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Introduction

This dissertation deals with excitable and oscillatory neural systems. Although
we use simplified mathematical models for real neural networks, we believe that
the new insights made in this thesis might lead to novel therapeutic approaches
in neuroscience.

Neurons are cells which are able to communicate between themselves through
electrical and chemical signals. A prominent feature of neural activity is oscil-
lations. Through the electrical and chemical interaction, neurons tend to syn-
chronize their rhythms and approach a coherent behaviour. On the one hand
synchronous neural behaviour relates with such crucial brain functions as vision,
memory and movement coordination, while on other hand pathological synchro-
nization may lead to epileptic seizures, essential tremor or symptoms of the Parkin-
son’s disease.

Note that the synchrony is not only inherent for the neural systems. Groups
of blinking fireflies or seduction dances of fiddler crabs reveals the visual beauty of
synchronization, while in other physical systems it is not so obvious. The swaying
of a bridge leading to the coherent pedestrian movement, like it happened for
the London’s Millennium bridge or the problem of power grid synchronization
enforces engineers to interest in this phenomenon too. As it can be seen from the
submitted examples, synchronization control is a relevant and significant topic.

In this dissertation, when we speak about synchronized system we usually have
in mind a system with a partial phase entrainment – the situation when the part
of the oscillator’s phases are bounded within a fixed length. Our goal is to switch
the system from the coherent (synchronized) to the incoherent (desynchronized)
state, while in general the notion of synchronization control may include the in-
verse process as well. In the thesis, we analyse the systems by the methods of
nonlinear dynamics. There is a number of powerful methods developed in the field
of nonlinear dynamics, for example, the phase reduction or normal forms theories.
Using these methods various complicated mathematical models can be reduced to
a simple universal equations.
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At the early stages of Parkinson’s disease, undesired synchronous neural ac-
tivity may be suppressed by pharmacological therapy, but as the illness evolves
efficacy of this treatment rapidly decreases. At this stage some patients find an
alternative in electrical deep brain stimulation – a procedure, when high-frequency
(compared to neural cycles) electrical pulses are delivered to specific brain areas
through implanted electrodes. Despite long and successful history of using of the
deep brain stimulation its mechanisms are still not fully understood. Here we
investigate some effects of the high-frequency stimulation on the neurons.

High-frequency deep brain stimulation is a non-feedback control method. It
was observed that its efficacy varies from patient to patient and, moreover, de-
creases with time. Control signal continuously acts on tissues independently of
patient’s state, not only shortening the stimulator’s battery life but also increas-
ing the probability to damage the tissues. Therefore, there is a great interest in
designing a control algorithm with feedback. The main advantages of the feed-
back versus non-feedback control are as follows. The feedback reduces sensitivity
to parameter’s variations, it does not require detailed knowledge of the system’s
model and one of the most important point is that it allows a noninvasive design,
in the sense that the control force may vanish when the targeted state is reached.

As the brain is a vital organ, an extreme precaution of the possible interven-
tions must be taken into account. First of all, the acting on the cells are imposed
by several restrictions: i) the amplitude of applied current can not exceed a par-
ticular range, ii) applied current should not accumulate charge in the cell – this
is the charge balance requirement. Moreover, only one variable, the membrane
potential, can be measured, thus the full state of the system is not known. In
neural network the knowledge about the system is yet more reduced as only mean
field potential generated by several neurons membranes can be measured. Bel-
low, these restrictions will be discussed in more details, when desynchronization
algorithms will be presented.

The main goals of the research work

1. To adopt the averaging and other singular perturbation methods for high-
frequency stimulated neurons.

2. To investigate an influence of high-frequency stimulation on pulse propaga-
tion in the unmyelinated and myelinated neurons.

3. To develop an act-and-wait control algorithm for the stabilization of an
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incoherent state in oscillatory network.

4. To analyze control strategies for elimination of synchronization in bistable
networks.

Scientific novelty

1. Exploiting the averaging method and geometrical singular perturbation the-
ory, the main characteristics of the traveling pulse in the FitzHugh-Nagumo
unmyelinated axon under the action of high-frequency stimulation are de-
rived in an analytical form. It is shown that the effect of high-frequency
stimulation on the axon is determined by the parameter equal to the ratio
of the amplitude to the frequency of the stimulation current. There is a
critical threshold of this parameter at which the pulse stops to propagate.

2. The effect of a homogeneous high-frequency stimulation on a one-dimensional
chain of coupled excitable elements governed by the FitzHugh-Nagumo equa-
tions (model of a myelinated axon) is analyzed. It is shown that, depending
on the amplitude, the high-frequency stimulation may either suppress or en-
hance the pulse propagation through the axon. This differs essentially from
the case of unmyelinated axons described by spatially continuous FitzHugh-
Nagumo equations, where the high-frequency stimulation can cause only
suppression.

3. The act-and-wait control algorithm is proposed to suppress synchrony in
globally coupled oscillatory networks in the situation when the simultaneous
registration and stimulation of the system is not possible. The efficacy of the
algorithm is demonstrated analytically and numerically for globally coupled
Stuart-Landau oscillators as well as synaptically coupled FitzHugh-Nagumo
and Hodgkin-Huxley neurons.

4. The problem of controlling synchrony in bistable networks, which possess
coherent and incoherent attractors in a certain range of parameters, is ana-
lyzed. The act-and-wait as well as the multisite coordinated reset stimula-
tion algorithms are proposed in order to switch the bistable networks from
the stable coherent state to the stable incoherent state.
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Scientific statements

1. In the limit of high frequencies, the threshold amplitude, that prevents the
pulse propagation in myelinated and unmyelinated axons, increases linearly
with the frequency of stimulation current.

2. The excitability threshold of a neuron can be efficiently controlled by a
high-frequency stimulation current. As a result, the high intensity stimu-
lations suppress the pulse propagation in the myelinated and unmyelinated
axons, while the low intensities may enhance the pulse propagation in the
myelinated axons.

3. The act-and-wait control algorithm can efficiently stabilize the incoherent
state in monostable oscillatory networks with the constraints typical for
real-world neural networks.

4. The act-and-wait as well as multisite coordinated reset stimulation methods
are able to switch the bistable oscillatory networks from the stable coherent
to the stable incoherent states. The second algorithm works even for the
networks with the complex scale-free topology.

Structure of the work

Chapter 1 provides an introduction to the neuron models and neural net-
works, as well as introduces the definitions. Also a survey of the literature is
presented.

Chapter 2 describes the averaging method and its application for the analysis
of the pulse propagation in high-frequency stimulated continuous and discrete
excitable media.

Chapter 3 presents the application of act-and-wait control algorithm for the
stabilization of the incoherent state in various oscillatory networks.

Chapter 4 considers the control of synchronization in bistable oscillatory
networks. Two different algorithms to switch the bistable networks from the
stable coherent state to the stable incoherent states are analyzed.
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1. Neurons, neural systems and
synchrony

The purpose of this chapter is to familiarize the reader with methodology and
terminology of the problem investigated in the thesis and to overview the literature
of the relevant research field. In Sec. 1.1 a short introduction to neurons and
neural network models used in the thesis is presented. Section 1.2 is dedicated
to phase oscillators, a paradigmatic model in the field of the research on coupled
oscillators behaviour. Here we also give the definition of the synchronization. In
Sec. 1.3 the problem of pathological neurons synchronization is discussed. The
currently accessible treatment of the synchronization related diseases as well as
the treatment improvements are presented.

1.1 Modelling of neurons and neural systems

Single cell: Neuron is a cell, which main feature is an electrical excitability.
Due to cell’s structure it is able to generate and broadcast electrochemical signals.
Despite the fact that there exist different types and shapes of the neurons, a typical
neuron (see Fig. 1.1) consists of the following parts [1]:

• Soma – it accommodates nucleus and is the main part of the cell.

• Dendrites – they form a tree-shaped structure, with their trunks directed
towards the soma. Dendrites act as receivers, as they collect signals from
other neurons, which later can effect the transmembrane potential of the
initial axons segment.

• Axon – acts as a transmitter, which conducts a signal generated at the
joining point of the soma and axon. The axon usually has the same diameter
across its length while eventually branches in a tree-like manner, allowing
the impulse train on the trunk to be directed toward a variety of locations
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Dendrites

Soma

Nodes of Ranvier

Myelin

Synapses

Axon

Figure 1.1: Schematic drawing of the neuron.

on muscle cells or other neurons [1]. The walls of the axon have molecular
structures, which for particular ions acts as pumps or gates, i.e. it regulates
ions concentrations between inner and outer sides of the neuron in this way
also regulating difference of the electric potential. Some axons are covered
by insulating material called myelin. Myelin covers axon not continuously
but with some gaps called Ranvier nodes. Such structure of the axon allows
to increase the speed of travelling pulses.

• Synapses – inject electric pulses into the dendrites or the cell body of other
neurons. In terms of neuroscince, the cell that is sending the signal is called
the presynaptic neuron and the cell that is receiving the signal is called the
postsynaptic neuron. According to injecting material type synapses can be
divided in two categories: i) Chemical synapse – electrical activity in the
presynaptic neuron releases molecules called neurotransmitters. The neu-
rotransmitters in postsynaptic neurons dendrites opens ion channels what
induce an electrical current; ii) Electrical synapse – neurons are connected
by special junctions which enables to flow electric current from one cell to
another directly. Although the first one synapses are more common in the
brain, the second one ensure a faster signal transfer.

The modelling of neural processes is not a trivial task as the neuron is an
intricate dynamic system that should be described on several length scales [1]
ranging from few nanometres to centimetres. This statement can be illustrated
by the following chain, where different subsystems of neuron dynamics are laid
by the order of increasing size: Biomolecural dynamics → Patches of nerve
membrane → Synapses → Axonal and dendritic fibers → Branching re-
gions of fibers → Neuron. The size difference between the biomolecules and
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Figure 1.2: (a) Schematic drawing of the neurons membrane patch. Red, blue
and green structures represents K+ and Na+ ion channels and other possible
leakage sources respectively; (b) Circuit analogue of the neurons membrane; (c)
The propagation of the ions concentration disturbance in the axon.

neuron is comparable to that between a saucer and the diameter of the continent
of Europe [2]. However, one would typically not exclusively ascribe processes that
happen on the length scale of Europe (e.g.tectonic plate movement) to objects
of the size of a saucer. But this is what happens in the models for nerve pulse
propagation.

In 1952, Hodgkin and Huxley wrote a series of papers where they determined
the laws of the ions movement in the nerve cell by experimenting with a squid
axon. In the final paper [3] they submitted a mathematical model. They were
able to create a circuit model that seemed to match how the squid axon membrane
responded to various stimulus. Here we will represent the main ideas behind the
Hodgkin-Huxley (HH) model, later we will give its detailed description and finally
the FitzHugh-Nagumo simplification will be presented.

The axons membrane is considered as a capacitor that becomes transiently
charged and discharged via the local voltage changes. These changes are condi-
tioned by the ions flow through ion’s channel (see Fig. 1.2). Under favourable
circumstances the local membrane excitation leads to a cascade effect, where ex-
cited membrane part induce voltage change in neighbour medium allowing the
pulse of voltage change propagation (see Fig. 1.2c).
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According to Hodgkin and Huxley [3] the dynamics of the membrane potential
in axon is proportional to the sum of currents generated by Na+, K+ ions and
leakage:

C
∂v

∂t
= −INa − IK − IL +D

∂2v

∂x2 . (1.1)

Here v is the membrane potential, C is the membrane capacity and the last term
appears due to diffusion. The currents generated by ions can be expressed as

INa,K,L = ḡNa,K,L(v − vNa,K,L) (1.2)

where ḡNa,K,L are conductances and vNa,K,L are the rest membrane potentials cre-
ated by the given ions. The conductances ḡNa,K depend on the probabilities pNa,K

that the Na+ or K+ ion gates would be open. The dynamics of the probabilities
pNa,K are governed by kinetic equations:

dp(i)

dt = αi(v)(1− p(i))− βi(v)p(i), (1.3)

where i can stand for Na or K. The factors αi(v) and βi(v) are called the transition
rate constants. The variable αi(v) is the number of times per second that a gate
which is in the shut state opens, while βi(v) represents the number of times per
second that a gate in the open state shuts. If at the given moment there is a
portion p(i) of ith type open gates, then at this moment the fraction of shutting
gates is equal to the product βip(i), while the fraction of the opening gates will be
equal to αi(1− p(i)).

