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Abstract: As heart rate variability (HRV) studies become more and more prevalent in clinical prac-
tice, one of the most common and significant causes of errors is associated with distorted RR interval 
(RRI) data acquisition. The nature of such artifacts can be both mechanical as well as software based. 
Various currently used noise elimination in RRI sequences methods use filtering algorithms that 
eliminate artifacts without taking into account the fact that the whole RRI sequence time cannot be 
shortened or lengthened. Keeping that in mind, we aimed to develop an artifacts elimination algo-
rithm suited to long-term (hours or days) sequences that does not affect the overall structure of the 
RRI sequence and does not alter the duration of data registration. An original adaptive smart time 
series step-by-step analysis and statistical verification methods were used. The adaptive algorithm 
was designed to maximize the reconstruction of the heart-rate structure and is suitable for use, es-
pecially in polygraphy. The authors submit the scheme and program for use. 
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1. Introduction 
Heart rate variability (HRV) studies are based on the instantaneous heart rate time 

series analysis that uses beat-to-beat RR interval (RRI) data derived from an electrocardi-
ographic (ECG) signal. Over the years, research on heart rate and its variability has gained 
a lot of traction and has spread not only to medicine but to fields of sports, ergonomics, 
and personal healthcare as well [1]. As it became widely available to every person who 
cares about his body’s state and health, various time series analysis methods have been 
proposed. However, in all cases, the accuracy of the results is highly dependent on arti-
facts occurring in the time sequence [2,3]. These ECG artifacts inevitably originate due to 
both internal physiological processes that influence the normal sinus heart rhythm (e. g. 
respiration) [4], as well as external determinants caused by body movements or power 
line interference, external electromagnetic fields, and hardware/software failures [5], all 
of which are called “noise” or “artifacts”. These can be classified as base-line wander [6–
8], power-line interference [8–10], muscle artifacts [7,8,11], and channel noise [12]. Alt-
hough hardware and software development has made great strides in proposing a wide 
range of solutions and tools for reducing the number of ECG artifacts, the problem of RRI 
sequence quality remains relevant to this day [13–15], since artifacts representing less than 
0.1% of the overall record duration may cause variations of up to 50% in some HRV met-
rics [16]. 
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To improve the quality of the RRI data, researchers have two options to eliminate 
artifacts. First, to improve the overall signal quality of an ECG signal and improve the 
accuracy of the ECG QRS complex recognition during the investigation [17] or the sec-
ond—to identify artifacts in real time or retrospectively within the recorded RRI se-
quences [18]. Different methods are used for each of the aforementioned options, as the 
ECG and RRI signals are different in nature: the ECG signal is continuous and its ampli-
tude is measured in volts, while the RRI signal is discrete in nature and its amplitude is 
measured in seconds. In addition, when the ECG is converted to digital form, the ECG 
time axis step is constant, while the RRI time axis step is variable. Consequently, this re-
sults in different methods being used to process these signals. Overall ECG artifact iden-
tification and removal are made possible by various algorithms and are closely dependent 
on the aim [19]: a data-driven mechanism of empirical mode decomposition [20,21], deep-
learning-based models [22], wavelet-based models [23], and sparsity-based, Bayesian-fil-
ter-based, and Hybrid models [24]. The majority of them focus on short-duration artifacts, 
which are often treated in the same way as ectopic beats [25–27]. The proposed gap-filling 
methods are based on an integrated pulse frequency modulation model [25], a rejection 
filter on the basis that nonpathological artifacts are of small duration and large amplitude 
[28], based on the tachogram using cubic splines [29]. 

However, the previous methods change the overall duration of the recording, are 
only suitable for isolated artifacts, and have not been evaluated for longer artifact seg-
ments. There are algorithms designed for longer gap filling, some of which are using 
Gaussian-distribution-based methods [30]; unfortunately, they are less common and are 
not designed to retain the overall recording duration.  

