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Abstract. The aim of the given paper is the development of an approach for parametric 

identification of Wiener systems with static non-invertible function, i.e., when the linear part with 

unknown parameters is followed by piecewise linear nonlinearity with negative slopes. It is shown 

here that the problem of identification of a nonlinear Wiener system could be reduced to a linear 

parametric estimation problem by a simple input-output data reordering and by a following data 

partition into three data sets. A technique based on ordinary least squares (LS) is proposed here for 

the separate estimation of parameters of linear and nonlinear parts of the Wiener system, including 

the unknown threshold of piecewise nonlinearity, by processing respective particles of input-output 

observations. The simulation results are given. 

Introduction 

A lot of physical systems are naturally described as Wiener systems, i.e., when the linear system 

is followed by a static nonlinearity [1 – 3]. Frequently, nonlinearities of actuator devices  occur on 

the output of the system to be controlled that limit the system performance considerably [2, 3]. 

Therefore, Wiener models, consisting of a linear dynamic block followed by a static nonlinear one, 

are considered to be suitable for a broad spectrum of nonlinearities [4]. A special class of such 

systems is piecewise affine Wiener systems, consisting of some subsystems, between which 

occasional switchings happen at different time moments [3]. Assuming the nonlinearity to be 

piecewise linear, one could let the linear part of the Wiener system be represented by different 

regression functions with some parameters that are unknown. In such a case, observations of an 

output of the Wiener system could be partitioned into distinct data sets according to different 

descriptions. However, the boundaries the set of observations depend on the value of the unknown 

threshold  d –  observations are divided into regimes subject to whether the some observed threshold 

variable is smaller or larger than  d.  Thus, there arises a problem, first, to find a way to partition 

available data, second, to calculate the  estimates of parameters of regression functions by 

processing particles of observations to be determined, and, third, to get the unknown threshold d.  It 

is known, that various compensators have been tried to adjust the performance of control systems by 

reducing parasitic effects of a nonlinearity.  On the other hand, we describe here the approach based 

on reconstruction of the unmeasurable internal intermediate signal, acting between both blocks of 

the Wiener system, without designing special and complex enough compensators [5].   Afterwards, 

instead of measurable output of the Wiener system, affected by the piecewise nonlinearity, the 

reconstructed signal, free of the parasitic effects, could be used for parametric identification of the 

linear time invariant (LTI) system.  

Here the same problem of the Wiener system is considered as in the article [6], except for 

recursive identification. The identification method in [6] is a direct application of the well-known 

recursive LS (RLS) algorithm [4], extended with the estimation of internal variables, some of which 

appear both linearly and nonlinearly.  
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In this paper, the initial data partition allows us to separate the parametric identification problem 

into two parts that are related by the  internal signal to be restored. Thus, the nonlinearity of 

variables and some known problems related with it are avoided. In the first part of the article the 

parameters of the FIR model are estimated. Then, the unknown intermediate signal between two 

blocks is reconstructed. Finally, the parameters of the linear block based on the samples of the 

reconstructed signal are evaluated.  In the second part the values of negative linear segment slopes 

are calculated by processing respective segments of partitioned input-output data with missing 

observations. At last, it is shown here how to improve the initial estimate of the threshold. The 

recursive method proposed in [6] enables the on-line estimation of the parameters of linear block 

transfer function and the parameters characterizing the non-invertible piecewise-linear nonlinearity 

and their changes during the process. In our paper we do not use the recursive expressions. 

However, forgetting factors applied to reduce an old information in [6] can be used here, too. 

Moreover, it is clearly shown that it is possible to identify the Wiener system parametrically, even if 

the static piecewise nonlinearity is non-invertible. It is obvious, that such a method based on the 

data partition can be applied to find initial parameter estimates based on short-length input-output 

measurements. They can be used by the recursive parametric identification of Wiener systems.  

