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Abstract: The Lerch zeta function is defined by a Dirichlet series depending on two fixed parameters.
In the paper, we consider the approximation of analytic functions by discrete shifts of the Lerch zeta
function, and we prove that, for arbitrary parameters and a step of arithmetic progression, there is a
closed non-empty subset of the space of analytic functions defined in the critical strip such that its
functions can be approximated by discrete shifts of the Lerch zeta function. The set of those shifts is
infinite, and it has a positive density. For the proof, the weak convergence of probability measures in
the space of analytic functions is applied.

Keywords: approximation of analytic functions; Hurwitz zeta function; Lerch zeta function; weak
convergence

MSC: 11M35

1. Introduction

Let, as usual, N, N0, Z, R, and C denote the sets of all positive integers, non-negative
integers, integers, real and complex numbers, respectively, and let s = σ + it be a complex
variable. The Lerch zeta function L(λ, α, s) with fixed parameters λ ∈ R and 0 < α 6 1 is
defined, for σ > 1 if λ ∈ Z and for σ > 0 if λ 6∈ Z, by the Dirichlet series

L(λ, α, s) =
∞

∑
m=0

e2πiλm

(m + α)s
.

For λ ∈ Z, the function L(λ, α, s) reduces to the Hurwitz zeta function

ζ(s, α) =
∞

∑
m=0

1
(m + α)s

, σ > 1.

Moreover, the equalities

L

(

λ,
1
2

, s

)

= ζ(s)(2s − 1), λ ∈ Z,

and

L

(

1
2

, 1, s

)

= ζ(s)
(

1 − 21−s
)

,

where ζ(s) = ζ(s, 1) is the Riemann zeta function, hold. Moreover, the Lerch zeta function
has analytic continuation to the whole complex plane, except for a simple pole at the point
s = 1 with residue 1 in the case λ ∈ Z, and is an entire function in the case λ 6∈ Z.
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The function L(λ, α, s) was introduced independently by M. Lerch [1] and R. Lipschitsz [2].
M. Lerch also proved the functional equation for L(λ, α, s)

L(λ, α, 1 − s) =
Γ(s)

(2π)s

(

exp
{

πis

2
− 2πiαλ

}

L(−α, λ, s)

+ exp
{

−
πis

2
+ 2πiα(1 − λ)

}

L(α, 1 − λ, s)

)

which is valid for all 0 < λ < 1 and s ∈ C; here, Γ(s) denotes the Euler gamma function.
Thus, the Lerch zeta function is an interesting analytic object that depends on two param-
eters and generalizes the classical zeta functions ζ(s) and ζ(s, α). The analytic theory of
the function L(λ, α, s) is given in [3]; its analytic properties depend on the arithmetic of the
parameters λ and α.

In this paper, we are interested in the approximation of analytic functions by shifts of
Lerch zeta functions L(λ, α, s + iτ), τ ∈ R. Recall that the latter property of zeta functions,
called universality, was discovered by S.M. Voronin [4], who proved that if the function
f (s) is continuous nonvanishing in the disc |s| 6 r, 0 < r < 1/4, and analytic in the interior
of that disc, then, for every ε > 0, τ = τ(ε) ∈ R exists such that

max
|s|6r

∣

∣

∣

∣

ζ

(

s +
3
4
+ iτ

)

− f (s)

∣

∣

∣

∣

< ε.

The universality of the Hurwitz zeta function with rational parameter α was considered by
Voronin [5], B. Bagchi [6], and S.M. Gonek [7]. In this case, the investigation of universality
for ζ(s, α) reduces to that of joint universality for Dirichlet L-functions. The simplest case is
of transcendental α because then the set

L(α) = {log(m + α) : m ∈ N0}

is linearly independent over the field of rational numbers Q. In this case, the universality
of ζ(s, α) was obtained by Gonek [7] and Bagchi [6]. Let D = {s ∈ C : 1/2 < σ < 1}, K
be the class of compact subsets of the strip D with connected complements, and let H(K)
with K ∈ K be the class of continuous functions on K that are analytic in the interior of K.
Let measA denote the Lebesgue measure of a measurable set A ⊂ R. Then, we can join the
above results of [5–7] to the following final result.

