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A B S T R A C T

We show an efficient mechanism to control optical turbulence in systems with different dispersion laws, including parabolic, sub-diffractive, hyper-diffractive
or general fractional dispersion. The method is based on the modification of the energy cascade through spatial scales leading to turbulence: a non-Hermitian
spatio-temporal periodic potential allows unidirectional coupling between modes in the excitation process. We prove a significant increase and reduction of the
energy flow in turbulent states, by either condensing the excitation towards small wave-numbers or affecting the energy transfer towards large wave-number.
The study is based on the complex Fractional Ginzburg–Landau equation, a universal model for pattern formation and turbulence in a wide range of systems.
The enhancement or reduction of turbulence is indeed dependent on the imposed direction of the energy flow, controlled by the phase shift between the real
and imaginary parts of the temporal oscillation of the non-Hermitian potential.
1. Introduction

Throughout history, the turbulence has attracted the interest of
many scientist, yet remaining a long-standing problem. Only in the last
century, the efforts of Landau [1], Kolmogorov [2], Richardson [3],
Arnold [4], Lorentz [5] and others, have led to the quantitative theory
of turbulence. Such research was crowned by the so called −5∕3 Kol-
mogorov law which states that, in the full developed hydrodynamical
turbulence, energy is distributed among spatial scales as: 𝐸 (𝑘) ∼
𝑘−5∕3 [2,6], see Fig. 1. Specifically, the system is excited at large spatial
scales, (being 𝑘𝑒𝑥𝑐𝑖𝑡 ∼ 1∕𝑑𝑒𝑥𝑐𝑖𝑡 small), yet energy dissipates at a smaller
scale, the viscosity scale (where 𝑘𝑣𝑖𝑠𝑐 ∼ 1∕𝑑𝑣𝑖𝑠𝑐 is large). In the inertial
range, between these excitation and dissipation scales, the energy of
excitation migrates forming this particular −5∕3 power law.

Whereas this energy cascading power law is strictly valid in a
3-dimensional (3D) space holding isotropic, homogeneous, and well-
developed turbulence, other configurations, for instance the turbulence
in 2D, may also follow an analogous scheme. Qualitatively, the idea of
the excitation cascade through spatial scales (or equivalently, through
spatial wavenumbers) is applicable to a wide range of physical systems.
A major class of turbulent systems follow the same general picture:
energy is injected on a large spatial scale in continuous systems, mi-
grates though spatial scales to be dissipated on a small scale. Therefore,
turbulence ‘‘bridges’’ energy between these two spatial scales.

It can be expected that this general principle holds likewise in op-
tical turbulence, which is predominantly a 2D phenomenon restricted
within the transverse plane of laser resonators, where electromagnetic
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transverse modes induce pattern formation and filamentation [7–11].
Yet 1D patterns are relevant for broad aperture planar cavities as well
as 3D patterns are applicable for multilongitudinal and multitransversal
mode lasers. Differently from the hydrodynamical turbulence, optical
transverse modes are excited in a wider range of spatial scales, and
dissipated at smaller scales, see the schematic representation on Fig. 1
(c). In lasers, the gain is coherent, which, mathematically speaking, is
a multiplicative effect, as photons multiply in each transverse mode.
Besides, losses occur for light propagating at large angles with respect
to the optical axis (limited either by the geometry or other intrinsic
filtering mechanisms), i.e. for small scales in the transverse space
possibly leading to excitation cascades, see Fig. 1 (d).

Different attempts of controlling the turbulence have been pro-
posed, for instance by means of delayed global feedback [12–14], local
injections [15,16] or localised inhomogeneities [14,17]. Recently, a
new approach based on a dynamical non-Hermitian potentials was pro-
posed [18]. The potentials periodic in space and time indeed showed
the ability to control the cascades of optical turbulence. That study [18]
is based on the complex Ginzburg–Landau Equation (CGLE), a universal
model for pattern formation and turbulence in a wide range of systems
including nonlinear optical resonators.