In Section 2, a statement of the problem is presented. In Section 3, the general method is given 

for determining an auxiliary signal that corresponds to the extracted version of the internal one. 

Section 4 presents the simulation results of the Wiener system to be identified parametrically. 

Section 5 contains conclusions.  

Statement of the problem.  The Wiener system consists of a linear part followed by a  static   

non-invertible nonlinearity ),( η⋅f  with the vector of parameters .η  The linear part of Wiener system 

is dynamic, time invariant, causal, and stable. It can be represented by LTI (linear, time-invariant) 

dynamic system with the transfer function ),( 1 Θ−qG as a rational function of the form 
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with a finite number of parameters 
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that are determined from the set Ω of permissible parameter values .Θ Here 1−q  is a time-shift 

operator, the set Ω is restricted by conditions on the stability of the respective difference equation. 
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generated by the linear part of the Wiener system Nk ,1=∀  as a response to the input 

Nkku ,1)( =∀  is acting on the static non-invertible nonlinear part ),( η⋅f  as follows 

).()),(()( kekxfky += η                                                          (4) 

Here e(k) is a measurement noise. 

                                                                                                                e(k) 

                                u(k)                                     x(k)                                 +        y(k)  

                                                                                                                                                                   

 

Fig. 1.  A Wiener system, consisting of LTI system with ),( 1 Θ−qG (1) with parameters (2) and a 

nonlinearity ),( η⋅f  (5), (Fig. 2) [6, 7].  The signal {x(k)} is acting between the LTI 

system and ),( η⋅f .  Only samples of signals {u(k)} and noisy {y(k)} are available. 

 

 

),( 1 Θ−qG
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The nonlinear part of the Wiener system is a non-invertible piecewise linear nonlinearity with 

negative slopes as follows  [7, 8]                                                                                                                 
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that could be partitioned into three functions: ),()),((
10

kxddkxf −=α ),()),(( kxdkxf = and 

).()),((
10

kxcckxf −=β  Note that the function )),(( αkxf has only positive values, when  

,)( dkx > )),(( dkxf has arbitrary positive, as well as negative values, when  ,)( dkxd ≤<− and 

)),(( βkxf  has only negative values, when .)( dkx −<  

 
Fig. 2. Static non-invertible piecewise nonlinearity ),( η⋅f . 
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The measurement noise Nkkke ,1)()( =∀≡ ζ  is added to the output 

)),(( ηkxf ,,1 Nk =∀ respectively, )}({ kζ is sequence of independent Gaussian variables with 

mean values ,0)}({ =kE ζ  and );()}()({ 2 τδστζζ
ζ

=+kkE  }{⋅E is a mean value, 2

ζ
σ is variance of 

)},({ kζ )(τδ is the Kronecker delta function. 

The aim of the given paper is to estimate parameters of the linear and nonlinear parts (1), (5), 

respectively, avoiding the parasitic effects of nonlinear distortions, induced by the non-invertible 

nonlinearity (5) (Fig. 2), that appear in the noisy output )}({ ky of the Wiener system (see Fig. 1).   

 

The input-output data reordering.  To calculate estimates it is needed to determine an auxiliary 

signal Nkkx ,1)(ˆ =∀  (the estimate of  unmeasurable )}({ kx ) having no parasitic distortions. To 

solve such a problem one could approximate the linear part (1) of the Wiener system by the finite 

impulse response (FIR) model of the form [8, 9]  

                                             )()1()()( 10 kekukuky ++−+++= µγγγ µ…  (7)                 

Nk ,µ=∀  or using the expression in a matrix form 

                                        .eΠγV +=                    (8) 

Here  

                                            TNyNyyy ))(),1(,),1(),(( −+= …µµV                                           (9) 
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is the 1)1( ×+− µN vector, consisting only of observations of the non-noisy input )};({ ku  
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is the full rank regression matrix ),1()1( +×+− µµN  consisting only of observations of the non-

noisy input )},({ ku )( ,,, 10 µγγγ …=T
γ  is the vector of unknown parameters of FIR model (7);                      

