


Abstract

A finite set of primes S is called unavoidable with respect to integer b > 1 if and only if
for every ξ > 0 the sequence of integers ⌊ξbk⌋ contains infinitely many elements divisible
by primes from S. It is known that unavoidable sets of primes exist when b = 2, 3, 4, 6

and it does not exist for an integer b > 1 such that b − 1 is square free. If there is no
unavoidable set of primes for b, for every finite set of primes S we call its falsifier a real
ξS > 1 such that the sequence ⌊ξSbk⌋ has only finitely many elements divisible by primes
from S. In this paper I classify all b > 1 whose all falsifiers have two ultimately repeating
digits. In particular, I show that if b > 3 is prime, then there is no unavoidable set of
primes for b. Based on this thesis, I co-authored an article which was published in the
International Journal of Number Theory [12].

Santrauka

Baigtinė pirminių skaičių aibė S yra vadinama neǐsvengiama sveikojo skaičiaus b > 1

atžvilgiu tada ir tik tada, kai visiems realiems ξ > 0 sveikųjų skaičių seka ⌊ξbk⌋ turi be galo
daug narių, dalių ǐs aibės S elementų. Yra žinoma, jog neǐsvengiamos pirminių skaičių
aibės egzistuoja, kai b = 2, 3, 4, 6, ir neegzistuoja, kai b−1 yra bekvadratis. Jeigu b atžvilgiu
nėra neǐsvengiamos pirminių skaičių aibės S, tuomet mes S falsifikatorių vadiname realų
ξS > 0 tokį, kad seka ⌊ξSbk⌋ turi tik baigtinį skaičių narių dalių ǐs aibės S elementų.
Šiame straipsnyje aš klasifikuoju visus sveikus b > 1, kurių falsifikatoriai turi galiausiai
du pasikartojančius skaitmenis, taip pat įrodau, jog kai b > 3 yra pirminis tuomet b

neturi neǐsvengiamos pirminių aibės S. Pagal šį baigiamąjį darbą buvo ǐsleistas straipsnis
moksliniame žurnale “International Journal of Number Theory” [12].
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1 Introduction1

Consider the sequence of fractional parts {ξbk} in k ∈ N0 where ξ, b ∈ R
are such that b > 1 and ξ ≠ 0. Sequences of this kind have been studied
for a long time. One of the earliest results is from Hardy and Littlewood
[19] which states that the sequence {ξλk} in k ∈ N0 is everywhere dense on
(0, 1) for almost all ξ where λk is an increasing sequence of integers.

In particular, if we consider λk = b
k for an integer b > 1 and for k ∈ N0, we

obtain that the sequence {ξbk} is everywhere dense for almost all ξ. However,
this obviously fails when ξ is rational as then ξ will have ultimately repeating
digits in base b.2 Mercifully, the set of rationals is of measure zero as it is
countable.

Later this result was improved by Weyl [31]. Weyl’s result is more gen-
eral, but the particular case that will be important for us is that for any real
b > 1 and almost all real ξ the sequence {ξbk} is everywhere dense.

Historically, the case ξ = 1 has received particular attention and has been
studied by Pisot [25, 26], Vijayarhagavan [28, 29, 30], and Salem [27], among
others. Although a lot is known about this special case, a lot remains open.
For example although Koksma proved that the sequence {bk} is uniformly
distributed in (0, 1) for almost all b > 1 [21], Pisot and Salem proved that for
a Salem number b, the sequence {bk} is everywhere dense on the unit interval
but not uniformly distributed[27]. In general it remains open for which b > 1

the sequence {bk} is uniformly distributed, for which it is everywhere dense,
and for which it is neither. Of particular interest is an old conjecture of
Pisot and Vijayarhagavan which states that {bk} is everywhere dense on
(0, 1) when b > 1 is a non-integer rational [23]. For some work on this and
similar problems see [5, 8, 10] and see [4] for more information on Pisot and
Salem numbers.

In the other direction, if we instead fix b we have some interesting con-
jectures as well. Of particular interest is that of Mahler [22]. Mahler studied
the distribution of {ξ(3/2)k} and conjectured that there are no real ξ ≠ 0
(which Mahler called Z-numbers) such that the sequence {ξ(3/2)k} all falls
into the interval [0, 1/2). Mahler’s conjecture remains open, although see
[1, 9, 13, 16, 32, 33] for some work in this direction.

On the other hand, surprisingly little is known on the truncated integer
1Based on this thesis, I have co-authored an article in [12].

Pagal šitą darbą ǐsleistas straipsnis žurnale [12].
2See [15, p. 13] for a proof when b is prime. The proof is identical for all b.
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sequence ⌊ξbk⌋. A conjecture of Whiteman on integer parts (see problem
E19 in [18]) states that the sequence ⌊bk⌋ contains infinitely many primes
for b > 1 a non-integer rational. Due to a remarkable paper by Baker
and Harman [3] we know that for almost all real b > 1 the sequence ⌊bk⌋
contains infinitely many primes. Unfortunately, as is the common wisdom
with metric results of this kind, important exceptions are bound to happen.
Baker and Harman in the same paper show that although ⌊bk⌋ has infinitely
many primes for almost all b > 1, the number of b for which ⌊bk⌋ has only
finitely many primes is in fact uncountable. See also [2, 24] for the existence
of b > 1 with ⌊bk⌋ prime infinitely often.