The present article presents a generalisation of the non-Hermitian
turbulence control. We explore the robustness of the turbulence control
mechanism to systems with fractional dispersion. After an overview of
the results of non-Hermitian turbulence control for a usual parabolic
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Fig. 1. (a) Excitation cascade of a hydrodynamical turbulent system; and (b) excitation
distributions through the spatial scales for fully developed hydro-dynamical turbulence,
resulting in the celebrated Kolmogorov -5/3 power law in the inertial range. (c) Scheme
of the optical turbulence in broad aperture lasers; and (d) hypothetical excitation
cascade in optical turbulence, even in the absence of inertial range.

dispersion, we extend the study to conical dispersion, where the conical
dispersion may be regarded as hyper-diffraction. Next we also provide
analogous results for a non-integer diffraction order, and even a sub-
diffractive case with fourth order diffraction is considered. We finally
prove the proposal in 2D, for parabolic and conical dispersion, as an
example.

2. Model and turbulence control proposal

The CGLE is a universal model for pattern formation and turbulence
in a wide range of systems covering from nonlinear optical resonators to
second-order phase transitions, from superconductivity, superfluidity,
and Bose–Einstein condensation to liquid crystals and strings in field
theory [19]. Expressed in one of its several possible conventions, it
reads:
𝜕𝐴
𝜕𝑡

= (1 − 𝑖𝛼)
(

1 − |𝐴|2
)

𝐴 + (𝑖 + 𝑑) ∇2𝐴 + 𝑉 (𝐫, 𝑡)𝐴 (1)

where, the order parameter 𝐴 (𝐫, 𝑡) is a complex function of time 𝑡
and space 𝐫 (we analyse 1D and 2D systems), 𝛼 is the self-focusing
coefficient, 𝑑 the diffusion coefficient and 𝑉 (𝐫, 𝑡) is a complex val-
ued spatio-temporal potential. The gain and dispersion coefficients are
normalised to unity, without loss of generality.

Analysing the energy balance in Eq. (1), we note that the gain term
is multiplicative, i.e. scale invariant. In turn, losses are due to the diffu-
sion, therefore occurring on a small scale. Important term of the CGLE
influencing the excitation migration processes is the non-linearity. The
saturating part of the Kerr non-linearity basically redistributes the
excitation through the space scales (represents a double convolution
of modes), and also on overall causes the migration of excitations
depending on the dimensionality of the system.

Whilst numerous studies cover laser turbulence [20–23], the energy
cascading in CGLE turbulence, or the energy cascading in optical
turbulence, has hardly been considered systematically.

All spatially extended dynamical systems hold a particular disper-
sion law. The dispersion is a dependence of the frequency (energy) on
the wave-number (momentum). Concerning spatial laser patterns this
dispersion represents the dependence of the mode frequency versus its
transverse wave-number (the angular deviation from the optical axis, in
the case of lasers). In particular for lasers, the spatial dispersion forms
a parabola. In general, the dispersion curve is parity-time symmetric in
wave-number domain (the 𝑘-symmetry), but asymmetric in frequency
2

Fig. 2. Proposed mechanism on a parabolic dispersion. (a) 1D parabolic dispersion
curve 𝜔 = 𝑘2𝑥, and corresponding (b) dispersion paraboloid in 2D 𝜔 = 𝑘2𝑥 + 𝑘2𝑦.
Arrows, in both figures, indicate all possible symmetric mode couplings for an
Hermitian modulation in the form: 𝑉 (𝐫) = cos (𝑞𝑥) cos (𝛺𝑡), dashed arrows correspond
to non-functional couplings while solid arrows correspond to functional couplings.

domain (the 𝜔-asymmetry). The cloud of the points spreading around
the dispersion curve may be obtained by the numerical reconstruction
of the dispersion in the CGLE simulated in turbulent regime. Different
excitation mixing and migration processes (in the lowest order, basi-
cally due to nonlinear four wave mixing, equivalent to two-particle
collisions) broaden such cloud of points, located around the dispersion
curve, being to some extent limited by dissipation/saturation. The
broader the cloud of points the stronger is the turbulence. Controlling
the broadening of such turbulence cloud is the ultimate goal of tur-
bulence control. Ideally, for full turbulence control, the cloud would
condensate onto a point or a coherent set of points.

Introducing a Hermitian background modulation, either being a
temporal and or spatial modulation, does not lead to an effectively con-
trol of turbulence due to symmetric mode coupling. The symmetry in
the mode coupling induced by a 1D harmonic modulation (in space and
time), such as: cos (𝑞𝑥 +𝛺𝑡), can be simply understood by expressing
the harmonic modulations as a sum of positive and negative exponent:
cos (𝑞𝑥 +𝛺𝑡) =

[

exp (𝑖𝑞𝑥 + 𝑖𝛺𝑡) + exp (−𝑖𝑞𝑥 − 𝑖𝛺𝑡)
]

∕2. Each exponent,
schematically represented by one of the arrows in Fig. 2 (a), brings
the excitation

(

𝑘𝑥, 𝜔
)

towards the central area of dispersion diagram,
(0, 0), but simultaneously also towards larger spatial scales. Therefore, a
Hermitic modulation of the background potential cannot influence the
flows of excitation through the spatial scales.

