launching the testing Atari simulation environment using “Atari.py”. The testing part was 

performing stationary number of episodes (referencing [Clr+21] setup, 10 testing games), or runs, on 

the environment and calculating the gathered score. The total score for the training epoch was the 

mean score across 10 testing episodes. Additionally, model was trained using 3 separate seeds and 

testing scores were calculated among them. The primary metric of evaluation of model performance 

in case of RL is the agents’ acquired score on a specified environment. 

11.4. Models 
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During practical experiments the baseline minGPT model with several primary parameters was 

used as suggested by the author [Clr+21]. 

Default 
Number of layers 6 

Number of attention heads 8 
Embedding Dimension 128 

BatchSize 128 
Context Length K 30 

Learning rate 6*10-4 
 

Depth Oriented 
Number of layers 16 

Number of attention heads 12 
Embedding Dimension 128 

BatchSize 128 
Context Length K 30 

Learning rate 3*10-4 
 

Width Oriented 
Number of layers 2 

Number of attention heads 32 
Embedding Dimension 64 

BatchSize 128 
Context Length K 30 

Learning rate 3*10-4 
 

Small modifications were added, and several model versions were considered. The primary 

changes were to the model number of attention heads, number of layers and toggling of learning decay. 

As well as models that were pretrained on the source environment Pong vary in number of pretrained 

epochs. 

11.5. Workstation 
For these experiments, a workstation with 32 GB of RAM, Intel Core i7-9700K CPU 3.60GHZ 

and Nvidia RTX 2080 was used. 
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11.6. Results 

11.6.1. Decision Transformer 

The Figure 18 presents the results obtained from training DT on 500000 transitions from offline 

dataset, with different model configurations, operating on the target environment Breakout. The 

Model-Type consists of DTR (desired target return) number of layers and attention heads. Keyword 

“default” refers to architecture authors [Clr+21] used, described in tables above in previous section. 

Boxes at the bottom have higher means then at the top of y axis. The results were obtained by training 

each model for 12 epochs across 3 seeds. The authors [Clr+21] used to train for 5 epochs, but to gather 

more data the number of epochs were increased. After each epoch the testing phase was performed 

and model tested on 10 online episode interactions, calculating total scores, and taking mean values 

from 10 episodes. To align with the authors [Clr+21], the score normalization step was performed. It 

is a simple calculation, where the overall score (raw score) from the environment was gathered and 

applied formula [Hln+21]: 

	 𝑟𝑎𝑤_𝑠𝑐𝑜𝑟𝑒 − 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑐𝑜𝑟𝑒
𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙_𝑔𝑎𝑚𝑒𝑟_𝑠𝑐𝑜𝑟𝑒 − 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑐𝑜𝑟𝑒 ∗ 100	 ( 16 ) 

	
The table [Hln+21] provides the proper professional, random scores for calculation. For Figure 18 

values {random_score: “2.0”, professional_score “30”} used. The median is drawn as a solid line on 

the box and mean values as dotted green line. The default keyword means that this configuration used 

the default DT architecture presented by the authors [Clr+21]. The DTR is the hyperparameter for the 

Figure 18 Results of DT models on the target environment Breakout. The normalized score against the model type. DTR is the 
raw score desired target return parameter – expected reward, Layers – number of transformer layers, Head - number of attention 

head respectively. Numbers in bold indicate mean and standard deviation respectively. The values which do not map to distribution 
are marked as simple dots. Baseline at the top, results sorted by mean. Best result at the bottom of y axis. 
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DT, called desired target reward, or return to go. This score is passed to the transformer to perform 

autoregression and predict the future action. From the Figure 18, it can be noticed that the boxes 

shifted to the right have higher scores compared to the others. The bottom red box DTR-270 showed 

better results. 