The situation is not much better when we consider the question if the
sequence ⌊ξbk⌋ contains infinitely many composite numbers. Due to the
aforementioned result of Weyl [31] we know that the sequence {ξbk} is ev-
erywhere dense on (0, 1) for almost all b > 1 and almost all ξ. In particular,
if for a given ξ ∈ R the sequence {(ξ/2)bk} is everywhere dense on the unit
interval, it follows that {(ξ/2)bk} < 1/2 infinitely often, and hence the se-
quence ⌊ξbk⌋ is even (and therefore composite) infinitely often. Hence, we
have the following lemma:

Lemma 1. For all b > 1 and almost all ξ ∈ R the sequence ⌊ξbk⌋ with
k ∈ N0 is composite infinitely often.

This then leads us to the following conjecture:

Conjecture 1. Let ξ, b ∈ R be real such that b > 1 and ξ ≠ 0. Then the
sequence ⌊ξbk⌋ contains infinitely many composite numbers.

Unfortunately, not much is known with this conjecture. For fixed ξ = 1
the first result of this kind is by Forman and Shapiro [17] which states
that the sequences ⌊(3/2)k⌋ and ⌊(4/3)k⌋ are composite infinitely often for
k ∈ N0. Later the set of b > 1 for which conjecture 1 holds for fixed ξ = 1
was expanded to when b > 1 is a quadratic unit [6] and more generally a
Pisot or Salem number [7].

If we do not fix ξ ∈ R then even less is known. Dubickas and Novikas in
[14] observed that Forman and Shapiro’s method also works for ⌊ξ(3/2)k⌋
and ⌊ξ(4/3)k⌋ where ξ > 0. In this paper Dubickas and Novikas establish
that the sequence ⌊ξbk⌋ has infinitely many composite numbers where ξ > 0,
k ∈ N0 and b ∈ {2, 3, 4, 5, 6, 3/2, 4/3, 5/4}. These are in fact the only explicit
numbers b for which this result is known.

It should be noted now as to how we know that these numbers are com-
posite. With Weyl’s result we saw that the sequence ⌊ξbk⌋ is composite
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for almost all ξ ∈ R because infinitely many elements of the sequence are
even. And in [14] for each b ∈ {2, 3, 4, 6, 3/2, 4/3, 5/4} there is a finite set of
primes S = S(b) was found such that for all ξ > 0 there are infinitely many
elements in ⌊ξbk⌋ that are divisible by some element of S. This then justifies
the following definition:

Definition 1. We say that a finite set of primes S is unavoidable with
respect to a real b > 1 if for every real ξ > 0 the sequence ⌊ξbk⌋ has infinitely
many member divisible by some element of S.

It should be noted here that in [14] the number 5 does not have an
unavoidable set of primes. Later Dubickas observed that if for an integer
b > 1 the number b−1 is not squarefree then b does not have an unavoidable
set of primes [11]. In the same article Dubickas conjectured that b = 2, 3, 4, 6
are the only integers b > 1 that have an unavoidable set of primes:

Conjecture 2 (Dubickas). Let b > 1 be an integer with b ≠ 2, 3, 4, 6. Then
there is no unavoidable set of primes S with respect to b.

In this paper I generalise the result obtained by Dubickas in [11] by
proving that the above conjecture 2 holds for when b > 3 is prime. The
results obtained are more general and also establish conjecture 2 for certain
other classes of integers, including, b = 2

2k+1 − 1 for k ∈ N.
In the next section we introduce some basic terminology and concepts.

Following that we prove a theorem of Dubickas from [11] in a different way
that will more naturally generalise to the case when b > 3 is prime. In section
3.2 we then establish the main result which we use in the final section to
prove that when b > 3 is prime then b does not have an unavoidable set of
primes.

It should be noted here that based on this thesis I have an article pub-
lished in the International Journal of Number Theory [12]. The main results
are mostly the same, corollary 10 corresponds to proposition 4.1 in [12] and
corollary 11 corresponds to theorem 1.2 in [12]. These are the main re-
sults in [12]. A few key differences between the articles: theorem 2.1 in [12]
is slightly weaker than the corresponding theorem 9 here, as the slightly
stronger premises (A1), (A2) in [12] were sufficient to establish the main
results of [12]. The weaker premises B1-B5 are used here since in this article
I am more focused on proving necessary and sufficient conditions for using
the same method as in [12], as opposed to immediately establishing the main
results of [12].
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In addition, most proofs and results are the same, but some of them are
expressed differently in [12] than in here as to fit the premises (A1),(A2)
in that article. In particular, the proofs of theorem 2.1 in [12] and that of
lemma 7 here are essentially the same, as well as the discussion in section 3.1
here and the discussion in section 2 of [12]. The proofs of corollaries 11, 10
in this thesis and the discussion in chapter 4 in [12] also remains essentially
the same.

2 Basic Concepts and Theorems
In this section we introduce basic terminology, concepts, and results we shall
use in the subsequent section.

First, N is the set of positive integers and N0 = N ∪ {0}. P is the set of
prime numbers.

An integer b ∈ N is squareful if it is divisible by c
2 for some integer

c > 1, otherwise it is called squarefree.
The radical of a positive integer is the product of all the primes that

divide it.

rad b = ∏
p∣b,p∈P

p

From the above definitions it is clear that b is squarefree if and only if
b = rad b, otherwise rad b < b. In the following chapters we shall use the
Chinese remainder theorem extensively. The statement of the theorem is
given for completion. See [20, p. 34] for more details.

