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1 Introduction

Many years have passed since the discovery of neutrino oscillations [1–4], yet massive
neutrinos are still not in the Standard model (SM). That is not surprising: it is extremely
hard to either confirm or exclude all the possible mechanisms that generate neutrino masses
due to their weak impact on the sectors that we can actually see in the experiments, see
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e.g. studies of the low energy effects of the seesaw mechanisms in [5, 6]. However, having
in mind the impressive precision of current Charged Lepton Flavour Violation (cLFV)
experiments [7–10] some of the scenarios can actually lead to possible signatures and/or
restrictions on the parameter spaces, and will become even more restricting in the future,
given planned experiments [11–15]. Hence, it makes sense to look at the most constraining
scenarios to narrow down the possible space of the neutrino mass mechanisms.

The simplest neutrino mass mechanisms can be put into three categories: inducing
neutrino masses at tree-level (e.g. all types of seesaw [16–18]), generating them at loops
(see e.g. [19–21]), and combining these mechanisms (e.g. [22, 23]). These mass mecha-
nisms can be embedded into more exotic models, for example, the seesaw mechanism can
arise from extra dimensions [24, 25], or radiative neutrino generation can be realized with
composite Higgses [26, 27]. While virtually all scenarios can fit the current experimental
constraints, it is far harder to claim the strictly excluded regions unambiguously, especially
when one studies more general scenarios with an overwhelming number of free parameters
(see e.g. [28]). A look at less general models, with more exposed and isolated effects on the
cLFV from the neutrino sector, naturally provides a solution to this problem.

The scotogenic model [21] is probably the most popular one in this respect, partially
due to a manageable amount of free parameters. With an imposed Z2 symmetry, it has
the scalar sector of the inert doublet model (IDM) [29]. The cLFV in the scotogenic model
comes purely from the radiative contributions of heavy neutrinos and scalar dark matter
candidates [30, 31]. Thus, the neutrino sector acts as a bridge between the dark scalar
sector and cLFV.

There is an interesting variation, called the scoto-seesaw model [32, 33], with even fewer
degrees of freedom introduced. In both models, scotogenic and scoto-seesaw, one obtains
larger contributions to the cLFV for lower heavy neutrino masses. This potentially implies
stronger restrictions on the scalar sector. We define a tiny seesaw scale to be lower than the
electroweak scale (studied in e.g. [34–38]), to discriminate between the low seesaw scale that
is sometimes considered to include the TeV scale (e.g. [39–41]). Then, in the tiny seesaw
scale, the scotogenic and the scoto-seesaw models give essentially the same contribution to
cLFV as we get in the Grimus-Neufeld model (GNM) [22] — a seesaw extended two-Higgs-
doublet model (2HDM). This connection is caused by an approximate Z2 symmetry in the
Yukawa sector [42] (discussed in the next section), which makes the radiative neutrino
mass generation in the GNM similar to the one in the scotogenic and scoto-seesaw models.

Global symmetries, such as Z2, are extremely useful for classifying the scenarios of
beyond Standard model (BSM) physics. Yet they are not something fundamental. If one
imposes a global symmetry only on one part of the Lagrangian, while breaking at some
other part of it, at some loop order it eventually leads to breakage of the imposed symmetry
in the sector of interest too. From one point of view, one might conclude that imposing a
global symmetry is only consistent if it is done on the full Lagrangian. On the other hand, if
one looks at global symmetries as something that just helps us to classify possible scenarios
of BSM physics, there is no real need to insist on satisfying it exactly at all loop levels.
For example, the CP-symmetric 2HDM potential might get CP-violating corrections from
the quark sector, as discussed in [43]. There are many studies on CP-conserving 2HDM
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potential, which nevertheless are meaningful and explore an important possible scenario
of the scalar sector. This naturally leads to a question: what if some parameters in the
Lagrangian are so small, that we can almost see the global symmetry? This generalizes the
concept of the global symmetry of the Lagrangian by allowing small deviations from zero of
the symmetry breaking terms. Following this logic, we will loosely define the approximate
symmetry to be the case in which the Lagrangian parameters that explicitly break the
global symmetry are not necessarily zero, but are very small (in our case, smaller than
O(10−7) ). The GNM satisfies this requirement in the tiny seesaw limit.

By itself, the GNM is an appealing model of neutrino masses which postulates the
existence of only a single heavy neutrino to accommodate neutrino masses and mixings,
while the other models require at least two additional fields. The GNM is then particularly
attractive in the tiny seesaw parameter region: it has less particles and, because of the ap-
proximate (but not exact) Z2 symmetry, it can express the main phenomenological features
of both the scotogenic and the scoto-seesaw models of the cLFV processes and the neutrino
sector. Investigating this parameter region we will address the following question in this
paper: which restrictions are imposed by the cLFV on the scalar sector in the GNM?

In section 2, we give an overview of the GNM by introducing the scalar and Yukawa
sectors. Then we present the one-loop neutrino mass calculation. It leads to a parameteriza-
tion of the flavor basis Yukawa couplings, similar to the Casas-Ibarra parameterization [44]
that automatically reproduces neutrino masses and mixings at one-loop level. We close the
section by noting the existing special parameter points in this parameterization, the checks,
the numerical stability, and the limitations of our study, using FlexibleSUSY [45–47]. In
section 3 we present the analytical expressions for cLFV processes. In section 4 we give a
short recap of the most important parameters from the Yukawa sector and the scalar sector
that control the branching ratios of cLFV processes and we lay out the strategy of our phe-
nomenological study. We then pursue this strategy in section 5, give an interpretation of the
results, and conclude our study in section 6. Technical details, such as the explicit deriva-
tion of the parametrization, peculiarities of the minimal free parameter set in the Yukawa
sector, and the numerical values of some special cases can be found in the appendices.

2 The Grimus-Neufeld model

The GNM is a general 2HDM extended with one single sterile neutrino. In the limit of the
tiny seesaw scale discussed below, the Yukawa sector is approximately Z2 symmetric [42],
thus its predictions for cLFV become similar to the scotogenic and scoto-seesaw models.
Scotogenic and the scoto-seesaw models also predict scalar Dark matter (DM), which is a
direct consequence of the Z2 symmetry. The approximate Z2 symmetry in the GNM will
make the potential scalar DM candidate in the GNM not as stable. Yet to be sure if GNM
has a viable DM candidate in this scenario, a dedicated analysis is needed, which is beyond
the scope of this work. We do not discuss DM in this paper.
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2.1 Scalar and Yukawa sectors

In principle, cLFV in the GNM can be analyzed for a general 2HDM scalar sector. However,
to highlight the similarities between models we consider the scalar potential to be Z2

symmetric. The Higgs sector of the model contains two Higgs doublets H1,2. The potential
takes the form:

V = m2
11H†

1H1 +
λ1

2
(H†

1H1)2 + m2
22H†

2H2 +
λ2

2
(H†

2H2)2

+ λ3(H†
1H1)(H†

2H2) + λ4(H†
2H1)(H†

1H2) +
[

λ5

2
(H†

2H1)2 + h.c.

]
.

(2.1)

Only the first Higgs doublet H1 acquires a vacuum expectation value (VEV) v, and we
parametrize the two doublets as:

H1 =


 G+

W

1√
2

(v + h + iGZ)


 , H2 =


 H+

1√
2

(H + iA)


 . (2.2)

All the SM particles, including H1, are assigned an even parity under the Z2 symmetry,
while H2 and the additional sterile neutrino N are odd.1 The latter enters the Lagrangian
with, in general, complex Majorana mass term M and new Yukawa-like coupling Y

(i)
j to

the SU(2) lepton doublets ℓj , where j denotes the generation:

L ∋ −1
2

MNN − Y
(i)

j ℓjǫHiN + h.c. (2.3)

The matrix ǫ = iσ2 combines the two doublets to an SU(2) invariant product. The Majo-
rana mass M is made real by adjusting the phase of N . Terms with the neutrino Yukawa
couplings Y (1) to the first Higgs doublet in eq. (2.3) explicitly break the Z2 symmetry. The
SM-like Z2-preserving Yukawa sector reads as:

L ∋ −YkjH̃1ǫℓjec
k + h.c. (2.4)

Note the usage of H̃1 = ǫH∗
1 allowing for another SU(2) invariant product with opposite

electric charge. In the flavor basis charged lepton masses are defined by Yff =
√

2mf /v,
f = e, µ, τ , which is also the mass eigenstate basis for charged leptons, but not the mass
eigenstate basis for neutrinos.

When the Higgs acquires a VEV, the Lagrangian in eq. (2.3) leads to the two non-
vanishing Majorana masses for neutrinos, light m3 and heavy m4 (in mass eigenstate basis):

L ∋ −1
2

m3ν ′
3ν ′

3 − 1
2

m4ν ′
4ν ′

4 , (2.5)

where
y2 :=

∑

i

∣∣Y (1)
i

∣∣2 =
2m3m4

v2
, M = m4 − m3 , (2.6)

which is the usual type-I seesaw mechanism relating the Yukawa coupling Y
(1)

i , the light
neutrino mass m3, and the seesaw scale m4 ≫ m3. The m3 mass is associated with a light

1For fermions we use the notation of two component Weyl spinors.
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neutrino mass and is of O(0.01 eV). If y → 0 for fixed m4 then m3 → 0, and the seesaw
mechanism is “turned off” for the exact Z2 symmetry. For y 6= 0, the seesaw mechanism
applies, and for fixed m3, eq. (2.6) can be treated as a relationship between the seesaw
scale and the Z2 breaking parameter, allowing us to define an approximate Z2 symmetry
in the GNM by the inequalities:

m4 . 10 GeV ⇔ y . 10−7. (2.7)

The restriction of eq. (2.7) ensures that the Z2-breaking Yukawa coupling is at least an
order of magnitude smaller than the Yukawa coupling of the electron.

There are at least two non-vanishing masses for light neutrinos. In the GNM the mass
of the other SM neutrino is generated at one-loop level via interactions with H2. Motivated
by a broken Peccei-Quinn symmetry, small λ5 values successfully generate radiative neu-
trino masses with relatively large Yukawa couplings to the second Higgs doublet, namely
Y (2). Just as the limit y → 0 turns off the seesaw mechanism, setting λ5 → 0 turns off the
radiative mass generation leaving one of the needed neutrino masses unexplained. In the
GNM the lightest neutrino is massless.