Each ion channel may have a several different kind of the ion gates, thus the
conductances ḡNa,K will be proportional (with assumption that each gate operates
independently) to the product of the probabilities pNa,K. If the conductances ḡNa,K

would be constants then dynamics of the membrane potential would be boring,
because after perturbation it will exponentially return to the rest point. But
since ḡNa,K can change, the actual system dynamics is determined by probabilities
pNa,K [1].

In the myelinated axons, the diffusion component becomes discrete as the
active media (uncovered ion’s channels) are placed just at the Ranvier nodes [1]:

C
dvn
dt = F (vn, p(i)

n ) +D (vn+1 + vn−1 − 2vn) . (1.4)

The given equation describes the potential of n-th Ranvier node. The func-
tion F (vn, p(i)

n ) includes currents generated by the ions, which are the same as
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in Eq. (1.1).

Hodgkin-Huxley neuron model: After the consideration of the principles
of neuron model construction, we present a model described by the Hodgkin–
Huxley equations [3]:

Cv̇ = −gNam3h(v − vNa)− gKn4(v − vK)− gL(v − vL) + I, (1.5a)

ṁ = αm(v)(1−m)− βm(v)m, (1.5b)

ḣ = αh(v)(1− h)− βh(v)h, (1.5c)

ṅ = αn(v)(1− n)− βn(v)n. (1.5d)

Here due to simplification only the local model of membrane potential is pre-
sented, i.e. the effect of diffusion is neglected. The overdot marks the time
derivative v̇ ≡ dv/dt. Variable v is the membrane potential measured in mV. The
standard values of the parameters that have been obtained by fitting this model
to the experimental data on the giant axon of the squid [3] are: C = 1 µF/cm2,
(vL, vK , vNa) = (10.6,−12, 115) mV, (gL, gK , gNa) = (0.3, 36, 120) mS/cm2.

As one can see from the product m3h in the first member of equations (1.5a)
right hand side, the flow of sodium ions is governed by four gates – three activa-
tion m and one inactivation h. Equivalently the conduction of potassium ions is
governed by four single type gates, which dynamics are represented by variable n.
The rate parameters defining the dynamics of the gating variables m, h and n are
measured in ms−1 and are the following functions of the membrane potential:

αm(v) = (2.5− 0.1v)/ [exp(2.5− 0.1v)− 1] , (1.6a)

βm(v) = 4 exp(−v/18), (1.6b)

αh(v) = 0.07 exp(−v/20), (1.6c)

βh(v) = 1/ [exp(3− 0.1v) + 1] , (1.6d)

αn(v) = (0.1− 0.01v)/ [exp(1− 0.1v)− 1] , (1.6e)

βn(v) = 0.125 exp(−v/80). (1.6f)

The influence of external stimulation in this model is represented by current I.
The voltage scale in this model is shifted in such a way that the membrane resting
potential (i.e., the steady state value of the membrane potential) without external
stimulation I = 0 is zero.

If neuron is not effected by constant external current, i.e. I = 0, then it is
in excitable regime. Excitability is a system’s ability to generate large responses
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0 5 10 15
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Figure 1.3: Bifurcation diagram of HH model described by (1.5) equations. Con-
tinuous line shows value of stable, dashed line – unstable rest points. Solid and
hollowed circles represents minimal and maximal values of potential for stable and
unstable limit cycles respectively. Abbreviations ”subH” means subcritical Hopf
bifurcation, ”SNLC” – saddle node bifurcation of limit cycle.

compared to a small stimulations. For the neurons this property means that
they can generate high amplitude electrical impulse in response to small external
perturbations. From the point of view of nonlinear dynamics, the excitable system
is a system with a stable rest point and generated response is just consequence of
the transient processes. Excitable systems have a threshold value, i.e. there exists
some critical value of the external stimuli below which the response is small. In
theoretical models this threshold can be defined precisely, while in real neurons
it is not always possible, because only one variable, i.e. membrane potential, is
measured. Due to the existence of the threshold value the excitable cells act as
noise filters [4].

The constant external current I can control dynamical properties of the sys-
tem. Illustration of this statement can be seen in bifurcation diagram in Fig. 1.3.
Neuron has only one stable stationary point (in figure shown by continuous line),
until current does not exceed 6.3µA/cm2. At this value, the system undergoes
saddle node bifurcation of limit cycle, thus stable and unstable limit cycles ap-
pears. Further increase of current values induce subcritical Hopf’s bifurcation,
when unstable limit cycle shrinks and collide with stable stationary point at
I ≈ 9.8µA/cm2. After this bifurcation, stable stationary point become unsta-
ble, while unstable limit cycle disappears.

The HH neuron model defines biophysical processes in a cells membrane with
four differential equations. Therefore, only projections of four-dimensional phase
trajectories can be observed and a geometrical explanation of important biophys-
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Figure 1.4: (a) The time constants τh(v), τn(v), τm(v) for HH model (1.5). (b)
The isoclines of reduced slow-fast HH model.

ical phenomena is not available. It is useful to study systems of equations that
are simpler than the Hodgkin-Huxley model, but retain many of their qualitative
features.

The rates at which the dynamics of m, n and h variables evolves can be
estimated by rewriting Eqs. (1.5b)–(1.5d) to the form of

τx(v)ẋ = x∞(v)− x, (1.7)

where the letter x stands for the gating variables m, n or h, the rate τx(v) can be
calculated by τx(v) = 1/ [αx(v) + βx(v)]. If the system had the constant potential
v, then function x∞(v) would represent the stationary value of the gating variable.
Its value can be calculated according to x∞(v) = αx(v)/ [αx(v) + βx(v)].

FitzHugh-Nagumo model: One of the most popular HH model simplifica-
tion is FitzHugh-Nagumo (FHN) equations. This model isolates such mathemat-
ical properties as excitation and propagation from the electrochemical properties
of sodium and potassium ion flow [5]. The idea behind construction of this model
lies in observation that sodium activation variable m acts on much faster time
scales than any others variable (see Fig. 1.4a) in Eqs. (1.5), thus it follows dy-
namics according to m = m∞(v). Moreover, the sum of gating variables n and h
remains approximately the same, h(v) + n(v) ≈ 0.8. The reduction of the system
(1.5) will contains one fast variable v and one slow variable n.

The nullclines of this slow-fast system is shown in Fig. 1.4b. It can be seen
that the v̇ = 0 nullcline has a “cubic like” shape, while the ṅ = 0 nullcline for
particular range can be approximated by linear function. Nullclines intersect just
at one point. With these observations in mind the FitzHugh-Nagumo model for
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dimensionless variables was constructed [6, 7]:

v̇ = v − v3/3− w + I, (1.8a)

ẇ = ε(v + β − γw). (1.8b)

Here the variable v represents the membrane potential and w is called the recovery
variable. The constant ε > 0 is the ratio between the characteristic time scales of
v and w variables. Typical parameters set for this model is as follows: ε = 0.08,
β = 0.7, γ = 0.8.

The external influence is represented by current I. The given FHN model for
the small values of I successfully mimics bifurcation diagram of HH case, i.e.,
it undergoes a saddle node bifurcation of a limit cycle and a subcritical Hopf
bifurcation.

The “cubic like” v̇ = 0 nullcline could be approximated by other functions,
like various types of piecewise functions. The choice of the cubic polynomial for
Jin-Ichi Nagumo was more appropriate, because for equations (1.8) modelling he
was using tunnel diodes. These diodes have a current-voltage curve similar to the
cubic shape used in (1.8) equations [5].

Network of cells: The complex tasks like shape recognition, language pro-
cessing are accomplished not by a single neuron, but by the neural network. For
example, human brain has approximately 20 billion of neocortical neurons, that
are responsible for our language. Typically the number of neuron junctions varies
from 1000 to 10000, with an average of 7000 synaptic links [8]. The combinato-
rial possibility could give rise to enormously complex neuronal circuits or network
topologies, which might be very difficult to understand. Moreover the network
of the neurons is not static, it changes during the time due to neurons property
called synaptic plasticity – a synapse’s ability to strengthen or weaken connectivity
dependently on its activity [9].

The dynamics of neural network is the result of three components [10]: i)
The intrinsic properties of cells within the network; ii) The synaptic properties of
connections between neurons; iii) The topology of network connectivity.

To simplify the modelling we will assume that neuron has no structure, i.e. it
is a point. Then the dynamics of nth neuron is governed by the equation similar
to (1.1) or (1.4)

C
dvn
dt = F (v, p(i)

n ) + Isyn,n. (1.9)

The difference is that the diffusion term in Eqs. (1.9) is removed and an additional
term is added, which represents the synaptic current Isyn. The same logic as for
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currents generated by Na+ or K+ ions applies also for the synaptic current gener-
ated by the chemical synapses. It can be defined as the product of a conductance
with a voltage difference [10]

Isyn,n = g(t)(vn − v0). (1.10)

Here conductance g(t) depends on the presynaptic neuron and the potential v0 is
called reversal or Nernst potential as there is no net ions flow from one to another
side of the membrane.

There are many ways to model the conductance g(t). One of the most popular
is to assume that conductance g(t) is the sum of fixed functions, which depends
only on the presynaptic neuron spiking time

g(t) = g̃
∑
j

α(t− tk). (1.11)

This definition of conductance leave us with possibility to choose from variety of
alpha functions (delta functions, single or double exponential decays, etc.). How-
ever this approach is not related to the notion of voltage gated channels. Moreover,
the tracking of the spiking times is needed, which can become a computational
challenge for the bigger networks [10].

In a more realistic biological model the conductance g(t) is defined as a product
g(t) = g̃s(t), where g̃ is the synaptic conductance maximum, s(t) denotes the
fraction of open channels in the dendrite and satisfy

dsn
dt = αs(1− sn)H∞(vj − vT )− βssn. (1.12)

Here, αs and βs are the rates at which the synapse turns on and off, respectively.
The function H∞(v) represents the concentration of neurotransmitters, which was
released from the jth presynaptic neuron to the nth postsynaptic neuron. This
function usually is approximated by step-like functions, e.g. Heaviside or sigmoid.
Finally, vT is a threshold potential.

In this work, we suppose that the characteristic time of the synaptic variable
s(t) is much smaller than the characteristic period of the neuron self-oscillations.
In this case the approximation sn ≈ H∞(vj − vT ) is valid.

The synaptic links according to interaction type are divided in two groups –
excitatory and inhibitory. Excitatory interaction increases the probability that
the postsynaptic cell will generate an action potential1. Inhibitory interaction

1The change in membrane potential occurring in nerve when excitation occurs.
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acts contrary – it decreases the probability of the postsynaptic cell to generate an
action potential. In most cases excitatory synapses tend to promote synchronous
activity, while inhibitory synapses try to keep out-of-phase behaviour [10]. It is
important that the ratio of inhibitory and excitatory interactions in the brain
remains fixed whereas alternations may lead to brain malfunctioning [11].

If we take into account the network’s topology the synaptic current generated
by the nth neuron can be written as

Isyn,n = g̃(vn − v0)
N∑
j=1

anjH∞(vj − vT ) (1.13)

Here anj is the element of the adjacency matrix, which is equal to 1 if nth neuron is
effected by the jth neuron and anj = 0 in other cases. Depending on the structure
of the adjacency matrix one can generate networks with different topologies: global
or local, dense or sparse, random or structured. In this thesis we assume one of
the simplest and easiest tractable all-to-all coupling, i.e. anj = 1 for all n 6= j.
Also the case of sparse random network will be analysed.