                                                         
TNeNeee ))(),1(,),1(),(( −+= …µµn                                            (11)   

is the vector ,1)1( ×+− µN consisting of the values )};({ ke µ  is the order of FIR filter (7) that can 

be arbitrarily large, but fixed (µ can be detected experimentally by simulation). The reason for the 

use of the FIR model is as follows: the dependence of some regressors on the process output will be 

facilitated, and the assumption of ordinary least squares (LS) that the regressors depend only on the 

non-noisy input signal, will be satisfied.  

It could be emphasized that from the engineering point of view it is assumed here that no less than 

50 persentage observations {y(k)} are concentrated on the middle-set that corresponds to the 

condition dkxd ≤<− )( and approximately by 25 percentage or less on any side set with conditions 

dkx >)( and ,)( dkx −≤ respectively. Let us rearrange now the true output data  Nkky ,1),( =∀  in 

an ascending order of their values, assuming that measurement noise  Nkke ,1)( =∀  is absent, 

parameters, and the threshold d of non-invertible nonlinearity (5) are known.  We could do that by 

interchanging equations in the initial system (8).  Note that the interchange of equations does not 

influence the accuracy of LS parameter estimates )ˆˆˆ(ˆ ,,, 10 µγγγ …=T
γ  to be calculated. Thus, the 

true observations Nkky ,1),( =∀ of the reordered output Nkky ,1
~

)
~

(~ =∀ of the Wiener system in an 

unnoisy or slightly noisy frame should be partitioned into three data sets: left-hand side data set 

(
1

N samples) with values less than or equal to negative d, middle data set (
2

N samples) with values 

higher than negative d but lower or equal to d, and  right-hand side data set (
3

N samples) with 

values higher than d. Here ,3
21

NNNN ++= k
~

is any integer k  rearranged in an ascending order, 

dependent on the reordered values of observations )},({ ky e.g. 5
~
=k while true .10=k  Then, 

assuming that a static nonlinearity is present in the given Wiener system (Fig. 1), the vector V and 

the matrix Π  should be partitioned into three data sets: the left-hand data set ,11 γΠV =  the middle 

data set ,22 γΠV = and the right-hand data set ,33 γΠV =  according to the three regimes of the 

static saturation-like nonlinearity with negative slopes. The left-hand side data set  1V  ( 1N samples) 

consists of the reordered ,1,1
~

),
~

(~ Nkky =∀ equal or less than negative ,d  the middle data set 

2V ( 2N samples) consists of the reordered values 2,1
~

),
~

(~ Nkky =∀ higher than negative ,d  but 

lower or equal than ,d  and the right-hand side data set 3V  ( 3N  samples) consists of the reordered 

values 3,1
~

),
~

(~ Nkky =∀  more than .d  Thus, initial system (7) is reordered into a system 

                                eγΠV +=                   (12) 

with ,],,[
3

21
T

VVVV = and  T],,[ 321 ΠΠΠΠ =   by simply interchanging equations in the initial 

system of linear equations (8). Here 321 ,, VVV  are 1,1 21 ×× NN  and 13 ×N vectors, respectively, 

and 321 ,, ΠΠΠ  are )1(),1( 21 +×+× µµ NN  and )1(3 +× µN matrices, correspondingly. 

Hence, the observations with the highest and positive values will be concentrated on the right-

hand side set, while the observations with the lowest and negative values on the left-hand side one. 