Another very common method of correction is based on the RRI signal value thresh-
old, when RRI values appear beyond the impossible limits; for example, 350 ms and 1715 
ms, respectively [31]. After removing the identified erroneous values, they are replaced 
by interpolated data. The resulting time sequence is usually depicted as amplitude on the 
abscissa axis, while the ordinary axis represents frequency or real time. This depiction of 
the discrete signal enforces the investigators to apply common amplitude artifacts remov-
ing algorithms to RRI sequences, despite the inadequacy of its nature, since various filters 
dominate between them. Therefore, applying it enables us to adequately eliminate a small 
number of artifacts and thus reduce the overall sequence dispersion and its distribution 
in the frequency axis. However, it ought to be emphasized that even though the entire 
duration of the RRI sequence in such a situation becomes slightly shortened or length-
ened, the removal of artifacts has a low impact on the time domain and frequency domain 
HRV metrics [31].  

To summarize, there are algorithms for ectopic beats correction [25,32–35], restora-
tion of missing heartbeats [36], and noise elimination [37]; however, an entirely different 
picture is seen in which heart rate registrations occur alongside the other processes (phys-
iological and non-physiological). In this instance, it is necessary to maintain a precise syn-
chronization of each RRI with other measurable processes. Therefore, the use of a tradi-
tional filter becomes inadequate for the expected results of the analysis, especially when 
looking for associations between the heart rate and other internal (electromyography, 
electroencephalography, and others) as well as external factors [18]. It is well acknowl-
edged that “accurate R–R interval artifact correction and editing methods are needed” 
[38], especially when RRI sequences are very long, and it is complicated to apply manual 
methods. Consequently, after encountering this issue when dealing with multidimen-
sional processes, we aimed to propose an original RRI sequence artifact elimination algo-
rithm suited for long-term (hours or days) sequences that would overcome the aforemen-
tioned limitation and would preserve the overall RRI sequence temporal structure in real-
time recordings. 
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2. Materials and Methods 
2.1. Materials 

The proposed algorithm was evaluated using long RRI time-sequences collected dur-
ing monitoring with a 3-channel ECG Holter monitor that has a sampling rate of 600 Hz 
and 12-bit sampling characteristics (Card(X)plore BPM, ECG & Actigraph from Meditech-
Ltd., Budapest, Hungary). The algorithm was based on ECG data from 97 individuals. 
The analysis encompassed 20,000 RRIs of each patient (~5 h). Dedicated software (Lab-
VIEW, National Instrument, Austin, TX, USA) was used to perform the ECG signal anal-
ysis and to employ the proposed algorithm. The study was approved by the Vilnius Re-
gional Biomedical Research Ethics Committee and written informed consent was obtained 
from all participants (No. 158200-17-889-400). Data analysis was performed using the IBM 
SPSS Software 21.0 version (SPSS, Chicago, IL, USA). The proposed adaptive algorithm 
was installed on a machine with LabVIEW and Visual C++ 6.0 running Microsoft Win-
dows 10 on a 3.5 GHz processor and 8 GB of memory. 

2.2. Study Population 
In total, 97 middle-aged 50–55-year-old subjects (both men and women) were in-

cluded in the study. Sixty-three subjects were diagnosed with metabolic syndrome (MetS) 
(according to the modified National Cholesterol Education Program, Adult Treatment 
Panel III (NCEP-ATP III) criteria), in all of whom arterial blood pressure (BP) of more than 
130/85 mmHg was present or they were treated with antihypertensive drugs. The remain-
ing 34 subjects were the same age without MetS and had BP was less than 130/85 mmHg. 
All subjects were recruited from the ongoing Lithuanian High Cardiovascular Risk 
(LitHiR) primary prevention program as a part of an ongoing project that analyses meta-
bolic syndrome patients [39]. In addition, daily activities according to the data from the 
subjects’ diary are presented in Appendix A. 