1.2 Introduction to phase oscillators and defini-
tion of synchronization

Oscillations are one of the possible neuron’s activity patterns, which play an
important role in brain functioning. It is necessary to note that neurons are not
conservative systems, because they have energy source (which come from digested
food) and undergo dissipation, also the amplitude, shape and period of oscilla-
tions is defined by neuron itself and cannot be changed by a weak perturbation.
Therefore, when we are speaking about neuron as an oscillator we have in mind
that it is a self-sustained oscillator. This section is dedicated to the investigation
of general oscillators and oscillatory networks.

If we would couple several self-sustained oscillators with similar frequencies
we can expect three things to happen [12]: i) oscillators can inhibit each other,
thus oscillations would stop; ii) oscillations would become chaotic instead of being
periodic; iii) oscillators can start to oscillate “synchronously” or in other words
“sharing the same time”. As the synchronization was described in Ref. [13] the
oscillators adjusted their internal rhythms due to the interaction.

The self-sustained oscillators have an outstanding feature: they can be de-
scribed by a single variable θ called phase [13–15]. Let’s say that we have a
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dynamical system defined by a M -dimensional state vector x, which obeys ordi-
nary differential equations

ẋ = f(x). (1.14)

Assume, that the system has a stable limit cycle solution xc(t) = xc(t+ T ) with
a period T . At the time t = 0 one can arbitrary choose point x(0) = x0 on
the limit cycle. Then the phase of xc(t) is defined as θ = t mod T . The initial
point x0 can be chosen anywhere on the limit cycle, what introduces ambiguity in
the definition of the phase. However the different choices of initial points in the
definition of the phase, give only different constant shifts. To sum up, the phase
θ is just an arbitrary measure, that shows oscillator’s position on the limit cycle.

The notion of phase can be also introduced for the points in the phase space
outside of the limit cycle. If the point x1 does not belong to the stable limit
cycle xc(t), then its phase is defined as follows. Since the limit cycle is stable
the trajectory x(t) with the initial condition x(0) = x1 reaches the point xc(t̄)
after t̄ = nT → +∞ with n ∈ N. Then the phase of the point x1 is the same
as the phase of the point xc(t̄), i. e. θ(x1(0)) = θ(xc(t̄)). The points in the
M -dimensional phase space of the system having identical phases form M − 1
dimension surfaces, which are referred to as isochrons.

An unperturbed oscillator’s phase is governed by the simple differential equa-
tion

θ̇ = 1. (1.15)

It is convenient to renormalize phase change from the interval [0;T ] to [0; 2π] in
such case θ̇ would be equal to oscillators frequency ω. If the system (1.14) is
perturbed by a weak time dependent force εp(t)� 1

ẋ = f(x) + εp(t), (1.16)

then its phase evolves according to

θ̇ = ω + εZ(θ)p(t) + o(ε), (1.17)

where the function Z(θ) is called a phase response curve. The function Z(θ)
contains all necessary information of the system to describe the phase dynamics
of a weakly perturbed oscillator. The term o(ε) represents error so that o(ε)/ε→ 0
as ε → 0. For the sake of clarity, this term will be further omitted. The field in
nonlinear dynamics which studies the transition from Eq. (1.14) to Eq. (1.17) is
called the phase reduction theory. The details about this theory can be found in
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Ref. [15].

The phase reduction theory is also applicable when the time dependent ex-
ternal force p(t) is replaced by the force generated by the other oscillator. Ku-
ramoto [14] has shown that the phases of any weakly coupled systems of the nearly
identical limit-cycle oscillators follow the rule

θ̇i = ωi +
N∑
j=1

Γij(θj − θi), (1.18)

where index marks the number of an oscillator and the interaction functions
Γij(θj − θi) can be estimated as integrals involving certain terms from the original
limit-cycle model [14,16]. One can imagine the phase oscillators as balls moving on
the circle and interacting between each other through force defined by Γij(θj−θi).

Let us say that we have N interacting oscillators, while each of them is de-
scribed by M ordinary differential equations. The phase reduction theory allows
us to reduce the initial system of NM differential equations to the system with
only N equations. Although this procedure simplifies the problem, the analysis of
equations (1.18) is still complicated. To specify the model, we first have to define
the function Γij(θj − θi), which includes the knowledge about the topology and
interaction.

One of the most popular, analytically tractable case is Kuramoto model, where
oscillators are coupled all-to-all with the equal weight through the sine function

Γij(θj − θi) = K

N
sin(θj − θi). (1.19)

Equations (1.18)–(1.19) represents a paradigmatic model for the analysis of the
synchronization of globally coupled oscillators.

Definitions of the synchronization. In order to find out the possible out-
comes of oscillators coupling, let us start with a general model of two coupled
phase oscillators

θ̇1 = ω1 + Γ1(θ1 − θ2), (1.20a)

θ̇2 = ω2 + Γ2(θ2 − θ1). (1.20b)

Since each phase variable is defined on the circle, the state space of coupled os-
cillators is a two-dimensional torus with θ1 and θ2 being latitude and longitude
respectively, see Fig. 1.5. The trajectory of system’s (1.20) solution dependently
on the functions Γ1,2(θ) and frequencies ω1,2 can be a closed curve or it can end-
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Figure 1.5: The dynamics of two phase oscillators can be represented on the
two-dimensional torus.

(a) (b) (c)

Figure 1.6: The two-dimensional torus representation on the square. (a) The
system’s (1.20) trajectory with no phase or frequency-locking; (b) An example of
the 3:2 frequency-locked solution trajectory. A closed curve is produced on the
torus; (c) An example trajectory of the phase-locked solution of the type 3:2.

lessly wind on the torus never intersecting itself. Since the trajectories on the
curved surface of a torus is hard to draw, usually an equivalent representation: a
square with periodic boundary conditions, is used, see Fig. 1.6.

If the phase space of the coupled oscillators (1.20) has a periodic trajectory,
it is said that oscillators are frequency-locked. Mathematically this condition can
be expressed as

p
〈
θ̇1
〉
− q

〈
θ̇2
〉

= 0, (1.21)

where 〈...〉 denotes averaging over long period of time. If θ1 makes p rotations,
while θ2 rotates q times and p and q are relative prime integers then it is said that
the system (1.20) has a p : q type frequency-locking. The 1:1 frequency-locking is
called the entrainment.

In a special case of p : q frequency locking phase derivatives satisfy the follow-
ing relation

pθ̇1(t)− qθ̇2(t) = 0. (1.22)
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Figure 1.7: Relationship between locking definitions. Adapted from Ref. [17].

This relation implies that phases has a constant difference

pθ1(t)− qθ2(t) = const. (1.23)

The given phenomenon is called the p : q phase locking. In the Fig. 1.6 (b) and
(c) the examples of 3:2 frequency and phase locking, respectively are shown. The
value of constant determines whether the locking is in-phase (const = 0), anti-
phase (const = π, that corresponds to a half of period) or out-of-phase. In many
cases the difference pθ1(t)− qθ2(t) approaches constant only in the limit t→ +∞,
thus it is said that phase-locking is asymptotic.

If the oscillators (1.20) undergo 1:1 phase-locking, then it means that θ̇1 = θ̇2,
i.e. both oscillators have the same frequencies. Therefore 1:1 phase-locking is
called frequency synchronization. Finally, if the phase difference between the
oscillators (1.20) is zero, i.e. θ1 = θ2, then it is said that the system is phase
synchronized. In the literature there exist alternative terminologies for phase
synchronization like full, exact or perfect synchronization. The above definitions
can be trivially generalized for the higher number of the oscillators. The relations
between given definitions is visualized in Fig. 1.7.

It should be noted that the phase synchronization can occur only if all natural
frequencies ωj are identical [18]. From the practical point this is a rare situation.
The main object in most applications and theoretical analyses of the synchro-
nization is phase entrainment. It is a phenomenon, when phase difference remain
boundend in predefined region

|pθ1(t)− qθ2(t)| < const. (1.24)
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(a) (b) (c)

Figure 1.8: Illustration of the phase oscillators: (a) desynchronized; sinchronized
in (b) single cluster and (c) double clusters.

This relationship can replace phase locking condition in noisy or chaotic systems.

Moreover, the network of oscillator can exhibit a partial synchronization, where
only the part of oscillators are synchronized, while the other part oscillates ran-
domly. In order to estimate the portion of the synchronized oscillators, the crite-
rion called the order parameter is introduced

r = 1
N

N∑
j=1

exp(iθj). (1.25)

When all oscillator’s phases are equal, the absolute value of the order parameter
is equal to one |r| = 1 (see Fig. 1.8b). For sufficiently large N , |r| ≈ 0 implies
desynchronized state (see Fig. 1.8a). It should be noted, that the given order
parameter estimates, just synchronization with coinciding phases. For example,
if we would have two synchronized oscillators with phase lag equal to π, then
|r| = 0. In some networks several synchronized clusters with phase lags between
them not equal to 0 may form. To estimate synchronization for these cases the
generalized order parameters [19] can be introduced

rq = 1
N

N∑
j=1

exp(iqθj). (1.26)

For example, in the system with two synchronized clusters, the order parameter
|r2| will have higher values, while |r1| will show asymmetry between the clusters
(see Fig. 1.8c and Ref. [20] for more details).

Remark: The definitions presented in this subsection are mainly adapted
from Refs. [17] and [18]. However, readers should be aware that such basic terms
as synchronization, locking and entrainment have no conventional definitions in
the literature, thus various authors may use these words with different meanings.
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Note that here we did not intend to propose general definitions. Our aim was
simply to overview different possible effects in interacting oscillatory systems.

Further we will see that it is not always easy to define the phase of oscillator,
thus sometimes other criteria to define the level of the synchronization in the
network are used. Such cases will be discussed in the subsequent chapters.

1.3 The problem: pathological synchronization
of neural networks

The synchronization of oscillations is a mechanism for neural communication,
which endows individual brain areas with the ability to perform specific tasks [21].
On the other hand, pathological, excessive synchronization may be the origin of
symptoms of some neurological diseases. Various studies from microelectrodes
recordings [22–24] or magnetic brain activity (magnetoencephalography) [25] ob-
servation suggest that tremor for Parkinon’s disease patients may be caused by
synchronous action of the thalamus and basal ganglia neurons (modest volume
structures in the center of the brain). Increased synchronization was also mea-
sured in monkey model of parkinsonism, while in healthy monkeys synchronization
was not observed [26].

1.3.1 The treatment

Pathological synchronization appears as a consequence of degeneration of neu-
rons that produce neurotransmitter called dopamine [27]. Therefore as the first
stage in suppression of involuntary limb movement is a pharmacological ther-
apy, when a patient uses medicaments with L-DOPA (levodopa). In the early
stages of disease this chemical precursor in the brain increases dopamine quan-
tity [27]. Unfortunately after the long use of this drug its efficacy to suppress
tremor decreases [28]. Furthermore adverse effects such as motor fluctuations and
dyskinesia2 are often associated with chronic drug administration also as frequent
neuropsychiatric disturbances [29].

As an alternative to drug treatment would be lesioning of particular brain
areas. The evidence that brain lesion is a successful method for the suppression
of tremor was indicated as early as 1942, but used rarely until the late 1980’s [29].
The procedure compared to medical treatment is more successful at improving

2A difficulty or distortion in performing voluntary movements.
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patients life quality [30]. Nevertheless the intervention into the brain is always
related to high risks as the effect of lesioning is irreversible.

In 1987 during stereotactic thalamotomy3 surgery it was observed that low-
frequency stimulation increases tremor, while at higher frequencies tremor was
blocked [31]. To achieve a suppression of the tremor, the stimulation amplitude
has to exceed a critical value. In [32] it was shown, that the relation between the
critical amplitude and stimulation frequency forms a valley between 100Hz and
1kHz. Signals, which frequencies are not included in this region, require higher
stimulation amplitudes or fail to suppress. The use of high frequency (HF) deep
brain stimulation (DBS) for the treatment of Parkinson’s disease was approved
by the US Food and Drug Administration. Nowadays it is a standard procedure
applied for medically refractory PD patients.