The Z2 symmetry in the Yukawa sector leads to the similarity between the GNM,
the scotogenic, and the scoto-seesaw models in the cLFV phenomenology, even though the
Yukawa sectors are slightly different. The scotogenic model [21] has an exact Z2 symmetry,
forcing y → 0 and turning off the seesaw mechanism at the cost of adding 2 additional
heavy, Z2-odd neutrino states. Then the Yukawa couplings Y (2), which lead to radiative
mass generation, are contained in a 3 × 3 matrix instead of a 3 × 1 as in the GNM.

In the scoto-seesaw model [32, 33], one has an exact Z2 symmetry turning off the seesaw
mechanism for the Z2-odd N , at the cost of adding one Z2-even sterile neutrino, for which,
only the seesaw mechanism is allowed. This effectively gives one additional independent
parameter, the mass of the Z2-even neutrino in contrast to the GNM. In turn, this allows
to control the sizes of parameters that enter the radiative and the seesaw mass mechanisms
independently from each other in the scoto-seesaw model, while they are related in GNM.

In the GNM, the two SM-like massive neutrino mass states mix in general. To get a
convenient parameterization for the Yukawa couplings, one solves the equations for neutrino
masses and mixings at one-loop level. We further describe the needed rotations, convenient
basis and neutrino mass generation in GNM leading to this parameterization in detail in
the following sub-sections.

2.2 Rotations for neutrinos

The GNM contains four neutrino states, comprised of the three neutrino components νi

of the lepton doublets, and the single sterile neutrino N . At tree level, neutrino masses
arise from the Majorana mass term M and the Yukawa coupling vector Y (1), coupling
the neutrino states to the VEV. These tree-level mass terms of eq. (2.3) give rise to the
4 × 4 neutrino mass matrix MF

ν in flavor basis {νi, N} as shown with the first matrix in
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 00ℓ

3×3
v√
2
Y (1)

v√
2
Y (1)T

M


 Ṽ−→




01ℓ 01ℓ 01ℓ 01ℓ

01ℓ 00ℓ 00ℓ 00ℓ

01ℓ 00ℓ 00ℓ i vy√
2

01ℓ 00ℓ i vy√
2

M




S̃−→




01ℓ 01ℓ 01ℓ 01ℓ

01ℓ 01ℓ

01ℓ Σ̂
01ℓ

01ℓ 01ℓ 01ℓ m4 + 01ℓ




R̃−→ m̂
= =

MF
ν Ũ∗MF

ν Ũ †

να := {νi, N} ν ′
α ≈ ν ′

α ν ′′
α

Y (i) Y (i′) ≈ Y (i′) Y (i′′)

Figure 1. A sequence of rotations for neutrino mass matrix MF
ν . Explicit entries show quantities

used in the paper. We denote an expression that is zero exactly at tree-level by 00ℓ. With 01ℓ we
mean an approximated one-loop zero, where terms proportional to y2 × loop and m3

m4

× loop are

neglected. The matrix Σ̂ contains non-vanishing expressions for the processes ν′
i → ν′

j at one-loop
level, which are not further suppressed by y2 or m3

m4

.

figure 1. To find the physical neutrino states and their masses, one has to include one-loop
corrections and diagonalize the mass matrix by unitary transformations.2

The mass matrix MF
ν is diagonalized by a unitary matrix Ũ to a diagonal matrix m̂,

see figure 1. The diagonalization matrix Ũ can be decomposed into a product of three
unitary matrices:

Ũ∗MF
ν Ũ † := R̃∗S̃∗Ṽ ∗MF

ν Ṽ †S̃†R̃† =: m̂ . (2.8)

This decomposition is useful because each rotation leads to a separate physical consequence
or highlights important details about the Yukawa couplings. The sequence of these three
rotations and their effect on the mass matrix is schematically shown in figure 1. In the
following, we will discuss the diagonalization steps in more detail. It will be useful to
introduce the decomposition of the relevant 4 × 4 matrices as:

Ũ ≈
(

U 0

0 1

)
, Ṽ =

(
V 0

0 1

)
, R̃ =

(
R 0

0 1

)
, R =

(
1 0

0 R̂

)
, (2.9)

where U , V and R are 3 × 3 unitary matrices and R̂ is a 2 × 2 unitary matrix. We
will define the matrix S̃ in eq. (2.12) and explain the approximate equality right after
eq. (2.14).

In the Lagrangian of eq. (2.3) new complex Yukawas Y (i) are introduced, which carry
12 degrees of freedom in total. As the first step of the diagonalization process we use the

2Our conventions for unitary rotations are the ones of ref. [48], as implemented in FlexibleSUSY:

for UU† = 1 : ψ
old
k = U

∗
ikψ

new
i , m

Takagi
= U

T
mdiagU , m

SVD
= U

T
1 mdiagU2 .

– 6 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
4

ν ′
3 ν ′

3

〈H1〉 〈H1〉

y

ν ′
4

y

ν ′
2 ν ′

2

H2

d

ν ′
4

d

ν ′
2 ν ′

3

H2

d

ν ′
4

d′

ν ′
3 ν ′

3

H2

d′

ν ′
4

d′

Figure 2. Diagrams, contributing to the Σ̂ mass matrix. Arrows show the flow of chirality.

freedom to rotate flavor neutrinos να to choose a convenient basis. This is done by the
matrix V in the following way:

Y
(1)

j V ∗
ij = {0, 0, iy}i =: Y

(1′)
i ⇔ 5 conditions ,

Y
(2)

j V ∗
ij = {0, d, id′}i =: Y

(2′)
i ⇔ 3 conditions .



 with y , d > 0 , d′ ∈ C , (2.10)

i.e. the two Yukawa vectors Y (i) are transformed into two positive and one complex pa-
rameter y, d, d′. Thus the 8 degrees of freedom of the unitary matrix V are determined by
l.h.s. of eq. (2.10), while the remaining 4 are shown in the r.h.s. of eq. (2.10). The only
unfixed degree of freedom in a matrix V is a single phase:

V → diag(eiα1 , 1 , 1)V . (2.11)

This phase, α1, is used to absorb one of the Majorana phases ηi of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix. Additionally, 3 degrees of freedom in V can be absorbed
into the phase definitions of neutrinos, leading to 5 physical degrees of freedom in V , which
are later related to the 3 angles, 1 CP phase, and 1 Majorana phase of the PMNS matrix.
2 of the 4 degrees of freedom of the r.h.s. of eq. (2.10) will be related to neutrino masses.

It is clear from eq. (2.10) that one of the neutrinos doesn’t interact with the Higgs
bosons after the rotation Ṽ , which leads to vanishing contributions to its mass at tree
level and at one-loop level. These vanishing elements of the mass matrix are shown by 01ℓ

in the top and left outer entries of the matrices in figure 1.
At the second step of figure 1, the tree-level mass matrix has a typical seesaw structure.

Correspondingly, the second diagonalization matrix S̃ is a tree-level seesaw transforma-
tion, which yields a diagonal mass matrix at tree level with two non-vanishing tree-level
mass eigenvalues m3 and m4, related by eq. (2.6). The appropriate seesaw rotation S̃ can
be written as:

S̃ :=




1 0

0
cS isS

isS cS


 , with cS =

√
m4

m4 + m3
, sS =

√
m3

m4 + m3
. (2.12)

After this diagonalization step, we take into account one-loop corrections to the masses.
Since one of the neutrinos does not couple to the Higgs bosons, the one-loop neutrino mass
corrections lead to the block structure indicated in the third matrix of figure 1: the two
non-vanishing blocks at the level of our approximation are the 2 × 2 mass matrix block
Σ̂, which contains the tree-level eigenvalue m3 and one-loop self-energy corrections, and

– 7 –
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the heavy seesaw neutrino mass m4. All other entries are either generated at higher loops
or are neglected in one-loop diagrams as being either proportional to y2 × loop, which is
extremely small in our case (see eq. (2.7)), or to m3

m4
× loop, which has an additional seesaw

suppression factor. As will be shown in the next section, the last rotation R̂ diagonalizes
Σ̂ and can be used to parameterize the Yukawas couplings Y (i′′) in the mass eigenstate
basis. Its form will be described in eq. (2.21).

There are in total three non-zero masses for neutrinos at one-loop level. We write them
in the ascending order as:

m̂ := diag
(
0, mpole

2 , mpole
3 , m4

)
, (2.13)

where we consider the loop corrections for the heaviest mass to be negligible. Also, m4 ≫
m3 leads to

Ũ = R̃S̃Ṽ ≈ R̃Ṽ ⇒ U ≈ RV, (2.14)

which means that neutrino masses and mixings can be related to the so-called 3ν mixing
paradigm |Ũi4| ≪ 1, which was indicated in the definition of Ũ in eq. (2.9). The PMNS
matrix is defined as [49]:

UPMNS =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13







c12 s12 0

−s12 c12 0

0 0 1







eiη1 0 0

0 eiη2 0

0 0 1


 , (2.15)

where η1 and η2 are unknown Majorana phases, sij = sin θij , and cij = cos θij , see eq. (2.18).
In the GNM, the lightest neutrino has a vanishing mass and the phase η1 can be absorbed
into a redefinition of the corresponding field, as shown in eq. (2.11). Hence only η2 is
physical. To keep our study simple, and since there is no evidence of η2 in the PMNS
matrix so far, we set it to zero. The zero-mass lightest neutrino also implies a lower bound
on neutrinoless double-beta decay [50], which is however left out of the scope of this paper.