11.6.2. Transferring experiment 

Model Index Learning 
Decay 

Attention 
Heads Layers 

Transfer 
pre 

training 

Learning 
Rate Epochs Data 

ratio 
Source 

Env 

Desired 
Target 

Reward 
NLD632 False 32 6 None 6*10-4 12 100% - 90 
Default True 8 6 None 6*10-4 12 100% - 90 
LD68 True 8 6 None 3*10-4 12 100% - 90 

LD1216 True 16 12 None 3*10-4 12 100% - 90 
TL1216 True 16 12 1 epoch 3*10-4 12 20/80 Pong 90 
2TL1216 True 16 12 2 epochs 3*10-4 12 20/80 Pong 90 
3TL1216 True 16 12 3 epochs 3*10-4 12 20/80 Pong 90 

Figure 19 An example of raw scores obtained from number of modified environments. X-axis represents raw scores. These 
scores are not normalized. In the table below, the details of modified architectures are presented. Target domain Breakout. Results 

shifted to the right resents better results. 
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2MTL1216 True 16 12 2 epochs 3*10-4 12 10/90 Pong 90 

 
Model Index Mean Values 

NLD632 42.16 +- 17.35 
Default 44.66 +- 12.84 
LD68 47.29 +- 13.29 
LD1216 59.24 +- 18.52 
2MTL1216 62.3833 +- 22.80 
TL1216 48.21 +- 16.05 
2TL1216 47.38 +- 16.06 
3TL1216 40.59 +- 13.22 

 

Figure 19 displays architectures mean and standard deviation scores on the Breakout target domain 

with some of transferring experiment results on source Pong domain. The encoding for the 

architectures is NLD, LD, TL, MTL. The TL represents runs with transfer learning, MTL represents 

run with transfer and modified pretraining data split, LD architecture with modified learning decay, 

where NLD modified architecture with increased number of attention heads. The number on before 

the encoding represents 2TL, 3TL number of pretrained epochs on the pretraining step. 

The primary addition to Figure 19 is runs that incorporate transferring experiment results. The 

results were obtained the same way as in the Figure 18, but with addition of transferring runs. The 

pretraining part was trained on different data split ration and with different pretraining epoch number. 

The primary model was then initialized the weights of the transferring model. 

In summary of Figure 19, the model 2MTL1216 with transferring experiment showed better 

results. 

11.6.3. Increasing number of environments 

Figure 20 shows the results of training 100 epochs. Indicating of no need to train for more than 10 
epochs. The target environment is Pong. X-axis is epoch number and y-axis the overall score 

obtained after the training epoch. The first epoch is labeled as 0. 
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During this experiment phase the model is modified to play on most of the environments from the 

subset. It is a different model compared with section above. The difference is in vocabulary size and 

maximum possible timestamps. The Figures 20 and 21 show a line plot on pretraining on target 

environment Pong with several environments as Source. 

Figures 20 and 21 show negative and positive starts respectively. Likewise, Figure 20 shows that 

training on higher number of epochs is not necessary. For the reason of scaling across number of 

domains, the vocabulary size is increased as well as the maximum number of maximum timesteps is 

increased. From the Figure 20, the orange line represents the baseline training part and the blue line 

below the training with weight initialization after pretraining on 8 games (Amidar, Asterix, Asteroids, 

BankHeist, BattleZone, Boxing, CrazyClimber, Freeway). The higher the scores the better. From the 

Figure 20, the first pretraining step on the (epoch 0) receives negative result and as the epoch are 

increasing the blue line does not surpass the baseline.  

From the Figure 21, training on 8 epochs, the optimistic start was shown by the blue line, while 

baseline result is shown in brown. The combination of Amidar-Asterix-Asteroids-Bankheist is shown 

in blue. For the reminder, the score for each epoch is calculated across 3 seeds with mean over 10 

testing episodes. 

In order to see the overall score of pretraining on number of different environments an index 

encoding in figures was used to indicate the number of games that were included into pretraining 

phase. From the Figure 22, the y-axis graph contains the encoded values of overall scores of the model 

on the target environment breakout. 

