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Abstract. We present a new framework for supporting decisions in sequential 
clinical risk assessment examinations. In this framework, the decision whether to 
perform a test depends on its expected contribution to risk assessment, given 
results of previous tests, and the contribution is quantified using information 
theory. In many cases adding an additional examination clearly improves the 
predictive model. However, there are cases in which the improvement is not 
constant for all values of previous tests, and quantification of possible 
improvement can support decision on further examinations. Using this approach 
can prevent many expensive, unpleasant or risky examinations. We demonstrate 
the use of this method on an example of type 2 diabetes onset study. The results 
show that reducing a considerable percent of the blood tests does not decrease the 
model's prediction power. 
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Introduction 

Predictive models use information driven from clinical tests, lifestyle and other 
personal and medical history details to predict a patient's future condition. The 
biomarkers used by these models, are chosen based on their contributions to the 
prediction. In general, these risk assessment models require all chosen biomarkers.  

Models that can perform without all biomarkers usually assume that the values 
are randomly missing or that the probability of the values being absent known already 
at the time of model generation [1]. Another model that can possibly perform without 
all biomarkers is the ordinary decision tree [2, 3]. An examination can be avoided when 
there is a path in the tree that does not involve (at least) one of the biomarkers and the 
other biomarkers lead to that path. However, even if such a path exists, it is predefined 
and cannot be dynamically adjusted at evaluation time to updated costs or personalized 
preferences. 

We suggest a new framework, where the biomarkers are chosen sequentially 
at assessment time based on the amount of information they could contribute given the 
results of the previous examinations. In this framework physicians receive a 
quantitative measure that can help decide whether or not to use the additional 
biomarker, according to the physician's, patient's, or HMO's preferences. 

The conditional information gain (cInfoGain) is a measure that quantifies the 
possible additional information based on information theory [4]. The next biomarker in 
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the sequence is examined only if the cInfoGain is high enough. The threshold can be 
set by the physician/patient/HMO while evaluating the cost vs. additional predictive 
power evaluated by the cInfoGain. Figure 1 illustrates the decision process using the 
cInfoGain measure. In this example, in order to predict Y (a future condition of the 
patient), biomarker A is examined. Thereafter, depending on the cInfoGain of 
biomarker B given the value of biomarker A, biomarker B is examined. When only 
biomarker A is examined, Y is predicted using model 1. When both biomarkers are 
examined Y is predicted using model 2. 

 

 
 

 

 

 

 

 

 

Figure 1. Schematic illustration of the decision process using the cInfoGain measure. 
Using this approach can reduce many costly, unpleasant or risky examinations 

such as radiology scans or invasive pregnancy screening tests, while controlling the 
decrease in prediction power. The method is quantative and can be easily updated and 
adjusted to different populations.  

In this paper we first present the conditional information gain measure, and 
thereafter demonstrate how it can be used to support decisions in sequential tests. 
Throughout this paper our demonstrations focus on data from a type 2 diabetes onset 
prediction study.  

1. Methods

This method is based on information theory and in particular on the mutual information 
(MI) and entropy (H) measures [4]. The entropy measure quantifies in bits the 
distribution's “uncertainty” or “randomness”, and it ranges from 0 to log2(|X|). H(X) = 0 
when the identity of x is known with full certainty. H(X) = log2(|X|) when x is totally 
random (i.e., uniformly distributed): p(x) = 1/|X| for all values of x. Intermediate values 
correspond to intermediate levels of uncertainty. H(X|Y) denotes the conditional 
entropy of variable X given variable Y.  

The mutual information between two variables is defined as the “uncertainty” 
of one of the variables (in bits) reduced on average by knowledge of the other variable: 
MI(X, Y) = H(X) − H(X|Y). Another definition of MI is the Kullback–Leibler 
divergence (DKL) between the actual joint probability of X, Y [p(x, y)] and the expected 
independent probability [p(x)*p (y)].
 In the proposed method, we assume there are n+1 biomarkers denoted by A1 
… An, An+1 and a future outcome denoted by Y. We assume biomarkers A1 … An are 
already measured and the physician needs to decide whether to perform examination 
An+1. The cInfoGain of An+1 given A1=a1, …, An=an  is defined as the conditional 
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mutual information between biomarker An+1 and Y given the values of the previous 
biomarkers:  
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Calculating MI requires an estimation of the joint probability of biomarkers 
A1,… An, An+1 and Y. However, joint distributions are difficult to estimate especially 
when the data set is relatively small. Therefore, in the following examples, the 
distributions are estimated using a simple normal distribution parametric model and the 
cInfoGain is computed using numerical integration. 

