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A quantitative model for the dynamics of
target recognition andoff-target rejectionby
the CRISPR-Cas Cascade complex

Marius Rutkauskas1, Inga Songailiene 2, Patrick Irmisch1, Felix E. Kemmerich1,
Tomas Sinkunas2, Virginijus Siksnys 2 & Ralf Seidel 1

CRISPR-Cas effector complexes recognise nucleic acid targets by base pairing
with their crRNA which enables easy re-programming of the target specificity
in rapidly emerging genome engineering applications. However, undesired
recognition of off-targets, that are only partially complementary to the crRNA,
occurs frequently and represents a severe limitation of the technique. Off-
targeting lacks comprehensive quantitative understanding and prediction.
Here, we present a detailed analysis of the target recognition dynamics by the
Cascade surveillance complex on a set of mismatched DNA targets using
single-molecule supercoiling experiments. We demonstrate that the observed
dynamics can be quantitatively modelled as a random walk over the length of
the crRNA-DNA hybrid using a minimal set of parameters. The model accu-
rately describes the recognition of targets with single and double mutations
providing an important basis for quantitative off-target predictions. Impor-
tantly the model intrinsically accounts for observed bias regarding the posi-
tion and the proximity betweenmutations and reveals that the seed length for
the initiation of target recognition is controlled by DNA supercoiling rather
than the Cascade structure.

CRISPR (clustered regularly interspaced short palindromic
repeats)–Cas (CRISPR-associated) systems constitute adaptive RNA-
guided defense systems in prokaryotes against foreign nucleic acids1.
Cas protein effector complexes guided by the crRNA recognize and
trigger subsequent cleavage of invading nucleic acids2. Due to their
programmable cleavage specificity, effector complexes such as Cas93,
Cas124 and most recently Cascade5 were repurposed as genome edit-
ing tools in differentmodel organisms ranging frombacteria to human
cells. While the effector complexes can be addressed to target prac-
tically any unique sequence in a genome3, they often exhibit significant
promiscuity in target recognition that leads to the binding and clea-
vage of only partially matching DNA sequences6,7. Such off-targeting
has been detected using high throughput techniques such as genome-
wide in vivo DNA binding and cleavage studies8–10, large on-purpose
libraries for reporting DNA binding and cleavage in vivo11,12 as well as

in vitro13,14. Off-targeting can result in highly undesired and unpre-
dictable genetic rearrangements which is particularly problematic for
therapeutic applications6.

The recent development of engineered effector variants15–17 can
reduce but not abolish off-targeting16,18. A frequently used com-
plementary approach to prevent off-targets are in silico off-target
predictions that promise to identify crRNAs with the least
promiscuity19–21. Prediction tools use typically heuristic scoring func-
tions that try to reproduce sequence and mismatch position patterns
fromhigh throughput studies. Thoughmany strong off-target sites are
correctly predicted, a considerable fraction of weaker off-targets
remains undiscovered by the algorithms9,22, such that off-targeting
persists to be a challenging problem of CRISPR-Cas technologies.
Furthermore, these algorithms do not provide quantitative measur-
able parameters and cannot predict how off-targeting changes with
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altered conditions, such as the local genomic supercoiling or the
enzyme concentration.

Along with extensive characterization of off-targeting, consider-
able mechanistic insight into the target recognition process by
CRISPR-Cas effector complexes has been obtained from biochemical,
structural and single-molecule studies. A converging theme emerged
(Fig. 1a) inwhich aneffector complex first scans duplexDNA for a short
complex-specific protospacer adjacent motif (PAM). Upon PAM
recognition, it initiates base pairing between the crRNA and the PAM
adjacent bases of the DNA target strand. The RNA-DNA heteroduplex
can then reversibly expand expelling the non-target DNA strand and
forming a triple-stranded R-loop structure. Upon full-length R-loop
formation up to the PAM-distal end, a conformational change occurs
that licenses DNA degradation23–25. For Cascade the latter comprises a
global sliding of the Cse1–Cse2 filament26,27 that locks the R-loop in a
highly stable conformation25,28 and allows the recruitment of the Cas3
nuclease (step iv in Fig. 1a). The actual target recognition is, however, a
strand displacement reaction between the involved nucleic acid
strands (steps ii and iii in Fig. 1a), in which the effector complex acts
only as a sensor for the R-loop progression. Mismatches can be con-
sidered as energy barriers during the reversible R-loop expansion
promoting its collapse28. The mismatch strength has hereby shown to
be biased with respect to the position; PAM-proximal mismatches

within the so-called seed region have been shown to impose stronger
inhibition of R-loop formation compared to distal mismatches8,29. In
general, the reversible nature of R-loop expansion and collapse in
competition with irreversible locking or cleavage impose a kinetic
rather than a typical “sticky”, i.e., affinity-based, target recognition
mechanism28,30,31.

Despite an increasing detailed mechanistic understanding of tar-
get recognition by CRISPR–Cas complexes, the wealth of mechanistic
knowledge has until recently32 not been exploited for off-target pre-
dictions nor, despite widely suggested, been applied to quantitatively
understand the targeting dynamics in mechanistic studies30,31,33.

To establish such a link, we use here single-molecule DNA twist
measurements to comprehensively quantify the dynamics of R-loop
formation by the Cascade complex from Streptococcus thermophilus.
Importantly, we resolve the transient R-loop sub-states on single- and
double-mismatched DNA targets which remained hidden for other
methods including high-throughput off-targeting measurements13,14.
We show that theobserveddynamics canbequantitativelymodeledby
describing R-loop formation as a random walk model in a simplified
one-dimensional free energy landscape. The model was adapted from
previous descriptions of protein-free strand displacement reactions in
dynamic DNA nanotechnology34,35, which have recently been intro-
duced to the CRISPR–Cas field31,32. Importantly, our modeling (i)
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Fig. 1 | Random-walk model for target recognition by Cascade. a Target
recognition starts with PAM binding (i) followed by R-loop priming adjacent to the
PAM. The R-loop can expand in a reversible random-walk like fashion towards the
PAM distal end of the target (ii). After reaching the PAM distal end (iii), a con-
formational change is induced that locks the R-loop in a stable conformation and
enables Cas3 recruitment and cleavage of the DNA (iv). b Simplified one-
dimensional free energy landscapes for R-loop formation. Local energy states are
the unbound state (U), the R-loop states of different length and the locked full
R-loop (F). R-loop expansion and shrinkage occurs in successive forward or back-
ward steps to either adjacent state. Shown free energy landscapes correspond to
R-loop formation without an energy bias (top), with a negative bias as expected for