2.3. Proposed Novel Algorithm 
We propose a novel adaptive algorithm for noise reduction of the RRI time series, 

which is aimed at the main limitation that is common for traditionally used algorithms: 
the alteration of the overall RRI sequence length. The proposed algorithm is designed to 
maximally restore the sinusoidal heart rate structure and is based on several principles: 
1. The difference between the actual duration of the RRI recording and the sum of the 

identified RRI values at any point in time may not exceed the difference of one aver-
age RRI value of the measured interval. 

2. The spectral characteristic of the RRI sequence obtained after artifact elimination can-
not be artificially distorted. 

3. The proposed algorithm is designed for long-term (hours or days) sequences, where 
it is difficult to precisely carry out artifact elimination without changing the timeline 
structure. 

2.4. Procedural Steps 
A detailed representation of the algorithm’s processes is given in Figure 1; however, 

the algorithm can be conditionally divided into the following steps: 
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Figure 1. The stepwise procedure of adaptive algorithm (R—input of RR interval from file or device; 
AVG—average of 3 RR intervals; Coef—division of RRI and average; L_coeff and H_coeff—minimal 
and maximal criteria; RR[ ]—array of normal RRI; Time_RR—counter of time; Buffer—reserve of 
RR interval). 

2.4.1. Step 0 
The first objective is to separate artifacts from normal RRI values. To do this, the ra-

tios of adjacent RRI values (Coef, Figure 1) were compared to the values of selected win-
dow maximum and minimum limits. If there is one artifact in the time sequence, the divi-
sion of adjacent values (before and after artifact) creates two incorrect values. Therefore, 
each RRI value must be divided by the average of the moving window of three RRI values. 
The selected window indicates that all new divided values that appeared in the middle of 
the window remain unchanged, but values, which appeared outside of them, are named 
as artifacts. Statistical methods should be used to find these criteria.  

2.4.2. Step 1 
A very important step in initiating further actions (Init subroutine—Figure 1). A con-

stant memory field (length = 30) filled with RRI values with normal frequency character-
istics is formed and averaged. Afterwards, a temporary RRI memory field is allocated for 
normal and artifact-cleared RRI values with a short moving period (~3 s), from which their 
moving average will be continuously calculated. It is of the greatest importance that the 
first three initial RRI values are taken from the sequence itself and without artefacts. 
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2.4.3. Step 2 
All RRI values whose ratio to the moving window average exceeds the upper crite-

rion are corrected with RRI values close to the RRI at that moment (Fill_RR, look at sub-
routine—Figure 1). The artificial RRI field is filled with RRI values from the backup 
memory space (length = 30). To avoid the distortion of the frequency sequence structure, 
the field addresses are chosen randomly. Their average value (length = 30) must be equal 
to the moving window average (length = 3) at that moment. The time difference between 
the sum of the bad RRIs found and the sum of the time values filled with new values is 
stored in the buffer memory. The resulting number of RRIs in the sequence increases. To 
preserve the time equivalence of the last steps of the observed structure, this step can be 
continued indefinitely. The added RRI frequency characteristic is equivalent to white 
noise; it will not affect the other results and will not change their average. The RRI signal 
values are uncorrelated (independent), just like white noise. The mean of the white noise 
values is zero and the frequency response is flat and covers the entire frequency band. 
Thus, by filling the noise-affected sections with a sequence of values whose properties 
correspond to those of white noise, the characteristics of the RRI signal are preserved. If 
an artefact exceeds the value of only one RRI, it can be replaced by an average of the mov-
ing window values or a predictive value derived from a selected short section of the RRI 
sequence.  

2.4.4. Step 3 
RRI values, which have a ratio to the moving window average below the minimum 

criterion, are corrected by summing the value of the artefact first with the value of the 
buffer and then with the subsequent values in the time sequence up to the value of the 
RRI that exceeds the level of the moving field average. It may even be necessary to aggre-
gate several short time intervals, which reduces the number of RRIs in the sequence. Con-
sequently, the shorter RRI value(s) are replaced by the “correct” RRIs values, which are 
based on the moving window average (or prediction), and the difference of the resulting 
time sum with it is placed back in the buffer memory. 