It could be noted that on boundaries the small portions of observations of the middle data set of 
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2
,1

~
)

~
(~ Nkky =∀  are mixed together with some portions of observations of the left-hand side and 

right-hand side data sets, respectively, due to negative slopes of the nonlinearity (5). In general case 

(a noisy environment, unknown parameters Θ and η  and the threshold d) it is imperative for the 

efficient parametric identification of the Wiener system that such ambiguities are resolved. On the 

other hand, one can avoid this problem assuming here that slightly less than 50% unmixed 

observations are concentrated on the middle-set and approximately by  20% on any side set. The 

observations of the middle data set of  )}
~

(~{ ky  are coincident with the respective reordered 

observations of the intermediate signal })({ kx in the absence of the measurement noise )}.({ ke  

Therefore, one could get unmixed observations of  )}
~

(~{ ky simply by choosing the upper interval 

bound lower than the 75 percentage and the lower interval bound higher than the 25 percentage of 

the sampled reordered observations of )}.
~

(~{ ky  Next, let us reconstruct an unmeasurable 

intermediate signal ,,1)( Nkkx =∀  using the middle data set )
~

(~ ky that is, really, reordered  in an 

ascending order of their values )}({ ky with small portions of missing observations within it that 

belong to the left-hand and right-hand side sets of the reordered data. To estimate the parameters 

),,,( 110 −= µγγγ …
T

γ of FIR model (7), we can use the expression of the form 
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Here )ˆ,,ˆ,ˆ(ˆ
110 −= µγγγ …

T
γ is a vector 1×µ  of the estimates of parameters ),,,( 110 −= µγγγ …

T
γ , 

respectively. Then, the estimate )},(ˆ{ kx of the intermediate unmeasurable signal ,)}({ kx  could be 

extracted by                              

                        ),1(ˆ)1(ˆ)(ˆ)(ˆ
110 +−++−+= − µγγγ µ kukukukx …                                         (14) 

avoiding parasitic influence of the nonlinearity (5). Here the true values 110 ,,, −µγγγ … are replaced 

by their estimates )ˆ,,ˆ,ˆ(ˆ
110 −= µγγγ …

T
γ , respectively, calculated by Eq. (13). Note that the result of 

this step is the auxiliary signal (14) that is a reconstructed version of the intermediate unmeasurable 

signal )},({ kx that acts between linear and nonlinear parts of the  Wiener system. Now, let us 

calculate the estimates of the parameters of the transfer function ),( 1 Θ−qG according to 

                               ,)(ˆ 1 UXXXΘ TT −=                                   (15)                                                     

Here  
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are 1,1,12 ××× mmm  vectors of the estimates of parameters (2), respectively; 
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is the mmN 2)
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corresponding to the starting- and final-point in the middle data set, respectively, besides, 

.
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NNN <<<<< ηη    

Then, the second and, the main estimate 
____

,),(~ Nkkx µ=∀ of the internal signal is calculated by 
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that can be compared with its previous version (14). Estimates of the parameters ,, βα and η  like 

vector of estimates Θ̂ are calculated by the ordinary LS, too. In such a case, we can use two systems 

of linear equations as follows: first system 
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The estimates 10
ˆˆ , cc  and 10

ˆˆ , dd are determined by solving  eq. (19) and (21) as follows 
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respectively, where side-sets particles of 
____
,1)(~

1
Nkky =∀ and ,

____
,1

3
Nk =∀ and associated samples of 

auxiliary signal )}(~{ kx are   used. At last, the estimate of the threshold d on the right-hand side ( rd̂ ) 

and left-hand side ( ld̂ ) sets are found according to  

                                              ),ˆ1/(ˆˆ),ˆ1/(ˆˆ
1010
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respectively. Note that in Eq. (19) – (26) the reordered versions of  
____
,1),(~

1Nkjx =∀  and 

____
,1),(~

3Nkjx =∀ are substituted. To estimate the parameters of FIR model (5) recursively, one can 

use the well-known ordinary recursive LS (RLS). Now, instead of the  signal ,,1),( Nkky =∀  that 

has parasitic effects induced by the static nonlinearity, the current values of Nkkx ,1)(ˆ =∀  

calculated by (18), will be applied for the parametric identification of the basic LTI system. It is easy 

to understand that equations (13), (15) as well as (23) – (26) can be transformed into recursive form. 