negative supercoiling or due to favorable molecular interactions (middle) and with
a mismatch at position 14, which introduces a local energy barrier (bottom). In the
latter case an additional dynamic intermediateR-loop state (I) is introduced. cReal-
time detection of the R-loop dynamics on negatively supercoiled DNA using mag-
netic tweezers. R-loop expansion progressively absorbs part of the introduced
supercoiling, which results in a DNA length increase. d R-loop formation on a fully
matching target is seenasa single abruptDNA length increase corresponding to the
transition from the unbound to the full-R-loop state. eR-loop formation on a target
with a single internal C:C mismatch at position 17 occurs via additional transitions
to and from the unstable intermediate state until the full locked R-loop is formed.
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provides direct evidence that R-loop expansion down to local sub-
states follows a random-walk process (ii), shows that the single-base
pair stepping of R-loop expansion occurs at a sub-millisecond time
scale, (iii) returns absolute free energy penalties imposed by different
mismatches, (iv) quantitatively predicts the non-trivial dependence of
R-loop formation on the proximity between multiple mismatches and
(v) reveals that the length of the seed region in Cascade is a function of
the applied supercoiling rather than a structural property.

Overall, our findings establish an important mechanism-based
approach for the prediction of off-targeting by Cascade and poten-
tially other genome engineering tools. We furthermore provide
quantitative insight into how off-targeting depends on DNA super-
coiling, which in eukaryotes has been found to be highly locus- and
gene specific36,37.

Results
Modeling the R-loop dynamics of Cascade
Previous investigations of the target recognitionbyCascade14,28,31,38 and
other effectors13,24,32 strongly suggested that following PAM binding, a
dynamic R-loop structure gets nucleated which stochastically grows
and shrinks with single base-pair steps31,39. When the R-loop expands
until the PAM-distal end, a locking transition and/or cleavage is trig-
gered (Fig. 1a). Recently,modelsweredeveloped thatdescribeprotein-
free DNA strand displacement reactions and R-loop formation as a
random walk in a one-dimensional free energy landscape32,34,35,40,41.
These models differ mainly in their system-specific energy landscapes
that allow local rate variations. To develop and test a quantitative
model for Cascade, we constructed a suitable one-dimensional free
energy landscape for R-loop formation with the R-loop length as
reaction coordinate (Fig. 1b). Cascade starts initially in the unbound
state (U) corresponding to an R-loop of zero length. Upon PAM
binding an R-loop of 1 bp length shall be nucleated for which a free
energy penalty ΔGini is considered. In a first iteration we assumed that
the free energy for increasing R-loop lengths is constant since for each
additional base-pair of the heteroduplex a base pair of the DNA-duplex
needs tobedisrupted (Fig. 1b, top). After full R-loop formation of 32 bp
for Cascade, the R-loop enters the locked state (state F) associated
with a decrease in free energy by ΔGlock. Negative supercoiling has
been shown to assist R-loop formation25,28. This provides a constant
negative bias ΔGbias for increasing R-loop lengths (Fig. 1b, middle).
Also, protein contacts to the R-loop may contribute an additional
favorable or unfavorable bias that we assume to be constant
throughout the R-loop. For each mismatch that acts as a barrier for
R-loop expansion, a local mismatch penalty ΔGMM was introduced that
shifts all steps behind themismatch equally upwards (Fig. 1b, bottom).
A mismatch introduces thus a dynamic intermediate R-loop state I,
which extends over a few base pairs before the mismatch due to the
random-walk nature of theR-loop (Fig. 1b, bottom). In absenceof a free
energy bias, the kinetic barriers between all transitions were assumed
to be identical and described by the unbiased single base-pair stepping
rate kstep. In case of bias, as given by the free energy landscape, rate
alterations were described using Arrhenius’ law (see Methods for
details). With these few assumptions a fully determined linear rate
model was obtained. Mean transition times between R-loop states
could be calculated by solving the first passage problem for thismodel
(see SupplementaryNote 1). This allowed us to obtain themean R-loop
formation time but also the rates for transitions between different
R-loop intermediate usingΔGini,ΔGbias, kstep and in case ofmismatches
one or several different values for ΔGMM as the only free parameters.

Random walk describes dynamics of intermediate R-loops
To test the applicability of the random walk model, we set out to
comprehensively quantify the R-loop dynamics of Cascade using
single-molecule DNA twisting experiments25,28,38. Surface-grafted DNA
molecules tethering a magnetic bead on their free end were stretched

vertically in a magnetic tweezers apparatus42,43. Negative supercoiling
introduced by rotating the tweezers magnets provided a DNA length
reductiondue to the formationofwrithe28,44,45 (Fig. 1c).DNAunwinding
due to R-loop formation by Cascade absorbs part of the introduced
supercoiling and causes a DNA length increase that is proportional to
the unwound base pairs43 (Fig. 1c, d). This allows to resolve full, locked
R-loop formation as well as dynamic R-loop intermediates24,28,33

(Fig. 1d, e).
We first quantified the dwells of intermediate R-loops of different

lengths. We used DNA targets containing a limited number of match-
ing basepairs adjacent to the PAM (from8 to 22 bp)with the remaining
base pairs being mismatched. This way only transitions between the U
and the I states were observed (Fig. 2a and Supplementary Fig. 3a).We
furthermore applied different negative supercoiling levels, given as
mechanical torque τ, that were controlled by the applied stretching
forces (seeMethods). Natural superhelical densities σ in E. coli cells are
in the range of�0:06 and�0:029 corresponding to torques between
�8:9 and �4:3pNnm46,47 (Methods). Qualitative inspection of the
obtained trajectories revealed that the dwell in the I state increased
with increasing negative supercoiling (Fig. 2b) and increasing length of
the R-loop intermediate (Fig. 2c). This intuitively agrees with the free
energy landscape of the random-walk model, since increased bias and
length lower the free energy of the I state and thus increase the energy
barrier for a diffusive return to theU state (Fig. 2f) leading to increased
occupancies when modeling the I state (Fig. 2f). Quantitative analysis
of the dwells in both states provided the R-loop formation rates k1