Theorem 1. Suppose that the parameter α is transcendental or rational 6= 1, 1/2. Let K ∈ K and
f (s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{

τ ∈ [0, T] : sup
s∈K

|ζ(s + iτ, α)− f (s)| < ε

}

> 0.

The transcendence of the parameter α in Theorem 1 can be replaced by the linear
independence over Q for the set L(α).

The case of algebraic irrational α is the most difficult problem. In [8], a certain approxi-
mation to the universality of ζ(s, α) with all parameters α was proposed. Let H(D) be the
space of the analytic on D functions equipped with the topology of uniform convergence
on compacta. Then, it was proved in [8] that there exists a closed non-empty set Fα ⊂ H(D)
whose functions are approximated by shifts ζ(s + iτ, α).

More general weighted universality theorems for zeta functions with some classes of
weight functions were obtained, see, for example, [9–11].

All of the above-mentioned results on the approximation of analytic functions are of a
continuous type. Additionally, discrete versions of the above statements are considered.
Let cardA denote the number of elements of the set A. The following result is known,
see [6,12,13].
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Theorem 2. For α rational 6= 1 or 1/2, let h > 0 be arbitrary, and for transcendental α let h be
such that the number exp{(2π)/h} is rational. Let K and f (s) be the same as in Theorem 1. Then,
for every ε > 0,

lim inf
N→∞

1
N + 1

card

{

0 6 k 6 N : sup
s∈K

|ζ(s + ikh, α)− f (s)| < ε

}

> 0.

Note that in [13] a more general case of periodic Hurwitz zeta functions is discussed.
The transcendence of α can be replaced [14] by the linear independence over Q for

the set
{

(log(m + α) : m ∈ N0),
2π

h

}

.

The discrete version of theorem from [8] was obtained in [15]. The joint generalizations of
theorems from [8,15] are given in [16,17], respectively.

Recently, A. Sourmelidis and J. Steuding proved [18] a very deep universality result
for ζ(s, α) with algebraic irrational parameter α. They obtained that, for all but finitely
many algebraic irrationals α, a shift ζ(s + iτ, α) approximating a given analytic function
exists on discs of the strip D.

Universality theorems for the approximation of analytic functions by generalized
shifts of the Hurwitz zeta function were given in [19,20]. Additionally, the universality of
the function ζ(s, α) follows from the joint Mishou type universality theorems for ζ(s) and
ζ(s, α); see, for example, [21–23].

The list of works on the approximation of analytic functions by shifts of the Lerch
zeta function L(λ, α, s) with λ 6∈ Z is not extensive. The first theorem of such a kind was
obtained in [24], see also [25].

Theorem 3. Suppose that α is transcendental. Let K ∈ K and f (s) ∈ H(K). Then, for every
ε > 0,

lim inf
T→∞

1
T

meas

{

τ ∈ [0, T] : sup
s∈K

|L(λ, α, s + iτ)− f (s)| < ε

}

> 0.

The latter theorem in [26] was extended for some compositions F(L(λ, α, s)), where
F : H(D) → H(D) are certain continuous operators.

Let a = {am : m ∈ N0} be a periodic sequence of complex numbers with minimal
period q ∈ N. The periodic Hurwitz zeta function ζ(s, α; a) is defined, for σ > 1, by
the series

ζ(s, α; a) =
∞

∑
m=0

am

(m + α)s
,

and has meromorphic continuation to the whole complex plane with possible simple pole
at point s = 1. If 0 < λ < 1 is rational, then the sequence {e2πiλm : m ∈ N0} is periodic.
Therefore, the Lerch zeta function with rational parameter λ is a partial case of the periodic
Hurwitz zeta function. Thus, the results of universality for ζ(s, α; a) also remain valid for
L(λ, α, s) with rational α. From [13], the following theorem follows.