On the contrary, non-Hermitian potentials have shown to hold
asymmetric properties [24–26]. A complex-valued modulation of the
potential such as: cos (−𝑖𝑞𝑥 + 𝑖𝛺𝑡) + 𝑖 sin (−𝑖𝑞𝑥 + 𝑖𝛺𝑡) = exp (−𝑖𝑞𝑥 + 𝑖𝛺𝑡),
induces a unidirectional flux of energy towards smaller spatial scales
(or towards larger scales, depending on the sign of the argument of the
remaining exponent). Such unidirectional mode coupling would only
correspond to one arrow from the four couplings represented in Fig. 2
(a). In particular, this may be applied to the simple and universal model
of the CGLE to influence the energy cascade in turbulence. In fact,
just the temporal part of the potential modulation needs to be non-
Hermitian, the spatial part may remain real-valued. In other words, the
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parity-time symmetry in the temporal domain must be broken, whereas
the symmetry in space is maintained. As a result, the enhancement or
reduction of turbulence is expected to be dependent on the imposed
direction of the energy flow, controlled by the phase shift between
the real and imaginary parts of the temporal oscillation of the non-
Hermitian potential. In turn, the necessary resonance imposed by the
dispersion relation curve, selects the functional couplings [18].

This is the main idea behind the present proposal of non-Hermitian
turbulence control [18]. Interesting are the possible generalisations and
robustness of the control to different kinds of non-linearity and different
perturbing potentials. Beyond this, and more appealing or fundamental
is the persistence of the method for different dispersion. The parabolic
dispersion, may be regarded as paraxial approximation, valid for small
angle propagation with respect to the optical axis, whilst diffraction is
generally spherical in optics. Moreover, recently studies face situations
with different types of diffraction due to periodic modulations of the
refractive index inside of the laser cavity [27,28]. The dispersion
relation of a system can be shaped by spatial modulations of the
complex refractive index. For instance, the fourth order dispersion can
be obtained by refractive index modulations or simultaneous refraction
index and gain modulation [29,30]. The index modulation pushes apart
the dispersion surfaces one from another, becoming to flat-top or flat-
bottom. In contrary, gain modulations pull dispersion surfaces one to
another turning them more sharp-top and sharp-bottom.

One interesting situation is the so called sub-diffractive regime,
where the quadratic part of the diffraction disappears and the shape of
the dispersion surface 𝑆 (𝑘) corresponds to the next leading term, the
fourth order, 𝑆 (𝑘) =

(

𝑘2𝑥 + 𝑘2𝑦
)2

and the diffraction operator in direct

space of Eq. (1) takes the form
(

𝜕2𝑥 + 𝜕2𝑦
)2

[29,30]. Another interesting
and relevant modification of diffraction occurs for the refraction index
potentials forming Kagome lattices, for instance around the 𝐾 point
of the reciprocal-space in Graphene. The diffraction surface becomes
𝑆 (𝑘) =

(

𝑘2𝑥 + 𝑘2𝑦
)(1∕2)

and the diffraction operator in Eq. (1) becomes
(

𝜕2𝑥 + 𝜕2𝑦
)1∕2

[31].
For simplicity, the control of turbulence for the different dispersion

relations is analysed in 1D while in the final part we provide results in
2D for particular configurations, for being the most usual situation in
nonlinear optics. We note that it could be analogously extended to 3D.

All these relevant cases of the modified diffraction can be considered
as special orders of fractional diffraction. Recently, versions of some
of the most universal equations with partial derivatives, including
non-integer numbers are attracting interest. This is the case for the
fractional Schrödinger and Fractional Ginzburg–Landau equation that
have been studied in mathematics [32,33], finding also its applications
in physics [34–37]. The Fractional Complex Ginzburg Landau Equation
(FCGLE) can be written in the following form:

𝜕𝐴
𝜕𝑡

= (1 − 𝑖𝛼)
(

1 − |𝐴|2
)

𝐴 + (𝑖 + 𝑑)
(

∇2)
𝛽
2 𝐴 + 𝑉 (𝐫, 𝑡)𝐴, (2)

where the fractional derivative is defined as the integral operator by
the Fourier Transform:
(

−∇2)
𝛽
2 𝐴 = 1

2𝜋 ∬ 𝑑𝐤𝑑𝐫′ |𝐤|𝛽 exp
[

𝑖𝐤
(

𝐫 − 𝐫′
)]

𝐴
(

𝐫′
)

. (3)

Note that for the quadratic fractional order, 𝛽 = 2, we recover the
lassic CGLE with usual, parabolic dispersion, and for 𝛽 = 1 corresponds
o a conic dispersion.