Despite the fact that DBS is used not only for PD treatment, but also shows
promising results for suppressing symptoms of diseases like dystonia, major de-
pression, chronic and phantom pain [9], it is not a panacea and has its own
shortcomings. In some patients DBS may cause side effects, may not work or the
therapeutic effects may become weaker during the time [9, 29].

Currently used DBS involves stimulation with adjustable amplitude and fre-
quency4 pulse trains. The stimulation is always turned on independently on state
of patient. This is the main problem of control, because permanently operating
stimulator shortens a battery life time and also may destroy surrounding tissue.
Moreover, the adjustment of the control parameters may proceed a day or more
longer trials, while optimal amplitude and frequency are chosen empirically by
neurologist from patients response to therapy [27,34].

1.3.2 Approaches for the control improvement

Understanding Parkinsonian network. In order to improve DBS efficacy
one should understand the dynamics of basal ganglia and thalamus neurons net-
works. An early theoretical attempts to understand neural networks of the Parkin-
son’s disease were done by firing rate models. Firing rate models describe activity
of neurons population by a single ’average firing rate’ variable. One can construct
the fire rate equations for different kinds of neural populations and investigate
interactions between them. Although the firing-rate models provide some useful
information, they are inappropriate for understanding dynamical phenomena on
such small-time scales as used in DBS [35].

3Lesioning brain region called thalamus.
4The current is induced by 2.5-5V voltage source, while the frequency usually is & 130Hz [33].
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Terman et. al. in the paper [36] investigated the relationship between the
neural network topology and neurons correlated firing. In the Ref. [36] models of
subthalamic nucleus (STN) and globus pallidus externa (GPe) neurons were con-
structed considering experimental data. According to the authors these neurons
have membrane properties that predispose them to rhythmic firing [36]. Derived
models were used in construction of three network prototypes: i) sparse random;
ii) sparse structured; and iii) tightly connected structured. It was shown that all
three networks can produce episodic correlated spiking. Tightly connected struc-
tured network was able to produce episodic travelling wave solution, however there
is no experimental evidence both in human patients and in primate Parkinsonian
models that would support the travelling of coherent waves [27]. The authors sug-
gested that the oscillations of the Parkinosn’s state may be generated by increased
striatal5 input and decreased interaction between GPe internal connections.

Understanding the mechanism of high-frequency stimulation. The
use of HF in DBS is the standard therapy for the reduction of the Parkinsons
disease symptoms. Various studying methodologies like neuronal recordings, bio-
chemical studies, computer modelling, imaging were adopted in order to reveal
HF DBS mechanisms. However, these studies provide different explanations of
possible mechanism, furthermore some of them are in a direct contradiction.

In order to understand the therapeutic mechanisms at least three questions
must be answered [37]: i) What is the effect off DBS on individual neurons around
the electrode? ii) Which molecular or neural elements mediate the therapeutic
effect of DBS? iii) How neural networks are effected by the DBS? The understand
of these questions may lead to a simpler selection of stimulation parameters or
even into treatment improvement.

In Ref. [38] were performed simultaneous extracellular single-unit recordings
with four individually driven micro-electrodes in the STN network of non-human
primates during STN-HFS. Stimulation parameters were as follows: amplitude
– 100 µA, frequency – 130 Hz, and 60 µs pulse width. Study provides evidence
that STN-HFS decreases abnormal oscillatory activity in the STN. Authors shown
that stimulation decreased the mean firing rate in majority of STN neurons from
19 to 8 Hz. Activity returned to base line within 100 milliseconds following the
end of the stimulus train. The possible explanation of this behaviour is that after
each pulse neurons resume usual activity after about 7 ms, while the gap between
stimulation pulses for 130 Hz is 7.7 ms. This means that neurons have very short
period of time to fire at their natural frequencies. Further experiments performed

5Brain part responsible for motivated movement.
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on various brain areas with human patients and primates that supports idea of
somatic inhibition in the stimulated nucleus can be found in Refs. [39–41]. These
findings is compatible with theoretical work of Pyragas et. al. in Ref. [42], which
suggests, that HF stimulation stabilizes neuron’s resting state or low-amplitude
subthreshold oscillations of its membrane potential.

Stimulation enforce neurons to fire in a regular pattern [43,44] thus disabling
them to transmit more subtle messages either normal or abnormal. This hy-
pothesis is related to the computational models, which shows that HFS may in-
duce high-frequency neuronal activity with zero variance, speaking in other words
makes an information lesion [45]

The in vivo and in vitro neurochemical studies on rats show that DBS enhance
or suppress production of neurotransmitters like GABA or glutamate [46–49]. The
research on human subjects suggests that the similar mechanisms revealed in rat
studies are responsible for amelioration of PD symptoms [37,50]. Findings of [51]
suggests that DBS activates the release of a neuromodulator6 called adenosine,
which inhibits neurons [42]. Pharmacological or genetic inactivation of adenosine
receptors in living mice prevented the therapeutic effect of DBS. Conversely, in-
trathalamic infusion of adenosine receptor agonists7 mimicked the beneficial effects
of DBS [51].

It is important to understand, how HFS effects various brain regions. While
the number of clinical trials comparative studies is small, the modelling approach
was done in Ref. [53]. In this work the authors used the extended version of
Rubin and Terman [44] model, for estimating possible STN, GPi (globus pallidus
pars interna) and GPe stimulations outcomes. Authors findings suggest that (a)
STN-DBS, (b) GPe-DBS, and (c) GPi-DBS could have three completely different
network effects: (a) a functional restoration, (b) a functional over-activation, and
(c) a functional inhibition of the thalamo-cortical relay activity, respectively [53].

The DBS studies should consider and current spread in brain structures ad-
jacent to the site of stimulation. It is not known precisely how far stimulation
spreads and how it varies with stimulation parameters like amplitude, pulse width
and frequency. The situation, when stimulation current spreads in nearby regions
and effects DBS outcome, may be especially true for STN, which is a small nu-
cleus surrounded by several major fibres tracts [52]. Numerous studies supported

6Neurotransmitter is a chemical messenger that communicates across a synapse, while neu-
romodulator is a chemical that is used for communication with more distant target cells [52].
Neuromodulator can be targetted to a gourp of neurons. Usually effect of neuromodulator is
long-lasting.

7An agonist is a chemical that binds to a receptor and activates the receptor to produce a
biological response.
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hypothesis, that the optimal stimulation site is located near the borders of STN,
where stimulation effects are likely to extend into the nearby regions [52,54–56].

In summary the possible HFS mechanism can be the following [57]: i) HFS jam
neural transmission through stimulated nuclei (information lesion); ii) HFS sta-
bilizes neurons membrane resting state, leaving just low amplitude subthreshold
oscillations; iii) Stimulation can blockade voltage gated ion channels or activate in-
hibitory terminals; iv) Stimulation decrease production of neurotransmiters, thus
inhibiting signal propagation to other neurons; v) Stimulation can inhibit pulse
propagation in the axon. The reader who are interested in more detailed lists
of possible HF DBS mechanisms, especially those which are related with neuro-
chemistry, may be interested in Refs. [42,52,57] and references therein. Finally it
must be pointed out that the successful operation of DBS probably is a combina-
tion of several mechanisms, thus ones task would be to figure out the size of each
mechanisms influence [57].

Stimulation waveform improvement. An interesting concept for the search
of alternative stimulation waveforms was proposed in Refs. [58, 59]. The authors
suggest to use genetic algorithms. Firstly, they introduce two measures for effi-
cacy of the control signal estimation: Rel and Cor. Rel – reliability, measures the
ratio at which the cell correctly responds to sensimotor inputs. If Rel equal to 1,
then it means that all sensimotor inputs have induced spikes in the cell and that
no spikes were excited while there were no sesnimotor inputs [44, 58]. Measure
Corr quantifies firing patterns through GPi cells’ auto- and cross- correlation (see
Ref. [58] for more detailed explanation). In the simplest case the cost function
required by the genetic algorithm can be chosen from Cor or Rel, but in real life
applications the energy consumption has to be taken into account. Therefore a
cost function that estimates the efficacy of stimulation can be written as the sum
of weighted measures

J = x+ wR, (1.27)

where x can be Rel or Cor, R is consumed energy and w is a weighting parameter.

The two strategies can be used for the signals form optimization. The first
strategy would be to use periodic signal, while genetic algorithm would select
optimal pulse duration, current amplitude and pulse period. The second way
would be to use stochastic signals. In this case genetic algorithm would produce
stimulation pulse probability distribution function, therefore neurons would be
stimulated by the randomly distributed pulse train.

The work of Feng et. al. [58] had shown that: i) The HF is not the only one
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periodic signal which can switch a network to the normal state; ii) Stochastic DBS
waveforms can be effective alternatives for periodic inputs; iii) Genetic algorithm
can find different stimulation signals with similarly “good” cost functions. Despite
the fact that Rel and Cor experimentally are hardly measured, this work shows
proper direction for further research as the application of genetic algorithm may
simplify the estimation of optimal DBS parameters. Furthermore, the existence
of multiple signals with similar cost functions can increase the number of patients
responsive for DBS treatment.

A different approach for the optimization of the stimulation signal is developed
in Ref. [60]. Here the authors rely on a detailed knowledge of the systems model
and optimize a stimulus, which lead the oscillators towards a small ball around an
unstable fixed point, in a smallest possible time. In the volume of a given ball the
concentration of the isochrons8 is very dense. This means that oscillators, which
are driven by stimulus at nearby positions in the ball around the fixed point,
may have huge difference in phases. Thus after transient processes oscillations
will be detuned. The successful results of a given phase randomization algorithm
was demonstrated on the network of reduced globally coupled Hodgkin–Huxley
neurons. Nevertheless, the use of the signal optimization requires the perfect
knowledge of the system’s model, therefore making this approach difficult to apply
for experimental setup. Moreover, the control severely distorts the system from
oscillatory mode.

Phase resetting and coordinated phase reset stimulations. Another
strategy was chosen in Refs. [61–66]. These works share two particular features.
The first feature is that, the stimulations consist of two stages. At the first stage,
the control signal drives (resets) oscillator’s phases to preferable state, thereby
ensuring that control would not be dependent on initial conditions. At the second
stage, the system is driven to the desynchronized state by a single pulse. Other
common feature is that stimulation does not suppress oscillatory behaviour. The
difference between methods lies in the first stage where the phase reset can be
achieved by single pulse [61–63], a HF pulse train [64] or by low-frequency pulse
train (soft phase resetting) [65,66].

These works were evolved further in Refs. [67, 68], where a coordinated phase
reset (CR) was introduced. The population of synchronized neurons is stimulated
with several electrodes placed at different sites. The stimuli at different electrodes
are phase shifted with respect to each other, so they entrain different synchronous
clusters of neurons (see Fig. 1.9). When the stimulation is switched off, the

8see Sec. 1.2
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System

Phase circle

Figure 1.9: An example of the CR setup with three electrodes, which acts with
harmonic signals. Due to stimulation oscillators adjust their phases to external
force phase and three synchronized clusters emerge.

clusters desynchronize. After some time the population synchronizes to the one-
cluster state, and the stimulation is switched on again (demand-control). This
method is easy to implement since it does not require any online measurements.
By numerical computations [9,69] and in vivo experiments on parkinsonian mon-
keys [70] it was shown that CR stimulation induces long-term plasticity changes,
what means that stimulation can change pathological networks connectivity to
normal state. However, the method requires repetitive stimulus administration
and cannot constantly maintain the desired unsynchronized state.

