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Abstract: Many short-term studies with dietary nitrate supplementation in humans and animal
models reported positive effects on the cardiovascular system, exercise efficiency, and immune
function. However, there has been long-standing concern related to cancer and adverse hormonal
effects. We studied the long-term effects of different potassium nitrate (KNO3) concentrations on
laboratory mice longevity and structural changes in their organs. Four groups of male mice were
treated with 0 mg (0%), 45 mg (1%), 90 mg (2%), and 140 mg (3%) KNO3 in the drinking water. The
groups were monitored for agility and health status daily. The lifespan of mice and organ pathological
changes were analyzed. We found no detrimental effects of life-long supplementation of KNO3 on
the survival of mice in treatment groups. Nitrate supplementation was associated with a lower level
of pathological changes (p = 0.002). We conclude that KNO3 supplementation had no carcinogenic
effect on mice and possibly prevented the organs from aging.
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1. Introduction

Green leafy vegetables (lettuce, spinach, amaranth, etc.) and roots such as red beets
are the main sources of dietary nitrates (NO3

−) [1,2]. Nitrates are a naturally occurring
compound in food [2,3] as well as a food additive and pharmaceuticals [1,4].

Nitrates had a bad reputation mostly due to their connection with nitrosamines
and possible cancer risk [5]. Once in the human body, nitrates can bind to protein
metabolic by-products in the gastrointestinal tract and can be converted to cancer-causing
nitrosamines [6]. However, nitrosamines are mostly formed during heat treatment when the
temperature reaches about 150 ◦C [7]. According to the European Food Safety Authority [8],
epidemiological studies have not shown that nitrates in food increase the risk of onco-
logical diseases. In the presence of excess nitrates, hemoglobin in the blood is converted
to methemoglobin, which disrupts oxygen metabolism. However, it has been clinically
established that oxygen transport is impaired only when methemoglobin concentrations
exceed 10% total hemoglobin [9,10]. The suggestion that nitrates are harmful is rather
debatable, considering that >80% of all nitrates that we receive come from vegetables, a
product group that is known for its beneficial action on health [11].

Nitric oxide (NO) and nitrites, which are both the outcome of NO3
− related prod-

ucts, induce vasodilatation by enchasing blood flow [12], thereby boosting the oxygen
uptake and preventing oxidative processes in the working muscles [13]. Moreover, nitrates
demonstrate the potential to increase the bioavailability of blood plasma, which is crucial
for the exogenous pathway of nitrate/nitrite/NO and functions as a regulator of hypoxic
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signals and NO-induced vasodilatation [14]. Nitrate/nitrite/NO has a mitochondrial and
contractile efficacy on the muscle circulatory system [15,16] and may improve muscle blood
flow circulation as well as the metabolic response to physical activity [17,18]. Supporting
evidence was published concluding that the concentration of plasma nitrites alone is an
independent factor of physical performance [5,12]. While recent research focuses mainly
on so-called “organic nitrates”, which come in the forms of juices, drinks, etc., the overall
assessment of the “nitrate” topic remains incomplete.

Aging is related to an increased risk of cardiovascular diseases, type-II diabetes,
metabolic syndrome, and cancer, because as the body ages, NO bioavailability decreases
due to decreased eNOS activity and oxidative stress [19]. Aging, sedentary lifestyle, and
poor nutritional habits play a significant role in developing obesity and type-II diabetes,
followed by oxidative stress, impaired NO signaling, and cardiovascular diseases. Further
understanding of pathophysiological mechanisms may help to create new strategies, e.g.,
using the therapeutic potential of increased NO bioavailability, for preventing and coping
with these diseases [19]. A few studies have already confirmed the benefits of dietary
nitrates to human health [20,21].