Theorem 4. Suppose that the parameters λ and α are rational and transcendental, respectively,
and h > 0 is such that exp{(2π)/h} is rational. Let K ∈ K and f (s) ∈ H(K). Then, for every
ε > 0,

lim inf
N→∞

1
N + 1

card

{

0 6 k 6 N : sup
s∈K

|L(λ, α, s + ikh)− f (s)| < ε

}

> 0.

A similar corollary follows from the universality of the function ζ(s, α; a) with rational
parameter α [27].
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More attention is devoted to joint universality theorems for Lerch zeta functions.
We mention the papers [28–32]. In the joint case, usually the algebraic independence of
the parameters α1, . . . , αr is required, i. e., that α1, . . . , αr are not roots of any polynomial
p(s1, . . . , sr) with rational coefficients.

The problem of algebraic irrational parameter α also remains unsolved in the case
λ 6∈ Z. Therefore, in [33], some kind of approximation of analytic functions by shifts
L(λ, α, s+ iτ) was proposed, namely, it was proved that a closed non-empty set Fλ,α ⊂ H(D)
exists whose functions are approximated by L(λ, α, s + iτ). All theorems on the approxi-
mation of analytic functions by shifts of zeta functions mentioned above are not effective
in the sense that any concrete shift with approximating property is not known. In this
situation, discrete shifts have a certain advantage over continuous ones because the number
of discrete shifts is countable. Discrete shifts are also more convenient not only for the
estimation of analytic functions but also in physics; see, for example, [34,35]. Therefore, the
aim of this paper is a discrete version of the paper [33].

Theorem 5. Suppose that the parameters λ, α and the number h > 0 are arbitrary. Let K be
a compact set of the strip D. Then, a closed non-empty set Fλ,α,h ⊂ H(D) exists such that, for
f (s) ∈ Fλ,α,h and ε > 0,

lim inf
N→∞

1
N + 1

card

{

0 6 k 6 N : sup
s∈K

|L(λ, α, s + ikh)− f (s)| < ε

}

> 0.

Moreover, “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Since the case λ ∈ Z corresponds [15], we consider only the case 0 < λ < 1. Note that
the type of the second assertion was proposed independently in [36,37], see also [38].

A proof of Theorem 5 is based on a probabilistic limit theorem in the space of analytic
functions H(D).

2. Mean Square Estimate

We recall that notation a ≪θ b, b > 0, means that a constant c = c(θ) > 0, not the
same in all recurrences exists such that |a| 6 cb.

Lemma 1. Suppose that 1/2 < σ < 1 is fixed. Then, for arbitrary λ and α,

T
∫

−T

|L(λ, α, σ + it)|2 dt ≪λ,α,σ T, T > 0.

Proof. The lemma follows from Theorem 3.3.1 of [3], where the asymptotic formula for the
mean square of L(λ, α, s) is given.

Lemma 1, together with the Cauchy integral formula, implies the following estimate
for the mean square of the derivative of L(λ, α, s).

Lemma 2. Suppose that 1/2 < σ < 1 is fixed. Then, for arbitrary λ and α,

T
∫

−T

|L′(λ, α, σ + it)|2 dt ≪λ,α,σ T, T > 0.

Since we consider the discrete case, we need an estimate for the discrete mean square
of L(λ, α, s). For this, we will apply Lemmas 1 and 2 and the following Gallagher lemma;
see, for example, Lemma 1.4 of [39], which connects continuous and discrete mean squares
of some differentiable functions.
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Lemma 3. Let T0, T0 > δ > 0 and T be a finite non-empty set lying in the interval [T0 + δ/2,
T0 + T − δ/2], and

Nδ(τ) = ∑
t∈T

|t−τ|<δ

1.

Suppose that S(t) is a continuous function on [T0, T0 + T] having a continuous derivative on
(T0, T0 + T). Then, the inequality

∑
t∈T

N−1
δ (t)|S(t)|2 6

1
δ

T0+T
∫

T0

|S(t)|2 dt +





T0+T
∫

T0

|S(t)|2 dt

T0+T
∫

T0

|S′(t)|2 dt





1/2

is valid.