Control with feedback. The feedback methods are superior compared to
previously discussed because they can stabilize the desired unsynchronized state
and maintain it steadily with minimal stimulation intensities. Different algorithms
based on linear [71–77] and nonlinear [78–80] time-delayed feedback, linear feed-
back bandpass filters [81–83] and others [84–87] have been proposed. Some of
them will be discussed below.

One of the first feedback method adapted for synchronization control was
proposed in Refs. [71–73]. The authors considered a linear single-site delayed
feedback, that can be implemented with the single electrode, which performs
the mean field measurements and stimulation at the same time. Authors had
shown, on simplified and sophisticated oscillators, that by the tuning of feedback
strength and delay time it is possible to enhance or suppress collective oscillations.
The control signal is large only for short transient process, while at suppressed
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synchronization stage the control signal is of the order of the background noise [71],
this would help to extend the lifetime of pacemakers battery.

The ideas from linear delay feedback and coordinated reset stimulation [67,68]
were combined in Ref. [74–76]. Here delayed feedback signals are administered in
a spatially coordinated way via several stimulation sites using particularly selected
delays for each stimulation site, respectively. The method was numerically tested
on phase oscillators and physiologically realistic models. It was shown that the
given setup is robust against variations of the system parameters.

From the physical point of view, the population of neural oscillators can be
considered as an active medium. The main idea of the approach presented in
Ref. [81] is to couple the medium to an additional passive oscillator i.e., the
authors suggested to use the control signal generated from linear damped oscillator
driven by the measured signal. Another idea used in Ref. [81] is based on a quite
general consideration, that the mean field amplitude, at critical point, experience
Hopf bifurcation. It means that instead of studying a huge number of oscillator’s
equations it is possible to analyze only one – a normal form of the complex mean
field amplitude equation. Therefore efficacy of the proposed method was shown
on the amplitude equation, where the stability domains of control parameters
were estimated. The latter method was adapted for mean field all-to-all coupled
Bonhoeffer-van der Pol oscillators and synaptically all-to-all coupled Hindmarsh-
Rose neurons.

In order to avoid an overlap of stimulation and measurement processes a feed-
back algorithm with a spatially separated stimulation and registration setup has
been suggested in Ref. [87]. Here the existence of two interacting subpopula-
tions of oscillators were assumed. The measured mean field signal from the first
subpopulation was fed through proportional-integro-differential controller to the
second subpopulation. In the thermodynamic limit the authors estimated the gain
threshold above which the method successfully desynchronizes the both subpopu-
lations. Theoretical predictions were numerically tested and approved on globally
coupled van der Pol oscillators.





2. Effect of high-frequency stim-
ulation on pulse propagation in
axon

In this chapter, we analyze the effect of a homogeneous HF stimulation on
pulse propagation in a single axon. We consider two cases – unmyelinated and
myelinated axons. As a basis for an axon model we chose the FitzHugh-Nagumo
(FHN) equations [6,7] and show that for sufficiently large amplitudes of HF stim-
ulation the pulses cannot propagate in the axon. Seeking an analytical results
we first apply an averaging method [88] and separate the neuron dynamics into
slow and fast components. As a result we derive averaged equations for the slow
component that do not contain a high-frequency term. Then we analyze the trav-
elling waves in the averaged system via an asymptotic pulse construction [89, 90]
method. Such an approach allow us to obtain the dependence of the parameters
of the travelling pulse on the amplitude of HF stimulation current in an analytical
form. Also the validity of the results is tested by the numerical simulations.

This chapter is organized as follows. In Sec. 2.1 the general statements about
averaging method is presented. Further, this method is adopted for unmyelinated
axon in Sec. 2.2 and for myelinated axon in Sec. 2.3. Section 2.2 is constituted
from Sec. 2.2.1, where averaged equations for the continuous case are derived,
Sec. 2.2.2, which is devoted to analytical and numerical analysis of travelling
pulse solutions of the averaged system and in Sec. 2.2.3, we justify the results of
travelling pulse solutions by numerical experiments performed with the original
FHN model and averaged equations.

For discrete case an asymptotic method for constructing pulse solutions of
the averaged equations is described in Sec. 2.3.1. Section 2.3.2 is devoted to the
analysis of pulse characteristics in the dependence of the stimulation parameter.
In Sec. 2.3.3, we confirm our theoretical findings by direct numerical simulations
of the original system and consider an influence of noise.
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The chapter is finished with the summary presented in Sec. 2.4.

2.1 Method of averaging

Lets consider an ordinary differential equation

ẋ(t) = εf(x(t), t, ε), (2.1)

where x(t) is a n dimensional vector, ε > 0 is a small parameter, and the vector
function f(x, t, ε) periodically depends on time t, i.e. f(x, t + T, ε) = f(x, t, ε).
The system of differential equations, which explicitly depends on time t is called
a non-autonomous. Usually this type of equations is difficult to analyze. Let’s
say that we want to find the solution x(t) of Eqs. (2.1) with the initial condition
x(0) = x0. One would be interested in a simplification of the problem by finding
an autonomous system, whose solution would approximate the solution of the
original system.

From the first sight it seems that due to the small parameter ε, the approxima-
tion of Eqs. (2.1) solutions can be constructed by regular perturbation methods.
Such an approximation would be valid just in the time interval t ∈ [0, L], with
L of the order of 1. If we are interested in the time scales as long as t ∼ 1/ε, it
is necessary to use the singular perturbation methods. One of such methods is
based on the averaging theorem [88].

The averaging theorem states that solution of

ż(t) = εf̄(z(t)), (2.2)

with the averaged function

f̄(x) = 1
T

∫ T

0
f(x, s, 0)ds, (2.3)

and with the initial condition z(0) = x0 would differ from solution of Eqs. (2.1)
x(t) by the order of magnitude of ε for t ∼ 1/ε. More precisely, if ε is small
enough, then there exists an ε-independent constant C such that

‖x(t)− z(t)‖ ≤ Cε, (2.4)

for 0 ≤ εt ≤ L.
Here we present a trivial example, while more sophisticated cases will be dis-
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Figure 2.1: The comparison of numerical solutions of Eq. (2.5) and Eq. (2.6) with
initial condition x(0) = 2 and parameter ε = 0.01. Blue (thin) curve represent
solution of the original system x(t), red (bold) curve represent solution of the
averaged system z(t), colored area is between curves z(t)± ε

cussed in the next sections.
Example. Let’s consider a system

ẋ = ε (sin(−10x) + sin(t)) , (2.5)

when ε is small. The averaged function is f̄ = 1/(2π)
∫ 2π

0 [sin(−10x) + sin(t)] dt =
sin(−10x). Thus the averaged equation reads

ż = sin(−10z). (2.6)

The comparison of numerical solutions of Eq. (2.5) and Eq. (2.6) with the
initial condition x(0) = 2 and the parameter ε = 0.01 is shown in Fig. 2.1.

2.2 Unmyelinated axon

Let us consider the FitzHugh-Nagumo (FHN) unmyelinated axons model [6,7]
in the presence of homogeneously applied HFS current:

∂v

∂t
= f(v)− w +D

∂2v

∂x2 + a cos(ωt), (2.7a)
∂w

∂t
= ε(v + β − γw). (2.7b)

Here equation (2.7a) describes the dynamics of the membrane potential v, where
f(v) = v − v3/3 is the cubic source term of an ionic current, D is the diffusion
coefficient and parameters a and ω define respectively the amplitude and frequency
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of stimulation induced by DBS electrode. Equation (2.7b) defines the dynamics of
the slow recovery variable w with a positive rate parameter ε� 1. The parameters
β and γ are chosen such that without HFS (a = 0) the neuron is in an excitable
regime. In numerical simulations presented below, we fix β = 0.7 and γ = 0.8.
The diffusion coefficient D can be eliminated by rescaling the space variable x,
and thus in the following we take D = 1 without loss of generality.

2.2.1 Derivation of the averaged equations

Our aim is to simplify the non-autonomous system (2.7) for large frequencies1

ω � 1, when the period of HF oscillations is much less than the characteristic
time scales of the FHN axon. Using the small parameter ω−1 � 1, we seek to
eliminate the HF term a cos(ωt) and obtain an autonomous system, the solutions
of which approximate the original system. First, we change the variables of the
system (2.7) by using the substitution

v = V + A sin(ωt), (2.8a)

w = W, (2.8b)

with
A = a/ω (2.9)

called stimulation intensity2 and derive the following equations for the new vari-
ables V and W :

∂V

∂t
= f [V + A sin(ωt)]−W + ∂2V

∂x2 , (2.10a)
∂W

∂t
= ε[V + A sin(ωt) + β − γW ]. (2.10b)

For A = 0 and a = 0, the systems (2.10) and (2.7) coincide and have identical
solutions. Let us denote these solutions as V 0(t) = v0(t) and W 0(t) = w0(t),
where by zero superscript we mean that the corresponding parameters A or a
are zeros. Our aim is to obtain an approximate solution of the system (2.10)

1Note that FHN equations is dimensionless. The characteristic time of FHN potential variable
is equal to one, therefore the comparison of the dimensionless stimulation frequency ω with 1
is valid. In the realistic neuron models the stimulation period 2π/ω should be compared with
characteristic time scale T0 of the neuron in the absence of stimulation. In that case a small
dimensionless parameter is 2πω−1/T0 � 1.

2In the study of the realistic neuron models we would have a dimensional stimulation intensity
A = a/(ωC), where C is membrane capacity and A has a dimension of millivolts. In this case
the dimensionless parameter is a/(ωCU0) ∝ 1, where U0 is a characteristic action potential of
neuron.
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for A 6= 0. If we fix the amplitude a of HFS and increase the frequency ω,
the parameter A varies as O(ω−1). In this case, an approximate solution of the
system (2.10) can be obtained by the regular perturbation theory and presented
in the form: V (t) = v0(t) +O(ω−1), W (t) = w0(t) +O(ω−1). Due to the relation
(2.8) an approximate solution of the original system (2.7) has the same form:
v(t) = v0(t) + O(ω−1), w(t) = w0(t) + O(ω−1). We see that for any fixed a

and ω → ∞ the effect of HFS on the system vanishes, since v(t) → v0(t) and
w(t)→ w0(t).

In order to get an appreciable effect from the HFS for large ω, the parameter
A must not vanish for ω →∞. This can be achieved if with the increase of ω, the
amplitude a will be increased proportionally as well, a ∝ ω. In other words, we
have to assume A = O(1) and a = O(ω). These assumptions lead to a non-trivial
perturbation theory. By rescaling the time variable t = ωτ (here τ is the “fast”
time) the system (2.10) can be transformed to the standard form of equations
discussed in the method of averaging [88]:

∂V

∂τ
= ω−1{f [V + A sin(τ)]−W + ∂2V

∂x2 }, (2.11a)
∂W

∂τ
= ω−1ε[V + A sin(τ) + β − γW ]. (2.11b)

Due to the small parameter ω−1 � 1 the variables V and W vary slowly while the
periodic functions in the right hand side oscillate fast. According to the method
of averaging [88] an approximate solution of the system (2.11) can be obtained by
averaging the r.h.s. of the system over fast oscillations. Specifically, let us denote
the variables of the averaged system as (v̄, w̄). They satisfy the equations:

dv̄

dτ
= 1

2πω

∫ 2π

0
{f [v̄ + A sin(ϑ)]− w̄ + ∂2v̄

∂x2}dϑ, (2.12a)
dw̄n
dτ

= ε

2πω

∫ 2π

0
[v̄n + A sin(ϑ) + β − γw̄n]dϑ. (2.12b)

The method of averaging states that the averaged system (2.12) approximates the
solutions of the system (2.11) with the accuracy O(ω−1), i.e., V = v̄+O(ω−1) and
W = w̄ +O(ω−1).