(Fig. 2d) and collapse rates k2 of the I state (Fig. 2e). k1 was rather
independent of the R-loop length and the applied supercoiling. In
contrast, the R-loop collapse rate k2 was strongly torque- and R-loop
length-dependent and varied over three orders ofmagnitude. A global
fit of the random-walk model to all collapse rates correctly described
both the large spread of the rates between the different R-loop lengths
as well as the torque dependence for a given R-loop length. This pro-
vides direct support that R-loop expansion and retraction follow a
random-walk mechanism. Remarkably, the fitting used the unbiased
single base-pair stepping rate kstep = 1900± 100 s�1 as the only free
parameter. Single base-pair steps during R-loop formation thus occur
on the sub-millisecond time scale. Beyond the rates, also the occu-
pancies of the U and I states were correctly described including their
torque and length dependencies (see histograms in Fig. 2b, c).

R-loop dynamics at single mismatches provides mismatch
penalties
We next studied the R-loop dynamics on targets containing a single
mutation at about half the target length and six consecutive mis-
matches at the PAM-distal end to prevent R-loop locking25,28. On such a
target, the R-loop fluctuated between three states – the U, the I and a
dynamic F * state of a maximum length of 26 bp (Fig. 3a). Testing the
three possible mismatches C:C, C:T, and C:A at position 17 (counting
from the PAM) revealed that the mismatch type strongly influenced
the transition rates and the occupancies of the three states (Fig. 3b).
Furthermore, theseparameters were influencedby increasing negative
torque, where the F * state became increasingly populated at the
expense of the U state (Supplementary Fig. 4a). We quantitatively
analyzed the four rates that describe the transitions between adjacent
states (Methods, Supplementary Fig. 5). This revealed that the rates
and their torque dependences were largely independent of the mis-
match type except k3 that described the mismatch passage from the I
to the F * state (Figs. 3d, e). Generally, rates describing R-loop expan-
sion (k1, k3) increased with increasing negative torque, while rates
describing R-loop retraction (k2, k4) were found to decrease. For a
givenmismatch, we applied a globalfit to the torque dependence of all
four rates (solid lines in Figs. 3d and 3e) yielding good agreement with
the data. Consistently, expected occupancies of the U, I, and F * cal-
culated from the best fit parameters were also in agreement with the
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measurements (Fig. 3b and Supplementary Fig. 4a right panels). The
obtained values for kstep (Supplementary Fig. 4b) and ΔGini (Supple-
mentary Fig. 4c) were mismatch-independent while the mismatch
penalty ΔGMM (Fig. 3c left panel, Supplementary Table 1) was strongly
mismatch-dependent. This is consistent with the intuitive expectation
that the mismatch type influences only the corresponding penalty but
not the other parameters. Applying different Cascade concentrations
revealed a linear dependence of the initial R-loop intermediate for-
mation rate k1 on the concentration while leaving the other rates
unchanged (Supplementary Fig. 4d–g) in agreement with
concentration-independent values for the standard free energy of
R-loop initiation and the other model parameters (Supplementary
Fig. 4f). Altogether, the three-state dynamics over a single mismatch
was well described by the random walk model.

Next, we investigated how ΔGMM depended on the mismatch
position. When keeping the same mismatch type including the same
nearest-neighbor base pairs, ΔGMM should be largely position inde-
pendent if nucleic acid thermodynamics would dominate. To test this,
we produced different Cascade complexes with a CCC stretch at dif-
ferent positions in the crRNA (Supplementary Tables 3 and 4) allowing
a corresponding introduction of a C:Cmismatchwith two adjacent G:C
base pairs (see sketch in Fig. 3c, right panel). Recording and fitting the
torque dependence of the different transition rates for these

complexes revealed thatΔGMM waswithin error invariant formismatch
positions between 11 and 17 bp that could be experimentally accessed
(Fig. 3c right panel, Supplementary Table 1). We note that mismatch
barriers were not observable at positions 6, 12, 18, 24, and 308,28 due to
the disrupted base pairing in the crRNA–DNA hybrid at these
positions48.

Seed length is dependent on supercoiling
A mismatch penalty that is rather independent of the mismatch posi-
tion seems to contradict the larger impact of PAM-proximal mis-
matches in the seed region compared to PAM-distal mismatches
observed in vivo8,29 and in vitro14,28. To resolve this apparent contra-
diction, we expanded the range ofmismatch positions from 5 to 21 bp.
Since for many of these targets intermediates were too short-lived to
be observable, we measured only the time for full R-loop formation
(state F) using a full-length target that supported locking (Fig. 4a and
Supplementary Fig. 3b–e). In agreement with previous reports28,29,
R-loop formation was slower for targets with PAM-proximal mis-
matches compared to PAM distal mismatches and the WT target
(Supplementary Fig. 6a, b).We determined themean R-loop formation
time as a function of torque for theWT target and the singlemismatch
targets (Fig. 4b). R-loop formation for the WT target was little depen-
dent on torque in the applied range. The R-loop formation times for
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PAM-proximal bases such that only R-loop intermediates form (left). Example tra-
jectory of the transitions between unbound state (U) and intermediate R-loop (I)
for a target with 12 matching bases. b Formation and collapse of R-loop inter-
mediates recorded at different torques τ for a targetwith 12matchingbases. Shown
are the recorded DNA length smoothed to 7.5 Hz (light blue) and a two-state
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collapse of R-loop intermediates of different lengths at a torque of −4.7 pNnm.
d, e Measured mean formation (d) and collapse (e) rates of the R-loop inter-
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single-mismatch targets decreased, however, strongly in a non-linear
fashionwith increasing negative torque andfinally plateaued at theWT
level (Fig. 4b and Supplementary Fig. 6d). The torque required for
reaching the WT level was changing monotonously with mismatch
position. We applied a global fit of the randomwalk model to the data
using ΔGini = 8:5 kBT and obtained agreement with the experimental
results (Fig. 4b and Supplementary Fig. 6d). The consideration of sin-
gle mismatch targets alongside theWT target in this data set as well as
the highly non-linear torque dependence allowed furthermore to
probe a potential intrinsic bias ΔGbias of the free energy landscape in
absence of torque. Global fitting with a free non-zero bias provided as

best fit parameters ΔGMM =6:9±0:5 kBT , kstep = 2000±900 s�1 as well
as ΔGbias = 0:14 ±0:01 kBT=bp. The positive value of ΔGbias reveals that
in absence of torque the free energy landscape has a small upward bias
(Supplementary Fig. 6g) corresponding to an apparent torque of ~1 pN
nm which is much smaller than base pairing energies and mismatch
penalties. Inclusion of the determined ΔGbias into fits of the previous
data were mainly compensated by changes of kstep while the obtained
free energy values became only slightly reduced (see Supplementary
Table 2).