2.4.5. Step 4 
The RRI values, which ratios with the average of a window are within the selected 

coefficients, are considered normal and are not changed. In this step, the buffer value is 
continuously checked. When this value exceeds the average of the moving window after 
the next steps, a new RRI value is added to the main stored heart rate field and the time 
sequence number is extended by one additional value. The buffer value decreases. 

2.4.6. Step 5 
After steps 2, 3, and 4, the normal or corrected RRI value(s) are stored in memory or 

in a file and summed. In this way, this and the following steps maintain the equality be-
tween the sum of the original (or real-time) RRI and the sum of all the corrected RRIs. 

2.5. Programing Step 
With the addition of the necessary inserts, the simplified program provided in Ap-

pendix B could be used. The authors deliberately retained a similar symbolism of param-
eters in the program block diagram and program functions as far as possible. 

3. Results 
3.1. Criteria Selection 

In most cases, RRI values that are outside the distribution of three standard devia-
tions (SD) from the mean (more or less ±3 ×SD) are attributed to artifacts. This criterion 
can be applied when the sequence distribution is normal (Gaussian). However, the distri-
bution of the obtained values changes after the division of adjacent RRI values. It is known 



Sensors 2022, 22, 9213 6 of 16 
 

 

that the ratio of two normally distributed random variables has a Cauchy distribution [40]. 
Hence this distribution has no instantaneous values: mean, variance, or higher moments 
defined. The mean of the sequence after the division is close to one. In order to find the 
required criteria, pre-whitening is often performed in such cases, which can be achieved 
using the autoregressive (AR) model [41]. Since the main one-step operation of artifact 
exclusion is the division of adjacent RRI values, we consider that in this case, the applica-
tion of the first-order AR model to RRI sequences is guaranteed by the removal of the first-
order link between adjacent RRI.  

We use the following dependencies to solve the problem: 

11 −+= nnn RRIaRRIe  (1) 

where ne  is the Gaussian white noise series with a mean of non-zero and 1a  is the 
first-order autoregressive coefficient. Remaining noise standard deviation: 

( ) −
−

= n
2

ne ee
1N

1σ  (2) 

where e  is the mean of en, e(n) is the Gaussian white noise series with a mean of non-
zero; a(1) is the first-order autoregressive coefficient; E[x] is the expected x value of the 
mean. 

The AR model was applied to the sequence that results from dividing each RRI value 
by the moving average of the previous three values. The noise sequence obtained after 
autoregressive filtering is close to a normal distribution, from which it is possible to find 
its mean and to find confidence limits of 0.997. These coefficients were used to distinguish 
normal RRIs from elongated “top” and truncated “bottom” artificial values, which were 
eliminated. The value three times the standard deviation in both directions of this result-
ing noise sequence becomes the window limits for the time sequence. The mean of adja-
cent RRIs ratios is equal to one; therefore, the criteria will be equal to 1 ± 3 × SD. The 
maximum criterion is obtained by adding 3 × SD value to mean and minimum—by sub-
tracting 3*SD from it. Outside of these 99.7% limits, RRI values are classified as artifacts. 

3.2. Criteria Check 
The following methods were used to estimate the effectiveness of the presented al-

gorithm. The standard time-domain variability measurements of values before (RRIb) and 
after (RRIa) noise elimination are as follows: 

−
= n nRRI

1N
1μ  (3) 

where µ is the mean of RRI, N—number of RRI values.  
Variance of RRI: 

2
n nn

2
n2

1N
RRI

1N
RRI













−
−

−
= σ  (4) 

Difference of RRI variance (before–after): 
2
RRIa

2
RRIb

2 σσσΔ −=  (5) 

Adjacent differences of RRI series: 

1−−=Δ nnn RRIRRIRRI  (6) 

for RRIa and RRIb. 
Variance of the adjacent differences for ΔRRIa and ΔRRIb: 
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Short-term standard deviation: 

2
1

2
RRIΔσσ =  (8) 

Long-term standard deviation: 

2
RRI

2   2  2 ΔσΔσσ −⋅=  (9) 

RRI total time difference: 

 −= n nn n RRIa RRIb  tRRI  (10) 

Numbers of normal RRIs and artifacts with extended (incRRI) and shortened 
(decRRI) intervals identified. 