After calculating the integrals and coming back to the original time scale
(over-dot denotes differentiation with respect to the original time t), the averaged
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system (2.12) simplifies to

˙̄v = f̄(v̄)− w̄ + ∂2v̄

∂x2 , (2.13a)
˙̄w = ε(v̄ + β − γw̄), (2.13b)

where f̄(v̄) = (1 − A2/2)v̄ − v̄3/3. Formally, these equations are similar to the
original system (2.7) (for a = 0 they are identical), but the HFS term a cos(ωt)
is eliminated in (2.13). The dependence of the averaged system (2.13) on the
HFS appears through the modification of the coefficient at the variable v̄ in the
function f̄(v̄). As a result the nullcline3 of this equation becomes dependent on
the stimulation parameter A. In Fig. 2.2 (a) there are shown nullclines (blue/thin
lines) for A = 0 together with vector field and two trajectories (red/bold lines),
which starts at different sides of the ˙̄v = 0 nullcline and ends at the rest point.

Due to configuration of the vector field, the neuron can generate a spike only
when a perturbation of the membrane potential exceeds threshold value ∆. This
threshold is called excitability. A mathematical expression for ∆ calculation will
be presented in the following section.

The nullclines for different values ofA are shown in Fig. 2.2 (b), while Fig. 2.2 (c)
shows the dependence of the excitability parameter ∆ on A. We see that the in-
crease of the stimulation parameter A reduces the excitability of the neuron, since
for sufficiently large A the parameter ∆ increases drastically with the increase of
A. Thus we can expect the large stimulation intensities to block the propagation
of pulses. In the next section, we derive the precise criterion for such a conduction
block phenomenon.

Finally, the solution of the original nonautonomous system (2.7) can be pre-
sented as a sum of the solution of the averaged (autonomous) system (2.13) that
describes the slow motion and the high-frequency term:

v = v̄ + A sin(ωt) +O(ω−1), (2.14a)

w = w̄ +O(ω−1). (2.14b)

We stress that the averaged Eqs. (2.13) depend only on the parameter A that
is equal to the ratio of the amplitude to the frequency of HFS. Thus this ratio
completely defines the effect of HFS on the averaged system’s dynamics. For
example, the effect of HFS is the same if we fix the amplitude a and double the

3The set of the points in phase plane, where one of the variables change rate becomes zero
or in other words if we have ODE system ẋi(t) = fi(x) for i = 1, .., N , then the curves defined
by fi(x) = 0 are called nullclines. Intersection of all nullclines shows stationary points.
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Figure 2.2: The system’s (2.13): (a) Nullclines (blue/thin lines) with turned off
stimulation A = 0 together with vector field and two trajectories (red/bold lines);
(b) Nullclines form dependence on different stimulation parameters A; (c) Ex-
citability parameter dependence on stimulation intensity A.

frequency ω or fix the frequency ω and halve the amplitude a. Note that the
approximation (2.14) is valid for any fixed A including the small values of this
parameter, however, as noted above, the effect of HFS vanishes for A→ 0.

2.2.2 Traveling pulse solutions of the averaged system

To study travelling waves, we first place the system of equations (2.13) in a
reference of a traveling coordinate frame. We define the traveling wave coordinate
ξ = x − ct, where c > 0 is the wave speed, yet to be determined. Then the
partial differential equations (2.13) for the stationary traveling waves become the
ordinary differential equations:

v̄ξ = ū, (2.15a)

ūξ = −v̄(1− A2

2 ) + v̄3

3 + w̄ − cū, (2.15b)

w̄ξ = −ε
c
(v̄ + β − γw̄). (2.15c)
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Here the subscript ξ denotes the derivative with respect to the traveling wave
coordinate ξ and an auxiliary variable ū ≡ v̄ξ is introduced to write the system as
first order differential equations. This system has the only fixed point (V0, U0,W0)
with the coordinates U0 = 0, W0 = (V0 + β)/γ and V0 being the resting potential
of the neuron that satisfies the real value solution of the cubic equation

V 3
0
3 − V0

(
1− 1

γ
− A2

2

)
+ β

γ
= 0. (2.16)

The traveling pulse solutions are defined by homoclinic orbits of system (2.15).
Such orbits begin and end at the fixed point of the system. For further analysis
it is convenient to shift the origin of the coordinate system of equations (2.15)
to the fixed point. Then the equations for the deviations from the fixed point
(δv, δu, δw) = (v̄ − V0, ū− U0, w̄ −W0) read:

δvξ = δu, (2.17a)

δuξ = −F (δv) + δw − cδu, (2.17b)

δwξ = −(δv − γδw)ε/c. (2.17c)

where F (δv) = (1 − A2/2 − V 2
0 )δv − V0δv

2 − δv3/3 is a cubic polynomial func-
tion. This polynomial has three real-valued roots one of which is equal to zero.
Therefore, the polynomial F (δv) can be factorized as

F (δv) = −δv(δv − V1)(δv − V2)/3, (2.18)

where the two other roots V1 and V2 of the polynomial are positive, satisfy V2 ≤ V1

and can be simply determined from a quadratic equation

V1,2 = 1
2

(
−3V0 ±

√
12− 6A2 − 3V 2

0

)
. (2.19)

Note that the middle root V2 of the polynomial (2.18) has a clear physical meaning.
It defines an excitability threshold ∆ of the neuron.

(I) Traveling pulses in a singular limit ε→ 0

To find an approximate analytical expressions for the traveling pulse one can
use perturbation methods exploiting the different time scales of the system. In
the limit of small parameter ε → 0, the traveling pulse can be constructed with
the help of the geometrical singular perturbation theory [89,90]. The phase space
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Figure 2.3: (a) Phase space sketch of stable (S) and unstable (U) homoclinic
trajectories of system (2.17) in a singular perturbation limit ε = 0. (b) Voltage
pulse of the stable (S) homoclinic orbit vs. traveling wave coordinate ξ for small
ε > 0. ∆vl and ∆vt denote the heights of the leading and trailing edges while
LO and LU mark respectively the lengths of pulse segments corresponding to the
overshoot and undershoot

sketch of homoclinic orbits for system (2.17) in the singular limit ε = 0 is presented
in Fig. 2.3 (a). There are two homoclinic orbits marked by letters U and S. The
first orbit lies completely in the plane δw = 0 and describes a pulse with the
zero velocity, which is unstable [91], and hence is not interesting from a physical
point of view. The second orbit marked by letter S represents a traveling pulse,
which is of interest for further analysis, since it is stable [92]. In Fig. 2.3 (b), a
voltage pulse sketch of this orbit is shown in the traveling coordinate frame for
small ε > 0. Going backward in ξ or forward in time this pulse consists of four
segments [89, 90]: (i) The leading edge that corresponds to a fast dynamics in
the plane δw = 0 of the phase space of system (2.17) [cf. Fig. 2.3 (a)]; (ii) A
slow relaxation from δw = 0 to a new value δw = W̃ = const at the conditions
δu = 0 and δuξ = 0; (iii) The trailing edge that corresponds to a fast dynamics
in the plane δw = W̃ ; (iv) The slow relaxation from δw = W̃ back to zero at
the conditions δu = 0 and δuξ = 0. Below we describe the governing equations
for each segment of the homoclinic trajectory in more details and derive the main
parameters of the traveling pulse.

(i) The leading edge. This segment of the homoclinic trajectory lies in the plane
δw = 0 and the dynamics of fast variables δv and δu is governed by equations
(2.17a) and (2.17b) that can be presented in the form

δvξ = δu, (2.20a)

δuξ = −F (δv)− cδu (2.20b)

The leading edge is defined by heteroclinic trajectory of the system (2.20),
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which connects its fix points (0, 0) and (V1, 0) in the phase plane (δv, δu). Such a
trajectory exists when the speed c satisfies (cf., for example, Ref. [4], p. 273):

c =
√

1/6 (V1 − 2V2). (2.21)

Although here we have determined the speed of the leading edge, Eq. (2.21) defines
the speed of the whole pulse, since the speed of all segments of the stable traveling
pulse must be the same. The dependence of the speed c on the stimulation
parameter A can be defined analytically in a parametric form. For this purpose
we choose the resting potential V0 as an independent, variable parameter. Then
the dependence of A on V0 can be obtained from (2.16)

A(V0) = [2(1− 1/γ − V 2
0 /3− β/γV0)]1/2. (2.22)

The speed c in Eq. (2.21) is expressed through variables V1 and V2 whose de-
pendence on the parameter V0 is determined by Eq. (2.19). Thus the parametric
dependence of the speed on the stimulation parameter [c = c(V0), A = A(V0)] is
defined by Eqs. (2.19), (2.21) and (2.22). This dependence is depicted in Fig. 2.4.
We see that the speed of traveling pulse decreases with the increase of stimulation
intensity and turns to zero at a critical value A = A∗ defined by

A∗ =
√

2(1− β2/3). (2.23)

The zero speed is attained at the resting potential V0 = −β. Equation (2.23) de-
fines a threshold stimulation intensity for existence of traveling pulse. For A > A∗,
the traveling pulse solution does not exist and thus the pulses cannot propagate
in the axon if the amplitude a of HFS exceeds the critical value a∗ = ωA∗, which
is proportional to the frequency of HFS.

The hight ∆vl of the leading edge [cf. Fig. 2.3 (b)] is defined as ∆vl = V1.
Its parametrical dependence on the stimulation parameter A is determined by
equations (2.19) and (2.22) and is shown in Fig. 2.4. The hight ∆vl decreases
with the increase of the stimulation parameter A, however, unlike the velocity it
does not vanish when the stimulation parameter reaches the critical value A∗.

(ii) Slow relaxation from δw = 0 to δw = W̃ . Here one can neglect the
variation of the fast variables in system (2.17), taking δvξ = 0 and δuξ = 0. It
follows that δu = 0 and δw is related with δv by

δw = F (δv) ≡ −δv(δv − V1)(δv − V2)/3. (2.24)
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Figure 2.4: Pulse speed c and heights of leading ∆vl and trailing ∆vt edges
(∆vl = ∆vt) as functions of the stimulation parameter A.

The dynamics of the slow variable δw is determined by Eq. (2.17c) with the initial
condition δw = 0 and relationship between the variables δw and δv defined by
Eq. (2.24). We are interested in the length LO of this segment (pulse overshoot)
[cf. Fig. 2.3 (b)], which can be defined as

LO = c

ε

∫ 0

W̃

dδw

γδw − δv
. (2.25)

Note that the value W̃ is jet unknown; it will be determined in the next segment
of the homoclinic trajectory.

(iii) The trailing edge. This segment of trajectory lies in the plane δw = W̃ .
Here the dynamics of fast variables δv and δu is governed by (2.17a) and (2.17b)
that can be presented in the form

δvξ = δu, (2.26a)

δuξ = Φ(δv, W̃ )− cδu, (2.26b)

where
Φ(δv, W̃ ) = δv(δv − V1)(δv − V2)/3 + W̃ , (2.27)

is a third order polynomial with respect to the variable δv. Denote the roots of
this polynomial as δṽ1 < δṽ2 < δṽ3 and rewrite equation (2.27) in the form:

Φ(δv, W̃ ) = (δv − Ṽ1)(δv − Ṽ2)(δv − Ṽ3)/3. (2.28)

The trailing edge is defined by heteroclinic trajectory of the system (2.26),
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which connects its fix points (Ṽ3, 0) and (Ṽ1, 0) in the phase plane (δv, δu). Such
a trajectory exists when the speed c [which must coincide with the speed of the
leading edge defined by (2.21)] satisfies

c =
√

1/6 (2Ṽ2 − Ṽ3 − Ṽ1). (2.29)

Comparing (2.28) with (2.27) and (2.29) with (2.21) we obtain the relationship
between the coordinates of fixed points of systems (2.26) and (2.20)

Ṽ1 = (2V2 − V1)/3, (2.30a)

Ṽ2 = (2V1 − V2)/3, (2.30b)

Ṽ3 = 2(V1 + V2)/3 (2.30c)

and define the value of unknown parameter W̃ introduced previously:

W̃ = −Ṽ1Ṽ2Ṽ3/3. (2.31)

The hight ∆vt of the trailing edge [cf. Fig. 2.3 (b)] is defined as ∆vt = Ṽ3− Ṽ1.
From equations (2.30a) and (2.30c) it is easy to see that it coincides with the
hight of the leading edge, ∆vt = V1 = ∆vl.