Theorem 2 (Chinese Remainder Theorem). Let a = a1 . . . an for ai ∈ N and
let gcd(ai, aj) = 1 for i ≠ j. Let t1, . . . , tn be integers. The set of equations:

x ≡ t1 mod a1 . . . x ≡ tn mod an

Always has a solution, and any two solutions differ by a factor of a. In
particular, there is a solution 0 < x ≤ a.

The set of congruence classes mod a, Z/Za for a ∈ N is always a ring and
it is a field if a is prime. In the latter case the set of non-zero remainders
Z/Zp−{0} is the set of all units in the ring, and as such form a multiplicative
group of order p − 1. For more details see chapters 2 and 3 in [20].

Even though x ∈ Z/Za is an equivalence class of integers we often con-
flate it with the integer {0, 1, . . . , a − 1} ∩ x as x will always have a unique
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entry in this set and the whole equivalence class can be retrieved from such
an integer. Such practice is standard.

An integer x ∈ Z coprime with a ∈ N is a quadratic residue mod a if
there exists t ∈ Z such that

x ≡ t
2

mod a

Otherwise, x is a quadratic non-residue mod a. It is a known fact
that if p > 2 is prime then there are as many quadratic residues mod p as
there are quadratic non-residues mod p. For more details see chapter 5 in
[20].

Next, we shall look at some terminology particular to the topic of this
paper. First, here we reiterate the definition of an unavoidable set of primes:

Definition 2. We say that a finite set of primes S is unavoidable with
respect to an integer b > 1 if for every real ξ > 0 the sequence ⌊ξbk⌋ in
k ∈ N0 has infinitely many member divisible by some element of S.

Otherwise, we say that S is avoidable with respect to b. In this case,
for a given S we call its falsifier a real number ξ > 0 such that the sequence
⌊ξbk⌋ in k ∈ N0 has only finitely many elements divisible by members of the
set S.

Notice that it is sufficient to consider the case ξ > 1 as the sequence
⌊ξbk⌋ has infinitely many composite numbers if and only if the augmented
sequence ⌊ξbk+N⌋ has infinitely many composite numbers for all N ∈ Z. If
we take N to be large enough we can guarantee that ξb

N
> 1 as b > 1.

Hence, for all ξ > 0 there exists ξ
′
= ξb

N
> 1 such that the sequence ⌊ξbk⌋

contains infinitely many composite numbers if and only if the augmented
sequence ⌊ξ′bk⌋ contains infinitely many composite numbers. As such, b > 1
has an unavoidable set of primes S if and only if for all ξ > 1 the sequence
⌊ξbk⌋ has infinitely many numbers divisible by primes from S.

Likewise, if S has a falsifier ξ > 0 it must also have a falsifier ξ
′
> 1

by the above considerations. Therefore, henceforth whenever we talk about
a sequence ⌊ξbk⌋ we imply that ξ > 1 is real, b > 1 is an integer and the
sequence is in k ∈ N0, unless otherwise stated.

As mentioned earlier if ξ > 1 is rational then ξ is ultimately repeating in
base b (see [15, p. 13]). This gives rise to the following definition:

Definition 3. Let b > 1 be an integer. We say that b has an n digits
solution if for every finite set of primes S there exists a rational falsifier ξ
such that in base b the number ξ has exactly n ultimately repeating digits.
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Finally, in order to represent ξ in base b in a unique way we require that
ξ does not ultimately consist of the digit b − 1 repeated indefinitely [15,
p. 12–13]. For future use we note this condition here:

Proposition 3. Let ξ ∈ R then when represented in base b > 1, ξ does not
ultimately consist of the digit b − 1 repeated infinitely.

3 Main Results

3.1 One Digit Solution

It has already been shown in [11] that Conjecture 2 holds when b − 1 is
squareful. In this section I give an alternative proof of this claim and connect
it to a single digit solution. Indeed, the claim we shall proof is that b has a
single digit solution if and only if b − 1 is squareful.

For future use we denote the condition here and proceed to the proof:

b − 1 is squareful (A1)

Lemma 4. Let b > 1 be an integer with b− 1 squareful. Then b has a single
digit solution.

Proof. Let S be a finite set of primes and define B = rad(b − 1). We
shall find a falsifier for S of the form ξ = X0, (B). As b − 1 is squareful,
B = rad(b − 1) < b − 1 and ξ is of the right form as in proposition 3.

For every p ∈ S we will find a remainder xp such that if X0 ≡ xp mod p

then for every k ∈ N0 the sequence ⌊ξbk⌋ is not divisible by p. Then by the
Chinese remainder theorem we know that there exists a natural X0 ∈ N such
that X0 ≡ xp mod p for all p ∈ S as distinct primes are obviously coprime.
This then finishes our construction for ξ.