Thus, some research showed the harmfulness of nitrates to living organisms, some
indicated their health benefits. However, the long-term effects of potassium nitrate and
the pathology of organs were not assessed. Using an exploratory approach, in this study,
we aimed to analyze the long-term effects of different potassium nitrate concentrations on
laboratory mice longevity and structural changes in their organs, which, to our knowledge,
has not been examined in relation to longevity in this species previously. We hypothesized
that potassium nitrate may not be related to oncological factor formation, therefore explor-
ing any potential impacts that may exist without preconceived notions about the direction
of the effect.

2. Materials and Methods

All research involving animals was conducted according to the requirements of the
European Commission directive and the permit (No. G2-172) from the Lithuanian ethics
commission at the State Food and Veterinary Service Animal welfare department to perform
procedures. The choice of the feeding dosages for this experiment was based on previous
research [22,23].

2.1. Experimental Animals

Mice (Mus musculus) from Balb/C line (n = 21) were chosen for the experiments;
weight: 29.1 ± 4.67 (mean ± SD) grams. Mice of 12–16 weeks of age were chosen to exclude
possible effects of KNO3 supplementation on the mice development and growth. In order
to eliminate possible sex-specific variation in longevity [24], we chose the male mice. The
control group consisted of 6 male mice. Three experimental groups consisted of 5 male mice
each. Mice were ad libitum fed food designed for rodents. Animals were kept in similar
conditions in purposely equipped cages for each group, separately; with a 12:12 hour
day/night cycle. The noise level did not exceed 85 dB.

2.2. Feeding Assay

The animals were given the tested substance with water from water bottles, and the
water was always available. The water bottles were filled with 150 mL of water and 1%,
2%, and 3% of KNO3, respectively to groups 1st, 2nd, and 3rd. The tested substance does
not change the taste of the water; and the water supply was not interrupted. The dose of
the tested substance was given to animal groups, respectively to 1st group 45 mg KNO3
per mouse, 2nd group 90 mg KNO3 per mouse, 3rd group 140 mg KNO3 per mouse.

The animals were checked daily. Agility and health status were evaluated. Once a
month, the animals were evaluated by two investigators using blind testing, with inves-
tigators not knowing differences between groups. The general health of the animals was
evaluated according to Burkholder et al. [25] and an assessment table was created (Table 1).
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Table 1. Mice agility and general health status evaluation criteria.

Score Animal Status Agility Coat Body Posture Health Status Appetite

5 Excellent

Moves fast and
a lot, climbs the
cage, burrows

in the beddings,
curious

White, soft,
shiny

Characteristic
to species,

movements are
comfortable,

body
physiologically

bent

No changes

Good, feeds
constantly,

drinks after
eating

4 Very good

Moves fast and
a lot, burrows

in the beddings,
doesn’t climb
the cage mesh

and walls,
curious

White,
sometimes

matted, looks
like wet

Characteristic
to species,

movements
comfortable,

body
physiologically

bent

No changes

Good, feeds
constantly,

drinks after
eating

3 Good

Movements
characteristic to

species but
agility is

reduced, avoids
interacting with
other animals

The coat „wet “,
„matted “,
„sticky“

Characteristic
to species, the
back curved,

legs under the
body

No changes

Appetite is
reduced, shows
less interest in
food and water

2 Satisfactory

Moves less,
burrows in the

beddings,
spends time
laying down,

lethargic

Coat yellowish,
matted, looks

wet

The body
snuggled down,
the spine bent
in a hump, all
feet under the

body

No changes

The appetite is
bad, no evident
interest in food

or water

1 Bad

Almost no
movement,

laying snuggled
down on the
bottom, the

head down in
the beddings,
no interest in
surrounding

Sticking,
yellowish, with

bald spots

The body
snuggled down,
the spine bent
in a hump, all
feet under the

body

Possible
discharge from
the eyes, nose,
and signs of
diarrhoea, in
some cases
sniffing and

coughing. Must
additionally

indicate when
evaluating.

The appetite is
bad, no evident
interest in food

or water. On
the touch feels
skinny, the ribs

sticking out.