3.2.1. Time Frequency Analysis 
After centering both sequences (subtracting the mean from the sequence), the AR 

coefficients were calculated by minimizing the least square errors of the forward and 
backward predictions. AR coefficients return to the estimated coefficients with the value 
of AR order (k ≥ 16) [42]. The following parameters were calculated in both time sequences 
(before and after the artifact elimination): 

Residual noise before e1n and after artifact elimination e2n according to functions: 

( )knRRIaRRIaRRIe k1n1nn −+++= −   (11) 

Remaining noise dispersion: 
2

n nn
2
n2

e N
e

N
e












−= σ  (12) 

where en is the Gaussian white noise series with a mean of zero.  
Degree of noise reduction in percent: 

2
1e

2
2e

2
1e2

e 100
σ

σσσΔ −⋅=  (13) 

Among the subjects, some experienced both fast and slow heart rates (their RRI av-
erages ranged from 656 ms to 1255 ms). The mean of overall RRI was equal to 891 ± 118 
ms and did not change after artifact elimination (Table 1). The data presented in the table 
shows that the variability indexes have significantly changed after the artifact elimination. 
The total size of the dispersion after the calculations has also significantly decreased (p < 
0.001). 15–16,066 ms2 RRI variance interval difference was obtained. This change was also 
confirmed by other heart rate variability indexes: the variance of adjacent RRI (p < 0.001) 
and values of the Poincare plot (σ1 and σ2) (p < 0.001). The residual white noise level de-
creased by 65.0 ± 21.0%, from 2643 ± 3374 ms2 to 473 ± 288 ms2 (p < 0.001). We did not 
compare the power spectral density of AR spectral density before and after the artifact 
elimination because, in all cases, as shown in the table, the variance of the two sequences 
varied greatly. It is clear that the coefficients of AR also differ for the same reasons. In 
addition, the algorithm was validated in RRI sequences where the total number of artifacts 
was known. They were not large and were repaired. Accordingly, after artifact elimina-
tion, the total number of RRIs increased by up to 230 (mean = 38 ± 51) or decreased by up 
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to 576 RRIs (mean = 45 ± 84) (Table 1). Compared to the entire length of the sequence 
(20,000) this is a small number, but it has greatly changed the sequence variance. 

Table 1. Changes in RRI variability before and after artifact elimination. 

Variable, Units Variable 
Symbols 

Before After Paired t-
Test Range Mean ± SD Range Mean ± SD 

Mean of RRI, ms µ 656–1255 891 ± 118 656–1258 890 ± 119 1.79 
Variance of RRI, ms2 σ2 2736–45,450 14,247 ± 8586 2721–44,277 12,298 ± 7556 6.57 * 
Difference of RRI variance, ms2 Δσ2   15–16,066 1948 ± 2922  
Variance of adjacent RRI, ms2 𝜎௱ோோூଶ  83–29,395 3959 ± 5481 68–2561 656 ± 481 6.07 * 
Variance of AR noise, ms2 𝜎௘ଶ 77–17,174 2643 ± 3374 60–1469 473 ± 288 6.53 * 
Decrease in variance AR noise, % 𝛥𝜎௘ଶ   13–98 65 ± 21  
RRI total time difference, ms tRRI   −1596–968 215 ± 430  
Short-term, ms σ1 6–121 37 ± 24 6–36 17 ± 6 9.29 * 
Long-term, ms σ2 74–299 156 ± 46 74–297 149 ± 44 6.78 * 
Normal RRI number Nr   19,263–19,999 19,915 ± 118  
Increased RRI number incNr   0–230 38 ± 51  
Decreased number of RRIs decNr   0–576 45 ± 84  
3 × SD of ratio of adjacent RRI  0.05–0.64 0.18 ± 0.11 0.02–0.04 0.051 ± 0.025 11.8 * 

* denotes a statistically significant difference (p < 0.001). Abbreviations: RRI—R-R interval; AR—
autoregressive. 