Lemma 4. Suppose that 1/2 < σ < 1 is fixed. Then, for arbitrary 0 < λ < 1, α, h > 0 and
t ∈ R,

N

∑
k=0

|L(λ, α, σ + ikh + it)|2 ≪λ,α,σ,h N(1 + |t|).

Proof. In Lemma 3, we put δ = h, T0 = h, T = Nh and T = {2h, . . . , Nh}. Then, Nh(τ) = 1.
Therefore, an application of Lemma 3 gives

N

∑
k=2

|L(λ, α, σ + ikh + it)|2 6
1
h

Nh
∫

h

|L(λ, α, σ + iτ + it)|2 dt

+





Nh
∫

h

|L(λ, α, σ + iτ + it)|2 dτ

Nh
∫

h

|L′(λ, α, σ + iτ + it)|2 dτ





1/2

. (1)

By Lemmas 1 and 2,

Nh
∫

h

|L(λ, α, σ + iτ + it)|2 dτ ≪λ,α,σ,h N(1 + |t|)

and
Nh
∫

h

|L′(λ, α, σ + iτ + it)|2 dτ ≪λ,α,σ,h N(1 + |t|).

Thus, in view of (1),

N

∑
k=2

|L(λ, α, σ + iτ + it)|2 ≪λ,α,σ,h N(1 + |t|). (2)

Suppose that 0 < λ < 1 and |t| 6 πλx, where x > 0 is some real number. Then, by
Theorem 3.1.2 of [3],

L(λ, α, s) = ∑
06m6x

e2πiλm

(m + α)s
+ Oσ,λ,α(x−σ).

Therefore,
L(λ, α, σ + it) ≪λ,α,σ (1 + |t|)1/2.
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This shows that
1

∑
k=0

|L(λ, α, σ + ikh + it)|2 ≪λ,α,σ,h N(1 + |t|)

and the lemma follows from (2).

We will apply Lemma 4 for the approximation in the mean of the function L(λ, α, s)
by an absolutely convergent Dirichlet series. Let θ > 0 be a fixed number, and

vn(m, α) = exp

{

−

(

m + α

n

)θ
}

, m ∈ N0, n ∈ N.

Define the series

Ln(λ, α, s) =
∞

∑
k=0

e2πiλmvn(m, α)

(m + α)s
.

Since vn(m, α) decreases exponentially with respect to m, the latter series is absolutely conver-
gent for σ > σ0 with arbitrary finite σ0. The following integral representation is valid.

Lemma 5. Let θ1 > 1/2 and

ln(s) =
s

θ
Γ
( s

θ

)

ns.

Then, for σ > 1/2,

Ln(λ, α, s) =
1

2πi

θ1+i∞
∫

θ1−i∞

L(λ, α, s + z)ln(z)
dz

z
. (3)

A proof of lemma is given in [3], p. 87.

Lemma 6. Suppose that K is a compact set of the strip D. Then, for all λ, α, and h > 0,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

|L(λ, α, s + ikh)− Ln(λ, α, s + ikh)| = 0.

Proof. ε > 0 exists such that, for all s = σ + it ∈ K, the inequalities 1/2 + 2ε 6 σ 6 1 − ε
hold. Let θ1 = 1/2 + ε and θ2 = 1/2 + ε − σ < 0. Since the integration function in (3) has a
simple pole at the point z = 0, the residue theorem implies

Ln(λ, α, s)− L(λ, α, s) =
1

2πi

θ2+i∞
∫

θ2−i∞

L(λ, α, s + z)ln(z)
dz

z
.