First, if p ∣ b − 1 then p ∣ rad(b − 1) = B, as such we have that:

⌊ξbk⌋ = X0b
k
+Bb

k−1
+Bb

k−2
+ . . .+Bb+B ≡ X0(b− 1+ 1)k ≡ X0 mod p

Thus we may choose xp = 1 for such p ∈ S.
On the other hand if p ∤ b − 1 we may take

xp ≡ −B(b − 1)−1 mod p
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Since p ∤ b−1 then p ∤ rad(b−1) = B, and as such p ∤ xp. We shall show
that ⌊ξbk⌋ ≡ xp mod p by induction. For this purpose, denote Xk = ⌊ξbk⌋.
Notice that X0 ≡ xp mod p by construction of X0. Assume that Xk ≡ xp

mod p. Then:

Xk+1 = bXk +B ≡ bxp +B ≡ xp + (b − 1)xp +B ≡

≡ xp −B(b − 1)−1(b − 1) +B ≡ xp mod p

Therefore, by induction, for all k ∈ N0, Xk ≡ xp ≢ 0 mod p, as required.

The proof in the other direction is slightly simpler:

Lemma 5. Assume that b > 1 has a single digit solution. Then b − 1 is
squareful.

Proof. Let S consist of all the prime divisors of b − 1. Then, clearly, S
is a finite set of primes. S ≠ ∅ as b > 2 since 2 has an inevitable set of
primes (see [14] for proof of this claim) and as such cannot have a single
digit solution. Then let ξ = X0, (B) be a single digit falsifier of S. Let
p ∣ b − 1 and thus p ∈ S, then

⌊ξbk⌋ = X0b
k
+Bb

k−1
+Bb

k−2
+ . . . +B ≡

≡ X01
k
+B1

k−2
+B1

k−2
+ . . . +B ≡ X0 + kB mod p

Assume that there exists p ∣ b − 1 such that p ∤ B. Let k0 ∈ N be an
integer such that k0 ≡ −X0B

−1
mod p and let n ∈ N0 be arbitrary, then

⌊ξb(np+1)k0⌋ ≡ X0 + (np + 1)k0B ≡ X0 + k0B ≡ X0 −X0B
−1
B ≡ 0 mod p

Thus, the sequence ⌊ξbk⌋ has infinitely many elements divisible by p.
By contradiction, we have that if p ∣ b − 1 then p ∣ B. In particular,
rad(b − 1) ∣ B, and thus rad(b − 1) ≤ B. By proposition 3, the relation
B < b−1 holds. Hence, rad(b−1) < b−1, and therefore b−1 is squareful.

We can put the two lemmas together into the following theorem:

Theorem 6. b > 1 has a single digit solution if and only if b−1 is squareful.
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By giving an alternative, stronger proof of theorem 4 in [11] we have
fully categorised the b > 1 with a single digit solution. Now we shall turn
our attention to two digit solutions and categorise them. We will do this in
the following subsection.

3.2 Two Digit Solution

Since a one digit solution is automatically also a two digit solution in what
follows in light of theorem 6 we assume that b − 1 is squarefree. Assuming,
that b− 1 is squarefree the requisite conditions for a two digits solution are
as follows:

b is odd (B1)

In addition we require there to exist a positive integer C ∈ N satisfying
the following conditions:

1 < C < b (B2)
2 ∤ C (B3)
gcd(b, C(C − 1)) = 1 (B4)
rad(b + 1) ∣ 2C (B5)

First we shall prove that these conditions are sufficient for the existence of
a two digits solution. Afterwards we prove the necessity of these conditions.
We finish this chapter by discussing the conditions B1-B5.

Lemma 7. Let b > 1 be an integer such that b − 1 is squarefree. If the
conditions B1-B5 hold then b has a two digit solution.

Proof. For a given finite set of primes S we will denote our falsifier as ξ =

X0, (l1l0). Here X0 will depend only on S and b, and l1, l0 will depend on
only b.

Denote:

B = (b − 1)C (1)

Since by B2, 1 < C < b, then b < B < b
2−1. As such B can be expressed

in two digits in base b. Furthermore, since B < b
2−1, the number ξ satisfies

proposition 3 and is expressed appropriately.
It is easy to see that the two digits are
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l1 = C − 1 l0 = b − C (2)

In which case

bl1 + l0 = b(C − 1) + b − C = C(b − 1) = B

By B2, 0 < l1 < b and 0 < l0 < b and therefore these are digits in base
b. Furthermore, by uniqueness of expression in base b,3 the numbers l1, l0 in
(2) must precisely be the digits for B.

We will proceed to construct ξ as follows. The choice for l0, l1 are as in
(2). For each p ∈ S we choose a remainder xp, such that if X0 ≡ xp mod p

then none of the elements ⌊ξbk⌋ for k ∈ N0 are divisible by p. By the Chinese
remainder theorem we are guaranteed that there exists X0 ∈ N such that
X0 ≡ xp mod p for each p ∈ S. This will be our choice for X0. Although
the Chinese remainder theorem generates multiple integers with the desired
property, we do not care which positive integer we choose, so we may choose
the smallest positive integer with the desired property.

For the purpose of choosing xp we define the following sequences for
k ∈ N0:

Xk = ⌊ξb2k⌋ = X0b
2k

+B (b2k−2 + b
2k−4

+ . . . + b
2
+ 1) (3)

Yk = ⌊ξb2k+1⌋ = X0b
2k+1

+Bb (b2k−2 + b
2k−4

+ . . . + b
2
+ 1) + l1 (4)

Thus, we will be showing that for a given choice of xp, the prime number
p divides no element from the sequences Xk, Yk. We now proceed to find an
appropriate choice for xp depending on the kind of p ∈ S we have, classifying
p into the following five cases.