To explore the impact of seed mismatches in more detail, we
plotted the measured R-loop formation times for selected torque
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values as a function of the mismatch position (Fig. 4c). Using a 10-fold
increased R-loop formation time compared to the WT target as a
hypothetical threshold for a seed mismatch, we observed that the
length of the seed region decreased with increasing torque from ~6 bp
at −6.7 pNnm to ~15 bp at −3.4 pN nm. Predicting the R-loop formation
time in absence of an external torque suggested that in this case, the
seed region would cover almost the entire target sequence (see black
line in Fig. 4c). To verify the prediction, we set up a fluorescence bulk
solution assay based on a donor-quencher pair at the PAM distal end
(Supplementary Fig. 6e) andmeasured theR-loop formation kinetics in
the absence of supercoiling for different mismatch positions (Sup-
plementary Fig. 6f). The extracted mean times of R-loop formation
confirmed the theoretical prediction (Fig. 4c) demonstrating that the
seed region in Cascade ismainly a product of the applied supercoiling,
i.e., the bias of the free energy landscape. This can be intuitively
understood by considering the different occupancies of the inter-
mediate R-loop state I for PAM-proximal and distalmismatches, which
determines the full R-loop formation rate. In absence of a bias, all
R-loop lengths up to the mismatch are energetically equal and thus
equally populated, which supports similar R-loop formation times
(Fig. 4d upper panel). In presence of a negative bias, the I state of a
PAM-proximal mismatch is energetically higher with respect to the U
state and thus less populated compared to a PAM-distal mismatch
(Fig. 4d lower panel). This provides a comparably slower transition to
the F state for the PAM-proximal mismatch.

Intermediate R-loop dynamics in the presence of two
mismatches
After verifying the random walk model for targets with single mis-
matches, we next tested whether it can be directly applied to describe

the R-loop dynamics in presence of two mismatches. We produced
double pointmutantswith thefirstmismatch located atpositions 11, 13
or 14 and the second at position 17 within the locking deficient target
(PAM-distal mismatches at positions 27-32). In this case R-loops could
fluctuate between four possible states: U, the intermediate states
before each mismatch I and I* as well as F * (Fig. 5a). For the 11–17
double mismatch target, the I and the I* states could be distinguished,
but the transitions between the states were too fast to be resolved for
the closer mismatch spacings (Fig. 5b). State occupancies and transi-
tion dynamics were again torque-dependent (Supplementary Fig. 7c).
Using the best-fit parameters from the single mismatch experiments,
the random walk model predicted the measured state occupancies
remarkably well (Fig. 5b and Supplementary Fig. 7c right panels). A
4-state approximation of the recorded trajectories for the 11–17 double
mismatch substrate (Supplementary Fig. 7c, bottom panel) allowed to
extract the six transition rates between subsequent states. Con-
sistently, we obtained agreement for the extracted rates from the
measurements and from Brownian dynamics simulations based on the
model predictions (Supplementary Fig. 7a, b, d). Of note, the F * state
was less frequently visited as closer the two mismatches were posi-
tioned (Fig. 5b) revealing that the mismatch proximity influences the
formation of the full R-loop.

Proximity between double mismatches strongly influences
R-loop formation
To investigate the influence of the proximity between twomismatches
in detail, we studied locked R-loop formation on double C:Cmismatch
targets without terminal mismatches (Fig. 6a). Predictions by the
random walk model showed that a strong inhibition is obtained when
combining two PAM-proximal mismatches (brown areas in Fig. 6b,
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lower left corner) while a weak inhibition is obtained when combining
two PAM-distal mismatches (blue areas in Fig. 6b). However, a con-
siderable inhibition is also obtained when combining two PAM-distal
mismatches that are in closeproximity (green tail along the diagonal in
Fig. 6b). This influence of the proximity betweenmismatches was only
obtained for the random walk model but not for a simple addition of
apparent free energy penalties (Fig. 6b, upper right, Supplementary
Fig. 8c, d) as applied in heuristic scoring schemes11.

We next determined R-loop formation times as a function of
torque for a secondmismatch at the fixed position 17 and distances to
the first mismatch ranging from 2 to 6 bp (Supplementary Fig. 8a, b).
The mean R-loop formation time at a given torque increased strongly
with decreasing distance between the two mismatches (Fig. 6c). This
dependence on the mismatch proximity was quantitatively described
by the random-walk model using the parameters from single-
mismatch experiments (Fig. 6c, d). Intuitively, the proximity depen-
dence can be understood by considering that for closemismatches the
I state is energetically lower than for distantmismatches, such that the
occupancy of the I* is lowered at the expense of the I state (Fig. 5c).
This in turn provides less frequent transitions to the F state for prox-
imal compared to distal mismatches.

Discussion
In this study,wepresented a highly comprehensive investigationof the
R-loop dynamics within a CRISPR-Cas type I Cascade effector complex.
Using direct measurements of the DNA untwisting during R-loop for-
mation, we could uniquely resolve multiple R-loop intermediates on
mutated DNA targets and carefully quantify their behavior as a func-
tion of the positions and types of the formed mismatches.