Nr Name W_19 W_18 W_17 W_16 W_15 W_14 W_13 W_10 … W_1 
1.  Amidar + + + + + + + +  + 
2.  Asterix + + + + + + + +  - 
3.  Asteroids + + + + + + + +  - 

Figure 21 Results obtained on training with different pretraining environments. Brown line indicates baseline 
and blue line indicates positive pretraining result. 
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4.  Bankheist + + + + + + + +  - 
5.  BattleZone + + + + + + + +  - 
6.  BreamRider + + + + + + + +  - 
7.  Bowling + + + + + + + +  - 
8.  Boxing + + + + + + + +  - 
9.  Breakout + + + + + + + +  - 
10.  CrazyClimber + + + + + + + +  - 
11.  Freeway + + + + + + + +  - 
12.  Frostbite + + + + + + + +  - 
13.  Gravitar + + + + + + + -  - 
14.  Kangaroo + + + + + + - -  - 
15.  MsPacman + + + + + - - -  - 
16.  Pong + + + + - - - -  - 
17.  PrivateEye + + + - - - - -  - 
18.  SpaceInvaders + + - - - - - -  - 
19.  Venture + - - - - - - -  - 

The Figure 22 indicates the results of training on the accumulated environment weights from 

different source environments. The x axis shows raw scores of the target environment. The results 

shifted to the right of the x axis have higher means. The boxes are sorted out according to mean values. 

The box on the bottom of y axis have higher results compared to box on the top. The baseline is the 

model that had no initial weight injection, it is simple default test run on the environment without 

Figure 22 Target environment Breakout, pretraining on 19 different games. “w_1.pt” is the encoding for initialization weights. The number 
indicates how many environments were used for pretraining. The weights were gathered by accumulating training weights by the number of 

environments included. Numbers in bold indicate mean and variance. Green dotted line on the box is the mean, while the solid line is the median. 
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pretraining. The maximum and minimum values are whiskers and dots on the graph indicate the out 

of the distribution scores. Results obtained from Figure 22 are using 6 layers, 8 attention heads and 

128 embeddings. The same architecture as presented by authors [Clr+21].  

Figure 23 represents the same multiple environment weight-oriented results but using a different 

width-oriented architecture. Comparing to height-based architecture, the mean results are smaller. 

Figure 23 Results obtained with width-oriented architecture. 2 layers, 32 attention heads, 64 embeddings. Number of pretrained environment 
weights on the y-axis and the x-axis represents raw score. The results shifted to the right have higher scores. 

Figure 24 Sorted by accumulated environment count based results showing in gradient between blue from 1-10 and 10-19 red, pretraining split 
based on environment count. Score is not normalized. Baseline is on the top colored in blue. 
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Figure 24 shows example of values sorted by environment count for the Figure 22, where the color 

indicates the two clusters (1-10 and 10-19). 

Additionally, the important factor is to train on proper number of pretraining iterations. Lowering, 

the number of iterations in pretraining stage on source environments can lead to blending of results.  

Furthermore, Figure 25 indicates results on pretraining with 1000 iterations compared with 10000 

iterations on Figure 22. During the calculations, it was noticed that the results are not drastically 

different but lowering the number of pretraining iterations on source datasets, can lead to lowering the 

impact of results. This is an intuitive feature, but when transitioning to more light architecture, the 

Figure 25 Results obtained using a depth-based architecture with pretraining step training only on 1000 number of 
environment steps. 

Figure 26 Results obtained from pretraining on single environment. Depth based architecture 6 layers-8 attention-128 embedding. 
DTR is set fixed set to 90. The y-axis indicates the environment name and the x-axis the scores. The baseline is selected in green box. 

Target Breakout, raw scores. 
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lower number of pretraining iterations makes greater impact on width-based architecture, compared 

to a more depth oriented.  

The results (22-24) were obtained by using accumulated knowledge from the 19 environments. 

From the Figure 24 the maximums from pretraining on accumulated values are higher, but the mean 

score from transferring is lower the baseline. That is why, pretraining on single environment without 

accumulation can be considered. Consequently, the impact of each environment alone without any 

additional accumulation was calculated in Figure 26. The baseline without the pretraining is selected 

in a green box. The pretraining on single environment data gave a positive increase in results, leading 

the “MsPacman” environment most favorable compared to others in “Breakout” target domain. 