Case 1: p ∣ b
By B4, p ∤ C,C−1. Thus we have the following, where k > 0 in the first

case and k ≥ 0 in the second one:

Xk = X0b
2k

+B (b2k−2 + . . . + b
2
+ 1) ≡ B ≡ bl1 + l0 ≡ l0 ≡ b − C ≡

≡ −C ≢ 0 mod p

Yk = X0b
2k+1

+Bb (b2k−2 + . . . + b
2
+ 1) + l1 ≡ l1 ≡ C − 1 ≢ 0 mod p

3See [15, p. 13]. The case proven in the reference is for prime b. Nothing changes if b
is composite.
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Thus, we only require that p ∤ X0, so we may choose xp ≡ 1 mod p.

Case 2: p ∣ b2 − 1
In this case p ∣ (b − 1)(b + 1). If p ∣ b − 1 then p ∣ B by (1). If p ∣ b + 1

then p ∣ 2C by B5, thus, either p = 2, or p ∣ C. From the latter follows that
p ∣ B = (b − 1)C. If, on the other hand, p = 2 then since b is odd by B1,
b − 1 is even and therefore p ∣ B = (b − 1)C.

It is obvious that X0 ≡ X0 mod p, and assume that Xk ≡ X0 mod p,
then:

Xk+1 = b
2
Xk +B = Xk + (b2 − 1)Xk +B ≡ Xk ≡ X0 mod p

Thus, by induction, Xk ≡ X0 mod p for all k ∈ N0. In particular, as
long as p ∤ X0 then p ∤ Xk for all k ∈ N0. Also, for all k ∈ N0 we have that:

Yk = bXk + l1 ≡ bX0 + l1 mod p

Thus, we need to choose a remainder xp for p such that p ∤ xp and
p ∤ bxp+ l1. If p > 2 then p cannot divide both b+ l1 and 2b+ l1. Otherwise,
p would have to divide their difference, that is p ∣ b. But since p ∣ b

2 − 1
and gcd(b, b2 − 1) = 1 this is impossible. Thus, if p > 2 we choose xp to be
either 1 or 2 for whichever p ∤ bxp + l1.

On the other hand, if p = 2 then as p ∤ xp we must choose xp = 1. For
this purpose we need to check that 2 ∤ b + l1. By (2), l1 = C − 1. Since
by B3 the number C is odd, it follows that l1 is even. And since by B1 the
number b is odd, the number b + l1 is also odd, as desired.

Case 3: p ∤ b(b2 − 1), p ∣ B
By (3), Xk ≡ X0b

2k
mod p. Since p ∤ b, as long as p ∤ X0 we have that

p ∤ Xk for every k ∈ N0. On the other hand, by (4), Yk ≡ X0b
2k+1 + l1

mod p. If p ∣ l1 then Yk ≡ X0b
2k+1

mod p and since p ∤ b, as long as p ∤ X0

then p ∤ Yk for all k ∈ N0 as before. Therefore, let us assume that p ∤ l1.
Otherwise, we may take xp ≡ 1 mod p.

Assume that xp is such that p ∤ xp and assume that p ∣ Yk for some
k ∈ N0. Then since p ∤ bxp we have that

Yk = xpb
2k+1

+ l1 ≡ 0 mod p ⟺ x
2
pb

2k+2
+ l1xpb ≡ 0 mod p
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Since p ∤ b(b2 − 1) we have that p > 2 (as 2 must divide one of the three
consecutive numbers b − 1, b, b + 1). And since p > 2 is a prime, therefore,
the number p − 1 ≥ 2 is even. Hence, there exists a quadratic nonresidue
u mod p (see section 2 above). Let xp ≡ −ul−11 b

−1
mod p. Note that, by

definition of u, we have that p ∤ u, and thus p ∤ xp. Then we have:

0 ≡ b
2k+2

x
2
p − ul

−1
1 b

−1
l1b ≡ b

2k+2
x
2
p − u mod p

That is

u ≡ (bk+1xp)
2

mod p

This contradicts the definition of u. By contradiction then p ∤ Yk for all
k ∈ N0 as long as xp ≡ −ul−11 b

−1
mod p. As mentioned before in this case

p ∤ xp and thus p ∤ Xk for all k ∈ N0 as well.

Case 4: p ∤ b(b2 − 1)B, C ≡ b + 1 mod p
In this case we have that

l1 = C − 1 ≡ b mod p

B = (b − 1)C ≡ (b − 1)(b + 1) ≡ b
2
− 1 mod p

Then, by (3) we have

Xk = X0b
2k

+B (b2k−2 + b
2k−4

+ . . . + b
2
+ 1) ≡

≡ X0b
2k

+ (b2 − 1) (b2k−2 + . . . + b
2
+ 1) ≡

≡ X0b
2k

+ b
2k

− 1 ≡ (X0 + 1)b2k − 1 mod p

Thus, Xk ≡ 0 mod p if and only if X0 ≡ b
−2k − 1 mod p. Since

p ∤ b(b2 − 1), we have that p > 3. In particular, p is odd and p − 1 is
even. As such, as previously stated in section 2, there are as many quadratic
residues as there are quadratic non-residues mod p. In particular, there are
(p − 1)/2 of each. Since (b−2)a = (b−a)2, the remainder b

−2 only generates
quadratic residues mod p. Therefore, the order of b−2 in the multiplicative
group Z/Zp − {0} is at most (p − 1)/2.