The pole masses in eq. (2.13) are different for Normal ordering (NO) and Inverted
ordering (IO). Since the mass of the lightest neutrino vanishes, the measured mass squared
differences from the neutrino oscillation experiments determine the actual neutrino masses.
Therefore, eq. (2.8) connects the PMNS matrix with U , which we can summarize as:

NO: mpole
2 =

√
∆m2

21 , mpole
3 =

√
|∆m2

32| + ∆m2
21 , U = U †

PMNS ,

IO: mpole
2 =

√
|∆m2

32| − ∆m2
21 , mpole

3 =
√

|∆m2
32| , U = OIOU †

PMNS ,
(2.16)

where the sign convention for ∆m2
32 is explicitly avoided, and the mass ordering of IO is

related to the usual 3ν conventions by:

OIO =


 0 1

12×2 0


 . (2.17)

We take as numerical values in our code from ref. [49]:

∆m2
21 = 7.4 · 10−5 eV2 ,

∣∣∣∆m2
32

∣∣∣ = 2.5 · 10−3 eV2 , (2.18)

θ12 = 0.59 rad , θ23 = 0.84 rad , θ13 = 0.15 rad , δCP = 4.5 rad ,

where δCP is taken from the intersection of measured 1σ-regions for NO and IO scenarios.
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2.3 Neutrino mass matrix

The Yukawa interactions introduced in eq. (2.3) can be parameterized by four real param-
eters, as shown in eq. (2.10). One can connect them with the definition of the unitary 2×2
rotation R̂ and use the compact parameters of the latter instead. This section provides
the required relations.

The light neutrino mass matrix Σ̂ disentangles from the heavy one due to eq. (2.14),
see ref. [51] and figure 1. The interactions with the doublet H1 are proportional to the
Yukawa coupling y ∼ |Y (1)| in eq. (2.7), which we assume to be vanishingly small due to
the approximate Z2 symmetry. The relevant contributions to Σ̂ are shown in figure 2:

Σ̂ ≈
(

0 0

0 m3

)
+ Λ

(
d2 idd′

idd′ −d′2

)
, Λ :=

m4

32π2

[
B0(0 , m2

4 , m2
A) − B0(0 , m2

4 , m2
H)

]
(2.19)

with the loop contribution similar to the scotogenic model [21], and the definition of Λ as
in ref. [52].3 The diagonalization of Σ̂ is done via the Takagi decomposition:

R̂∗Σ̂R̂† = diag(mpole
2 , mpole

3 ) , (2.20)

which restricts the matrix R̂ , as shown in appendix A, due to the zero determinant of the
one-loop correction term. For the rotation itself Murnaghan’s parameterization is used:

R̂ =

(
R22 −R∗

32eiφR

R32 R∗
22eiφR

)
, with R22 := cos r eiω22 , R32 := sin r eiω32 . (2.21)

The following ranges of angles and phases define the rotation in a unique way:

φR , r ∈ [−π , π) , ω22 , ω32 ∈
[

− π

2
,
π

2

]
. (2.22)

The parameter ranges that uniquely describe cLFV ratios are smaller:

r , ω22 ∈
(

− π

2
,
π

2

]
, (2.23)

which is derived in appendix B.
The four degrees of freedom — m3, d and complex d′ — are replaced by the two

neutrino pole masses mpole
2,3 and the rotation matrix parameters r and ω22. The other pa-

rameters of R̂ are fixed by eq. (2.20). In this paper we take the point of view that very large
one-loop corrections for m3 are fine tuned and unnatural: hence we only analyze parameter
regions where they do not exceed 50%, which corresponds to the following range for m3:

mpole
2 < m3 < 2 mpole

3 . (2.24)

3The expression for Λ given in ref. [30] is two times larger, which looks like a direct equivalence to eq. (11)

of ref. [21]. However, the definitions of the Yukawa couplings in these references differ by
√

2, which should

lead to additional factor of one half for Λ in ref. [30]. Hence, there might be a typo in the neutrino Yukawa

couplings in ref. [30]: they are by a factor of
√

2 smaller then required.
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Figure 3. Parameter regions of the ω22 − r plane, representing two out of the four physical input
parameters of the model r, ω22, m4 and |Λ|. The definition of z, eq. (2.26), is essential for the
restrictions of ω22 and r, as it has to be real as discussed in appendix B. The white areas are
excluded by not fulfilling eq. (B.7). The contours of the values of z are in the range allowed
by eq. (2.27), except for the red striped region, where |z| < 1

2 , which we exclude as being fine-
tuned. These red striped areas will also be colored white in later plots, as we will not consider
this parameter region for the discussed exclusion criteria. The points where the second Yukawa
coupling to electrons, muons, or taus vanish exactly are also shown for both hierarchies.

It is convenient to define the abbreviation t32, representing the ratio between the two
physical neutrino masses:

t32 :=
mpole

3

mpole
2

≈
{ 5.898 for NO

1.015 for IO
. (2.25)

It is also convenient to define the parameter z by

z(r , ω22 , ω32) = cos2 r e2iω22 + t32 sin2 r e2iω32 . (2.26)

Using (A.5) we see that z corresponds to the relative loop contribution to the neutrino
mass m3, and we can express eq. (2.24) in terms of these parameters:

z ∈ R , |z| =
mpole

3

m3
⇒ 0.5 < |z| < t32 . (2.27)

From eqs. (2.26), (2.27) we determine ω32. There are three regions of possible solutions
of eq. (2.27) for ω32 to be used in the parameterization. However, these solutions lead to
physically equivalent Yukawa couplings, as shown in appendix B, thus we use

ω32 := −1
2

arcsin
(

sin(2ω22)
t32 tan2 r

)
. (2.28)

The region for the parameters r and ω22 satisfying the constraint of eq. (2.27) is shown in
figure 3 as colored regions, while white regions are disallowed.
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With these definitions, we can determine the Yukawa couplings Y (i′′) in the one-loop
mass eigenstate basis, which reproduce the PMNS matrix and the neutrino masses by
construction. The following Yukawa couplings follow from eq. (2.20):

Y (2′′) := sign(Λ)

√√√√mpole
2

|zΛ| (0 , R22 , t32R32) , (2.29)

Y (1′′) :=
i

eiφR

√√√√2mpole
3 m4

|z|v2
(0 , −R32 , R22) . (2.30)

Inserting eq. (2.28) into eqs. (2.21), (2.26), (2.29), (2.30) leads to a parameterization of
the Yukawa couplings as functions Y (1′′)(r , ω22 , m4) and Y (2′′)(r , ω22 , Λ). For cLFV, the
Yukawa coupling to the first Higgs doublet, eq. (2.30), can be neglected in the tiny seesaw
scenario, thus only Y (2′′)(r , ω22 , Λ) will contribute to cLFV.

Changing the sign of Λ changes the phase of Y (2′′). But this phase cancels in the calcu-
lation of cLFV decays. This means that cLFV observables restrict only the absolute value
of Λ. The relation between mass eigenstate Yukawa couplings Y (i′′) of eqs. (2.30), (2.29)
and the flavor ones Y (i) is given by:

Y (i) = Y (i′′)U . (2.31)

The rotation U is related to the PMNS matrix in eq. (2.16). With the Yukawa coupling
of eq. (2.29) this resembles the Casas-Ibarra parameterization, ref. [44], adapted for the
scotogenic model, ref. [30]. Setting mpole

3 → 0 in eq. (2.29) realizes the exact equality.

2.4 Vanishing Y
(2)

Neutrinos contribute to cLFV processes via Yukawa couplings to the second Higgs doublet,
Y (2). Hence, the vanishing Yukawa coupling leads to a vanishing neutrino contribution to
the process of interest. It turns out, there are solutions that simultaneously give a vanishing
Yukawa coupling in the flavor basis and reproduce neutrino masses and mixings. Using
eqs. (2.21), (2.29), (2.31) and setting Y

(2)
f = 0 for a given flavor f one gets:

cot(r)ei(ω22−ω32) = −t32
U3f

U2f
, (2.32)

where the solution for ω32 of eq. (2.28) is used. The complex equation (2.32) gives a single
solution in NO or IO for each flavor f (and it depends only on ω22 and r). These points
of vanishing Y (2) in the ω22 − r plane are shown in figure 3 as dots with corresponding
callouts, and their numerical values are given in appendix D.

The solutions of eq. (2.32) are not backed by any fundamental reasoning, are not stable
and are fine-tuned. Nevertheless, these solutions do exist and, if the small parameter ranges
around them are included, they will lead to weaker constraints on the scalar sector for cLFV.
Thus, if we discard some tiny parameter region around these points, we would make our
main result, a constraint on the scalar sector from cLFV, dependent on our own choice of
the size of the region. Instead, we choose a more agnostic approach: we include it, discuss
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it in more detail, and provide a suggestion of how one can define a “more likely” scenario
away from these regions and a “fine-tuned” one around these regions. In this way, we
completely cover the full parameter space of the model and do not make our main result
dependent on additional assumptions.

2.5 Reproducing neutrino masses and mixings

To realize the numerical scans over model parameters we used the FlexibleSUSY [45–47]
spectrum-generator generator, including the extension NPointFunctions [53]. It allowed
us to straightforwardly implement the non-trivial mass-generation mechanism for neutrino
masses in the GNM, combining tree- and loop-level generated masses, as well as the ex-
perimentally measured PMNS mixing matrix. In particular, we created SARAH [54, 55]
model files for the realization of the GNM studied in this paper. In addition, we designed
the FlexibleSUSY model file incorporating the parameterization of the parameter space
developed in section 2.4 This working setup also resulted in an independent cross-check of
the consistency of our analytical one-loop parameterization of the neutrino sector.

However, using the current implementation of the code FlexibleSUSY we spotted a
bug in the neutrino pole mass calculation, where the couplings in self-energies taken from
SARAH were conjugated, compared to analytical expressions both done by hand and with
FeynArts [56] and FormCalc [57]. As a workaround, the conjugation of self-energies in the
neutrino pole mass calculation in FlexibleSUSY was applied.

For the studied tiny seesaw parameter region, the elements of the PMNS matrix and
the output neutrino masses at one-loop are consistent within 1% accuracy. However, for
some limiting cases that lie beyond the region of our interest, the description ceases to be
accurate enough.