. Results

.1. Parabolic dispersion 𝛽 = 2

The proposed mechanism relies on the introduction of a periodic
on-Hermitian potential, which as above discussed, we assume in the
orm:

𝐫, 𝑡 = 𝑉 𝐫
[

𝑚 cos 𝛺𝑡 + 𝑖𝑚 cos
(

𝛺𝑡 + 𝜙
)]

, (4)
3

( ) ( ) 1 ( ) 2 𝑡
here 𝑉 (𝐫) represents the spatial part of the modulation, 𝛺 corresponds
o the temporal modulation frequency, 𝑚1 and 𝑚2 are the amplitudes
f the real and imaginary part of the temporal modulation and 𝜙𝑡
orresponds to their phase shift. For instance, 𝑚1 controls the gain
odulation amplitude, while 𝑚2 corresponds to the refractive index
odulation amplitude. For simplicity we have assumed 𝑚1 = 𝑚2 ≡ 𝑚.

nitially, we focus on 1D systems with a spatial harmonic modulation
n the form 𝑉 (𝐫) = cos (𝑞𝑥). As commented above, the goal of the
roposed mechanism is to influence the spectrum of the system. Thus,
e characterise the effect on the spatio-temporal spectrum of the

ystem 𝐴
(

𝑘𝑥, 𝜔
)

, which is the 2D Fourier transform of the field 𝐴(𝑥, 𝑡),
y means of two different spectral intensities. First, the averaged in 𝜔
ntensity of the spectrum:
(

𝑘𝑥
)

= ∫
|

|

|

𝐴
(

𝑘𝑥, 𝜔
)

|

|

|

2
𝑑𝜔. (5)

econdly, the averaged in 𝑘𝑥 spectral intensity:

(𝜔) = ∫
|

|

|

𝐴
(

𝑘𝑥, 𝜔
)

|

|

|

2
𝑑𝑘𝑥. (6)

As previously reported it the study made in [18], the strength of the
urbulence can be characterised by the normalised central intensity of
(

𝑘𝑥
)

: 𝜂 = 𝐼(0)∕ ∫ 𝐼
(

𝑘𝑥
)

𝑑𝑘𝑥, which expresses the level of condensation
f the energy into the lowest order mode, the homogeneous component.
his parameter does not take into account the coherently excited
armonics. The better the stabilisation, the larger is the value of 𝜂,
ince we would have concentrated the energy at low order modes. On
he other hand, we can take into account the full excited comb (in
−space and 𝜔−space) since the coherently excited harmonics are not
ntroducing disorder into the system. Therefore, we compute the Full

idth at Half Maximum (FWHM) of each spectrum 𝐼
(

𝑘𝑥
)

and 𝐼(𝜔)
orted by intensity value. As an example, for a perfect comb at 𝑘𝑥 = 𝑛𝑞,
he 𝐹𝑊𝐻𝑀𝑘𝑥 would be much smaller than for a turbulent distribution.
nalogously, this also applies for 𝐹𝑊𝐻𝑀𝜔.

For 𝛽 = 2, as expected, the numerically reconstructed spectrum
ollows the parabolic dispersion 𝜔 = 𝑘2𝑥. More precisely, the spectrum
orresponds to a cloud of points in the

(

𝑘𝑥, 𝜔
)

distributed around the
ispersion of the linear counterpart system. Fig. 3 (a) and (b) depict
he turbulent unmodulated field in the real space and its corresponding
pectrum, along with the spectral intensities 𝐼

(

𝑘𝑥
)

and 𝐼(𝜔), in the two
rojections. The introduction of a Hermitian harmonic modulation, i.e.
2 = 0, induces a modulation of the field in the direct space, see Fig. 3

c), yet the spectral distribution remains almost unaffected, resembling
he unmodulated system, see Fig. 3 (d). Differently, the non-Hermitian
odulation totally changes the spectral distribution, concentrating it

owards lower order modes for an inward coupling, situation depicted
n (e) and (f). The field in the direct space clearly follows the modu-
ation and the spectrum, 𝐼