Thus, we must reject at most (p−1)/2 possible choice for xp in this case.
Notice that k = 0 gives us X0 ≡ 0 mod p, therefore, we reject this option
as well.
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Now consider Yk. By (4):

Yk = X0b
2k+1

+B (b2k−1 + b
2k−3

+ . . . + b) + l1 ≡

≡ X0b
2k+1

+ b(b2 − 1) (b2k−2 + . . . + b
2
+ 1) + b ≡

≡ X0b
2k+1

+ b (b2k − 1) + b ≡ X0b
2k+1

+ b
2k+1

− b + b ≡ (X0 + 1)b2k+1 mod p

Since p ∤ b it is clear that p ∣ Yk if and only if X0 ≡ −1 mod p. Thus we
must in addition reject at most one more possible remainder for the value
of xp.

Therefore, in total, we must reject at most (p − 1)/2 + 1 = (p + 1)/2
possible values for xp. As p > 3 this leaves us with p−(p+1)/2 = (p−1)/2 > 0
possible values for xp to choose from. We then proceed to choose an arbitrary
satisfactory xp for such a p ∈ S.

Case 5: p ∤ b(b2 − 1)B, C ≢ b + 1 mod p
In this case, as p ∤ (b2 − 1)B we take the remainder:

xp ≡ −B(b2 − 1)−1 mod p

Clearly, p ∤ xp. First, we shall show that Xk ≡ xp mod p by induction.
Notice that X0 ≡ xp mod p by construction of X0. Next, assume that
Xk ≡ xp mod p for some k ∈ N0. Then:

Xk+1 = b
2
Xk +B ≡ b

2
xp +B ≡ xp + (b2 − 1)xp +B ≡

≡ xp − (b2 − 1)(b2 − 1)−1B +B ≡ xp mod p

Thus, p ∤ Xk. Next, assume that p ∣ Yk. Then since Xk ≡ xp mod p and
Yk = bXk+l1, we have that p ∣ bxp+l1 and, hence, xp ∣ bxp(b2−1)+l1(b2−1).
Since xp ≡ −B(b2 − 1) mod p, we have that

0 ≡ xpb(b2 − 1) + l1(b2 − 1) ≡ −Bb(b2 − 1)−1(b2 − 1) + l1(b2 − 1) ≡
≡ −Bb + l1(b2 − 1) mod p

Now consider the following:
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Bb − (b2 − 1)l1 ≡ 0 mod p

(b − 1)bC − (b2 − 1)l1 ≡ 0 mod p Since B = (b − 1)C by (1)

(b − 1)bC − (b2 − 1)(C − 1) ≡ 0 mod p Since l1 = C − 1 by (2)
bC − (b + 1)(C − 1) ≡ 0 mod p Since p ∤ b − 1

bC − bC + b − C + 1 ≡ 0 mod p

b + 1 − C ≡ 0 mod p

C ≡ b + 1 mod p

This, however, contradicts the assumption in this case that C ≢ b + 1
mod p. By contradiction then p ∤ Yk for all k ∈ N0.

Now we go on to show that conditions B1-B5 are necessary for there to
exist a two digit solution if b − 1 is squarefree.

Lemma 8. Let b > 1 be an integer with b− 1 squarefree. If b has a two digit
solution then the conditions B1-B5 hold.

Proof. Let S consist of all prime divisors of b(b2−1) and let ξ = X0, (l1l0) be
a falsifier for S. Without losing generality, we may furthermore assume that
none of the elements in the sequence ⌊ξbk⌋ are divisible by primes from S.
Indeed, if ⌊ξbK⌋ is the last element of the sequence divisible from primes in
S, if we take ξ

′
= ξb

K+1 then no element in the sequence ⌊ξ′bk⌋ are divisible
by primes in S.

As in the previous proof, we define B = l1b+l0 and obtain the expressions
(3) and (4) for Xk and Yk respectively. Let p ∣ b2 − 1 then by (3) we have:

Xk = X0b
2k

+B (b2k−2 + . . . + b
2
+ 1) ≡ X01

2k
+B (12k−2 + . . . + 1

2
+ 1) ≡

≡ X0 + kB mod p

Assume that p ∤ B and let k0 ∈ N be such that k0 ≡ −X0B
−1

mod p.
Then taking k = (np + 1)k0 for arbitrary n ∈ N0, we have that

Xk ≡ X0+ (np+ 1)k0B ≡ X0+ k0B ≡ X0−X0B
−1
B ≡ X0−X0 ≡ 0 mod p

Hence, there are infinitely many elements in the sequence Xk divisible
by p. This contradicts the choice of ξ. By contradiction we, therefore, have
p ∣ B.
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Since this hold for all p ∣ b
2 − 1 it follows that rad(b2 − 1) ∣ B and

therefore rad(b − 1) ∣ B. However, by assumption, b − 1 is squarefree.
Therefore, rad(b − 1) = b − 1, and hence b − 1 ∣ B. As such we can express
B as:

B = (b − 1)C (5)

Since rad(b+ 1) ∣ rad(b2− 1) ∣ B and gcd(b− 1, b+ 1) ≤ 2 it follows that
all prime divisors of b+1 must either be 2 or divide C. Hence, rad(b+1) ∣ 2C
and B5 holds.