Since we study a tiny seesaw region, scale differences in the neutrino sector are limited
only to 12 orders of magnitude (m4 ≈ 10 GeV vs. m2 ≈ 10−11 GeV). This helps us in
numerical stability. In fact, we checked that for a seesaw scale of m4 > 10 GeV, the neutrino
mixing matrix in FlexibleSUSY becomes inaccurate (>1%), while for the neutrino masses
the scale is higher m4 > 100 GeV. We find numerically stable and correct neutrino masses
and mixings, allowing up to 1% deviation in the output of FlexibleSUSY, for

Λ > mpole
3 ≈ 5 · 10−11 GeV . (2.33)

It is interesting to note that this limiting value gives the largest Yukawa coupling with value
Y (2) ≈ O(1). Hence, the Yukawa values higher than O(1) and up to a perturbativity limit
do not accurately reproduce the neutrino spectrum in FlexibleSUSY for this model. For
our study, however, we will not reach this scenario since cLFV gives stronger constraints
in general. This means that all our results are consistent, cross-checked, and reproducible
with FlexibleSUSY.5

4The mentioned files are available on the preprint web page for this paper.
5After correcting the mentioned issue of Majorana pole mass calculation in FlexibleSUSY.

– 12 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
4

3 Charged lepton flavor violating processes

The new Yukawa interactions are not only responsible for the generation of neutrino masses,
but they also give rise to cLFV. In this section we provide the theoretical formulas for
the amplitudes of two-body decays li → ljγ, µ → e conversion (valid for all nuclei), and
three-body decays li → ljlklck. First, we present Feynman diagrams and the amplitudes,
specifying relevant and negligible ones. Later, the amplitudes are combined into the decay
(and conversion) rates. The numerical calculations are also implemented in FlexibleSUSY,
using the additional extension NPointFunctions [53].

3.1 Coefficients

Let us start from the simplest case of the penguin contributions, see the Feynman diagrams
in figure 4. We express the amplitude of the flavor-changing decay li → ljγ into an off-shell
photon with outgoing momenta q = pi − pj as in ref. [58]:

iΓl̄j liγ
= iūj

[ (
q2γµ − qµ

/q
) (

AL
1 PL + AR

1 PR

)
+ imiσ

µνqν

(
AL

2 PL + AR
2 PR

) ]
ui . (3.1)

For the considered scenario in the GNM, the dominant photon contribution is given
by one-loop diagrams of figures 4b–4d with virtual charged Higgs boson H− and virtual
Majorana neutrino ν ′′

4 exchange. In these diagrams, the lepton flavor transition is mediated
by the new Yukawa coupling Y (2).

Other contributions are negligible due to the following reasons. The impact of Gold-
stone bosons G−

W is suppressed by the Z2-breaking Yukawa coupling |Y (1)| ≪ 1. The
impact of vector bosons is suppressed due to the Glashow-Iliopoulos-Maiani (GIM) mech-
anism which leads to a m2

ν′′
i
/m2

W factor and to terms proportional to |Ũi4| ≪ 1. Also, in
our scenario, for other cLFV processes under consideration, one can always neglect the
electron Yukawa coupling Y (1) due to its small magnitude relative to Y (2).

The only non-vanishing coefficients in the decay rate, eq. (3.1), are the following:

AL
1 =

Y
(2)

i
∗
Y

(2)
j

16π2m2
H±

e

18
FA

(
m2

4

m2
H±

)
, AR

2 =
Y

(2)
i

∗
Y

(2)
j

16π2m2
H±

e

12
FB

(
m2

4

m2
H±

)
(3.2)

with the loop functions given in eq. (3.5).
Another class of cLFV diagrams are Z-boson penguins, shown in figure 4. It turns out,

that they can be removed from the consideration. The diagram in figure 4a is proportional
to the ν ′′

αν ′′
βZ coupling. Though this coupling does not vanish for the first three generations

of neutrinos, flavor-changing couplings to external leptons include Ũα4, which leads to a
seesaw suppression. The diagrams of figures 4b–4c have non-vanishing couplings but they
lead to the zero factor of (B1 + 2C00) with

B1 = B1(0, m2
4, m2

H±) , C00 = C00(0, 0, 0, m2
4, m2

H± , m2
H±) . (3.3)

The last diagram in figure 4d is proportional to Y (1). Overall, this discussion shows that
the impact of Z-penguins is negligible for our scenario. Similarly, the Higgs boson penguin
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li
ν ′′

α

lj
ν ′′

β

Z
(a)

li lj

γ/Z
(b)

li
lj

γ/Z
(c)

li
lj

γ/Z
(d)

Figure 4. Feynman diagrams for γ and Z contributions to cLFV processes for two- and three-
body decays. Contributions for two-body decays have an on-shell γ on the external line, while
contributions for three-body decays have off-shell γ and Z on the external line, which should
be understood as subdiagrams of full penguin diagrams. Arrows represent the propagation of
particles; scalars and fermions lines in the loops correspond to H− and ν′′

4 . The only non-negligible
contribution comes from the photon diagram in figure 4b. Figures 4c–4d do not give numerically
meaningful contribution, but they have to be included to ensure that UV divergences cancel exactly.
All the diagrams that include Z boson are negligible, while the diagram shown in figure 4a is zero
for a photon contribution.

li lj

lk

(a)

li lj

(b)

li lj

(c)

li lj

(d)

µ

u

e

d

(e)

µ

d

e

u

(f)

Figure 5. Box contribution. The first two four-lepton diagrams from the left are proportional to
m2

4D0, the last two of them — to 2D00. Arrows represent the propagation of particles; scalar and
fermion lines in the loops correspond to H− and ν′′

4 .

is suppressed by Yukawa couplings to charged leptons. From this follows, that only the
photon penguin gives a non-vanishing contribution.

Next, we consider box contributions relevant for li → ljlklck, see figures 5a–5d. They
sum up to the result:

ALL
box =

Y
(2)

i
∗
Y

(2)
j

16π2m2
H±

|Y (2)
k |2
2

FC

(
m2

4

m2
H±

)
, with Yee ≈ 0 , and Ykk ≪ Y

(2)
k . (3.4)

For the µ → e conversion in presence of a nucleus, there are relevant box diagrams as
well, see figures 5e–5f. They lead to a vanishingly small contribution, because in the GNM
quarks are coupled to H1, leading to a Y (1) suppression in addition to the small Yukawa
couplings.

The loop functions used above have the following form (see [59]):

FA(x) =
1

2(1 − x)4

(
2 − 9x + 18x2 − 11x3 + 6x3 ln x

)
,

FB(x) =
1

(1 − x)4

(
1 − 6x + 3x2 + 2x3 − 6x2 ln x

)
,

FC(x) =
1

(1 − x)3

(
1 + 4x − 5x2 + 2x(2 + x) ln x

)
.

(3.5)

The relevant limit for us is |x| ≪ 1, and the loop functions are normalized as Fi(x → 0) = 1.
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Using eqs. (2.29), (2.31) one obtains for m4 ≪ v . mH± that

AL
1 ∝ 1

|Λ|m2
H±

, AR
2 ∝ 1

|Λ|m2
H±

, ALL
box ∝ 1

Λ2m2
H±

, (3.6)

while the only other parameters that the amplitudes depend on are r and ω22. This depen-
dence is only slightly more complicated and can be read out from the Yukawa couplings.
Note, that the single parameter relating the scalar sector to the cLFV two-body decays is
|Λ|m2

H± . This is also the most important factor for three-body decays because contribu-
tions from box diagrams can be neglected for mH± . TeV. In addition, the model predicts
a very simple relationship between the two photonic amplitudes:

AL
1 ≈ 2

3
AR

2 . (3.7)

3.2 Decay widths

We use the following convention for a covariant derivative:

Dµ = ∂µ + ieQf Aµ , (3.8)

where e > 0 is the charge unit, Qf the electric charge of a corresponding fermion f and
Aµ the photon field.

The total decay width of li → ljγ simplifies from eq. (3.1) to (see, e.g. [58, 59]):

Γli→ljγ =
m5

i

16π
|AR

2 |2 . (3.9)

The partial decay width with three leptons of the same generation in the final state is
(see [60–62])

Γli→3lj =
m5

i

192π3

[
e2|AR

2 |2
(

ln
m2

i

m2
j

− 11

4

)
+

e

2
Re

[
(2ALL

3 + ALR
3 )AR∗

2

]

+
1

4
|ALL

3 |2 +
1

8
|ALR

3 |2
]

,

(3.10)

where the u-channel for photon penguins is included via Fierz identities; for boxes, all
channels are calculated directly, and the following abbreviations are used:

ALR
3 = −eAL

1 , ALL
3 = −eAL

1 +
1

2
ALL

box . (3.11)

The minus sign for the photon penguin comes from the embedding into a four-fermion
amplitude, and the factor 1/2 for the boxes comes from Fierz identities during the matching.

For three leptons of different generations in the final state, the expression for the partial
decay rate differs [63]:

Γli→lj l
k

lc
k

=
m5

i

192π3

[
e2|AR

2 |2
(

ln
m2

i

m2
k

− 3

)
+

e

2
Re

[
(ALL

4 + ALR
3 )AR∗

2

]

+
1

8
|ALL

4 |2 +
1

8
|ALR

3 |2
] (3.12)
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with different matching for boxes leading to an absence of the additional prefactor:

ALL
4 = −eAL

1 + ALL
box . (3.13)

For the conversion rate, we use [64]

ωµ→e = 4m5
µ

∣∣∣∣
1

8
AR

2 D − eAL
1 V (p)

∣∣∣∣
2

(3.14)

with dimensionless integrals D and V (p) defined there as well. The minus sign reflects
the different definition of the photon field that comes from the comparison of covariant
derivatives.

4 Recap of important parameters

For our study we restrict the parameters:

m4 . 10 GeV , mH± . 1 TeV . (4.1)

The first inequality rewrites the condition on the seesaw scale of eq. (2.7), the second one
leads to charged Higgs boson masses well in reach of the LHC, and also leads to negligible
box contributions in almost all of the parameter space and significantly simplifies the
discussion.6

The cLFV ratios are determined by the Yukawa couplings to the second Higgs doublet,
Y (2)(ω22 , r , Λ), which also includes neutrino masses and mixings determined by the oscilla-
tion parameters. Since the parameter |Λ| factors out in the amplitudes as in eq. (3.6), all the
relevant parameters for cLFV are ω22, r, |Λ|m2

H± and Λ2m2
H± . However, the last one comes

from the box diagrams, which is out of the scope of this paper due to a typically negligible
box contribution impact for cLFV with relatively light charged Higgs bosons. Neglecting
the box contributions, all the relevant free parameters that enter cLFV then sum up to:

ω22 , r , |Λ|m2
H± . (4.2)

The first two are the free parameters that define the Yukawa sector: ω22 is a phase that is
related to CP and Majorana phases at one-loop, while r parameterizes the mixing between
seesaw and radiative states. The last parameter of eq. (4.2) relates the scalar and Yukawa
sectors. We will refer to it as the photon factor, as it is a factor in front of the amplitudes
that include a photon, i.e. in front of AL

1 and AR
2 , as shown in eq. (3.6).