3.2.2. Time Complexity Analysis 
The used algorithm is based on the length of the adjacent RRI. Normal RRI values 

should be higher than the minimum criteria and lower than the maximum. On this basis, 
the normal value of RRI is separated from the artifact. For the determination of these cri-
teria, the ratios between all adjacent RRI values were calculated. A statistical analysis of 
the distribution of these ratios was carried out and their histograms were monitored. Par-
ticular attention has been paid to the magnitude of the mutual limits used in the artifact-
finding algorithm. 

Ninety-seven case studies showed that this value (Table 1, 3 × SD of the ratio of adja-
cent RRI) varied around 1 from 0.05 to 0.64 with an average of 0.18 ± 0.11. Figure 2 shows 
that the 3 × SD value is distributed around this average. This indicates that the upper value 
of the criterion is very close to 1.18±0.11, and the lower value is 0.82 ± 0.11 (1.0–0.18 = 0.82). 
Before the beginning, the artifact elimination procedure of the first-order AR simulation 
must be performed, and the selection of the exact coefficients is required (Figure 2). The 
distribution of moments of noise generated by AR simulation is asymmetric and depends 
on the number of artifacts (Figure 2 and Table 1). Visually, in a separate example, the noise 
distribution is clearly visible (Figure 3). The values observed on both sides of the average 
are attributed to artifacts (±3 × SD = 0.18 ± 0.11). 
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Figure 2. Distribution of averaged artifact standard deviation (3 × SD) of all 97 cases. 

 
Figure 3. Artifact distribution after autoregressive RRI modeling in a separate case. 

4. Discussion 
There are a plethora of fundamentally different RRI processing methods being used, 

which sometimes makes comparing different HRV data difficult. Although many HRV 
software uses automatic repair systems, they usually lack information about how they 
behave with artifacts. Two basic principles were used to construct our proposed method. 
The first is that: 
1. Autoregressive research and other methods show that strong relationships in the 

RRI sequence remain not only between adjacent RRIs but also extend to the number 
of RRI values from 4 to 50 (order of AR model) [43,44].  
In that period, any noise will be non-stationary and very strong. Comparing artifacts 

with adjacent RRI values allows us to identify them within the time sequence. Therefore, 
changes in adjacent RRI values in our work have been used as the main indicators for 
separating artifacts from physiological RRI changes. A minimum of three moving RRI 
values (for average and for window) were selected, with which the next RRI was com-
pared. The stability of the algorithm is conditioned by the fact that none of the artifacts 
found in all sequences can pass to the moving average window. The last value (third) 
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must include only normal or corrected RRI values in the scrolling field. The second prin-
ciple is based on the perception that:  
2. Each RRI sequence is made up of “fragmented” real-time intervals, the sum of 

which should correspond to the actual elapsed registration time. 
The proposed algorithm follows the principle that the duration of the time sequence 

should remain identical to the actual elapsed time, independent of normal RRI values and 
the number of artefacts present: therefore, long-duration artefacts should be filled with 
similar expected duration values and very short duration artefacts should be aggregated 
to a value close to the former RRI (using the above-described method). Changing the 
length of long or short time intervals by moving the selected average window may shorten 
the overall sequence duration and lead to a duration difference compared to the actual 
elapsed time. Therefore, the time difference between the original RRI sequence and the 
one after artifact elimination, which is always shorter, is placed in the backup buffer and 
used in the next stage of the operation. Compared to other popular methods, our proposed 
algorithm does not change the overall length of the ECG recording. Following the use of 
this algorithm in the analysis, one can safely apply methods of multivariate spectral anal-
ysis, which require complete synchronization between the processes registered, since only 
under such conditions it is possible to accurately assess the existing relationships between 
the observed processes. 