Hence, for s ∈ K,

Ln(λ, α, s + ikh)− L(λ, α, s + ikh)

=
1

2πi

∞
∫

−∞

L

(

λ, α,
1
2
+ ε + it + ikh + iτ

)

ln(1/2 + ε − σ + iτ)

1/2 + ε − σ + iτ
dτ

=
1

2πi

∞
∫

−∞

L

(

λ, α,
1
2
+ ε + ikh + iτ

)

ln(1/2 + ε − s + iτ)

1/2 + ε − s + iτ
dτ

≪

∞
∫

−∞

∣

∣

∣

∣

L

(

λ, α,
1
2
+ ε + ikh + iτ

)∣

∣

∣

∣

sup
s∈K

∣

∣

∣

∣

ln(1/2 + ε − s + iτ)

1/2 + ε − s + iτ

∣

∣

∣

∣

dτ.
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Therefore,

1
N + 1

N

∑
k=0

sup
s∈K

|L(λ, α, s + ikh)− Ln(λ, α, s + ikh)|

≪

∞
∫

−∞

(

1
N + 1

N

∑
k=0

∣

∣

∣

∣

L

(

λ, α,
1
2
+ ε + ikh + iτ

)∣

∣

∣

∣

)

sup
s∈K

∣

∣

∣

∣

ln(1/2 + ε − s + iτ)

1/2 + ε − s + iτ

∣

∣

∣

∣

dτ

≪

∞
∫

−∞

(

1
N + 1

N

∑
k=0

∣

∣

∣

∣

L

(

λ, α,
1
2
+ ε + ikh + iτ

)∣

∣

∣

∣

2
)1/2

sup
s∈K

∣

∣

∣

∣

ln(1/2 + ε − s + iτ)

1/2 + ε − s + iτ

∣

∣

∣

∣

dτ

def
= I. (4)

It is well known that, for large |t|,

Γ(σ + it) ≪ exp{−c|t|}, c > 0,

uniformly in every interval σ1 6 σ 6 σ2, σ1 < σ2. Therefore, by the definition of ln(s), for
s ∈ K,

ln(1/2 + ε − s + iτ)

1/2 + ε − s + iτ
≪θ n1/2+ε−σ exp

{

−
c

θ
|τ − t|

}

≪θ,K n−ε exp{−c1|τ|}, c1 > 0.

This and Lemma 4 imply

I ≪θ,K,λ,α,ε,h n−ε

∞
∫

−∞

(1 + |τ|)1/2 exp{−c1|τ|}dτ ≪θ,K,λ,α,ε,h n−ε,

and estimate (4) proves the lemma.

A sequence of compact sets {Kl : l ∈ N} ⊂ D exists such that

D =
∞
⋃

l=1

Kl ,

Kl ⊂ Kl+1 for all l ∈ N, and every compact set K ⊂ D lies in some Kl. For g1, g2 ∈ H(D), define

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

.

Then, ρ is a metric in the space H(D) inducing its topology of uniform convergence on
compact set.

The definition of the metric ρ together with Lemma 6 lead to the following lemma.

Lemma 7. The equality

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

ρ(L(λ, α, s + ikh), Ln(λ, α, s + ikh)) = 0

holds for all λ, α, and h > 0.
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3. Probabilistic Results

In this section, we will prove a limit theorem on the weak convergence of probability
measures in the space H(D). Denote by B(X) the Borel σ-field of a topological space X,
and for A ∈ B(H(D)), define

PN,λ,α,h(A) =
1

N + 1
card{0 6 k 6 N : L(λ, α, s + ikh) ∈ A}.

Theorem 6. Let λ, α and h > 0 be arbitrary. Then, on (H(D),B(H(D))), a probability measure
Pλ,α,h exists such that PN,λ,α,h converges weakly to Pλ,α,h as N → ∞.

Before the proof of Theorem 6, we will prove limit theorems in some auxiliary spaces.
Let S1 denote the circle {s ∈ C : |s| = 1}. Define the set

Ω = ∏
p∈N0

S1
m,

where S1
m = S1 for all m ∈ N. With the product topology and pointwise multiplication, the

torus Ω is a compact topological Abelian group. For A ∈ B(Ω), define

QN,α,h(A) =
1

N + 1
card

{

0 6 k 6 N :
(

(m + α)−ikh : m ∈ N0

)

∈ A
}

.