Importantly, the diverse data set could be consistently described
by modeling the R-loop formation process as a random walk in a
simplified one-dimensional free energy landscape. Previous work
modeled the impact of the mismatch position on the global strand-
displacement or R-loop formation reaction32,35 and reproducedgeneral
observed dependencies. Here, we demonstrate in great detail that the
entire R-loop formation dynamics, including the substates, follows a
random walk mechanism. Thus, the forming R-loop samples the con-
tinuumof available R-loop lengths, and unlockedR-loop intermediates
dynamically extend over a range of different lengths (Fig. 2f). The time
scale of the single base-pair R-loops steps was found to be in the sub-
millisecond range (Supplementary Tables 1 and 2). This allows for a
reversible, highly dynamic sampling of the sequence space during
target search in which mismatches stall the R-loop formation process
and promote its collapse (Fig. 4a). Combined with the irreversible
locking step, this gives rise to a kinetic target recognition process in
contrast to typical binding-affinity-based mechanisms30. In principle,
given sufficient time, any target can become recognized. This sets
important constraints when discussing specificities of effector com-
plex variants15,16.

Overall, our data is well described by a rather simple form of the
free energy landscape which in absence of mismatches exhibits just a
constant supercoiling-dominated bias (Fig. 1b). This strongly suggests
that a global and rather uniform bias will be the dominating feature of
the free energy landscape of R-loop formation by Cascade. Some
deviations between data and model do occur, however (see e.g.,
Fig. 2e). The relative rate deviations appear small (typically smaller
than a factor of two) compared to the orders of magnitude covered
and are not too surprising given the simplicity of the applied land-
scape. In addition to experimental errors, we mainly attribute the
deviations to sequence- and/or structure-dependent local alterations
of the free energy landscape from the simple model. As noted before,
the crRNA-DNA hybrid displays disrupted base pairing every 6 bp48. A
reduced stabilization of the unpaired DNA base and the absence of
base stacking interactions maymake these positions energetically less
favorable, such that the global downhill bias of the free energy

landscapewill likely exhibit a periodicmodulation. Thismay further be
enhanced by the 6-bp periodicity of the Cas7 backbone, e.g., due to
periodically recurring interaction sites with the DNA duplex during
R-loop expansion26. This modulation does not appear to have a major
impact on the observed trends of the data (see e.g., the R-loop length
dependence in Fig. 2e) butmay cause smaller alterations. Nonetheless,
the modulation of the free energy landscape may give rise to short-
lived kinetic R-loop intermediates every 6-bp which would be in
agreement with a kinetically metastable partial R-loop structure of
Cascade found at low temperature26.

An important finding of our data and modeling is that the seed
sequence observed for all R-loop forming CRISPR-Cas effector
complexes49 is at least partially a biophysical consequence of the
external DNA supercoiling. In absence of supercoiling, the free
energy landscape of Cascade was found to be a little biased. This
provided a rather position-independent impact of the mismatches
which can be interpreted as an ‘extended seed’ for Cascade tar-
geting (Fig. 4c). In contrast, at sufficient negative bias of the free
energy landscape induced by supercoiling, the target recognition
was only little affected by PAM-distal mismatches which strongly
limited the seed extension. The observed torque-dependence of
the seed length (Fig. 4b) can explain observations of a short well-
defined seed region in the cellular environment8,29 in contrast to
more relaxed seed conditions in vitro in absence of
supercoiling14,28. The absence of a well-defined seed range is in
agreement with structures of Type I-E Cascade complexes26,48,50

where specialized motives in the PAM-proximal region of the
R-loop were not observed. Generally, seed regions for RNA-guided
nucleic acid recognition can be structurally determined, e.g., by a
specific pre-ordering of the RNA-guide in the PAM-proximal region
as observed for Cas951 and Cas12a52. In contrast, the guide RNA of
Cascade appears to be ordered throughout its length53 thus
enabling an ‘extended seed’.

The supercoil- and position-dependence of the mismatch impact
directly affects the specificity of the target recognition process.
CRISPR-Cas effector complexes have predominantly evolved for
activity on negatively supercoiled DNA as typically found in prokar-
yotic cells54. These conditionswould provide less stringent specificities
but accelerated target recognition kinetics. In genome engineering
applications of eukaryotic cells, however, only moderate supercoiling
levels are present, which would make the target recognition more
specific but also slower.Noticeably, the supercoiling in eukaryotic cells
is highly locus specific36,37 which should be considered when devel-
oping improved locus-specific off-target predictors.

From the R-loop dynamics on targets with single mismatches we
could directly obtain values for individual mismatch penalties. The
position independence of the penalties suggested that the random-
walk model accounted correctly for the position-dependent bias
observed previously14. The obtained free energy penalties for the three
different mismatches were about 4 kBT lower thanmismatch penalties
within DNA duplexes in absence of proteins55 but had similar relative
differences (Supplementary Table 1). Furthermore, their average
magnitude, as well as relative order, were comparable to apparent
penalties determined in high-throughput in vitro binding experiments
of a thermophilic Cascade complex (Supplementary Table 1)14. Given
the position-independence of the mismatch penalties in our experi-
ments, we expect that they are dominated by nucleic-acid thermo-
dynamics but somewhat lowered due to the hybrid nature and the
enforced distorted A-form of the crRNA-target strand duplex.

Most importantly, we could directly apply the single-mismatch
penalties to quantitatively predict the R-loop formation dynamics on
targets with two mismatches. Particularly, the random-walk model
could correctly describe the proximity-dependence, i.e., an increased
inhibition of R-loop formation with decreasing mismatch distance
(Fig. 6c). Given its applicability to double mismatches during R-loop
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formation by Cascade as well as in protein-free strand displacement
reactions35, we expect that this type of models can be easily extended
to larger numbers and any types of mismatches. For suchmechanism-
based off-target predictors the presented work provides a thorough
validation.

Generally, there are twomajor challenges for the establishment of
mechanism-based off-target predictors: (i) the parametrization of all
possible mismatch penalties corresponding to at least 48 parameters
due to 12 different mismatch types and 4 different nearest neighbor
basepairs ontowhichamismatchcan stack55 and (ii) thedetermination
of more detailed free-energy landscapes particularly for effector
complexes with structurally determined seed motifs that will intro-
duce localized supercoil-independent bias. In a recent analysis of high-
throughput data from in vitro target libraries13,14,32 a random walk
model was employed to infer a local free energy landscape for R-loop
formation by Cas9 revealing significant local bias. Despite the usage of
only a single value for all mismatch penalties, an improved off-target
classifier was obtained. This strongly supports the potential of
mechanism-based off-target predictors. For their further improve-
ment, we think that a combination of single-molecule measurements
as presented here and of high-throughput data will be crucial. Bio-
physical measurements with improved temporal resolution56 should
allow to directly infer the free energy landscapes of R-loop formation
for different effector complexes. In turn, high-throughput data could
subsequently be used to independently parametrize mismatch penal-
ties using a known free energy landscape. Together, this should enable
better mechanism-based prediction and thus amore rational selection
of target sequences for preciseprogrammingofDNAediting toolswith
low off-target probabilities.