To demonstrate the method, we analyzed data from a prospective study of 366 
non-diabetic middle-aged Lithuanian men and women (120 men, 246 women) having 
metabolic syndrome but without overt cardiovascular diseases. The patients were 
recruited from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention 
program [5] and were referred to the Vilnius University Hospital “Santariskiu 
Klinikos" tertiary care center for further assessment. During a follow-up period of three 
to four years, there were 31 cases of incident type 2 diabetes onsets. At baseline, all 
participants underwent several examinations and measurements including BMI (body 
mass index - weight in kilograms divided by the height in meters squared) and a fasting 
plasma glucose (FPG) test. We concentrated on calculating the cInfoGain of FPG on a 
prediction of diabetes onset given different BMI values and estimating the performance 
of a model that does not use FPG values corresponding to low cInfoGain. In this 
example, A1=BMI, A2=FPG and Y=diabetes onset. Logistic regression was used to 
develop predictive models for incident cases. Leave-one-out cross validation and 
receiver operating characteristic (ROC) analyses were used to assess the discriminatory 
power of the prediction models.    

2. Results 

Figure 2 depicts different cInfoGain curves for diabetes onset given various 
BMI values. The expected random cInfoGain was calculated using the mean and 
standard deviation of a random shuffling of the FPG biomarker. FPG contributes 
different cInfoGains for different BMI values (ranges from 0 to 0.3 bits) while the age 
curve is not significantly different than random. 

  

 
Figure 2. cInfoGain between diabetes onset and FPG, age and random FPG for different BMI values. The 
random FPG curve represents the average of 300 random curves and the error bar represents 1 std. 
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The cInfoGain of FPG is determined by the uncertainty of developing diabetes 
given the BMI value alone, and the information the FPG can provide at that point. We 
focused on three values of BMI: 15, 44.5 and 55, with respective cInfoGains of 0.003, 
0.3 and 0.12. Figure 3 illustrates the probability of developing diabetes at these BMI 
values as a function of FPG and the corresponding probability of diabetes onset 
independent of FPG. At BMI=15, the probability of diabetes onset is close to 0, i.e. 
there is very little uncertainty. In addition, the probability of diabetes onset as a 
function of FPG is almost uniform and therefore not very informative. The probability 
of diabetes onset at BMI=44.5 and 55 ranges from 0 to 1. However at BMI=44.5 there 
is high uncertainty (there is almost equal probability of developing diabetes 
independent of FPG) whereas at BMI=55 there is little uncertainty (the probability of 
diabetes onset is close to 1), and therefore the cInfoGain at this point is lower than the 
cInfoGain at BMI=44.5. 

 
Figure 3. Probability of diabetes onset independent of FPG for selected values of BMI (15, 44.5, 55) and the 
corresponding probability of diabetes onset as a function of FPG 

To test the effectiveness of this framework, the following analysis forgoes 
FPG tests that correspond to low cInfoGain values. First, we generated two logistic 
regression predictive models: BMI and BMI-FPG based models. The corresponding 
performance was evaluated by using leave-one-out cross-validation, and the estimated 
area under ROC curves (AUC) were 0.74 and 0.92 respectively (these ROC curves 
were significantly different [6], p-value <0.0001). Second, for each cInfoGain 
threshold, we estimated the AUC of a predictive model that uses the BMI model on 
records with smaller cInfoGain and uses the BMI-FPG model otherwise. We evaluated 
the performance of this model using the leave-one-out cross validation, and the 
cInfoGain of each record was calculated by estimating the joint distributions on all the 
data without the evaluated record. This analysis showed that the model performance 
did not decrease even when reducing up to 23% of FPG tests (corresponding to 
measuring FPG only for patients with BMI over 28, cInfoGain threshold 0.05). Figure 
4 depicts for each cInfoGain threshold, the rate of change in AUC as a function of the 
percentage of records that did not pass that specific cInfoGain threshold. The percent of 
AUC change is defined as the distance of the AUC from the minimal AUC divided by 
the distance of the maximal AUC from the minimal AUC.  
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Figure 4. Area under ROC curve for different cInfoGain thresholds, and the corresponding percent of 
records that did not pass that cInfoGain threshold 

3. Discussion 

In the type 2 diabetes study data, it is clear that the predictive model using both BMI 
and FPG is significantly better than the model using only BMI (this is also evident in 
previous diabetes studies [7]). However, according to the new framework, a 
considerable number (23%) of the FPG tests can be avoided while maintaining the high 
predictive power of the full model. We demonstrated the power of our framework on a 
toy example that involves rather simple tests and suffers from small dataset limitations. 
Nevertheless the new framework is particularly valuable when the additional test 
requires invasive or risky procedures or when there are financial limitations and 
patients must be prioritized. Moreover, avoiding unnecessary examinations can 
decrease the probability of false positive results and further unnecessary examinations 
and treatment [8] and enable assessment at point of care. Future work will focus on the 
order of examinations and on combining a cost function. In addition richer non-
Gaussian distributions can be considered for estimating the joint distributions, as well 
as corrections for finite sample effects [9]. 
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