The photon factor, |Λ|m2
H± , relates the scalar sector to the Yukawa sector via cLFV

and it is of most interest. Using eq. (2.19), we write it explicitly:

|Λ|m2
H± =

m4m2
H±

32π2
ln

(
m2

H

m2
A

)
, m4 ≪ v . (4.3)

For the tiny seesaw region, |Λ|m2
H± can be generalized to the general 2HDM [42], by

inclusion of the mixing of the scalar particles in Λ, eq. (2.19). In our study, we give bounds

6See next section.
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on the photon factor that are independent of the exact form of the scalar potential or its
symmetries (Z2 or CP breaking or not). Note, however, that the Z2 symmetry breaking
Yukawa couplings of charged leptons to the second Higgs doublet in the Higgs basis can in
principle alter the cLFV values, if included.

It is instructive to look at the dependence on the parameters of the scalar potential
for the sake of physical intuition. The inert scalar potential of eq. (2.1) in the limit of
approximately degenerate heavy scalar masses simplifies the photon factor:7

|Λ|m2
H± ≈ |λ5| m4 · v2

32π2
. (4.4)

The non-observation of cLFV then generally leads to a lower bound on the photon factor
|Λ|m2

H± (and thus λ5) as a function of the seesaw scale. As was mentioned before, λ5 is a
Peccei-Quinn symmetry breaking parameter that is bounded from below by the neutrino
sector alone. The cLFV decays then allow us to improve this bound in the tiny seesaw
region.

As a last note, we stress again that the cLFV rates are related to the scalar sector
only via a single parameter, |Λ|m2

H± . Hence, our results do not depend on how exactly
all the parameters in the potential are realized. While we used the scalar potential of the
Inert Doublet model (IDM), motivated by an approximate Z2 symmetry, and assumed that
the values of scalar masses are close to each other to get the specific interpretation of a
|Λ|m2

H± in eq. (4.4), one is, in general, free to use any scenario of the 2HDM potential, as
already mentioned before. To construct a consistent potential, one can look at e.g. [65–70]
for detailed studies of 2HDM or at [71] for constraints in IDM specifically.

5 Phenomenological analysis

5.1 Discussion of the relative importance of different decay modes

All the cLFV experiments, which potentially can constrain the GNM, are shown in ta-
ble 1. Below, we discuss the importance of all these decay modes to single out the most
constraining experiments for the GNM.

Typically, the branching ratios for three-body decays are dominated by photonic con-
tributions, while others — boxes, Z and Higgs penguins — are negligible in the parameter
region defined by eq. (4.1). The tiny seesaw scale, defined as m4 ≪ v . mH± , further
leads to a fixed ratio of AL

1 ≈ 2/3AR
2 . We call this regime photon dominance (in contrast

to dipole dominance, which assumes AL
1 ≪ AR

2 ):

BR(li → 3lj) ≈
[

− 5 · α

18
+

α

3

(
− 11

4
+ ln

m2
i

m2
j

)]
· BR(li → ljγ) , (5.1)

where α = e2/(4π). The first term of eq. (5.1) is a correction to the dipole dominance.
This correction amounts to O(10%) for µ → 3e.

The box contribution can be increased for lower |Λ| values, as follows from eq. (3.6).
However, two-body decays constrain the |Λ|m2

H± factor from below. Taking this minimum

7An exact degeneracy would lead to λ5 → 0 and vanishing radiative neutrino mass.
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Observable Experiments and constraints

µ → eγ MEG [7]: 4.2 · 10−13 → MEG-II [11]: 6 · 10−14

τ → eγ BaBar [8]: 3.3 · 10−8 → Belle-II [12]: 3.0 · 10−9

τ → µγ BaBar [8]: 4.5 · 10−8 → Belle-II [12]: 1.0 · 10−9

µ → 3e SINDRUM [10] : 1 · 10−12 → Mu3e-I [13] : 2 · 10−15

τ → 3e Belle-I [9]: 2.7 · 10−8 → Belle-II [12]: 4.6 · 10−10

τ → µee Belle-I [9]: 1.8 · 10−8 → Belle-II [12]: 3.1 · 10−10

τ → eµµ Belle-I [9]: 2.7 · 10−8 → Belle-II [12]: 4.6 · 10−10

τ → 3µ Belle-I [9]: 2.1 · 10−8 → Belle-II [12]: 3.6 · 10−10

µ → e conversion — → COMET [14]: 7 · 10−15

Table 1. Current and planned experimental bounds, related to corresponding observables. Data
for τ decays for Belle-II was obtained from the figure 189 of ref. [12]. For the µ → e conversion, we
consider the Al nucleus.

value of |Λ|m2
H± , a lower value for |Λ| translates into a higher value for mH± . We concen-

trate on the lighter masses of the charged Higgs in the paper, see eq. (4.1), where deviations
from eq. (5.1) are small.

We find that the box contributions are generally negligible in all of the ω22 − r plane
for µ → 3e, except for the very small region, where the rate for µ → eγ drops sharply close
to the point where Y

(2)
µ = 0. This is because the constraint on |Λ|m2

H± from µ → eγ is
much looser around that parameter point than in all the rest of the parameter region.
Since it is contained in a tiny enough area in the ω22 − r plane and both, BR(µ → 3e) and
BR(µ → eγ) go to zero at Y

(2)
µ = 0, it gives negligible modifications to the information

that the two-body decays provide.
The only parameter region where τ → 3µ can be expected to be observed in Belle-II is

around Y
(2)

e = 0; such an observation can happen only if τ → µγ is also seen. The value of
τ → 3µ can in fact deviate more significantly from photon dominance, but we find that the
current and planned experimental sensitivities still leave this process phenomenologically
irrelevant. Other three-body processes are not expected to be seen in Belle-II at all. As a
result of these checks, we conclude that in the parameter region of our study, the three-body
decays are of minor importance compared to the two-body ones.

The second phases of experiments, Mu3e-II and COMET-II, will enhance the impor-
tance of the corresponding processes. Their branching ratios will be fixed by the photon
dominance contributions in the studied parameter region as box contributions can be ne-
glected. In the present paper, we do not consider these longer-term improvements. For the
next achievable improvement of µ → e conversion at COMET [14] the following relation
holds:

CR(µ → e)

BR(µ → eγ)
<

CR(COMET)

BR(MEG)
, (5.2)

which makes it less restrictive than µ → eγ.
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(a) MEG contours. (b) MEG contours.

Figure 6. Contour plots of lower limits of |Λ|m2
H± for the current bounds on µ → eγ by the MEG

experiment. The white area is excluded theoretically, either by the constraint that z, eq. (2.26),
has to be real, or by the constraint in eq. (2.27). The latter constraint is colored red striped in
figure 3. The tiny regions around the points with Y

(2)
e = 0 and Y

(2)
µ = 0 are always allowed by

µ → eγ. They are constrained either by τ → µγ or τ → eγ, as in table 2. The bold values of the
photon factor correspond to the critical cases when µ → eγ allows the point with Y

(2)
τ = 0.

Process and parameter point NO, |Λ|m2
H± [GeV3] IO, |Λ|m2

H± [GeV3]

τ → eγ at Y
(2)

µ = 0 1.9 · 10−6 4.0 · 10−6

τ → µγ at Y
(2)

e = 0 1.3 · 10−5 7.6 · 10−6

Table 2. Lower bounds on the photon factor, |Λ|m2
H± , from τ decays at the parameter points,

where BR(µ → eγ) vanishes.

From now on, we will concentrate on the study of two-body decays as the most con-
straining decay modes for the GNM. Note, however, that two-body decays can vanish if
the corresponding Yukawa couplings vanish. These points in the parameter space do exist,
as described in section 2.4. Nevertheless, as can be seen from figure 3, there is no such
point in the ω22 − r plane in which two of the Yukawa couplings in flavor basis vanish si-
multaneously. This means that all three two-body decay experiments have to be combined
to give a strict bound on |Λ|m2

H± and, hence, we further study all three of them.

5.2 Current and planned restrictions on |Λ|m2
H±

The lower bound for |Λ|m2
H± from non-observation of cLFV depends on the parameters r

and ω22. The current lower bounds from µ → eγ on |Λ|m2
H± for NO and IO are given as

contour plots in figure 6. The most important observable is µ → eγ. It gives the tightest
bounds almost everywhere, except for the sharp minima around the points, where the
corresponding Yukawa couplings vanish. In those small regions, either τ → eγ or τ → µγ

constrains the photon factor |Λ|m2
H± , which results, for the current experimental limits

– 19 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
4

Figure 7. Regions in the ω22 − r plane where the observation of the listed processes is possible in
the planned experiments. For example, the gray dashed regions in the upper plots correspond to
the case, where τ → µγ and µ → eγ are observed simultaneously, the yellow dashed region shows
the allowed values when only τ → µγ is observed, but µ → eγ not, as noted in the plot legend.
Note, that the top-left area is significantly larger than other areas.

(first column of table 1), in the lower bounds on the photon factor, shown in table 2 (also
see figure 8 for current and planned future bounds).

If no cLFV processes are observed in the planned experiments listed in the second
column of table 1, one obtains improved bounds on the photon factor |Λ|m2

H± by the
following scaling:

[
|Λ|m2

H±

]
planned

=

√√√√ BRcurrent
i

BRplanned
i

[
|Λ|m2

H±

]
current

. (5.3)

5.3 Some processes are observed: restrictions on the ω22 − r plane

If the planned experiments with improved sensitivity do observe a signal, then the GNM
becomes very restrictive. We use table 1 to define regions with respect to the possible
outcomes of the experiments:

BRplanned
i < BRobserved

i < BRcurrent
i , (5.4)
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Observed processes NO, |Λ|m2
H± [GeV3] IO, |Λ|m2

H± [GeV3]

τ → µγ & µ → eγ 9.43 · 10−5

5.12 · 10−5

τ → µγ only 9.07 · 10−5

τ → eγ & µ → eγ
6.28 · 10−6 1.34 · 10−5

τ → eγ only

Table 3. Upper bounds on the photon factor, |Λ|m2
H± , if the only specified combination

of processes is observed in Belle-II and MEG-II. Each bound corresponds to a region in the
ω22 − r plane in figure 7.