(

𝑘𝑥
)

, is accumulated at 𝑘𝑥 = 0. Further, the
emporal spectrum 𝐼(𝜔) shows indications that it becomes discrete. This
ast effect can also be observed reversing the coupling to higher order
odes, in (g) and (h), where the spectrum in 𝑘𝑥 clearly exhibits an

nergy transfer to higher modes. For an outwards coupling, the field
n direct space, (g), follows the modulation, but being quantitatively
ess regular than for a symmetric Hermitian modulation, seen (c). For
ll the cases, the red arrows in the spectra correspond to the couplings
ntroduced by the potential. While the solid ones represent functional
ouplings, the dashed ones correspond to non-functional ones, since
hey couple resonant modes to non-resonant ones (modes far from the
ispersion curve).

In order to determine the dependency of the effect on the phase
hift, we map the three different parameters 𝜂, 𝐹𝑊𝐻𝑀𝑘𝑥 and 𝐹𝑊𝐻𝑀𝜔
n the

(

𝑚,𝜙𝑡
)

space in Fig. 4 (a)–(c). The same tendency is qualitatively
bserved for the three magnitudes, although the condensation to the
omogeneous state, (a) has a clearer trend. In (d) and (e) we show the
pectra 𝐼

(

𝑘𝑥
)

and 𝐼(𝜔) for different parameter sets labelled as (𝑖) and
𝑖𝑖) in the maps as well as the unmodulated spectrum in black. Two
ifferent dynamical regimes of the system can be clearly distinguished,
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Fig. 3. Turbulence control for parabolic dispersion. Temporal evolution of the field intensity and corresponding spatio-temporal Fourier power spectrum |

|

|

𝐴
(

𝑘𝑥 , 𝜔
)

|

|

|

2
for (a)/(b) no

modulation, (c)/(d) symmetric modulation, and modulations with (e)/(f) inward and (g)/(h) outward functional couplings. The curve represents the parabolic dispersion 𝜔 = 𝑘2𝑥.
Insets correspond to integrals of the spectrum intensity over 𝜔 and 𝑘𝑥, respectively. Red arrows in (d)/(f) and (h) indicate all possible functional (in solid) and non-functional (in
dashed) mode couplings associated to the corresponding potential. Eq. (1) is integrated for 𝛼 = 0.7, and 𝑑 = 0.03. The parameters of the potential in (c)–(h) are: 𝜔 = 0.12, 𝑞 = 0.356,
and 𝑚 = 0.2.
Fig. 4. Parameter analysis for parabolic dispersion. Maps in
(

𝑚2 , 𝜙𝑡
)

parameter space of: (a) the normalised central intensity, (b) FWHM of the sorted averaged spectrum in 𝑘𝑥,
and (c) in 𝜔, respectively. Averaged spectrum intensity in: (d) 𝜔, and (e) 𝑘𝑥, respectively. Labels (𝑖) and (𝑖𝑖) indicate points in (a)–(c) maps represented in plots (d) and (e). Black
spectrum corresponds to the unmodulated turbulent field. We assume: 𝛼 = 0.7 𝑑 = 0.03, 𝜔 = 0.12, 𝑞 = 0.356 for all plots.
first, for (𝑖) with a phase shift around 𝜙𝑡 = 𝜋 and corresponding to a
coupling towards lower order modes, we see a clear 𝐼

(

𝑘𝑥
)

condensation
at 𝑘𝑥 = 0. Differently, the coupling to higher order modes corresponds
to phase shifts with values around 𝜙𝑡 = 0 and clearly produce a
broadening of the spectrum. In the temporal domain, the spectrum is
also regularised coinciding with a spatial turbulence reduction. On the
contrary, when turbulence is increased, the spectrum shifts to higher
values of 𝜔 with a higher dispersion of frequency values, as expected.
In these particular calculations we have fixed the value of 𝑞 = 0.335
and 𝛺 = 𝑞2, although as shown in [18] the range of working (𝑞,𝛺) is
quite large.
4

3.2. Conical dispersion 𝛽 = 1

Next, we reproduce the study done for a parabolic dispersion for
media with conical dispersion 𝛽 = 1. In Fig. 5 (a) and (b) we provide
the field and its spectrum for an unmodulated system. The turbulent
spectrum corresponds to a distribution of points in