Taking into account the above results, equation (2.25) defining the length of
the pulse overshoot can be rewritten in a form convenient for numerical estimation,

LO = c

ε

∫ V1

Ṽ3

F ′(δv)dδv
γF (δv)− δv , (2.32)

where F ′(δv) is the derivative of function F (δv). Here we have replaced the
integration variable δw by δv taking into account the relationship (2.24).

(iv) Slow relaxation from δw = W̃ back to δw = 0. Here as well as in the
segment (ii) the variation of the fast variables is neglected and dynamics of the
slow variable δw is determined by (2.17c) with the initial condition δw = W̃ .
Taking into account the relationship (2.24) between the variables δw and δv the
length LU of this segment (pulse undershoot) [cf. Fig. 2.3 (b)] is defined by
integral:

LU = c

ε

∫ Ṽ1

0

F ′(δv)dδv
γF (δv)− δv . (2.33)

The lengths LO and LU are shown in Fig. 2.5 as functions of the stimula-
tion parameter A. Both lengths decrease with the increase of A and vanish when
the stimulation parameter reaches the threshold value A∗. Thus the mechanism of
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Figure 2.5: The lengths of pulse overshoot (LO) and undershoot (LU) multiplied
by parameter ε vs. the stimulation parameter A.

HFS responsible for the suppression of pulse propagation consists in pulse narrow-
ing. With the increase of HFS intensity the pulse shrinks and its width becomes
zero when A = A∗.

(II) Traveling pulses for finite ε > 0

The singular perturbation theory has allowed us to determine analytically
many important characteristics of the traveling pulse, including the threshold
value A∗ of the stimulation parameter for the existence of traveling pulse solution.
In fact, the threshold A∗ depends on the parameter ε. For finite ε > 0, the
analytical approach fails and the homoclinic trajectories of system (2.17) can be
determined only numerically. In Fig. 2.6 we show the results of such an analysis.
The dependence of the pulse speed on the stimulation parameter A for different
values of ε is presented in Fig. 2.6 (a). For ε ≥ 0.008, these curves have been
constructed with the help of the MatCont package [93] and for smaller ε ≤ 0.0008,
the shooting method [94] has been used. Each curve consists of two branches. The
upper branch represents the speed of the stable pulse [91], while the lower branch
corresponds to the unstable pulse [92]. The point where the two branches coincide
defines the threshold parameter A∗. At this point, the homoclinic trajectories
corresponding to the fast (stable) and slow (unstable) pulses collide and disappear,
such that for A > A∗ the traveling pulse solutions do not exist. Note, that the
curves in Fig. 2.6 (a) approach asymptotically the singular perturbation solution
(bold curve) when ε → 0. This justifies the analytical results obtained in the
previous section.



38 2. Effect of high-frequency stimulation on pulse propagation in axon

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) (b)

Figure 2.6: (a) The speed c of traveling pulses as a function of the stimulation
parameter A for different values of ε. The bold curves show the speed dependence
analytically determined in the singular perturbation limit ε = 0. (b) The threshold
A∗ of the stimulation parameter vs. ε.

The dependence of the threshold A∗ of the stimulation parameter on ε is shown
in Fig. 2.6 (b). Larger values of the parameter ε require less stimulation intensity
A∗ to suppress the pulse. This is because the pulse length of the free (A = 0)
system depends on the parameter ε. The increase of the parameter ε have the
same effect as the increase of the stimulation intensity A; they both narrow the
pulse [cf. (2.32) and (2.33)]. Therefore, for larger ε less HFS intensity is needed
to zero the pulse length and suppress its propagation.

2.2.3 Numerical experiments

To justify the results of stationary traveling pulse solutions obtained in the
previous section, here we perform numerical experiments with the original sys-
tem (2.7) of partial differential equations (PDE) as well as with the averaged
PDEs (2.13). First we verify the validity of the averaged equations. In Fig. 2.7,
we show the dynamics of the neuron potential in the middle of the sample at
different values of the stimulation parameter A. The thin (blue) curves represent
the solutions of the original system (2.7) while the bold (red) curves show the
solutions of the averaged Eqs. (2.13). We see that these solutions are in good
agreement. The PDEs have been solved with the periodic boundary conditions
taking the length of the sample equal to L = 400 and ∆x = 0.5 discretization
step. The initial conditions are chosen in such a way, that for a given stimulation
intensity A, they coincide with the stable pulse profile. As predicted by singular
perturbation theory and numerical analysis of stationary pulses for finite ε, the in-
crease of the stimulation intensity leads to the decrease of both the pulse velocity
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Figure 2.7: The dynamics of the neuron potential at the middle of the sample
for fixed ε = 0.008 and ω = 50, and different values of the HFS amplitudes: (a)
a = 0 (A = 0); (b) a = 30 (A = 0.6); (c) a = 50 (A = 1); (d) a = 56.5 (A = 1.13).
The thin (blue) curves show the solutions of the original system (2.7) and the
bold (red) curves represent the solutions of the averaged system (2.13).

and the pulse length [cf. Figs. 2.7 (a)-(c)]. The propagating pulse disappears for
A > A∗ ≈ 1.13 and only small amplitude subthreshold high-frequency oscillations
remain [cf. Fig. 2.7 (d)].

In Fig. 2.8, we demonstrate the space-time evolution of the averaged sys-
tem (2.13) under initial excitation of the middle of the neuron. The excitation is
performed with a DC current I = 2 applied to the small space interval ∆x = 4 in
the center of the sample for the initial time interval ∆t = 1; then the DC current
is off. In the absence of HFS, the DC stimulus initiates two pulses traveling in
opposite directions [cf. Fig. 2.8 (a)]. An influence of HFS to the pulse propagation
is demonstrated in Figs. 2.8 (b)-(d). When the HFS intensity is increased, the
propagating pulses shrink and slow down. The pulses die out when the stimula-
tion parameter exceeds the threshold value A∗ ≈ 1.13 [cf. Fig. 2.8 (d)]. Again,
this confirms the main conclusions of the previous section.

2.3 Myelinated axon

In this section we consider a one-dimensional chain of coupled excitable el-
ements governed by the FHN equations in the presence of high-frequency field:
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Figure 2.8: Space-time evolution of the averaged system (2.13) under initial
excitation of the center of the neuron with the DC current I = 2 applied for a
short time interval ∆t = 1. The parameter ε is the same as in Fig. 2.7 and the
HFS amplitudes are: (a) A = 0; (b) A = 0.6; (c) A = 1.0; (d) A = 1.13.

v̇n = f(vn)− wn +D(vn+1 − 2vn + vn−1) + a cos(ωt), (2.34a)

ẇn = ε(vn + β − γwn). (2.34b)

These equations are discrete case of the (2.7) equations and represents a myeli-
nated axon. As we further will see, discreteness brings new features to the system
and its stimulation effects. All variables has the same meaning as in (2.7) case: vn
denotes the membrane potential and wn is the recovery variable of the nth node,
f(vn) = vn − v3

n/3 is the cubic source term of an ionic current, and the discrete
diffusive term with the coupling strength D is proportional to the difference in
internodal currents through a given site. The last term in Eq. (2.34a) describes
the current induced by HFS, where a and ω are the amplitude and the frequency,
respectively. The constant ε > 0 is the ratio between the characteristic time scales
of vn and wn variables. As usual, we assume ε � 1, that is, fast excitation and
slow recovery. In this section, numerical simulations are performed for γ = 0.8
and β = 0.7, what determines excitable state of the neuron.

Similar to the continuous case, the solution of (2.34) can be approximated as
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a sum of averaged equations solution and high frequency term

vn(t) ≈ v̄n(t) + A sin(ωt), (2.35a)

wn(t) ≈ w̄n(t). (2.35b)

Where averaged equations are

˙̄vn = f̄(v̄n)− w̄n +D(v̄n+1 − 2v̄n + v̄n−1), (2.36a)
˙̄wn = ε(v̄n + β − γw̄n). (2.36b)

Again, the averaging modified ionic current function f(vn) to f̄(v̄n) = (1 −
A2/2)v̄n − v̄3

n/3, where the parameter A is equal to the ratio of the amplitude
to the frequency of stimulating current, A = a/ω. The effect of stimulation to
nullclines can be seen in Fig. 2.2 (b).

2.3.1 Asymptotic construction of pulse solutions

The method of averaging has allowed us to reduce the original problem to
the analysis of averaged Eqs. (2.36). These equations are autonomous, and we
can utilize theoretical approaches developed for the free discrete FHN system.
In the following, we are interested in estimating characteristic parameters of the
propagating pulses in the dependence of the stimulation parameter A and finding
a criterion for the propagation failure. Note that if the averaged Eqs. (2.36)
have the solution with a propagating pulse then in the original system this pulse
will propagate against the background of homogeneous high-frequency oscillations
described by the term A sin(ωt) in Eq. (2.35a). A comparison of solutions of the
original Eqs. (2.34) and averaged system (2.36) is demonstrated in Fig. 2.9 (a).

An asymptotic construction of pulse solutions for the free discrete FHN equa-
tion in the limit ε → 0 is described in Ref. [95]. The main idea is similar to the
Keener’s asymptotic idea [90] developed for the FHN model with spatially con-
tinuous diffusion also used in previous section. We combine these ideas with the
Erneux’s and Nicolis’ [96] perturbation theory developed for the discrete Nagumo
model to study pulse propagation in the averaged system (2.36).

A snapshot of a typical propagating pulse computed from the system (2.36) is
shown in Fig. 2.9(b). As in continuous case the pulse profile can be subdivided
into four segments. There are two segments in which v̄n vary smoothly with n,
separated by two moving sharp fronts. We refer to the segment between the fronts
as the pulse overshoot and to the segment following the trailing edge as the pulse
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Figure 2.9: (a) Comparison of solutions of the original Eqs. (2.34) and averaged
Eqs. (2.36). The dynamics of the membrane potential for the 70th node of axon
obtained from the original and averaged systems are shown by blue (dark grey)
(the HF oscillations are converged) and red (light grey) curves, respectively. (b)
Snapshot of typical pulse propagating from left to right computed from the aver-
aged system (2.36). The membrane potential and recovery variables are marked
by the dots (red) and crosses (blue), respectively. The parameters are: a = 5,
ω = 10, A = 0.5, D = 0.015 and ε = 0.0008.

undershoot. In the latter two segments, we may set v̇n = 0, D = 0 and obtain
a description of slow recovery. Wave fronts are smooth solutions v̄n(t) = v̄(z),
w̄n(t) = w̄(z) of the continuous variable z = n − ct, where c is the pulse speed.
The recovery variable w̄ is constant at each side of the front, and the excitation
variable is governed by the discrete Nagumo Eq. (2.36a). A stable pulse is obtained
when the velocity of the leading edge is equal to the velocity of the trailing edge.

For further analysis, we rewrite Eqs. (2.36) in a more convenient form. For
D = 0, these equations have the only fixed point (v̄n, w̄n) = (V0,W0), where
W0 = (V0 + β)/γ and V0 is the resting potential of the neuron that satisfies the
real value solution of the cubic equation (2.16). We define the deviations from
the fixed point as (δvn, δwn)=(v̄n − V0, w̄n −W0) and rewrite Eqs. (2.36) for these
deviations

δv̇n = F (δvn)− δwn +D(δvn+1 − 2δvn + δvn−1), (2.37a)

δẇn = ε(δvn − γδwn), (2.37b)

where F (δvn) is a cubic polynomial function defined by Eq. (2.24).
We can now discuss different segments in the asymptotic description (ε→ 0)

of a pulse as follows (cf. [95]).
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(i) The leading edge. Here the membrane potential δvn varies rapidly, while
the recovery variable is fixed at δwn = 0, so that Eqs. (2.37) reduce to

δv̇n = F (δvn) +D(δvn+1 − 2δvn + δvn−1). (2.38)

This equation admits a solution in the form of a wave front moving towards the
right δvn(t) = δv(n − ct) with speed c measured in nodes per unit time t. The
monotone decreasing profile δv(z) satisfies the boundary conditions δv(−∞) = V1

and δv(∞) = 0. Below we will use Eq. (2.38) to derive the criterion for propagation
failure and to estimate the pulse speed for small and large coupling strength D.