Lemma 8. On (Ω,B(Ω)), a probability measure Qα,h exists such that QN,α,h converges weakly to
Qα,h as N → ∞.

Proof. Denote by ω(m) the mth component of an element ω ∈ Ω, m ∈ N0. Let gN,α,h(k),
k = (km : km ∈ Z, m ∈ N0) be the Fourier transform of the measure QN,α,h, i.e.,

gN,α,h(k) =
∫

Ω

(

∏
∗

m∈N0

ωkm(m)

)

dQN,α,h,

where the star “∗” shows that only a finite number of integers km are distinct from zero. By
the definition of QN,α,h, we have

gN,α,h(k) =
1

N + 1

N

∑
k=0

∏
∗

m∈N0

(m + α)−ikhkm

=
1

N + 1

N

∑
k=0

exp

{

−ikh ∑
∗

m∈N0

km log(m + α)

}

. (5)

Let

Aα,h =

{

k : ∑
∗

m∈N0

km log(m + α) = 2πr, r ∈ Z

}

and

Bα,h =

{

k : ∑
∗

m∈N0

km log(m + α) 6= 2πr, r ∈ Z

}

.

Thus, by (5), we have

gN,α,h(k) =











1 if k ∈ Aα,h,
1−exp

{

−(N+1)h ∑
∗

m∈N0
km log(m+α)

}

(N+1)
(

1−exp
{

−ih ∑
∗

m∈N0
km log(m+α)

}) if k ∈ Bα,h.
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Hence,

lim
N→∞

gN,α,h(k) =

{

1 if k ∈ Aα,h,
0 if k ∈ Bα,h.

Therefore, QN,α,h, as N → ∞ converges weakly to the measure Qα,h on (Ω,B(Ω)) defined
by the Fourier transform

gα,h(k) =

{

1 if k ∈ Aα,h,
0 if k ∈ Bα,h.

Now, for A ∈ B(H(D)), define

PN,n,λ,α,h(A) =
1

N + 1
card{0 6 k 6 N : Ln(λ, α, s + ikh) ∈ A}.

Lemma 9. On (H(D),B(H(D))), a probability measure Vn,λ,α,h exists such that PN,n,λ,α,h con-
verges weakly to Vn,λ,α,h as N → ∞.

Proof. Define the function un,λ,α : Ω → H(D) by

un,λ,α(ω) = Ln(λ, α, s, ω),

where

Ln(λ, α, s, ω) =
∞

∑
m=0

e2πiλmω(m)vn(m, α)

(m + α)s
.

Since |ω(m)| = 1, the latter series, as for Ln(λ, α, s), is absolutely convergent for σ > σ0
with arbitrary finite σ0. Hence, the function un,λ,α is continuous. Therefore, each probability
measure P on (Ω,B(Ω)) defines the unique probability measure Pu−1

n,λ,α, where

Pu−1
n,λ,α(A) = P(u−1

n,λ,α A), A ∈ B(H(D)).

Moreover, by the definition of un,λ,α, we have

PN,n,λ,α,h(A) =
1

N + 1
card

{

0 6 k 6 N :
(

(m + α)−ikh : m ∈ N0

)

∈ u−1
n,λ,α A

}

, A ∈ B(H(D)).

Thus, PN,n,λ,α,h = QN,α,hu−1
n,λ,α. Since, under continuous mappings, the weak convergence

of probability measures is preserved, see, for example, Theorem 4.1 of [40], the continuity
of un,λ,α and Lemma 8 show that the measure PN,n,λ,α,h converges weakly to Qα,hu−1

n,λ,α as

N → ∞. Consequently, Vn,λ,α,h = Qα,hu−1
n,λ,α.

To prove the weak convergence for the measure PN,λ,α,h, we apply one lemma to the

convergence in the distribution of random elements ( D
−→), see, for example, Theorem 3.2

of [40].