In such a case, the on-line solution is possible, too [ 9, 10]. 

 

Simulation results.  The sum of sinusoids  
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and white Gaussian noise with variance 1 were generated as inputs to the linear  block of the 

Wiener system (see Fig. 1) 

             ,
1

1

1

11

1
),(

−

−

−

+
=

qa

qb
qG Θ                                                          (29) 

respectively [7]. Here the true values of parameters (1) are: .7.0,1
11
== ab  In Eq.(28) the stochastic 

variables 
___

20,1=∀i
i

φ with a uniform distribution on ]2,0[ π were chosen. The true intermediate signal 

)}({ kx  of the Wiener system was given by Eq. (3). Afterwards, the  signal )}({ kx  passes the non-

invertible nonlinearity of the form [6, 7] 
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that produces the output (4). First of all, N=100 data samples have been generated without additive 

measurement noise. The initial estimate of the static nonlinearity, calculated by processing 

)}({ ky and )}(ˆ{ )1( kx is obtained. It is shown in Fig. 3. Here )}(ˆ{ )1( kx  is reconstructed according to 

Eq. (14). In such a case, the initial estimate of the threshold d can be determined, too. It follows 

from Fig. 3, where the output )}({ ky  in dependence of )}(ˆ{ )1( kx is shown, that the initial value of 

the estimate .1ˆ =d  The abovementioned signals to be used are shown in Fig.4. In Table 1 estimates 
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11
ˆ,ˆ ab are shown for different inputs. In the first experiment (second and third columns in Table 1) 

they were calculated by means of ordinary LS by processing 100 samples of )}(),({ kxku (see Fig.1).  

In the second experiment (fourth and fifth columns in Table 1) observations of )}({ kx were replaced 

by respective observations  of )}({ ky (see Fig.1). 

 
Fig.3. The output (y) of the Wiener system in dependence of the signal of the form (14) (x).               

Input: (28) (a), white Gaussian noise (b). 

                                                                                                                                                                     

It is obvious (see Table 1), that the nonlinearity was influenced on the accuracy of estimates, 

significantly, for example,
1

â changed even sign. Afterwards, the LS problem (13) was solved using 

42 and 55 rearranged samples of the output )}({ ky of the Wiener system for both inputs (see Figures 

5 − 8), excluding zeros. In such a case, the whole number of FIR filter (7) parameters  =µ 14  has 

been chosen experimentally by multifold simulation. Values of their  estimates are given in Table 2 

in the absence of additive noise. 
 

Table 1. Estimates of parameters .7.0,1 11 == ab  

Input 
1b̂  1â  

1b̂  1â  

  (28) 1. 0.7 0.2185 -0.1112 

white noise 1. 0.7 0.5258 0.6281 

The first estimate )}(ˆ{ )1( kx  of internal unmeasurable signal })({ kx  was reconstructed according 

to (14), replacing unknown true values of parameters by their estimates 110
ˆ,,ˆ,ˆ −µγγγ … (see second 

column of Table 2). Then, the estimates of the parameters of the transfer function ),( 1 Θ−qG  were 

calculated by ordinary LS according to (15). We obtained: 6998.0ˆ,0012.1ˆ
11 == ab for the set of 

harmonics (28), and 7.0ˆ,9985.0ˆ
11 == ab for the white Gaussian noise on the input of the Wiener 

system. The second estimate Nkkx ,1)(ˆ )2( =∀ of internal signal Nkkx ,1)( =∀  was generated by 