2.3. Preparation

The animals that died during the investigation were dissected and postmortem find-
ings were registered as soon as possible after death using the simplified necropsy tech-
nique [26]. Kidney, liver, and lungs were histologically examined and structural changes in
the organs were evaluated based on gross pathology findings [27]. Pulmonary hyperemia
was found when assessing the color and size of the lungs. Lung edema and hyperemia
were assessed. Then, diffuse redness and fluid effusion of the organ was seen. Kidney and
liver failure were named. Then, color, size, and shape changes of the organ were found.
Postmortem tissue histology was used to detect any possible early tumor formations.

2.4. Statistical Analysis

A log-rank test was run to determine if there were differences in the survival for
different groups of KNO3 treatment. Ordinal regression was used to reveal the relationship
between groups and pathological changes. Pathological changes were defined as a depen-
dent ordinal variable with four categories arranged in ascending order (from minimum
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pathologies to maximum pathologies), and the treatment group was defined as an indepen-
dent variable with four categories. The tests were two-tailed, where p < 0.05 was considered
statistically significant and results are shown as mean ± SE. All statistical analyses were
performed using IBM SPSS Statistics 26 (IBM Corporation, Armonk, NY, USA).

3. Results

The average survival time (±SE) was longest in 3% KNO3 mice group (241 ± 34 days)
and followed by 2% KNO3 group (227 ± 52 days), with one mouse surviving for 408 days.
While shorter average survival times were recorded in the control (0% KNO3) and 1%
KNO3 treatment groups: 213 ± 17 and 159 ± 27 days, respectively (Figure 1A). The shortest
survival time was registered in the 1% KNO3 and in the 2% KNO3 treatment groups (both
126 days). However, the differences in survival of different KNO3 treatment groups were
non-significant (log-rank test: χ2(3) = 6.334, p = 0.096).
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Figure 1. Survival (A) and status scores (B) of mice in groups with different KNO3 concentrations.

Ordinal regression revealed a significant relationship of treatment groups with the
pathological changes (χ2(3) = 15.11, p = 0.002). The regression model explained 55.4%
(Nagelkerke R2) of variance of the pathological changes. The experimental treatment
groups had significantly fewer pathological changes in comparison to the control group
(1% KNO3 group: Wald χ2(1) = 4.096, p = 0.043; 2% and 3% KNO3 groups, both: Wald
χ2(1) = 8.336, p = 0.004). Moreover, mice from the control group and 1% KNO3 group were
in the worst condition. Mice that were fed 2% and 3% KNO3 were able to maintain a good
condition the longest (Figure 1B).

The most common pathology in all groups was pulmonary hyperemia and edema
(Table 2). Mice that were fed 2% and 3% KNO3 solution revealed only pulmonary hy-
peremia and edema, while in other groups more morphologic changes in organs were
detected (Table 2). One more frequent pathology that was detected during the autopsy was
pulmonary hyperemia, edema, and hepatic insufficiency; it was registered in groups that
were fed 0% and 1% KNO3 (Table 2). Pulmonary hyperemia, edema, as well as hepatic
and kidney insufficiency were registered only in the control group (Table 2). Post-mortem
tissue histology did not show any early-stage lesions of cancerogenic origin.
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Table 2. Organ pathologies registered during post-mortem examination and mean survival in groups
with different KNO3 concentrations. Mean number of pathologies is shown in the last row.

Organ Pathology
Survival Days: Mean ± SD (Number of Cases)

0% KNO3 1% KNO3 2% KNO3 3% KNO3

Pulmonary hyperemia - 267 (1) 340 ± 96 (2) 301 ± 38 (2)

Pulmonary edema and hyperemia 267 (1) 137 ± 0 (2) 152 ± 35 (3) 202 ± 70 (3)

Pulmonary edema and hyperemia, liver
failure 224 ± 59 (2) 126 ± 0 (2) - -

Pulmonary edema, hyperemia, liver and
kidney failure 189 ± 6 (3) - - -

Number of organ pathologies: mean ± SD
(number of cases) 3.3 ± 0.8 (6) 2.2 ± 0.8 (5) 1.6 ± 0.6 (5) 1.6 ± 0.6 (5)