Lemma 10. Let (X, d) be a separable metric space, and X-valued random elements Xkn and Yn,
k ∈ N, and n ∈ N be defined by the same probability space with measure P. Suppose that

Xkn
D

−−−→
n→∞

Xk, Xk
D

−−−→
k→∞

X,

moreover, for every ε > 0,

lim
k→∞

lim sup
n→∞

P{d(Xkn, Yn) > ε} = 0.



Mathematics 2022, 10, 4650 10 of 13

Then, we have Yn
D

−−−→
n→∞

X.

Proof of Theorem 6. On a certain probability space with measure P, define the random
variable θN,h by

P
{

θN,h = kh
}

=
1

N + 1
, k = 0, 1, . . . , N.

Define the H(D)-valued random elements

XN,n,λ,α,h = XN,n,λ,α,h(s) = Ln(λ, α, s + iθN,h)

and
XN,λ,α,h = XN,λ,α,h(s) = L(λ, α, s + iθN,h).

Moreover, let Xn,λ,α,h be the H(D)-valued random element having the distribution Vn,λ,α,h.
Then, the statement of Lemma 9 can be written in the form

XN,n,λ,α,h
D

−−−→
N→∞

Xn,λ,α,h. (6)

Now we recall some notions. The family of probability measures {Pn : n ∈ N} on (X,B(X))
is called tight if, for every ε > 0, a compact set K = Kε ⊂ X exists such that, for all n ∈ N,

Pn(K) > 1 − ε.

The family {Pn} is called relatively compact if every subsequence of {Pn} contains a weakly
convergent subsequence. It is well known (Prokhorov’s theorem, see, for example, [40])
that every tight family {Pn} is relatively compact.

We will show that the sequence {Vn,λ,α,h : n ∈ N} is tight. Using the Cauchy integral
formula, we find

sup
n∈N

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈Kl

|Ln(λ, α, s + ikh)| 6 Rl,λ,α,h < ∞,

where Kl are compact sets from the definition of the metric ρ. Let ε > 0, and Ml = Ml,λ,α,h =
2lε−1Rl,λ,α,h. Then, using relation (6), we obtain

P

{

sup
s∈Kl

|Xn,λ,α,h(s)| > Ml

}

6 sup
n∈N

lim sup
N→∞

P

{

sup
s∈Kl

|Xn,λ,α,h(s)| > Ml

}

6 sup
n∈N

lim sup
N→∞

1
Ml(N + 1)

N

∑
k=0

sup
s∈Kl

|Ln(λ, α, s + ikh)| 6
ε

2l

for all l, n ∈ N. Therefore, putting

K = Kε =

{

g ∈ H(D) : sup
s∈Kl

|g(s)| 6 Ml , l ∈ N

}

,

we have a compact set K in H(D), and

P{Xn,λ,α,h ∈ K} = 1 − P{Xn,λ,α,h 6∈ K} > 1 − ε
∞

∑
l=1

1
2l

= 1 − ε

for all n ∈ N. Thus, by the definition of Xn,λ,α,h, the family {Vn,λ,α,h} is tight; hence, it is
relatively compact.
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From the relative compactness, we have that a subsequence {Vnr ,λ,α,h} and a probabil-
ity measure Pλ,α,h on (H(D),B(H(D))) exist such that Vnr ,λ,α,h converges weakly to Pλ,α,h
as r → ∞. Thus, the relation

Xnr ,λ,α,h
D

−−−→
r→∞

Pλ,α,h (7)

is true. Moreover, in view of Lemma 7, for ε > 0, we have

lim
r→∞

lim sup
N→∞

P{ρ(XN,λ,αh, Xnr ,λ,α,h) > ε}

6 lim
r→∞

lim sup
N→∞

1
ε(N + 1)

N

∑
k=0

ρ(L(λ, α, s + ikh), Lnr (λ, α, s + ikh)) = 0.