(

𝑘𝑥, 𝜔
)

that follows
the dispersion lines 𝜔 = |

|

𝑘𝑥|| for large 𝑘𝑥 values. However, in this
case the turbulent spectrum is not maximum at 𝑘𝑥 = 0 but we can
observe two lobes. This hints that the condensation of the energy at
the homogeneous state will not be the best parameter to characterise
the effect of the modulation we are introducing. Again, the introduction
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Fig. 5. Turbulence control for conical dispersion. Temporal evolution of the Field intensity and corresponding Intensity of the spatio-temporal Fourier spectrum |

|

|

𝐴
(

𝑘𝑥 , 𝜔
)

|

|

|

2
for:

(a)/(b) no modulation, (c)/(d) a symmetric modulation, and (e)/(f) modulations with inward and (g)/(h) outward functional couplings. The white straight lines represent the
conical dispersion 𝜔 = |

|

𝑘𝑥||. Insets correspond to integrals of the spectrum intensity over 𝜔 and 𝑘𝑥, respectively. Red arrows in (d), (f) and (h) indicate all possible functional (in
solid) and non-functional (in dashed) mode couplings associated to the corresponding potential. 𝑞 = 0.356, 𝜔 = 0.12, 𝛼 = 0.7 and 𝑑 = 0.03 for all plots. 𝑚 = 0.2 for (c)–(h).
Fig. 6. Parameter analysis for conical dispersion. Maps in
(

𝑚2 , 𝜙𝑡
)

parameter space of: (a) the normalised central intensity, (b) FWHM of the sorted averaged spectrum in 𝑘𝑥, and
(c) in 𝜔, respectively. Averaged spectrum intensity in: (d) 𝜔, and (e) 𝑘𝑥, respectively. Labels (𝑖) and (𝑖𝑖) indicate points in (a)–(c) maps represented in plots (d) and (e). Black
spectrum corresponds to the unmodulated turbulent field. We assume: 𝛼 = 0.7 𝑑 = 0.03, 𝜔 = 0.12, 𝑞 = 0.356 for all plots.
of a potential with a Hermitian modulation introduces such modulation
in the field evolution, shown in (c) but, since the coupling is symmetric
in space and time, the distribution of excited modes in Fourier spectra
is approximately the same as the one of the unmodulated case. For the
non-Hermitian modulations, we check that functional coupling to the
lower modes, (e) and (f), tends to concentrate the spectrum at around
𝑘𝑥 = 0 while functional couplings to higher modes tends to make the
spectrum more broaden, (g) and (h).

To do a systematic study we also map the three values, 𝜂, 𝐹𝑊𝐻𝑀𝑘𝑥
and 𝐹𝑊𝐻𝑀𝜔 in the

(

𝑚,𝜙𝑡
)

space in Fig. 6 (a)–(c). We clearly see the
same tendency for the three magnitudes although 𝐹𝑊𝐻𝑀 presents
5

a stronger dependency on phase shift than the parabolic case. This
difference is due to the sharper harmonics generated by the non-
Hermitian modulation in conical dispersion. Looking at the spectra
of the two examples (𝑖) and (𝑖𝑖) indicated in (a)–(c), we clearly see
for (𝑖), the strong energy accumulation at harmonics of the potential
frequency and it corresponds to a small 𝐹𝑊𝐻𝑀 values, while for
(𝑖𝑖) we see a strong broadening of the spectrum. In comparison with
the parabolic case, the effect of the potential in the conical case is
dramatically increased. It is easily detected by looking to the spatial
and temporal spectra and this difference is directly translated to an
increase of the 𝐹𝑊𝐻𝑀 contrast. Further, the difference is visible in
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Fig. 7. Control of the turbulent spectrum for fractional dispersion. (a)–(c)
(

𝛽, 𝜙𝑡
)

maps of the normalised central intensity, FWHM of the sorted averaged spectrum in 𝑘𝑥 and in
𝜔 respectively. (d) and (e) averaged spectrum intensity in 𝜔 and 𝑘𝑥 respectively for parameters corresponding to points (𝑖)–(𝑖𝑖𝑖) in the (a)–(c) maps. 𝑞 = 0.356, 𝜔 = 0.12, 𝑚 = 1,
𝛼 = 0.7 and 𝑑 = 0.03 for all plots.
the ratio of the field concentrated at 𝑘𝑥 = 0 but also on the number of
relevant coherently excited harmonics. This may be due to the fact that
now, the dispersion relation is composed by straight lines and a given
coupling arrow acts equally for all 𝑘𝑥. Another important difference
from the parabolic dispersion is the phase shift corresponding to the
largest turbulence reduction, happening in the conical case around
𝜙𝑡 = 3𝜋∕2 and around 𝜙𝑡 = 𝜋 for the parabolic one. Equivalently, the
phase difference repeats for the maximum broadening, around 𝜙𝑡 = 𝜋∕2
for the canonical case.