Figure 8. Branching ratios for τ decays within yellow rectangular border allow to exclude the
whole ω22 − r plane for a specified photon factor |Λ|m2

H± with MEG bounds on µ → eγ. Closest
blue rectangles correspond to the case of infinitely precise experimental bound. To exclude larger
photon factor values, bounds on µ → eγ have to be improved leading to the same rectangles up to
an appropriate scaling of |Λ|m2

H± and axes, as mentioned in the text. Gray solid lines correspond
to current experimental bounds, gray dashed lines — to the planned ones.

where superscripts “current” and “planned” are again used for the reach-in branching ratio
of the current or planned experiments. The corresponding values are given in the first and
second columns of table 1.

The parameter regions where the observation of τ → eγ and τ → µγ in the
ω22 − r plane is possible are shown in figure 7. They also provide the maximal allowed pho-
ton factor by the values given in table 3. The lower bounds from table 2 together with the
upper ones from table 3 specify the allowed range for the photon factor |Λ|m2

H± in case of
these observations, while figure 7 shows the allowed regions in the ω22 − r plane: the dashed
areas. These dashed areas are disjoint, meaning that the GNM predicts, that τ → eγ and
τ → µγ cannot be seen together. If µ → eγ is observed, then figure 6, scaled with eq. (5.3)
for the observed branching ratio, gives the values of |Λ|m2

H± in the ω22 − r plane.

5.4 Nothing is observed: future absolute bounds on |Λ|m2
H±

To generalize our results and to give a more definite answer of how the combination of the
neutrino sector and cLFV constrains the scalar sector, we look at the absolute bound on the
photon factor, |Λ|m2

H± . By absolute bound we mean the minimum value of |Λ|m2
H± such
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that the whole ω22 − r plane, consistent with neutrino masses and mixings, is excluded by
cLFV observables. The absolute limits for current experimental bounds are shown in the
first row of table 2 and are determined by τ → eγ experiments at Y

(2)
µ = 0. The limits for

the planned experiments are derived with the scaling of eq. (5.3).
In general, µ → eγ is the strongest experiment in most of the ω22 − r plane in the

nearest future. However, the allowed minimal |Λ|m2
H± is mainly determined by the weaker

bounds on τ → eγ or τ → µγ. This is because one always has two points in the parameter
space where Y

(2)
e,µ = 0 and, hence, the branching ratio for µ → eγ vanishes. In order to fur-

ther improve the absolute bound on |Λ|m2
H± one therefore has to improve the experimental

sensitivities on τ → eγ and τ → µγ. The combination of branching ratios of these exper-
iments, required to completely exclude the ω22 − r plane for specific values of |Λ|m2

H± , is
shown in figure 8.

The yellow borders specify precise values of branching ratios that have to be applied,
i.e. if the future τ → eγ and τ → µγ sensitivities are inside one particular yellow rectangle,
the absolute lower bound on |Λ|m2

H± is at least as good as indicated in the legend. The
yellow borders are obtained without approximations and are determined by varying the
branching ratio of the τ decays over the regions in the ω22 − r plane that are not excluded
by µ → eγ. The blue rectangles are similar, but they show the hypothetical case in which
µ → eγ is of infinite precision, and hence only the points with BR(µ → eγ) = 0 are allowed
by µ → eγ. All future improvements in µ → eγ experiments for a specific value of |Λ|m2

H±

reside in the area between the closest yellow and blue rectangles. One can see, that the
size of the area between the rectangles is small (hence for this analysis improvements in
µ → eγ are of minor importance) but grows with the values of the photon factor.

This behavior continues to higher values of |Λ|m2
H± than shown in the plot, up to the

moment when µ → eγ allows the point where Y
(2)

τ = 0, as shown as critical case in figure 6.
To exclude even larger |Λ|m2

H± values, the improvement of bounds for µ → eγ is required.
For a different µ → eγ precision, figure 8 can be used with the following rescaling of the
photon factor and axes:

|Λ|m2
H± → |Λ|m2

H±

√
BR(MEG)

BR(µ → eγ)
, BR(τ) → BR(τ)

BR(µ → eγ)

BR(MEG)
. (5.5)

However, a high precision of τ experiments is required so that this case lies out of
the bounds of figure 8. Taking into account the current and planned bounds for τ → eγ

and τ → µγ, one concludes that only τ → eγ improvements are important for the absolute
bound in the near future.

5.5 Interpretation of results: example of limits on λ5 and relations to scoto-

seesaw and scotogenic models

The absolute bounds on the photon factor, |Λ|m2
H± , correspond to the values of the photon

factor, for which the entire ω22 − r plane is excluded. They are given by τ → eγ in table 2
or figure 8. However, figure 6 shows that the absolute bounds are due to very small areas in
the parameter space. These areas are characterized by the vanishing of one of the Yukawa
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couplings, and only in those regions an observation of τ decays in Belle-II can be expected.
We define the “essential part” of the ω22 − r plane, as the region where the observation
of τ decays in Belle-II is not possible i.e. all the plane except the regions shown in colors
in figure 7. We then obtain a “typical” bound on the photon factor, i.e. the bound for
which the “essential part” of the ω22 − r plane is excluded. The absolute bound is shown
in table 3 and together with this typical bound, defined above, reads as:

absolute for NO(IO): |Λ|m2
H± > 1.9(4.0) · 10−6 GeV3 ,

typical (no τ → e(or µ)γ expected): |Λ|m2
H± & 10−4 GeV3 .

(5.6)

To get an intuition of how strong this current bound on the scalar sector actually is, we
can go back to the special case of the scalar sector, where eq. (4.4) holds. Then eq. (5.6)
translates into bounds on |λ5|:

absolute for NO(IO): |λ5| > 1(2) · 10−2 keV
m4

,

typical (no τ → e(or µ)γ expected): |λ5| & keV
m4

.

(5.7)

As we mentioned in the introduction, the GNM in the tiny seesaw scale region is similar
to the scoto-seesaw and scotogenic models due to an approximate Z2 symmetry. To put
our results in a more general framework let us consider how our results can be applied to
these two models.

The scoto-seesaw model has two heavy neutrinos, one of which is odd under the Z2

symmetry and the other one is even. One can use our parameterization for the Yukawa
couplings, where m4 in Y (2) is understood as the mass of the Z2-odd neutrino, while m4

in the expression for Y (1) has to be understood as the mass of the Z2-even neutrino of the
scoto-seesaw model. In case these heavy neutrinos of the scoto-seesaw model are lighter
than the scalars, only Y (2) enters the cLFV just as in our case, and hence all our results
for cLFV, including all figures, hold for the scoto-seesaw model, too. We also note that
our parameterization allows to cover the full parameter region of the scoto-seesaw model,
while [32, 33] assume only scenarios, where the mixing between the radiative and the seesaw
neutrino at one-loop is absent, i.e. r = 0 in our parameterization.

The scotogenic model also has a Z2 symmetry, yet it does have more parameters. Nev-
ertheless, the Casas-Ibarra parameterization gives the same general behavior of the Yukawa
couplings with respect to |Λ|m2

H± and hence cLFV ratios like in our case. The difference
is that in the scotogenic model |Λ|m2

H± is a 3 × 3 matrix and, instead of two parameters,
r and ω22, one has a general 3 × 3 orthogonal matrix entering the Yukawa couplings. Nev-
ertheless, the same typical behavior for the tiny seesaw scales in the scotogenic model is
to be expected. One should also have in mind that in the scotogenic model there could
be similar cancellations suppressing the µ → eγ branching ratio like in our case. These
cancellations would push the absolute bound on |Λ|m2

H± lower. However, from our study
we cannot generalize our strict exclusions and predict them for the scotogenic model.

Even though the tiny seesaw scale has never been rigorously studied in the scotogenic
model before, we do find the comment about it in [30], which gives us some way to put

– 23 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
4

our results in a more general context. [30] claims that for m4 ≪ mH± the value λ5 = 10−9

is excluded. We see that the typical bound, given in eq. (5.7), indeed is consistent with
this statement for scalar masses of the TeV scale, which are the masses they actually
consider. This confirms our expectation that the typical behavior of the models in this
parameter region is the same. As said before, our absolute bound from eq. (5.7) cannot
be directly applied to the scotogenic model, yet it gives an example of how much special
analytical solutions, that can hardly be caught in random parameter scans, can push the
strict exclusion limits of the model.

6 Conclusions

Throughout this paper, we concentrated on the question: how does the neutrino sector of
the GNM constrain the scalar sector via cLFV observables? The GNM is a model where
neutrino masses are generated with a minimal neutrino sector but a non-minimal Higgs
sector, such that new Yukawa couplings can lead to cLFV effects. Guided by the principle
“exclude as much as possible”, we singled out the scenario where the strongest constraints
can be drawn, i.e. when cLFV decays are enhanced. This scenario corresponds to a tiny
seesaw scale (lower than the electroweak scale) and a mass of the charged Higgs mH±

slightly above the electroweak scale (up to a TeV).
In this parameter range, box diagrams are negligible, and the study simplifies to the

relations between three parameters: two parameters, ω22 and r, parameterize the new
Yukawa sector, see figure 3, and one parameter, the so-called photon factor |Λ|m2

H± , in-
cludes scalar sector parameters and the seesaw scale, see eq. (4.3).