To compare the transferring on another target domain, the “Qbert” was picked as a target. The 

reason was that [Clr+21] used it as a baseline. After training on Breakout environment, environment 

“Qbert” was picked that was not included in pretraining environment dataset. The results from the 

Figure 27 indicates increase in results obtaining best raw scores 3089+-1120.19 with initial weights 

from “SpaceInvaders”. With introduction of transferring, these results from Figure 27 are higher than 

provided by the authors [Clr+21] (Appendix B), comparing with initial DT approach. 

11.7. Analysis 
Due to the stochastic nature RL the observed variance is quite large in observed results between 

episodes and between average of different test runs. Additionally, due to time and computational 

constraints only several target domains were chosen aligning with [Clr+21] authors. Nevertheless, due 

to small number of target environments certain patterns can be observed. This section summaries the 

results to distinguish the dependencies and highlight vital observations. 

Figure 27 Results obtained from training on Qbert target environment with transferring approach. Raw scores. Results are not 
normalized. 
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11.7.1. Finetuning on single source 
The Figure 18 indicates the training using different value of DTR hyperparameter (expected 

reward) as well as changing the architecture. The results of Figure 18 indicate that increasing the DTR 

can lead to better results. It should be noticed that it cannot be set to a maximum arbitrary number. 

The maximum possible score in Breakout environment 896. Comparing runs with 800 and 300 DTR 

values and default architecture, there is no major impact in scores. However, finetuning on 270 and 

increasing the depth of the architecture increases the results reaching [Clr+21] authors best results and 

improving the standard deviation. 

Figure 19 indicates the results obtained by implication of transferring experiment.  In practice, the 

[Clr+21] default model was used and obtained mean values. Afterwards, small fine tune of the model 

(or in other words mutation) was done in order to gather practical results for comparison purposes for 

transfer models. The LD1216 model showed better results in this experiment domain. Consequently, 

the code was modified to work with mixed data of several environments. As a result, the transferring 

approach was made using the same architecture of LD1216 as base, but small differences and 

configuration specific details are defined in table above in model description section. As mentioned 

before the primary part of the evaluation criteria was the score obtained in the Atari Breakout 

environment. The experiments in Figure 19, are containing results with static DTR parameter set to 

90. The baseline result is 44.66 +- 12.84 with DTR set to 90. Taking this into account, the transferring 

experiment presented an increase in mean performance with Pong environment dataset. The 

interesting part is that Pong and Breakout are almost the same, but Pong has horizontal orientation vs 

Breakout vertical one. Despite the differences on observed data, with small finetuning the model with 

initial weight trained on Pong improved the results. The data split of 10% gave better results, as well 

as pretraining with 2 epochs improved the overall picture. 

Additionally, the important parameter of Decision Transformer is the context length which was 

set as constant as well with a value of 30, according to [Clr+21] conclusions. These parameters and 

impact could be a future scope of analysis. 

11.7.2. Scaled transferring 
To see how the scaled model operates on number of environments, long distance experiment with 

100 epochs was run. Figure 20 showed pessimistic start due to pretraining on larger number of 

environments as well as showing a problem that increase of pretraining environment on target domain 

could cause a slight degradation even in a longer run of 100 epochs. Also, the figure shows no need 

to train on big number of epochs, because values span across the same range in longer run. 
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For reflecting the overall pretraining combination impact of environments, the accumulative 

experiment was run. The scaling of DT on 19 source environments, was presented in Figure 22 and 

23. In summary, the increase in source environments did not drastically improve the mean values of 

results comparing with baseline, but there is a positive change in achieving more maximum results 

across the distribution in Figure 22, with weights 11, 13 and 1. The interesting observation is that it 

was expected to see a degradation of mean results, when increasing number of additional 

environments (so that weights with 19 should be at the top). The empirical results indicate that the 

number of environments is not impacting the transferring results in negative way literally. Even with 

all 19 environments included the run with 19 is in the middle of score chart. Taking this into account, 

the game mechanics and the similarities between the input could be the possible highest impact on 

scores compared to the number of environments. The run with 8 environments did not contain the 

Breakout pretraining, but the 9th presented the Breakout data for target domain and improved the 

results. 