3.3. Non-integer fractional dispersion 𝛽 ∉ N

The turbulence control by non-Hermitian spatio-temporal poten-
tials acts in the system by introducing directional couplings in the
wavenumber–frequency space. This general mechanism can be applied
to any dispersion relation and in particular to fractional dispersions.
Aside, as observed in previous sections, the optimal 𝜙𝑡 value to reduce
turbulence is different for parabolic and conical dispersions, around
𝜙𝑡 = 𝜋 and around 𝜙𝑡 = 3𝜋∕2 respectively. We explore the turbulence
control in fractional dispersions by scanning the fractional power 𝛽
and the temporal phase shift of the modulation 𝜙𝑡 and mapping 𝜂,
𝐹𝑊𝐻𝑀𝑘𝑥 and 𝐹𝑊𝐻𝑀𝜔 in the

(

𝛽, 𝜙𝑡
)

space for a fixed value of 𝑚 = 1
and fixed values of 𝑞 = 0.335 and 𝛺 = 0.12, as it is shown in Fig. 7
(a)–(c). We observe that far to be a step function, the optimal 𝜙𝑡 value
suffers a soft decrease when 𝛽 is scanned from 1 to 2. The stabilisation
effect is present for any fractional dispersion as shown by the spatial
and temporal spectra in (d) and (e). They correspond to different points
(𝑖) – (𝑖𝑖𝑖) of the parameter space along the optimal curve. The effect
is the same, a regularisation in both space and time spectra and an
accumulation of 𝐼

(

𝑘𝑥
)

at 𝑘𝑥 = 0. We note that further increasing 𝛽 the
phase shift tends asymptotically to 𝜋.

3.4. Fourth order dispersion 𝛽 = 4

We finally test the robustness of proposed mechanism for sub-
diffractive cases, in particular for fourth order dispersion 𝛽 = 4. We
6

note that the stabilisation is improved for values of 𝑞 that differ from
the previous studied situations. Therefore, we study the dependency of
the effect of the modulation in the

(

𝑞, 𝜙𝑡
)

parameters space. We here
use only the condensation at the homogeneous solution, 𝜂, since we
have seen that for values of 𝛽 greater than 1.5 this parameter is the
best one due to the distribution of the unmodulated spectrum. The map
in Fig. 8 (a) indeed shows that the range of optimal values is shifted
towards lower values of the spacial frequency modulation. This may
be attributed to the fact that the spectrum of the turbulence is more
concentrated at lower values of 𝜔 due to the shape of the dispersion. We
have chosen five points in the map, i.e. five pairs of parameters, (𝑖) – (𝑣)
to illustrate the effect of the potential on the resulting spectra. Figs. 8
(b) and (c) provides the spatial and the temporal spectrum respectively,
𝐼
(

𝑘𝑥
)

and 𝐼 (𝜔). We note that for parameters in the whitish area,
(𝑖) – (𝑖𝑖𝑖), the effect of the potential regularises the spectrum, both in
space and time see the inset in Fig. 8 (c). In turn, for bad concentrations
of energy at 𝑘𝑥 = 0, (𝑖𝑣) and (𝑣), we have observed two different
behaviours. While there is always a clear spectral broadening in space
and time, only for (𝑣) a discretisation in time occurs.