In addition to the prediction of target recognition of existing
effectors, the established modeling approach can also be used to
devise theoretical ‘optimum free energy landscapes’ of R-loop forma-
tion that support maximized targeting specificity and efficiency at the
same time. This can help to evaluate novel effector complexes and
rationally guide further engineering approaches of high-fidelity
variants15,16,57.

Methods
One-dimensional random-walk model for R-loop formation
The R-loop dynamics was modeled as a random walk on a one-
dimensional 1 bp lattice within a simplified free energy landscape
based on the energy parameters ΔGini, ΔGbias, ΔGlock, and ΔGMM as
described in the main text (see also Fig. 1b). The rate model of the
random walk was parameterized based on the principle of detailed
balancewhich relates the ratio of the forward (indicated by ‘+’) and the
backward (indicated by ‘-‘) rate constants between subsequent posi-
tionsn and n+ 1 to the free-energy differenceGn+ 1 � Gn between these
positions:

k +
n

k�
n+ 1

= e�ðGn+ 1�GnÞ=kBT ð1Þ

For the unbiased free energy landscape with ΔGbias = 0 (Fig. 1b,
top), we assume an equal rate kstep for all transitions between R-loop
states (i.e., equal kinetic barriers) except for transitions from the U
(and F) states. This excludes any sequencedependence of the stepping
rates. PAM binding is comprised in the formation step of the first
R-loop base pair without a distinct kinetic barrier for dissociation from
the PAM. Based on these considerations the rate for R-loop initiation is
given as

k +
0 = kstepe

�ΔGini=kBT ð2Þ

The dependence of R-loop initiation on the Cascade concentra-
tion c was included by considering the contribution of the chemical

potential of the Cascade complexes to ΔGini

ΔGini cð Þ=ΔGini c0
� �� kBT In c=c0

� � ð3Þ

where ΔGiniðc0Þ is the standard initiation penalty at a reference con-
centration c0.

For amismatch between crRNA and DNA target strand at position
m, we assume that the rate limiting step formismatch establishment is
the disruption of the DNA base pair, such that it occurs at the normal
R-loop extension rate k +

m�1 = kstep. Detailed balance provides in this
case an increased rate for R-loop retraction that eliminates the mis-
match

k�
m = kstepe

ΔGMM=kBT ð4Þ

in agreement with the rate-limiting step being facilitated by destabi-
lized base-pairing in the heteroduplex as also indicated by the lowered
kinetic barrier at the mismatch position in Fig. 1b.

The applied negative supercoiling causes a constant bias of the
free energy landscape per bp in the regime where the DNA length
decreases linearly with the applied turns. The torque τ, which is the
quantitative parameter of how the applied supercoiling stresses the
DNA helix, is set by the applied force in the magnetic tweezers
experiments. It was estimated as described before58. The bias ΔGbias

per bp from the torque equals the work done against the torque

ΔGbias = τ Δφbp ð5Þ

where Δφbp =0:515 radðl ^
= 29:5

�Þ is the angle by which the DNA
becomes untwisted per R-loop expansion by 1 bp25. Assuming that the
transition barrier is centered between two subsequent R-loop
positions, R-loop expansion and retraction would both be affected
by half of the bias providing the following corrections of all forward
and backward rates for the acting torque

k +
n ðτÞ= k +

n τ =0ð Þe�τΔφbp=2kBT ð6Þ

k�
n ðτÞ= k�

n τ =0ð Þe+ τΔφbp=2kBT ð7Þ

with n being any valid position of the free energy landscape. These
definitions provide a full parameterization of the rate model that
describes the random walk. Mean transition times between any start-
ing state and any end state were calculated by solving the first passage
problem for this model (see Supplementary Note 1). To this end,
transmissive boundaries were placed at the positions of end states and
a single particlewas added to the system.Uponarrival of the particle at
a transmissive boundary it was instantaneously set to the start state.
The mean transition time was then calculated from the steady-state
flux of the single particle inside the rate landscape (see Supplementary
Note 1). For intermediate R-loop states that are dynamic and extend
over several base pairs, the position with the lowest free energy was
taken as the state position. For DNA targets with a continuous stretch
of mismatches at the PAM-distal end, the free energy landscape was
cut off at the first mismatch position corresponding to an infinite free
energy at this position.

For kinetic randomwalk simulations of R-loop length fluctuations
(see Supplementary Fig. 5), we constructed the free energy landscape
for a given target and calculated for each step of the lattice the forward
and backward stepping rate constants k +

n and k�
n . Per simulation time

step Δt, a single bp forward or backward step was taken with prob-
ability k +

n Δt or k�
n Δt, respectively. Δt was chosen sufficiently small,

such that the stepping probabilities were much smaller than one.
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DNA and proteins
The 2.1 kbp DNA constructs with additional biotin- and digoxigenin
modified attachment handles at either end used in the magnetic
tweezers experiments were prepared as previously described25,59. For
each DNA target presented in this study a 73 bp blunt ended oligo-
nucleotide duplex carrying the 35 bp long target sequence was cloned
into the SmaI site of a pUC19 plasmid. From the plasmids, 2.1 kbp DNA
fragments containing the targets as well as SpeI and NotI restriction
enzyme sites at either end were produced by PCR (primers 1 and 2 in
Supplementary Table 3). Biotinylated and digoxigenin-modified
~1.2 kbp DNA fragments were produced by PCR from pBluescript II
SK+ with its multiple cloning site located approximately in the center
of the fragments (primers 3 and 4 in Supplementary Table 3). The
biotinylated and digoxigenin-modified fragments were digested with
SpeI and NotI, respectively to yield modified ~600 bp attachment
handles. Following digestion of the 2.1 kbp target fragment with both
restriction enzymes, it was ligatedwith the handles to form the final 3.3
kbp DNA construct used in magnetic tweezer experiments. For the
production of complexes with different crRNAs all spacer variants
were introduced into the produced vector pACYCminCR-Eco31I/SapI
through the SapI and Eco31I sites using synthetic oligonucleotideswith
corresponding single stranded overhangs (Supplementary Table 4)17.
Cascade complexes with different crRNAs were expressed in E. coli
BL21 (DE3) cells and purified as described60 using the pACYC-minCR
derivatives (CmR) instead of the pACYC plasmid with homogeneous
CRISPR region pCRh.