4. Discussion

Dietary non-organic nitrates have a bad reputation mostly due to their supposed
connection with creating nitrosamines and possible cancer risk [28,29]. In this study, we
found that life-long supplementation of dietary nitrates had no evident adverse effects in
mice. The treatment groups that were fed with 2-3% KNO3 solution showed somewhat
longer life span and developed significantly fewer structural pathologies than the mice
from 0–1% KNO3 treatment groups. Similarly, the treatment groups (those fed with 1–3%
KNO3) had significantly fewer pathological changes in comparison to the control group.
These results are in line with previous studies [30,31] as well as recent long-term studies
on male mice diet supplementation with NaNO3 by Hezel et al. [32] and rats by Carvalho
et al. [33], adding to growing evidence considering the safety and possible beneficial effects
of dietary nitrates. However, the effects on both sexes still need to be addressed.

As for the possible mechanisms resulting in longer lifespan of mice, we suggest a view-
point to nitrate-related compounds that has been applied in recent research where lower
levels of the oxidation (using hydrogen peroxide) stimulated a scavenging enzyme that
helped slow down the aging of the yeast cells [34]. As shown by our previous experiment
with fruit flies [22], this could be explained by the previously hypothesized inverted “U
shape” curve effect for this given compound, assuming that too small a concentration has
very little or no effect and too high a concentration is/could be harmful. This hypothesis
is supported by other studies showing the importance of quantity, where the low doses
of nitrite, but not higher ones, had protective effects in in vivo and in vitro models of
vascular dysfunction [35,36], myocardial ischemic injury, and liver ischemia-reperfusion
injury [37,38].

The newest research has shown that usual nitrate and nitric oxide production in the
bodies can prevent cardiovascular and metabolic diseases that shorten the lifespan [39–43],
as well as help to maintain the capacity of mitochondria and, in unison, the whole organ-
ism [15,44,45]. Scientists suggest that by the mid-21st century 20–25% of the population in
developed countries will consist of people over 65 years old [46–48]. Hence, the number of
concomitant conditions that accompany aging (e.g., sarcopenia, cardiovascular, neurode-
generative diseases, type II diabetes, and cancer) will increase together with increasing
lifespan [49]. There is a demand for innovative and reliable methods that would increase
longevity and prevent chronic conditions [50]. This is why it is important to find natural
components that would allow for improving body functioning even while aging. Nitric
oxide holds an important position among all health-enhancing supplements. Our results
suggest that nitric oxide, along with nitrate supplementation, may delay pathological
changes within the body and prolong life with no chronic conditions.

Due to a lack of a standardized approach in rodent aging and toxicological studies,
we examined the organs most likely to be affected: lungs, liver, kidneys, and spleen, but
excluded endocrine and reproductive as well as cardiovascular systems, because they tend
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to be affected by the timing of actual death more than the internal organs. The data obtained
from this study suggest the two potential benefits of potassium nitrate supplementation:
(i) increase in lifespan, and (ii) a delay in the onset of age-related organ pathology. Initially,
our team posited a null hypothesis on the role for potassium nitrate in the development of
cancerogenic formations in matured male mice. However, our data did not support this
conjecture. Instead, a trend towards longer overall survival and a reduction in age-related
organ pathologies was observed in the study subjects. Further research is required to gain
a more comprehensive understanding of the underlying mechanisms driving these effects.

5. Conclusions

The results of the investigation revealed no detrimental effects of life-long supple-
mentation of KNO3 on the survival of mice, inducing only minimal structural changes in
organs. Moreover, based on ordinal regression analysis, significant (p = 0.002) changes were
observed between control and experimental groups (1% KNO3–3% KNO3) which demon-
strated fewer pathologies. Based on the results of this investigation, we conclude that 2%
and 3% KNO3 supplement had no carcinogenic effect on mice and possibly prevented the
organs from aging.
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