Consider p ∣ b. If p divides one of the digits l0, l1 both of which repeat
infinitely often then the sequence ⌊ξbk⌋ would be infinitely often divisible by
p as Xk ≡ l0 mod p, and Yk ≡ l1 mod p. By the choice of ξ this would lead
to a contradiction. As such p ∤ l0, l1.

In particular, C > 0 since otherwise B = 0, and hence l0, l1 = 0 and
p ∣ l0, l1. If C = 1 then B = b − 1 < b and therefore l1 = 0. Again, we would
have that p ∣ l1 and obtain a contradiction. Thus, C > 1.

As B has two digits it is clear that B = (b− 1)C ≤ b
2− 1. Dividing both

sides by b − 1 we obtain C ≤ b + 1. If C = b + 1 then B = b
2 − 1. As such,

l0 = l1 = b − 1 and this contradicts the condition in proposition 3. On the
other hand, if C = b then obviously l0 = 0, and as such p ∣ l0 and we yet
again obtain a contradiction. Therefore, C < b.

Therefore, we have just show that 1 < C < b, i.e. that B2 holds.
Now, define, as before:

l1 = C − 1 l0 = b − C

Since 1 < C < b it follows that 0 < l0, l1 < b and hence these numbers
are digits in base b. Furthermore:

bl1 + l0 = b(C − 1) + b − C = bC − b + b − C = (b − 1)C = B

By the uniqueness of expression of B in base b (see e.g. p. 13 in [15]) it
follows that l0, l1 are the required digits.

Next, assume that b is even. Then since b must be coprime with both
l0 and l1 it follows that l0, l1 are odd. Since l1 = C − 1 is odd, therefore,
C is even. And since l0 = b − C is odd and b is even, C is odd. Since C
is both even and odd, we have a contradiction. Therefore, b must be odd.
This shows B1.
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As mentioned previously, gcd(b, l0l1) = 1. Let p ∣ b. Then p ∤ l1 = C − 1
and also l0 = b−C ≡ −C mod p. Threfore, p ∤ C. To sum up, if p ∣ b then
p ∤ C(C − 1). Equivalently, gcd(b, C(C − 1)) = 1. This shows B4.

Finally, both l0, l1 must be even. To see this, note that if l0 is odd then:

Xk+1 = bYk + l0 ≡ Yk + 1 mod 2

Therefore, one of Yk, Xk+1 must be divisible by 2. In particular, there are
infinitely many elements in the sequence ⌊ξbk⌋ that are divisible by 2. Since
2 ∣ b(b2 − 1), we have that 2 ∈ S and we obtain a contradiction. Likewise,
if 2 ∣ l1 we have that

Yk = bXk + l1 ≡ Xk + 1 mod 2

and for all k, one of Xk, Yk must be even. Again, we obtain a contradic-
tion.

Therefore, l0, l1 must be even. In particular, as l1 = C − 1, C must be
odd and B3 holds. This then finishes the proof.

To sum up, the two lemmas combine into the following theorem:

Theorem 9. Let b > 1 be an integer with b − 1 squarefree. Then b has a
two digit solution if and only if the conditions B1-B5 hold.

The conditions B1-B5 can be replaced by some other conditions. We can
replace B5 with the condition that rad(b2−1) ∣ B since we have proved this
in the course of lemma 8 and it is this fact we used in the proof of lemma 7.

Likewise, B3 can be replaced with the claim that l1 is even, since we do
not otherwise use the fact that C is odd. Finally, B4 can be replaced by
perhaps the more illuminating claim that gcd(b, l1l2) = 1 since we only use
B4 to prove this condition.

In this light, we can see that B5 is a direct analogue to A1. Condition
B4 just requires that the prime divisors of b would not divide any of the
repeating digits which is not a surprising condition, and finally, B3 is a
reflection of the fact that the digits must have a different parity than b
or otherwise we would have infinitely many elements of the sequence ⌊ξbk⌋
divisible by 2.

Condition B2 is not particularly interesting either. It is a simple conclu-
sion of the requirements that C = B/(b−1), l0, l1 ≠ 0, and B < b

2−1. Thus,
perhaps unexpectedly, the only surprising necessary and sufficient condition
here is the requirement that b is odd in B1.
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4 Conclusions and Questions
Theorem 9 implies that a certain important class of numbers b does not have
an unavoidable set of primes S since it has a two digit solution. We first
show this for b = 2

2k+1 − 1 with k ∈ N and then for b > 3 prime. We finish
this section with a discussion on further potential research in this area.

Corollary 10. Let b = 2
2k+1− 1 for k ∈ N. Then b has a two digit solution.

Proof. First it is clear that b is odd and as such B1 holds. Next, we choose

C = 2
2k+1

− 3

Clearly, C is odd and so B3 holds. Also, b+1 = 2
2k+1 and so rad(b+1) = 2.

As such, rad(b + 1) = 2 ∣ 2C trivially. Hence, B5 holds as well.
It will take a little more work to verify B2 and B4. For B2 consider the

following

C > 1 ⟺ 2
2k+1

− 3 > 1 ⟺ 2
2k+1

> 4 ⟺ 2k + 1 > 2 ⟺ k > 0

Since k ∈ N, k is a positive integer and therefore the last inequality
holds. Hence, C > 1. Next, consider the following:

C < b ⟺ 2
2k+1

− 3 < 2
2k+1

− 1

That is, the inequality holds trivially. Therefore, 1 < C < b and hence
B2 holds.