Magnetic tweezers experiments
R-loop formation experiments were performed in 20mMTris-HCl (pH
8.0), 150mM NaCl and 0.1mgml−1 BSA at 170 pM (for experiments
described in Figs. 2 and 3) or 0.5 nM (for experiments described in
Figs. 4–6) Cascade using a custom-built magnetic tweezers setup61 at
room temperature (25 °C). DNA molecules were bound to 0.5 µm
streptavidin-coated magnetic beads (MasterBeads; Ademtech) and
added into the antidigoxigenin-coated flow cell to form tethers at the
bottom surface59,62. Single supercoilable molecules were selected43.
The DNA length was determined at 120Hz by videomicroscopy and
real-time GPU-accelerated three-dimensional particle tracking63 from
theposition of themagneticbeadwith respect to a surface-boundnon-
magnetic reference bead (Dynospheres; Invitrogen). Forces were
calibrated from the lateral fluctuations of the DNA-tethered magnetic
beads64. Torque values were calculated based on previous theoretical
work58,65. For experiments in which dynamic sampling of R-loop
intermediates in absence of locking was investigated (Figs. 2, 3, and 5),
Cascade was added to the flow cell and the DNA molecule was nega-
tively supercoiled (see Supplementary Fig. 3a). Thenumber of negative
turns depended on the applied force and on the change of super-
coiling following the formation of the R-loop. Generally we aimed that
DNA length transitions occur around half the relaxed molecule length
at the given force and thus in the linear regime of the supercoiling
curve28,43. This way the torque on the DNA stayed approximately con-
stant. For experiments where R-loops became locked (Figs. 4 and 6),
R-loop formation was induced as described before. To remove Cas-
cade complexes with locked R-loops, the DNAmolecule was positively
supercoiled to (+10–14 turns, depending on the force and on the
length of the individual DNAmolecule) and the force was increased to
~2–3 pN to provide a high positive torque that would ‘wring out’ the
R-loop. R-loop dissociation was seen as a sudden DNA length increase
(see Supplementary Fig. 3b–e for the full procedure). R-loop
formation–dissociation cycles were constantly repeated to obtain
≥25 individual events per applied condition.

Fluorescence bulk solution experiments
All oligonucleotides for the zero torque measurements are shown in
Supplementary Table 5 and were purchased HPLC-purified from

Sigma-Aldrich. Shipping concentrations of 100μM were evaluated by
measuring the absorbance at 260nm using a P-330 NanoPhotometer
(Implen). Complementary strands were then annealed at a con-
centration of 1μM in buffer containing 10mM Tris-HCl (pH of 8.0),
50mM NaCl, and 1mM EDTA and slow cooling from 95 to the storage
temperature of 4 °C at 1 K/min.

All measurements were performed in a temperature controlled
Cary Eclipse at 25 °C in 1500μL cuvettes. Before each measurement,
cuvettes were rinsed 5 times with ethanol, 5 times with mili-Q, incu-
bated overnight in 2% Hellmanex 3 solution, and again rinsed 5 times
with ethanol and 5 times with mili-Q.

In the beginning, a 1350 μL solution containing the double stran-
ded DNA was measured for 600 s to obtain the ground level (9/10 of
mean signal amplitude). Afterwards the reactionwas started byquickly
adding 150μL of solution containing Cascade. Reaction conditions
were 10 nM of dsDNA and 2 nM Cascade in a buffer containing 20mM
Tris−HCl (pH of 8.0), 150mM NaCl and 0.1μg/μL BSA.

The negative control (no protein added) was then subtracted
from themeasured trajectories. Thefluorescence signalwas thenfitted
to a sum of three exponentials of the form

F tð Þ=A1 1� e�k1t
� �

+A2 1� e�k2t
� �

+A3 1� e�k3t
� �

ð8Þ

As quantity of interest the mean time to overcome all three
steps was taken:

th i= 1
k1

+
1
k2

+
1
k3

ð9Þ

Data analysis
The time resolution of the magnetic tweezers measurements can be
approximated using τ = SNR2kBT γ=ðκΔzÞ2, where SNR is the signal-to-
noise ratio andΔz the characteristicDNA-length changes that need tobe
resolved for which we assumed SNR=3 and Δz = 50nm. The spring
constant of the supercoiled DNA κ and the drag coefficient γ of the
magnetic bead for axial displacements were determined from DNA
length trajectories yielding κ = 1:25 � 10�3 pNnm�1 and
γ = 1:5 � 10�5 pN snm�1 64. This provided τ = 140ms, i.e., a detection
bandwith of ∼ 7Hz. DNA length trajectories recorded at 120Hz were
therefore smoothedwitha slidingaverage to7.5Hz.Transitionsbetween
the different R-loop states to generate 2-, 3-, and 4-state approximations
of the R-loop trajectories were obtained by hidden Markov modeling
using the vbFRET software package66. For the vbFRET software package,
default parameters were used except for the number of expected states
thatwasfixed to2, 3, or 4 for targets containingno (Fig. 2), one (Fig. 3) or
two (Fig. 5) internal mismatches, respectively. From the discrete-state
trajectories, dwell time distributions and transition rates were extracted
using MATLAB (MathWorks) and LabVIEW (National Instruments). This
included the generation of cumulative dwell time distributions for
individual states, which were fitted to single exponential functions to
obtainmean dwell times and the corresponding transition rates. For the
latter, the transition probabilities to neighboring states were corre-
spondingly considered. For experiments in which dynamic sampling of
R-loop intermediates was investigated (Figs. 2, 3, and 5), trajectories
of at least 3000 s were recorded for each condition including typically
~1000 transitions. For experiments where R-loops became locked
(Figs. 4 and 6), ≥25 locking events were obtained for each condition to
determine mean R-loop formation times. All rate and time error bars
represent the standard error of themean. Particularly, the error ofmean
dwell times was calculated by dividing themean time by the square root
of the number of events. Errors for all fit parameters are given as single
confidence intervals.