The non-observation of cLFV then results in lower bounds on the photon factor as
a function of ω22 and r. These lower bounds are shown as contour plots in figure 6 for
each neutrino mass ordering. Currently, µ → eγ is the most constraining observable in the
largest part of the ω22 − r plane. There are only two areas in this plane where µ → eγ gives
weaker constraints than τ → eγ and τ → µγ, corresponding to areas of approximately zero
Yukawa couplings Y

(2)
e , Y

(2)
µ = 0. Hence, the final, absolute constraints on the photon

factor |Λ|m2
H± (which are independent of ω22 and r) come from τ decays and are given

separately in table 2.
In the mentioned special parameter areas, the observation of τ → eγ or τ → µγ in the

planned experiments becomes possible and leads to the regions shown in figure 7. The
upper limits on |Λ|m2

H± for these decays is given in table 3. Hence, if τ → eγ or τ → µγ

is observed in the future, the parameter space is drastically reduced, while the observation
of both τ → eγ and τ → µγ is excluded in the GNM by the sensitivity of µ → eγ.

To disentangle the discussion of the neutrino sector and the scalar sector, we look at
global bounds on |Λ|m2

H± , which are independent of the neutrino parameters ω22 and r.
One option is to consider absolute bounds, i.e. bounds for which the complete ω22 − r plane
is strictly excluded. To increase this absolute bound an improvement of the sensitivity in
τ → eγ is most important in the near future. This situation is shown in figure 8, where
the needed branching ratios of τ → eγ and τ → µγ to exclude the particular value of
|Λ|m2

H± for the complete parameter space of the model can be extracted. For instance,
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until the BR(τ → eγ) ≈ 10−11(10−10) for NO(IO) is probed, any other improvement of
cLFV observables has no effect on the bound on the photon factor |Λ|m2

H± . Technically,

the absolute bound is driven by the point, where Y
(2)

µ = 0, see table 2. In the numerical
evaluation it is helpful to rely on analytical solutions for such points, provided in section 2.4.

A second option is to consider typical bounds, i.e. bounds on |Λ|m2
H± for which the

essential part of the ω22 − r plane is excluded. The absolute and typical bounds are shown
in eq. (5.6) and interpreted in terms of the scalar sector parameter λ5 in eq. (5.7).

All the presented results are directly applicable to the scoto-seesaw model and comple-
ment the current studies of [32, 33]. Additionally, the presented neutrino mass calculation
and the parameterization of the Yukawa couplings are more accurate and do not neglect
the mixing between the radiative and the seesaw neutrino states at one loop as in [32, 33].
This allows us to cover the parameter space completely.

One cannot apply the absolute bound from the GNM directly to the scotogenic model.
In both models, the dependence on the photon factor coincides, but there are more free
parameters in the Yukawa sector of the scotogenic model. This leads to unrelated analytical
solutions in the limiting case. However, as discussed in section 5.5, the typical bounds of
eqs. (5.6), (5.7) are applicable for the typical behavior of the scotogenic model.
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A Parametrization for Yukawa couplings

In this appendix we give the step by step derivation of how we can define the Yukawa
couplings unambiguously.

We start with defining the loop contribution to Σ̂, eq. (2.19), as

W := −ΛR̂∗
(

d2 idd′

idd′ −d′2

)
R̂† = R̂∗

(
0 0

0 m3

)
R̂† − diag(mpole

2 , mpole
3 ) , (A.1)

which has determinant zero. For convenience we repeat the definition of R̂ :

R̂ =

(
R22 −R∗

32eiφR

R32 R∗
22eiφR

)
, with R22 := cos r eiω22 , R32 := sin r eiω32 . (A.2)

Defining

z := R2
22 + t32R2

32 and t32 :=
mpole

3

mpole
2

, (A.3)
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we can restrict the components of R̂ by the condition, that the determinant of the r.h.s.
of eq. (A.1) vanishes:

0 = det W = mpole
2 mpole

3 − e−2iφRm3(mpole
2 R2

22 + mpole
3 R2

32)

= mpole
2 [mpole

3 − e−2iφRm3(R2
22 + t32R2

32)] = mpole
2 [mpole

3 − e−2iφRm3z] ,
(A.4)

giving us a definition of the phase φR:

e2iφR

z
=

m3

mpole
3

> 0 . (A.5)

W itself, eq. (A.1), produces also additional relations between d, d′ and R̂ij :

[−R̂T WR̂]11 = d2Λ = mpole
2 R2

22 + mpole
3 R2

32 = mpole
2 z . (A.6)

Since Λ is real, see eq. (2.19), we get from eq. (A.6)

Λ/z = mpole
2 /d2 > 0 , Im z = 0 , (A.7)

meaning that z has to be real, and additionally, has to have the same sign as Λ. From
eq. (A.5) we get then

e2iφR = sign(z) = sign(Λ) , (A.8)

which allows two values for eiφR , depending on the sign of Λ:

eiφR = ±
√

sign(Λ) or equivalently eiφR
∣∣
Λ>0

= ±1 or eiφR
∣∣
Λ<0

= ±i . (A.9)

From our limit on the range of m3, eq. (2.24), we get also a limit for |z| = mpole
3 /m3:

1

2
< |z| ≤ t32 . (A.10)

Using above definitions and conditions, eqs. (A.3), (A.5), it turns out that we can rewrite

Wr.h.s. =

(
−mpole

2 + e−2iφRm3R2
32 −e−2iφRm3R22R32

−e−2iφRm3R22R32 −mpole
3 + e−2iφRm3R2

22

)

=

(
−mpole

2 +
t32m

pole
2

zm3
m3R2

32 − t32m
pole
2

zm3
m3R22R32

− t32m
pole
2

zm3
m3R22R32 −t32mpole

2 +
t32m

pole
2

zm3
m3R2

22

)

= −mpole
2

z

(
z − t32R2

32 t32R22R32

t32R22R32 zt32 − t32R2
22

)

= −mpole
2

z

(
R2

22 + t32R2
32 − t32R2

32 t32R22R32

t32R22R32 t32(R2
22 + t32R2

32 − R2
22)

)

= −mpole
2

z

(
R2

22 t32R22R32

t32R22R32 t32
2R2

32

)

(A.11)
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as a tensor product:

Wr.h.s. = −mpole
2

z
w ⊗ w , w :=


 R22

t32R32


 . (A.12)

Motivated by this decomposition we can extend the tensor product definition, using
eq. (2.10), and R̂ from eq. (2.9) to express:

Y (2′′) ⊗ Y (2′′) =


 0 0

0 − 1
ΛWl.h.s.


 =


 0 0

0 − 1
ΛWr.h.s.


 =


 0 0

0
m

pole
2

zΛ w ⊗ w


 . (A.13)

This expression motivates a parameterization for the Yukawa coupling Y (2′′),

Y (2′′) = sign(Λ)

√
mpole

2

zΛ
(0 , R22 , t32R32) = Y (2′)R† = (0 , d , id′)R† , (A.14)

or

d = sign(Λ)

√
mpole

2

zΛ
(R2

22 + t32R2
32) =

Λ

|Λ|

√
mpole

2

zΛ
z =

√
mpole

2 zΛ

|Λ| > 0 ,

id′ = sign(Λ)

√
mpole

2

zΛ
(−R22R∗

32 + t32R32R∗
22)eiφR ,

(A.15)

which is consistent with the [−R̂T WR̂]12 element of eq. (A.1)

idd′Λ = eiφR(mpole
3 R32R∗

22 − mpole
2 R22R∗

32)

= mpole
2 eiφR(t32R32R∗

22 − R22R∗
32)

= mpole
2 sin r cos reiφR(t32ei(ω32−ω22) − e−i(ω32−ω22)) .

(A.16)

Analogously, we have to rotate the Yukawa coupling to the first Higgs doublet:

Y (1′′) = Y (1′)R† = (0 , 0 , iy)R† = ie−iφR

√√√√2mpole
3 m4

|z|v2

(
0 , −R32 , R22

)
, (A.17)

using eq. (2.6), (A.5).

B Determining the minimal parameter space

In this appendix we derive a minimal region of φR, r, ω22, and ω32 that covers the whole
parameter space to study the unique constraints by cLFV. The dominant contribution
of all cLFV processes in our region of interest, that is motivated by the approximate Z2

symmetry, depends on Y
(2)

i Y
(2)

j
∗, which implies, that parameter points leading to a different

overall phase of Y (2) are equivalent.
With the new definitions for Y (′′) from eq. (A.14)

Y (2′′) = sign(Λ)

√
mpole

2

zΛ
(0 , R22 , t32R32) = sign(Λ)

√
mpole

2

zΛ
(0 , cos r eiω22 , t32 sin r eiω32) ,
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and eq. (A.17)

Y (1′′) = Y (1′)R† = (0 , 0 , iy)R† = ie−iφR

√√√√2mpole
3 m4

|z|v2

(
0 , − sin r eiω32 , cos r eiω22

)
,

we see the following relation

Y (′′) (r ± π) = −Y (′′) (r) ⇒ r ∈
(

− π

2
,
π

2

]
, (B.1)

that reduces the required region of r, as the minus signs are just a different phase, that
does not influence the cLFV. In the same way, we can pick in eq. (A.9) the plus sign before
the square root, as the different phase does not influence the cLFV.

The restrictions for r and ω22 come from solving eq. (A.7) for ω32:

0 = Im z = Im[R2
22 + t32R2

32] = cos2 r sin(2ω22) + t32 sin2 r sin(2ω32)

= cos2 r sin(2ω22) + t32 sin2 r
1

2i
[e2iω32 − e−2iω32 ]

(B.2)

gives two possible distinct solutions for ω32 as functions of ω22, as eiω32 is needed for the
Yukawas, but the equation determines only the square, e2iω32 :

0 = e2iω32 + 2i
sin(2ω22)

t32 tan2 r
− e−2iω32 , (B.3)

or

(e2iω32)1,2 = −i
sin(2ω22)

t32 tan2 r
±

√

1 − sin2(2ω22)

t32
2 tan4 r

, (B.4)

giving immediately

[sin(2ω32)]1 = [sin(2ω32)]2 = −sin(2ω22)

t32 tan2 r
(B.5)

and

[cos(2ω32)]1,2 = ±
√

1 − sin2(2ω22)

t32
2 tan4 r

. (B.6)

One can directly see, that (e2iω32)2 = [−(e2iω32)1]−1. Additionally, eqs. (B.5), (B.6) restrict
r and ω22 by

t32 tan2 r > | sin(2ω22)| , (B.7)

which is displayed as the white “disks” in figure 3. In these white “disks” there exists no
solution to consistency conditions imposed by eq. (A.1).