Nonetheless, there are some limitations that are important to note. Firstly, due to the 
fundamental difference of the proposed method, we were not able to directly compare it 
with other methods, which are being used by the majority of authors—not even if we used 
a simple method such as mean-square error: currently, the most commonly used classical 
artifact elimination algorithm, which maintains a constant number of RRI in a sequence, 
eliminated artifacts by increasing RRI sequence length in one place and shortening it in 
another. Secondly, we acknowledge that by design, the proposed algorithm is suited for 
long-term (hours or days) sequences and, therefore, is not applicable in very short se-
quences. 

5. Conclusions 
A novel artifact elimination algorithm that does not affect the overall structure of the 

RRI sequence and does not alter the overall duration of the sequence has been proposed, 
and its effectiveness with real-life data has been presented. The proposed algorithm is 
designed for long-term (hours or days) sequences, in which it is difficult to precisely carry 
out artifact elimination without changing the timeline structure, and it is especially suita-
ble for use in polygraphy when multiple physiological and other processes associated 
with other cardiac arrhythmias are registered in parallel. Following the use of this algo-
rithm in the analysis, one can safely apply methods of multivariate spectral analysis, 
which require a complete synchronization between the processes registered, since only 
under such conditions is it possible to accurately assess the existing relationships between 
the observed processes. 
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Abbreviations 

a(1) The first-order autoregressive coefficient. 
AR Autoregressive. 
AVG Average of 3 RR intervals. 
BP Blood pressure. 
Buffer Reserve of RR interval. 
Coef Division of RRI and average.  
decRRI RRIs with shortened intervals. 
e n The Gaussian white noise series. 
E[x] The expected x value of the mean. 
e1n Residual noise before artifact elimination. 
e2 n Residual noise after artifact elimination. 
ECG Electrocardiographic. 
H_coeff Maximal criteria. 
HRV Heart-rate variability. 
incRRI RRIs with extended intervals. 
L_coeff Minimal criteria. 
LitHiR Lithuanian High Cardiovascular Risk primary prevention program. 
MetS Metabolic syndrome. 
R Input of RR interval from file or device. 
RR[ ] Array of normal RRI. 
RRI RR interval. 
RRIa Standard time-domain variability measurements after noise elimination. 
RRIb Standard time-domain variability measurements before noise elimination. 
SD Standard deviation. 
Time_RR Counter of time. 

Appendix A 
A table of subjects’ daily activities according to the data of the subject’s diary is pro-

vided. 

Table A1. Daily activities according to the data from the subjects’ diary. 

Daily Activities, in Hours 
Subjects without MetS Subjects with MetS 

Mean ± SD Mean ± SD 
Working 4.48 ± 4.08 3.94 ± 3.64 
At home 2.12 ± 1.78 2.30 ± 2.18 
Walking 1.22 ± 0.98 1.54 ± 1.76 
Driving 0.71 ± 0.84 1.08 ± 1.18 
Eating 1.49 ± 0.88 0.98 ± 0.45 
Lying in bed 2.35 ± 2.23 1.90 ± 2.06 

Abbreviations: MetS—metabolic syndrome; SD—standard deviation. 