Also, the motivation for fine tuning was the [Clr+21] authors’ statement about future work. In the 

domain of RL, where the input data is dependent on actions and states, the increase of attention heads 

and a small number of layers increasing the depth of the architecture could be an intuitive approach, 

but also the alternative approach of widening the architecture. By introducing the higher number of 

attention heads and lowering the number of embeddings and layers could provide a better architecture, 

but empirical results indicate the depth-based approach is more favorable (comparing results 23 and 

22). 

Likewise, a split is presented in Figure 24. The figure using color splits data into two sectors 1-10 

and 10-19, showing several details. It can be noticed that 10-19 environment pretraining gives higher 

maximum results and more likely to appear around higher pretraining environment numbers. The 11 

pretraining achieved highest reward from the environment after the baseline. 

Moving from the accumulation pretraining strategy to single source environment resulted in 

improvement of baseline mean scores. The increase in 20 score points for baseline was accomplished 

by pretraining on single “MsPacman” environment. From the Figure 24, The “Breakout” pretraining 

on same environment data intuitively gave higher results, proving that the generalization was 

happening. The peculiar result is that “MsPacman” presented increase in mean score. One of 

explanations could be that “Breakout” environment and “MsPacman” are horizontally oriented as well 

as the movement from left to right is present in both games. Additionally, the breakout paddle board 

and “MsPacman” ghost board have square shape. Furthermore, the pretraining on more complex 

environment, but with important similarities could lead to increase in results in general. Likewise, the 
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“BattleZone” environment was the third from the top to improve the results. The interesting fact is 

that game is 3D oriented and moving to 2D space presents a simplification, which leads an increase 

in mean scores. Additionally, same behavior is noticed with target environment “Qbert”. From Figure 

27 the “Qbert” environment best performed on “Asteroids” pretraining environment, obtaining higher 

scores. The possible explanation could be related to previous target environment. “Qbert” is about 

jumping around pyramid tiles across horizonal and vertical span. “Asteroids” have a higher range span 

of controls moving horizontally and vertically, introducing higher complexity, which could be useful 

in transferring domain. Finally in Figure 21, the Pong environment is having a positive increase during 

transferring. 

12. Completed work 

• The generative model was successfully trained and evaluated to play in RL domain using 

offline data. 

• The generative model was successfully scaled across number of 19 Atari environments. 

• Transformer model was able to perform transferring experiment using single and 

accumulated knowledge from 19 environments. 

• Transformer width and depth-based architectures were tested in operating for offline 

domain. 

13. Results 

• Results of the paper [Clr+21] were improved in scope of this work. 

• The pretraining on single environment improved baseline results. 

• Transferring on higher number of environments achieved lower baseline results. 

• The accumulative approach for pretraining environment data led to lower results (Figure 

24). 

• Target environment “Breakout” had best transferring on “MsPacman” environment from 

a set of 19 environments (Figure 26). 

• Target environment “Qbert” had best transferring on “Asteroids” environment from a set 

of 19 environments (Figure 27). 

• In case of “Qbert” with transferring improved baseline as well as results in [Clr+21] 

obtained. 

• Applying transferring with finetuning on similar game-based datasets mean results were 

improved from 44.66 +- 12.84 to 62.38 +- 22.80 (Figure 19). 
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14. Observations 

• The interpretation of RL task as sequence-to-sequence domain practically allows to use 

the scaling nature of generative approach. Unfortunately, due to lack of online interactions 

the generative approach can only compete with offline RL domain, achieving lower score 

values compared to DQN agents. After observing how the agent interacts with the 

environment, it can be stated that more exploration of the environment is needed.  