Eq.(18), using previously calculated values .7.0ˆ,9985.0ˆ
11 == ab   

The accuracy of the estimates of the intermediate signal, calculated by formulas (14) and (18), is 

more or less similar except for the first 15 samples, when the FIR model (7) was used. If  )}(ˆ{ kx  

has been obtained, then it is simple to separate different particles of samples that belong to distinct 

side-sets. Then, the estimates
10

10
ˆ,ˆ,ˆ,ˆ ddcc of the parameters 

10
10 ,,, ddcc were calculated by (19), 

(21), respectively. In such a case, the rearranged observations of )}(ˆ{ kx and )}({ ky were substituted 

in formula (19)  and estimates of   10 ,cc were determined by (23), (24). Afterwards, estimates of 

10 , dd  were calculated by  (25), (26). It should be noted that 28,29
31
== NN for the periodical 

signal (26) (Fig. 2a), and 24,20
31
== NN for the Gaussian white noise. (see Fig. 3a) were used to 

calculate the estimates ,ˆ,ˆ,ˆ,ˆ
10

10 ddcc respectively (see Table 3).  
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In order to determine how realizations of different process- and measurement noises affect the 

accuracy of estimation of unknown parameters, we have used the Monte Carlo simulation with 10 

data samples, each containing 100 pairs of input-noisy-output observations.  10 experiments with 

the different realizations of the measurement noise 100,1)( =∀kke  have been carried out. The 

intensity of noise was assured by choosing respective signal-to-noise ratios (SNR) (the square root 

of the ratio of signal and noise variances). For the  noise SNR is defined as ,log10
2

2

10

e

w

σ
σ

where 2

w
σ  

is the variance of the signal difference ).()( keky − Here 2

e
σ  is a variance of the additive Gaussian 

noise (see Fig. 1). As inputs for given nonlinearity white Gaussian noise with variance 1 was 

chosen. Then, in each experiment 100=N  data samples have been generated with additive 

measurement noise according to ,,1),()()( Nkkekwky =∀+= λ  respectively. The values of λ  was 

chosen so that SNR for the measurement noise was equal to 50. In each experiment the estimates of 

parameters were calculated. During the Monte Carlo simulation averaged values of estimates of the 

parameters and of the threshold and their confidence intervals ,

^

1;2/
L

t L

σ
α −±=∆  in which 

^

σ is the 

estimate of the standard deviation and α is the significance level, were determined, too. The value 

1;2/ −Ltα  is the point of Student’s distribution with L-1 degrees of freedom which cuts 2/α  part of 

the distribution. In case α =0.05 and L= 100 we find from Student’s distribution table [11] that 

=99;025.0t 1.990.  In Table 4, for each input the averaged estimates of parameters 70.0;0.1 11 −== ab  

of the simulated Wiener  system (Fig.1) with the linear part and the piecewise non-invertible 

nonlinearity (30) with parameters .1.01.1;1.0;1.1 1
010

; −==−=−= ddcc  and, with their 

confidence intervals are presented. It ought to be noted that in each experiment here as the input was 

fixed white Gaussian noise sequence chosen. The estimate of the threshold d on the right-hand side 

and left-hand side sets are found by Eq. (27): .02.099.0ˆ;04.018.1ˆ ±=±−= rl dd  

 

 
Fig. 4. Signals of the simulated system. Inputs: sum of sinusoids (25) (a), white noise (e).              

Parts (b), (c), (d) correspond to (a), and (f), (g), (h) − to (e). Internal signal: (b), (f).                       

Outputs: (c), (g). Internal signals (b), (f) and outputs (c), (g) (dotted lines) together:                          

(b), (c) – part (d); (f), (g) – part (h). 
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Fig.5. Samples of true  x(k) (a)  and y(k) (e), and their data sets: left (b,f); middle (c,g);                  

right (d, h), respectively. Samples that belong to other data set, are equal to zeros. Input u(k) of the 

form (28) (see Fig. 4a). 

 

 
Fig.6. Samples of true  x(k) (a )  and y(k) (e), and their data sets: left (b,f); middle (c,g);                         

right (d, h), respectively. Samples that belong to other data set, are equal to zeros. Input u(k) white 

Gaussian noise (see Fig. 4e). 