Finally, let p ∣ b = 2
2k+1−1. If p ∣ C = 2

2k+1−3 as well, then p divides the
difference of the two numbers. Hence, p ∣ 2. Since p is primes this implies
that p = 2, but then we have that 2 = p ∣ 22k+1 − 1 = b which is clearly not
the case. By contradiction then p ∤ C.

If we assume that p ∣ C − 1 = 2
2k+1− 4 in addition to p ∣ b, then we have

that

p ∣ b − (C − 1) = 3

As such, since p is prime, we obtain that p = 3. However, this implies
that

0 ≡ b = 2
2k+1

− 1 ≡ 2 ⋅ 4
k
− 1 ≡ 2 ⋅ 1 − 1 ≡ 1 mod 3
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By contradiction then p ∤ C − 1. In conclusion, B4 holds.
Hence, by theorem 9, b has a two digit solution and, hence, there are no

unavoidable sets of primes for b = 2
2k+1 − 1.

The previous corollary is also interesting due to the following result:

Corollary 11. Let q > 3 be prime. Then there is a two digit solution for q.

Proof. We now consider the following two cases depending on the form of q.

Case 1: q is of the form 2
R − 1

Assume that R = 2r is even, then

q = 2
2r
− 1 = 4

r
− 1 ≡ 1 − 1 ≡ 0 mod 3

As 3 ∣ q and q is prime it follows that q = 3. However, by hypothesis,
q > 3. By contradiction then R is odd. Since, furthermore, R > 1 (for if
R = 1 then q = 1) the preceding corollary 10 applies. Hence, there exists a
two digit solution for q.

Case 2: q is not of the form 2
R − 1

As q > 3 is prime condition B1 is automatic. Let R be the highest power
of 2 that divides q + 1, i.e. R is the largest such that 2

R ∣ q + 1.
Assume that q − 1 is squarefree since, otherwise, the claim holds by

theorem 6. Then 2 ∣ q − 1 but 4 ∤ q − 1. As such, q − 1 ≡ 2 mod 4 and
hence 4 ∣ q + 1. That is, R ≥ 2. We now choose C to be as follows:

C =
q + 1

2R
(2R − 1)

Let p ∣ rad(q + 1). If p ≠ 2 then p ∣ (q + 1)/2R, and as such p ∣ C ∣ 2C.
If on the other hand p = 2 then p ∣ 2C trivially. Either way we obtain that
if p ∣ rad(q + 1) then p ∣ 2C. Hence, rad(q + 1) ∣ 2C and B5 holds.

By definition of R, (q+ 1)/2R is odd. Since 2
R − 1 is clearly odd then C

is odd and B3 holds. For B2 consider the following:

C > 1 ⟺
q + 1

2R
(2R − 1) > 1 ⟺ (q + 1)(2R − 1) > 2

R
⟺

⟺ q2
R
− q + 2

R
− 1 > 2

R
⟺ q2

R
> q + 1

Since R ≥ 2 and q > 3 the last equation holds. Hence, C > 1. Now
consider the other case:
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C < q ⟺
q + 1

2R
(2R − 1) < q ⟺ (q + 1)(2R − 1) < q2

R
⟺

⟺ q2
R
+ 2

R
− q − 1 < q2

R
⟺ 2

R
< q + 1

Since 2
R ∣ q + 1 then 2

R
≤ q + 1. Furthermore, since q is not of the form

2
R − 1 by hypothesis, it follows that 2R < q+ 1 and hence C < q. Therefore,
1 < C < q and B2 holds.

Finally, since q is prime and 1 < C < q implies that 0 < C,C − 1 < q, we
have that q ∤ C(C − 1). Therefore, in particular, gcd(q, C(C − 1)) = 1 and
B4 holds.

Thus, by theorem 9, the number q has a two digit solution.

In light of this theorem, the smallest natural number for which conjecture
2 is open is 8. Since 8 − 1 = 7 is squarefree theorem 6 does not apply, and
since 8 is even theorem 9 does not apply. The smallest odd positive integer
for which the conjecture is open is 15. This is because since 1 < C < 15 is
odd by conditions B2, B3, and coprime with 15 by B4, the remaining options
for C are 7, 11, 13. However, for these choices for C, the number C−1 is not
coprime with 15, and thus B4 cannot be maintained. A different approach
is therefore required for b = 8, 15.

This investigation leads naturally to the following questions which remain
open. First, one would need to categorise n digit solutions for all n ∈ N.
Second, it remains open if for all b > 1 that do not have an unavoidable
set of primes there exists n ∈ N such that b has an n digit solution. Third,
it also remains in principle open if integers b > 1 other than 2, 3, 4, 6 have
an unavoidable set of primes. These questions require further investigation
and at least some of them would need to be answered before we know if the
numbers 8 and 15 have an unavoidable set of primes.

19



References
[1] S. Akiyama, C. Frougny, and J. Sakarovitch. “Powers of rationals mod-

ulo 1 and rational base number systems”. Israel J. Math. 168 (2008),
pp. 53–91.

[2] G. Alkauskas and A. Dubickas. “Prime and composite numbers as in-
teger parts of powers”. Acta Math. Hung. 105 (2004), pp. 249–256.

[3] R. C. Baker and G. Harman. “Primes of the form [cp]”. Math. Z. 221
(1996), pp. 73–81.

[4] M.J. Bertin et al. Pisot and Salem Numbers. Boston: Birkhäuser, 1992.
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