To verify that the temporal resolution of our nanomechanical
system (bead on supercoiled DNA, see above) was sufficient to resolve
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the extracted R-loop transitions, we employed Brownian dynamics
simulations to simulate the magnetic tweezers measurement of
dynamic R-loop sampling. We first employed kinetic random-walk
simulations to simulate trajectories of the R-loop dynamics (R-loop
length over time) on a one-dimensional 1 bp lattice within the corre-
sponding free energy landscape (see model description above) using
the experimentally obtained parameters (Supplementary Table 1).
Using the slope of the supercoiling curve at the corresponding force,
we converted the R-loop length into an expected equilibrium exten-
sion zDNAðtÞ of the DNA. We furthermore modeled the diffusive fluc-
tuations of the magnetic bead and its response to DNA extension
changes by one-dimensional Brownian dynamics simulations64. In
brief, a deviation 4z of the fluctuating bead from the equilibrium
extension, caused a back-driving drift force Fdrift = � κ Δz = zbead �
zDNAðtÞ due to the stretch elasticity κ of supercoiled DNA (comprising
components of the DNA twist elasticity and the entropic elasticity of
stretchedDNA). Per time increment of the simulationΔt, Fdrift caused a
displacement of Δzdrift =Δt v=Δt Fdrift=γ, with v being the steady state
drift velocity of the bead inside the viscous medium for low Reynolds
numbers. The viscous drag coefficient γ of a spherical particle with
radius R inside a medium with viscosity η was given by the Stokes
formula γ =6πηR. Within Δt, we furthermore considered random dif-
fusive displacements Δzdiff that were drawn from a Gaussian distribu-
tion with zero mean and a variance of

�
Δzdiff

2�=2DΔt with D = kBT=γ
being the diffusion coefficient for the particle. By successively updat-
ing the bead position zbead by a total displacement of Δzdiff +Δzdrift per
time increment, we obtained the magnetic bead fluctuations in
response to the R-loop length fluctuations (see light red trajectory in
Supplementary Fig. 5a–d and Supplementary Fig. 7). The spring con-
stant κ ∼0:01pN=nm describing the stretch elasticity of supercoiled
DNA as well as the effective hydrodynamic bead radius R∼800nm
were obtained from power spectral density analysis of corresponding
experimental trajectories of the length fluctuations of super-
coiled DNA64.

We next identified for the simulated magnetic tweezers tra-
jectories transitions between different R-loop intermediates using
vbFRET and compared them with the actual transitions of the
R-loop length simulations. We could correctly identify transitions
for simple R-loop intermediates (as in Fig. 2, main text) as well as for
the 3-state transitions observed for sufficiently strong single mis-
matches (C:C and C:T, see Fig. 3, main text, and Supplementary
Fig. 5a, b). For targets containing a single C:Amismatchwe observed
a considerably slower collapse of the full R-loop state F * (rate k4)
compared to the C:T and C:C mismatches (Fig. 3b and Supplemen-
tary Fig. 5e) despite the anticipated independence of the R-loop
collapse on the mismatch strength. We therefore hypothesized for
this weak mismatch that transitions over the mismatch between the
I to the F * states (rates k3,k4) were too fast to be reliably detected
given the temporal resolution of our setup. To correct for the
undetected transitions between I and F * states we increased the
R-loop collapse rate k4 to the level measured for C:C and C:T mis-
matches (0:8� 1:2 s�1), which proportionally also increases the
R-loop formation rate k3 and used the adjusted rates for char-
acterizing the mismatch penalty (see Supplementary Fig. 5e). We
additionally carried out simulations using the adjusted rates.
Simulations of the R-loop length fluctuations provided the expected
fast transitions (see Supplementary Fig. 5e, green data points). The
simulated magnetic tweezers trajectories provided significantly
lower transition rates that agreed with the experimental rates,
supporting a correct adjustment of the rates for this weak mis-
match. The correction procedure was also applied for extracting
transition rates for the dynamic sampling of R-loop intermediates in
case of double mismatches (positions 11, 17, Fig. 5e and Supple-
mentary Fig. 7).While transitions betweenU and I as well as between
I* and F * were correctly reproduced by the simulations, part of the

fast transitions between the I and I* states were not detected
(Supplementary Fig. 7). Transition rate comparisons obtained from
each trajectory are represented in Fig. 5e.

Estimation of the DNA torque in E. coli cells
Typical superhelical densities σ (i.e., the number of added superhelical
turns per helical turns of the relaxed DNA) found in E. coli cells range
from�0:06 to�0:02946,47. For plasmid DNA added superhelical turns
are partitioned betweenwrithe and twist at a ratio of 0.8 to 0.267. Thus,
the superhelical density contributing to the DNA twist is

σTw≈0:2σ ð10Þ

The torque τ in a twisted semiflexible polymer of length L can be
calculated from

τ =
kBT ptor

L
Δφ=

kBT ptor

h
2π σTw ð11Þ

where ptor is the torsional persistence length and Δφ the twist angle.
The number of helical turns within L is given by Nhelix = L=h, where
h=3:5 nm is the helical pitch of B-form DNA. The twist angle is then
given by Δφ= 2π σTwNhelix. Inserting these relationships in the torque
equation gives

τ =
kBT ptor

h
2π σTw ð12Þ

Using ptor = 100nm 68–70, we get for the typical superhelical den-
sities in E. coli cells torques τ between �8:9 and �4:3pNnm.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding author(s) upon request.
Sourcedata areprovidedwith this paper.Minimal rawdataset required
to reproduce data published in this paper is available at Zenodo
database. Source data are provided with this paper.

Code availability
The custom-made LabVIEW code for the analysis ofmagnetic tweezers
data is available at Zenodo: https://doi.org/10.5281/zenodo.7328018.
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