3.5. Higher dimensional system

After focusing on the study of the 1D system, we here provide ex-
amples of the extension to 2D. Naturally, introducing more dimensions
the computational time increases, and this is the reason behind the
previous exhaustive study being restricted to 1D. The proposal and
some of the results can be straightforwardly generalised to higher-
dimensional systems. For instance, in Fig. 9 we provide a highlight
of results in 2D system with parabolic dispersion, see Fig. 9 (a) and
(b), along with 2D results for conical dispersion, in Fig. 9 (c) and (d).
We introduce the spatial part of the potential in the form: 𝑉 (𝐫) =
1∕𝑛

∑𝑛
𝑖=1 cos

(

𝐪𝐢𝐫
)

, where 𝐪𝐢 correspond to the lattice vectors. We here
focus on the simplest 2D modulation with square geometry, i.e. 𝐪𝟏 =
𝑞[1, 0] and 𝐪𝟐 = 𝑞[0, 1]. In Fig. 9 (a) and (d) we see the averaged
2D Fourier Transform of the field for the unmodulated case. When
introducing the modulation, for 𝑚 = 1, we clearly observe that the
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Fig. 8. Control of the turbulent spectrum for fourth order dispersion. (a)
(

𝑞, 𝜙𝑡
)

maps of the normalised central intensity. (b) and (c) averaged spectrum intensity in 𝑘𝑥 and 𝜔
respectively. Labels (𝑖)–(𝑣) in the different spectra correspond to parameter pairs in (a). The inset corresponds to the area marked in the rectangle. 𝜔 = 𝑞2, 𝑚 = 1, 𝛼 = 0.7 and
𝑑 = 0.03 for all plots.
Fig. 9. 2D Turbulence spectra. Top row corresponds to system with 𝛽 = 2 and bottom row to 𝛽 = 1. First column shows the spectrum for the unmodulated system, while second
and third columns correspond to the modulated case for inward and outward coupling. Parameters are the same as the ones in Fig. 6.
narrowing of the spectrum, which condensates the energy towards the
low order mode. This occurs for a complex phase delay 𝜙𝑡 = 𝜋 for a
parabolic dispersion and for 𝜙𝑡 = 3𝜋∕2 for the conical dispersion see
Fig. 9 (b) and (e). Moreover, we can also observe the broadening of the
spectrum for 𝜙𝑡 = 0 and 𝜙𝑡 = 𝜋∕2 for the different types of diffraction
respectively. This scenario is depicted in Fig. 9 (c) and (f). Qualitatively,
the effect is perfectly analogous the one demonstrated in 1D. Moreover,
we observe how the effect on the conical case is notably enhanced,
just as for 1D. Particularly, for parabolic dispersion, a wider study for
different spatial configurations with more lattice vectors can be found
in [18].
7

4. Conclusions

To conclude, we have proposed a mechanism to influence the
energy cascade that governs turbulence leading to a reduction of the
turbulent spatio-temporal spectra. Indeed, the introduction a periodic
spatio-temporal potential, being non-Hermitian in time, may induce
an asymmetric mode coupling towards lower frequencies and smaller
wave numbers, reducing the cascade of turbulence, and eventually
regularising the spectra. In turn, it is also possible to induce an inverse
cascade which broadens the spectrum, enhancing turbulence. In this
last situation, the potential favours coupling towards higher frequencies
and larger wave numbers enhancing the cascade and thus broadening
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the spectrum. We provide a comprehensive analysis of the control
mechanism on the universal CGLE which governs optical turbulence,
among other physical systems, and we extend it to the FCGLE. The
idea is proven on 1D systems with different dispersion: parabolic
(quadratic), conical (linear), but also for general dispersion involving
non-integer partial derivatives and for sub-diffracting dispersion, for
instance fourth-order. For all cases, the turbulence control mechanism
is robust for a wide range of parameters being mainly governed by
the phase shift between the real and imaginary parts of the complex
temporal potential, and their modulation amplitude. We note that we
assumed a fixed value for the spatial periodicity (and frequency) which
is not necessarily the optimal one, and scanned the required phase
and modulation amplitude for the effect to happen. We observe that
while for the parabolic case the spatio-temporal spectrum is condensed
for 𝜙𝑡 = 𝜋, for conical dispersion a significant regularisation of the
spectrum – both in space and time – is found for a value of the
complex phase shift of 𝜙𝑡 = 3𝜋∕2. The analysis of the general fractional
CGLE provides a good agreement with these previous results, when
scanning such phase as a function of the differential power. Finally,
we observe that for the sub-diffracting case, the periodicity required
to regularise the field is smaller than in the previous ones, yet the
mechanism provides the concentration of energy at lower modes, and
even when the spectrum broadens a discretisation of the temporal
frequencies occurs. In principle, for being proved on the FCGLE, as
the generalisation of a universal mathematical model in physics, the
present turbulence control scheme may have applications in different
physical systems.
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