This, (6), (7) and Lemma 10, show that

XN,λ,α,h
D

−−−→
N→∞

Pλ,α,h,

and, in view of the definition of XN,λ,α,h, the theorem is proved.

4. Proof of Theorem 5

Theorem 5 follows easily from Theorem 6. Before its proof, recall a notion of the
support of a probability measure. The support of a probability measure P on (X,B(X)),
where X is a separable space, is a minimal closed set SP ⊂ X such that P(SP) = 1. The
set SP consists of elements x ∈ X such that, for every open neighbourhood G of x, the
inequality P(G) > 0 is satisfied.

Proof of Theorem 5. By Theorem 6, PN,λ,α,h converges weakly to the measure Pλ,α,h on
(H(D),B(H(D))) as N → ∞. Let Fλ,α,h be the support of Pλ,α,h. Then, Fλ,α,h is a closed
non-empty subset of the space H(D).

For f (s) ∈ Fλ,α,h define the set

Gε =

{

g ∈ H(D) : sup
s∈K

|g(s)− f (s)| < ε

}

.

Then, Gε is an open neighbourhood of f (s) ∈ Fλ,α,h. Therefore, by a property of the support

Pλ,α,h(Gε) > 0. (8)

Thus, Theorem 6 and the equivalent weak convergence of probability measures in terms of
open sets, see, for example, Theorem 2.1 of [40], imply

lim inf
N→∞

PN,λ,α,h(Gε) > Pλ,α,h(Gε) > 0.

This and the definitions of PN,λ,α,h and Gε prove the first assertion of the theorem.
To prove the second assertion of the theorem, we apply the equivalent of weak conver-

gence of probability measures in term of continuity sets. Recall that A is a continuity set of
the measure P if P(∂A) = 0, where ∂A denotes the boundary of the set A.

The boundary of the set Gε lies in the set
{

g ∈ H(D) : sup
s∈K

|g(s)− f (s)| = ε

}

.

Therefore, the boundaries ∂Gε1 and ∂Gε2 do not intersect for different positive ε1 and ε2.
Hence, the set Gε is a continuity set for all but at most countably many ε > 0. Therefore,
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Theorem 6 and the equivalent of weak convergence of probability measures, see Theorem 2.1
of [40], give in view of (8)

lim
N→∞

PN,λ,α,h(Gε) = Pλ,α,h(Gε) > 0

for all but at most countably many ε > 0. This and the definitions of PN,λ,α,h and Gε prove
the second assertion of the theorem.

5. Discussion

In this paper, we obtain that the Lerch zeta function L(λ, α, s) has a discrete approxi-
mation property with arbitrary parameters λ and α. More precisely, we prove that a closed
non-empty subset Fλ,α,h of the space of analytic functions on the strip {s ∈ C : 1/2 < σ < 1}
exists such that, for every ε > 0, the set

{

k : sup
s∈K

|L(λ, α, s + ikh)− f (s)| < ε

}

has a positive lower density for all h > 0 and f (s) ∈ Fλ,α,h. This shows that the latter set is
infinite. It remains an open problem to identity the set Fλ,α,h.
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16. Franckevič, V.; Laurinčikas, A.; Šiaučiūnas, D. On joint value distribution of Hurwitz zeta functions. Chebyshevskii Sb. 2018, 19,

219–230.

http://doi.org/10.1007/BF02612318
http://dx.doi.org/10.1515/crll.1889.105.127
http://dx.doi.org/10.1070/IM1975v009n03ABEH001485
http://dx.doi.org/10.1134/S0001434619010218
http://dx.doi.org/10.3846/mma.2020.10436
http://dx.doi.org/10.3846/mma.2021.12445
http://dx.doi.org/10.1090/spmj/1712
http://dx.doi.org/10.1524/anly.2006.26.99.295
http://dx.doi.org/10.1080/10652460902742788
http://dx.doi.org/10.1016/j.jnt.2014.04.013
http://dx.doi.org/10.1134/S0081543821040076


Mathematics 2022, 10, 4650 13 of 13
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