• The ability to pretrain on multiple and different source environments grants the model to 

operate on all 19 environments at the same time. Taking this into account, the approach of 

using Transformer for solving RL domain can be used to learning multiple domains at the 

same time using same network. This ability is lacking in most of DQN agents. 

• The knowledge accumulation experiment could be researched further by introducing 

deeper architecture. There is a probability that the model architecture was too shallow to 

handle 19 environments. Additionally, special inner task mapping could be implemented 

to improve the result, but this tactic is forcing model to attach to environment specifics, 

resulting in loss of generality. 

• The number of pretrained environments does not influence intuitively the mean results, (in 

other words - the higher count leads to better, or the worse performance). The higher 

number of environments between 10-19 had better results than 1-10 (Figure 24). The 

possible explanation could be presence of “Breakout” data in the second half. In other 

words, the similarities between the target and source environment have higher impact on 

transferring compared with the number of sources. 

• From experiments, the data split of 10% of observations from foreign environment and 

90% of observations from target could lead to better transferring results (Figure 19). 

15. Research Summary 
The view of the RL problem as a sequence-to-sequence paradigm is quite novel. The primary goal 

of the thesis was reached, by training a generative model to operate on RL domain and to perform 

transferring experiment on multiple source environments. The tasks formulated beforehand were 

accomplished: 

• The thesis presents a theoretical overview of the problem and description of several state-

of-the-art solution approaches. 

• The training and parameter tuning of generative model was performed. 
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• The scaling of the generative model on several source environments was performed. 

• The quantification of pretraining and the benefits were displayed in obtained scores. 

 

16. Conclusions 
Summarizing the results obtained, several conclusions can be formulated: 

• Pretraining on single - more complex environment (Figure 26, Figure 27), but with one 

important aspect of similar mechanic, orientation, or visual input surpasses mean baseline 

results and makes transferring successful. 

• From the experiments, the accumulation transferring on 19 environments showed lower 

baseline scores. Despite the fact, the higher number of environments positively influences 

the higher maximums (Figure 24), resulting in improvement. 

• From experimental results, the depth-based architecture is more favorable compared to 

width based (Figure 23).  

• Pretraining on higher number of environments, can lead to lower performance in first 

epochs (Figure 20).  

• Large number of environments in epochs 5+ is not making a significant impact on results. 

• Larger offline pretraining dataset gives positive transferring impact more for depth-based 

comparing with width-based. 
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17. Future Work 
This part of work initialized the main experiment of transferring, allowing broader and more 

detailed research in future stage. 

• The generative transformer could implement an online signal from the environment to 

increase the exploration of the data. 

• The data from the environments, can have additional transformations introducing 

unification across domains for improvement of transferring and operation results. 

Some interesting experiments can be made: 

• Introducing GAN networks to generate the random transferring states of Atari 2600 

screenshots. 

• Learning from demonstrations, or a supervisor. The model can be improved to include the 

offline or online input from the human player and use them as source. Moving the problem 

into self-supervised domain. 
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19. Appendix 

  

Example of loss values on target domain Breakout. 

Example loss function on several pretrained environments on 777 seed. 
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Example of training across 4 seeds on the Pong environment 

Example of score per episode in knowledge accumulation experiment. Color indicates division into two groups (1-10) (10-19) environment count. 
Red lines have more positive start and higher maximum results. 
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20. Acronyms 

AI Artificial Intelligence 

A2C Actor-Critic Methods 

DL Deep Learning 

DT Decision Transformer 

DTR Desired Target Return 

DQN Deep Q Network 

DDQN Double Deep Q Network 

HER Hindsight Experience Replay 

IQN Implicit Q Network 

MDP Markov Decision Process 

NLP Natural Language Processing 

ODT Online Decision Transformer 

OMDP Object Markov Decision Process 

RL Reinforcement Learning 

RTG Returns to go 

RNN Recurrent Neural Networks 

SL Supervised Learning 

TL Transfer Learning 

 