We take as the regular solution, inspired by eq. (B.5):

ω32+ := −1

2
arcsin

(
sin(2ω22)

t32 tan2 r

)
, ω32+(r = 0) := 0 , (B.8)

which lies by construction in the range |ω32| < π/4, giving cos(2ω32) ≥ 0. To reach the
second choice, cos(2ω32) < 0, we take:

ω32− := −π

2
sign(ω22) − ω32+ . (B.9)

– 28 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
4

Both ω32+ and ω32− lead to regions with positive and negative values for z:

z+ := Re [z(ω32+)] = Re[R2
22 + t32R2

32] = cos2 r cos(2ω22) + t32 sin2 r cos(2ω32+)

= cos2 r


cos(2ω22) + t32 tan2 r

√

1 − sin2(2ω22)

t32
2 tan4 r


 .

(B.10)

If

t32
2 tan4 r

[
1 − sin2(2ω22)

t32
2 tan4 r

]
≥ cos2(2ω22)

⇔ t32
2 tan4 r ≥ cos2(2ω22) + t32

2 tan4 r
sin2(2ω22)

t32
2 tan4 r

= 1

⇔ t32 tan2 r ≥ 1 ,

(B.11)

z+ > 0 for any value of ω22. But if

t32 tan2 r ≤ 1 (B.12)

z+ can become negative for |ω22| > π
4 .

A similar distinction happens to

z− := Re [z(ω32−)] = Re[R2
22 + t32R2

32] = cos2 r cos(2ω22) + t32 sin2 r cos(2ω32−)

= cos2 r cos(2ω22) + t32 sin2 r cos(∓π − 2ω32+)

= cos2 r cos(2ω22) − t32 sin2 r cos(−2ω32+)

= cos2 r


cos(2ω22) − t32 tan2 r

√

1 − sin2(2ω22)

t32
2 tan4 r


 .

(B.13)

For eq. (B.11) the negative term always dominates and z− ≤ 0 for any ω22. But if eq. (B.12),
the first term dominates and z− ≥ 0 if |ω22| < π

4 .

Since z and Λ have the same sign, eq. (A.7), the sign of Λ determines also, how the
choice of ω22, effects the possible solutions of eq. (A.7) or eq. (B.2), i.e. ω32+ or ω32−, as
the sign of z is an additional requirement for the solution:

• in the case of a positive sign of Λ, we have to choose also a positive sign for z:

– z+ in the region eq. (B.11) and the region eq. (B.12) and |ω22| < π
4

– z− in the region eq. (B.12) and |ω22| > π
4

• in the case of a negative sign of Λ, we have to choose a negative sign for z:

– z+ in the region eq. (B.12) and |ω22| > π
4

– z− in the region eq. (B.11) and the region eq. (B.12) and |ω22| < π
4
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Summarizing, we get the possible Yukawa couplings:

Y (′′)(Λ, t32 tan2 r < | sin(2ω22)|) := not defined (B.14)

Y (′′)(Λ > 0, t32 > cot2 r ) := Y (′′)(r, ω22; ω32+) (B.15)

Y (′′)(Λ > 0, t32 < cot2 r , |ω22| < π/4) := Y (′′)(r, ω22; ω32+) (B.16)

Y (′′)(Λ > 0, t32 < cot2 r , |ω22| > π/4) := Y (′′)(r, ω22; ω32−) (B.17)

Y (′′)(Λ < 0, t32 < cot2 r , |ω22| > π/4) := Y (′′)(r, ω22; ω32+) (B.18)

Y (′′)(Λ < 0, t32 > cot2 r ) := Y (′′)(r, ω22; ω32−) (B.19)

Y (′′)(Λ < 0, t32 < cot2 r , |ω22| < π/4) := Y (′′)(r, ω22; ω32−) . (B.20)

We see, that the ares where one has to use the “other” solution, i.e. ω32− instead of ω32+,
or Λ > 0 compared to Λ < 0, are complementary: we cover the whole parameter space in
all cases.

C Relations between Yukawa couplings of different parameter points

It turns out, that there is a relation between the parameters of R̂ , that gives the same
Yukawa couplings for both solutions, ω32+ and ω32−. We also notice that the conditions
for the allowed areas in the ω22 − r plane depend only on the sizes of |r| and |ω22|.

The first observation needed is the relation between ω32+[ω22], eq. (B.8), and ω32−[ω̃22],
eq. (B.9), for a shifted ω̃22 = ω22 − π

2 sign(ω22). Please note, that this shift flips between
the regions |ω22| < π

4 and |ω22| > π
4 .

ω32−[ω̃22] = ω32−[ω22 − π

2
sign(ω22)]

= −π

2
sign(ω22) +

1

2
arcsin

(
sin

(
2[ω22 − π

2 sign(ω22)]
)

t32 tan2 r

)

= −π

2
sign(ω22) +

1

2
arcsin

(
sin (2ω22 ∓ π)

t32 tan2 r

)

= −π

2
sign(ω22) +

1

2
arcsin

(− sin (2ω22)

t32 tan2 r

)

= −π

2
sign(ω22) − 1

2
arcsin

(
sin (2ω22)

t32 tan2 r

)

= −π

2
sign(ω22) + ω32+[ω22] .

(C.1)

The second relation is the one between z−(ω̃22), eq. (B.13), and z+(ω22), eq. (B.10):

z− = cos2 r cos(2ω̃22) + t32 sin2 r cos(2ω32−[ω̃22])

= cos2 r cos

(
2

[
ω22 − π

2
sign(ω22)

])
+ t32 sin2 r cos

(
2

[
ω32+[ω22] − π

2
sign(ω22)

])

= cos2 r cos(2ω22 ∓ π) + t32 sin2 r cos(2ω32+[ω22] ∓ π)

= − cos2 r cos(2ω22) − t32 sin2 r cos(2ω32+[ω22]) = −z+(ω22) . (C.2)
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With sign(Λ) = sign(z) = +1 this gives now

Y (1′′)(Λ > 0, t32 < cot2 r , |ω̃22| > π/4) = Y (1′′)(r, ω̃22; ω32−[ω̃22])

= i
√

sign(z−)

√√√√ 2mpole
3 m4

|z−[ω̃22]|v2

(
0, − sin r eiω32−[ω̃22], cos r eiω̃22

)

= i
√

sign(−z+)

√√√√ 2mpole
3 m4

| − z+[ω22]|v2

(
0, − sin r eiω32+[ω22]− iπ

2
sign(ω22), cos r eiω22− iπ

2
sign(ω22))

= i
√

−sign(z+) e− iπ
2

sign(ω22)

√√√√ 2mpole
3 m4

|z+[ω22]|v2

(
0, − sin r eiω32+[ω22], cos r eiω22

)

=

√
−e−iπsign(ω22) Y (1′′)(r, ω22; ω32+[ω22])

= Y (1′′)(r, ω22; ω32+[ω22]) = Y (1′′)(Λ > 0, t32 < cot2 r , |ω22| < π/4) , (C.3)

or with sign(Λ) = sign(z) = −1 we get

Y (1′′)(Λ < 0, t32 < cot2 r , |ω̃22| < π/4) = Y (1′′)(r, ω̃22; ω32−[ω̃22])

= i
√

sign(z−)

√√√√ 2mpole
3 m4

|z−[ω̃22]|v2

(
0, − sin r eiω32−[ω̃22], cos r eiω̃22

)

= i
√

sign(−z+)

√√√√ 2mpole
3 m4

| − z+[ω22]|v2

(
0, − sin r eiω32+[ω22]− iπ

2
sign(ω22), cos r eiω22− iπ

2
sign(ω22))

= i
√

−sign(z+) e− iπ
2

sign(ω22)

√√√√ 2mpole
3 m4

|z+[ω22]|v2

(
0, − sin r eiω32+[ω22], cos r eiω22

)

=

√
−e−iπsign(ω22) Y (1′′)(r, ω22; ω32+[ω22])

= Y (1′′)(r, ω22; ω32+[ω22]) = Y (1′′)(Λ < 0, t32 < cot2 r , |ω22| > π/4) , (C.4)

but now for the opposite sign of Λ.

In the same way we get for any sign of Λ

Y (2′′)(r, ω̃22; ω32−[ω̃22])

= sign(Λ)

√√√√ mpole
2

z−[ω̃22]Λ
(0, cos r eiω̃22 , t32 sin r eiω32−[ω̃22])

= sign(Λ)

√√√√ mpole
2

−z+[ω22]Λ
(0, cos r eiω22− iπ

2
sign(ω22), t32 sin r eiω32+[ω22]− iπ

2
sign(ω22))

= sign(Λ) e− iπ
2

sign(ω22)
√

−1

√√√√ mpole
2

z+[ω22]Λ
(0, cos r eiω22 , t32 sin r eiω32+[ω22])

=

√
−e−iπsign(ω22) Y (2′′)(r, ω22; ω32+[ω22]) = Y (2′′)(r, ω22; ω32+[ω22]) ,

(C.5)
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which allows us to cover all values of Yukawa couplings with sweeping over the
ω22 − r plane with only using ω32+ for the definition of the Yukawa couplings, as done
in eqs. (2.30), (2.29).

D Numerical values for Yukawas on the ω22 − r plane

Here we list the numetical values of the special parameter points in the ω22 − r plane.
For Y

(2)
f = 0, using the numerical values from eq. (2.18) for NO and putting them into

eq. (2.32) we get:

Y
(2)

e = 0 ⇒ (r, ω22) = (0.558002, 1.21395) , (D.1)

Y
(2)

µ = 0 ⇒ (r, ω22) = (−0.130718, 0.00977035) , (D.2)

Y
(2)

τ = 0 ⇒ (r, ω22) = (0.155322, −0.0112205) , (D.3)

and for IO:

Y
(2)

e = 0 ⇒ (r, ω22) = (−0.973831, 0) , (D.4)

Y
(2)

µ = 0 ⇒ (r, ω22) = (0.559934, −0.0992133) , (D.5)

Y
(2)

τ = 0 ⇒ (r, ω22) = (0.617427, 0.0919401) . (D.6)

Open Access. This article is distributed under the terms of the Creative Commons
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