 

 
Fig. 7. The reordered of their values signals x(k) and  y(k) (a)(see also Fig.6a, e, respectively) 

and their rearranged data sets: left (b, f); middle (c, g); right (d,h). Input (see Fig. 4e). 
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Fig. 8. The signals: true intermediate {x(k)} (1),  ),2)}((ˆ{ )1( kx and  y(k) (3). Inputs: of the form 

(25), white Gaussian noise (b). 
 

Table 2. Estimates of 10-th parameters of FIR system for distinct input signals. 

Estimates Input is of the form (28) Input is white Gaussian noise 

0
γ̂  -1.0111 0.0020 

1
γ̂  11.4598 0.9949 

2
γ̂  -51.2717 -0.6979 

3
γ̂  165.7966 0.4862 

4
γ̂  -376.7118 -0.3409 

5
γ̂  653.1675 0.2383 

6
γ̂  -884.5980 -0.1689 

7
γ̂  951.8472 0.1172 

8
γ̂  -814.4884 -0.0821 

9
γ̂  549.6397 0.0626 

10
γ̂  -285.3381 -0.0384 

11
γ̂  108.7535 0.0282 

12
γ̂  -27.5263 -0.0211    

13
γ̂  3.6005 0.0146 

Table 3. Estimates of parameters .1.01.1;1.0;1.1 1
010

; −==−=−= ddcc  

 

                                                              

                                                                

                                                     

The Monte Carlo simulation implies that the accuracy of parametric identification of the Wiener 

system with static  non-invertible nonlinearity depends on the intensity of measurement noise. 

 

Table 4. Estimates of parameters =−==−=−= SNRddcc .1.01.1;1.0;1.1 1
010

;  10. 

 

Input 
0ĉ  1̂c  

0d̂  1d̂  

(28) -1.0609 -0.0849 0.8911 0.0115 

White noise -1.0781 -0.0904 1.1025 -0.1020 

1

∧

b  1

∧

a  0ĉ  1̂c  
0d̂  1d̂  

0.99± 0.02 -0.70± 0.01 -1.08± 0.02 -0.09± 0.01 1.10± 0.03 -0.10± 0.01 

26 Volume 6



Conclusions.  The approach is presented here, based on the extraction of an unknown internal 

intermediate signal, acting between linear and nonlinear blocks of the Wiener system with a static 

non-invertible piecewise nonlinearity, avoiding complex enough compensators [9 – 10]. It is shown 

here that a problem of identification of  Wiener systems (Fig. 1) could be essentially reduced by 

using FIR model, and a simple data rearrangement in an ascending order according to their values. 

Thus, the available data are partitioned into three data sets that correspond to distinct threshold 

regression models. Afterwards, the estimates of unknown parameters of linear regression models 

can be calculated by processing respective sets of the rearranged output and associated input 

observations. A technique, based on ordinary LS, is proposed here for estimating the parameters of 

linear and nonlinear parts of the Wiener system, including the unknown threshold of the piecewise 

nonlinearity, too. It is shown here (see Fig. 3) how at the beginning the initial estimate of the 

unknown threshold can be determined. During successive steps the unknown intermediate signal is 

reconstructed and the missing values of observations of output data particles are replaced by their 

estimates.  Note that missing values can be retrieved by the approach given in [12]. Various results 

of numerical simulation (Fig. 2 − 8), including that of Monte Carlo (Table 4) prove the efficiency of 

the proposed approach for the parametric identification of LTI systems followed by static non-

invertible piecewise nonlinearity in a noisy frame.  

Finally, we can state that the successful parametric identification of the non-invertible piecewise-

linear nonlinearity is a new element in the known approach (see [8-10]). It is obvious, that the 

proposed here data partition method can be used for different types of complex nonlinearities with 

piecewise-linear segments. 
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