Appendix B 
A simplified artifact elimination program is provided. 
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//*=======================================*/ 
//* Title: int albsta() */ 
//*=======================================*/ 
// function declaration 
int Norma(); 
int Init(); 
int Fill_RR(); 
int albsta(); 
// Fill RRIs constant 
int Const_RR [30] = {920, 900, 900, 917, 883, 887, 893, 860, 890, 940,  
897, 907, 903, 873, 877, 880, 863, 870, 917, 900, 857, 860, 853, 823, 
837, 853, 830, 877, 907, 877}; 
int R;  // Normal and Corrected RRI 
double AVG;   // Moving average of RRI of RR(K) array 
long int Nr_RR;   // Counter of R post revision 
int Buffer;   // Reserve RRI time (ms) 
int K;   // Moving temporary RRI array length 
const float High_coefficient = 1.45 // or other; 
const float Low_coefficient = 0.75 // or other; 
int Kiek;  // Constant RR array length 
int RR [3];   // Moving temporary RR(K) array 
int Tempor [30];  // temporary array 
int R_All [1000];   // Normal and Corrected RRI array 
long int Time_RR;  // Adjusted total time from R Length 
int C_mean;   // Average of Const_RRI (from 1 To 30) 
int Puls;   // Heart Rate 
long i;  // Continuously value of a variable 
long int c_sum; 
//==============Initiates the initial conditions 
int Init() 
{ 
long Sum = 0; 
Sum = 0; 
K = 3;  // Length of moving average array 
Kiek = 30;  // length of Constant RRI array 
c_sum = 0; 
for (i = 1; i <= Kiek; i++) { 
c_sum = c_sum + Const_RR[i]; 
}  // Sum of Constant RR 
C_mean = c_sum/Kiek; // Mean of Constant RRI 
for (i = 1; i <= K; i++) { 
RR[i] = R; // Read first three good RRI 
Sum = Sum + R; 
} 
Nr_RR = 0;  // Counter of normal RRI 
AVG = Sum/K; 
Buffer = 0;  // Adaptive RRI time buffer 
Time_RR = 0;  // Adjusted total time from RRI 
}   // Fill in the missing RRI by 30 
int Fill_RR() 
{ 
long differ; 
long j = 0; 
long vv = 0; 
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int s = 0; 
c_sum=0; 
differ = C_mean − AVG; 
for (i = 1; i <= Kiek; i++) { 
Tempor[i] = Const_RR[i] − differ;  // Equals the constant 
}  // average until it is found 
j = R/AVG; 
vv = AVG; 
Buffer = R − (vv*j); 
for (i = 1; i <= j; i++) { 
s = rand() % (Kiek − 2) + 1; // Random of array 
R = Tempor[s]; 
c_sum = c_sum + R; 
Norma(); 
} 
Buffer = Buffer − c_sum; 
} 
//*=Fills the fields of the RRI and checks it repeatedly 
int Norma() 
{ 
long Sum; 
Sum = 0; 
for (i = 1; i <= K − 1; i++) { 
RR[i] = RR[i + 1]; 
Sum = Sum + RR[i]; 
} 
RR[K] = R; 
Sum = Sum + R; 
Time_RR = Time_RR + R; // Time counter 
AVG = Sum/K;  // Moving average RRI(k) 
Nr_RR = Nr_RR + 1;  // All RR counter 
R_All[Nr_RR] = R;  // Add a RR value 
Puls = 60000/R;  // Heart rate 
} 
} 
//===Main program============================== 
int albsta() 
{ 
double Coef; 
double ccc; 
double Sum; 
Sum =0; 
Init();   // Initiates the initial values 
// New RRI are expected, For example...1000 
for (i = 1; i <= 1000; i++) {   // Input R from file or device 
if (i <= 3) { 
Sum = Sum + R; 
AVG = Sum/3; 
RR[i] = R; 
} else { 
Coef = R/AVG;  // Division RRI and average 
// Long RRI 
if (Coef > High_coefficient) { 
R = R + Buffer; 
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Fill_RR(); 
} 
// Normal RRI 
if (Coef <= High_coefficient & Coef > Low_coefficient) { 
Norma(); 
if (Buffer >= AVG) { 
R = AVG; 
Buffer = Buffer − AVG; 
Norma(); 
} 
} 
// Short RRI 
if (Coef < Low_coefficient) { 
R = Buffer + R; 
ccc = R/AVG; 
if (ccc >= High_coefficient) { 
Fill_RR(); 
} else { 
Buffer = R; 
} 
} 
} 
} 
} 
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