(ii) The pulse overshoot. This is a segment between the fronts in which the
variation of the fast variable δvn can be neglected. Taking D(δvn+1 − 2δvn +
δvn−1) = 0 and δv̇n = 0 in Eq. (2.37a) we obtain the relationship between δvn and
δwn

δwn = F (δvn). (2.39)

The inverse relationship δvn = R(δwn) can be obtained by solving the cubic
equation (2.39) with respect to δvn. We numerate the roots of this equation in
increasing order as R1(δwn) < R2(δwn) < R3(δwn). In this stage membrane
potential is in the neighborhood of V1, what corresponds to the branch R3(δwn)
of Eq. (2.39) solution. Thus the slow recovery variable obeys Eq. (2.37b) with
δvn = R3(δwn):

δẇn = ε[R3(δwn)− γδwn]. (2.40)

This segment contains a finite number of nodes. On its far right δwn = 0. As
we move towards the left, δwn increases slowly until it reaches a certain value
W̃ corresponding to that in the trailing wave front. The value W̃ is determined
from the condition that the leading and trailing edges move with the same speed.
Equations (2.39) and (2.40) will be used below to estimate the length of pulse
overshoot.

(iii) The trailing edge. Here the recovery variable is fixed at δwn = W̃ , while
dynamics of the variable δvn is governed by the equation:

δv̇n = F̃ (δvn) +D(δvn+1 − 2δvn + δvn−1), (2.41)

where
F̃ (δvn) = F (δvn)− W̃ (2.42)

is a cubic polynomial with respect to δvn whose roots we denote by R̃1 < R̃2 < R̃3.
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We are interested in solution of Eq. (2.41) in the form of a moving trailing front
δvn(t) = δv(n − ct) with the boundary conditions δv(−∞) = R̃1 and δv(∞) =
R̃3. Now the speed c of the front depends on the parameter W̃ . To obtain
the appropriate value of this parameter the dependence c = c(W̃ ) has to be
numerically estimated from Eq. (2.41). Then the correct value W̃ is determined
from the requirement c(W̃ ) = c(0), which means that the leading and trailing
edges move with the same speed. As mentioned above, the value W̃ is needed to
estimate the pulse length.

(iv) The pulse undershoot. This segment corresponds to the pulse tail. Here
the recovery variable obeys Eq. (2.37b) with δvn = R1(δwn):

δẇn = ε[R1(δwn)− γδwn], (2.43)

where R1(δwn) is the least root of Eq. (2.39). Equation (2.43) describes a slow
relaxation of δwn from the initial state δwn = δw̃ to the state δwn = 0. We will
use this equation to estimate the length of pulse undershoot.

2.3.2 Pulse characteristics and propagation failure as func-
tions of the stimulation parameter A

We are seeking to define the main characteristics of the pulse in the depen-
dence of the stimulation parameter A. We are also interested in the criterion
of propagation failure. There are two factors responsible for this phenomenon.
The first is inherent for discrete systems and may come into play if the coupling
strength D is too small and/or the excitability threshold V2 is too large. For
ε = 0, this factor can be analyzed based on the Nagumo Eq. (2.38). There exists
a critical value D = Dc below which the leading front fails to propagate [96, 97].
In this section part (I) we will establish the dependence of the critical coupling
Dc on the stimulation parameter A.

The second factor responsible for the propagation failure is related to the
finite value of ε, when the recovery is not sufficiently slow. This phenomenon also
occurs in the spatially continuous FHN system. The continuous system possesses
two pulses (one stable and other unstable), which coalesce at a certain critical
value of ε = εc and cease to exist for ε > εc (e.g. Sec. 2.2.2 ). In the discrete FHN
system, the propagation failure occurs due to the finite number of nodes inside
the pulse [95]. With the increase of ε, the length of the pulse decreases, and the
pulse ceases to exist when its length becomes less than the distance between the
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nodes. We will discuss this type of propagation failure in this section part (III).

(I) Propagation failure for ε = 0

First, we establish a criterion when the leading front (consequently, also the
pulse) cannot propagate in the system. For ε = 0, the leading front is governed
by the discrete Nagumo Eq. (2.38). This equation has been extensively studied
in the literature and various algorithms for finding approximate solutions have
been introduced. Here we extend the ideas of the perturbation theory proposed
in Ref. [96] and derive a criterion for the propagation failure in the dependence of
the stimulation parameter A. To simplify the analysis, we reduce the number of
parameters in Eq. (2.38) by the following substitutions: V2/V1 = q, 3D/V 2

1 = d,
V1t/3 = τ and δvn/V1 = un. Then Eq. (2.38) transforms to

dun/dτ = ψ(un) + d(un+1 − 2un + un−1), (2.44)

where
ψ(un) = −un(un − 1)(un − q). (2.45)

Equations (2.44) and (2.45) contain only two parameters, q and d. To use the ideas
of the perturbation theory [96], we assume that q is a small parameter compared
to 1. This assumption is satisfactory if the stimulation parameter A is not very
large. In this subsection, we are mainly interested in values of A ∈ (0, 1.2), then
q varies in the interval (0.12, 0.23).

To determine the conditions for a traveling front solution, we consider a set
of N + 2 elements described by Eqs. (2.44) for n = 1, . . . , N and the boundary
conditions for the first and last nodes as

u0 = 1, uN+1 = uN . (2.46)

The front solution joining two stable points un = 1 and un = 0 can be originated
by the initial condition: un = 0 for n = 1, . . . , N at t = 0. If there is no coupling
between the nodes (d = 0), the initial front remains pined for all times t > 0.
However, if we increase d to some critical value d = dc(q), the front starts to
propagate. The critical value dc can be estimated by the bifurcation analysis of
the steady-state solutions of Eqs. (2.44).

The idea of the bifurcation analysis can be demonstrated with the simple
example of a neuron consisting of only three elements. In this case N = 1 and we
have the only dynamic equation for u1: du1/dτ = ψ(u1) + d(1 − u1). For d = 0,



46 2. Effect of high-frequency stimulation on pulse propagation in axon

Figure 2.10: Dependence of function du1/dt = Ψ1 ≡ ψ(u1)+d(1−u1) on various
diffusion coefficients for neuron consisting of only three elements, i.e. N=1. Full
circles show stable points, empty – unstable, half-empty – saddle-node bifurcation
point.

this system has two stable fixed points u1 = 0 and u1 = 1 and one unstable fixed
point u1 = q (see Fig. 2.10). With the increase of d, the points u1 = 0 and u1 = q

approach each other and coalesce at the saddle-node bifurcation for some d = dc,
so that for d > dc the only stable fixed point u1 = 1 remains in the system. The
critical value dc can be determined from the equations: Ψ1 ≡ ψ(u1)+d(1−u1) = 0
and dΨ1/du1 = 0. Solving these equations we obtain dc = q2/4. This expression
has been derived in Ref. [96]; it is valid for a neuron with an arbitrary number of
nodes with accuracy O(q2). In the following we refine this expression by expanding
it with higher-order terms with respect to q.

To derive higher-order terms in the dependence dc = dc(q) we have to gener-
alize the above consideration for a neuron consisting of an arbitrary number of
nodes. When the number of nodes in a neuron is N + 2 the saddle-node bifurca-
tion initiating the front propagation takes place in an N dimensional phase space
defined by the state vector U = (u1, u2, . . . , uN). The minimal criterion for front
propagation would be that the fixed points, having coordinates (0, 0, . . . , 0) and
(q, 0, . . . , 0) at d = 0, coalesce at d = dc, what means that front at least would be
able travel from the zeroth to the first node. Coalescence of these points induce
saddle-node bifurcation, it would happen when the r.h.s. of Eqs. (2.44) and their
Jacobian vanish:

ψ(un) + d(un+1 − 2un + un−1) = 0, n = 1, . . . , N, (2.47)
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ψ′(u1)− 2d d 0 · · · 0 0
d ψ′(u2)− 2d d · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · d ψ′(uN)− d

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.48)

Equations (2.47) and (2.48) together with the boundary conditions (2.46) define
completely the conditions of the saddle-node bifurcation for arbitrary N .

For small q, these equations can be solved by expanding d = dc(q) and un(q)
in power series of the parameter q. The analysis of low-dimensional cases N = 1, 2
suggests that dc = O(q2) and un = O(qn). This motivates the following general
expansions:

dc =
∞∑
k=0

q2+kd(k), un =
∞∑
k=0

qn+ku(k)
n . (2.49)

Substituting Eqs. (2.49) into (2.47) and (2.48) and equating terms at different
powers of q one obtains the expansion coefficients d(k) and u(k)

n in an explicit form.
Performing this procedure up to third-order terms in the expansion of dc, we get:
d(0) = 1/4, d(1) = 1/8, d(2) = 7/64, u(0)

1 = 1/2, u(1)
1 = 1/8, u(2)

1 = 5/32, and
u

(0)
2 = 1/8. As a result we obtain the critical value of the coupling strength up to

terms proportional to q4:

dc = q2

4

(
1 + 1

2q + 7
16q

2
)

(2.50)

or in original variables:

Dc = V 2
2

12

[
1 + 1

2
V2

V1
+ 7

16

(
V2

V1

)2]
. (2.51)

Equation (2.51) together with Eqs. (2.16) and (2.19) gives an analytical depen-
dence of the critical coupling strength Dc on the stimulation parameter A. This
dependence is depicted in Fig. 2.11. The dashed curve shows this dependence es-
timated from the first-order term V 2

2 /12 in Eq. (2.51), while the solid curve takes
into account all three terms in expansion (2.51). The critical values of the coupling
strength obtained directly by numerical simulation of the Nagumo Eq. (2.38) are
shown by symbols. We see that the analytical formula (2.51) agrees well with the
numerical experiments.

An important property of the dependence Dc = Dc(A) is the presence of
a dip in a certain interval of A: with the increase of A the Dc first falls to a
minimal value D∗c = Dc(A∗) at A = A∗ and then increases for A > A∗. Such
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Figure 2.11: Critical coupling strength Dc as a function of the stimulation pa-
rameter A. Dashed curve represents an approximation with the only first term in
expansion (2.51), the solid curve takes into account all three terms in (2.51), and
asterisks show the results of direct numerical simulation of Eq. (2.38). The inset
shows the dependence of the excitability threshold V2 on A.

a dependence allows us to enhance the conductivity of a neuron by applying the
HFS of certain amplitudes. Indeed, if we take the value D of the coupling strength
from the interval [D∗c , Dc(0)], then the pulse cannot propagate without HFS, since
D < Dc(0). However, if we increase A so that its value ends up in the interval
A1 < A < A2 where Dc(A1) = Dc(A2) = D, then the propagation becomes
possible. For A > A2, the propagation will be suppressed again.

We emphasize that the effect of enhancement of pulse propagation by HFS is
an exclusive property of spatially discrete systems. This is because the difference
operator that describes the coupling between the nodes can be approximated by
the diffusion operator only in the limit D → ∞, whereas this effect takes place
only for small D, when D < Dc(0). For D > Dc(0), the HFS may cause only
suppression.

The mechanism of enhancement of pulse propagation can be explained as fol-
lows. If we omit higher-order terms in expansion (2.51), then we reveal that the
critical coupling strength Dc is proportional to the square of the neuron excitabil-
ity threshold, Dc ∝ V 2

2 . Therefore, the dip in the dependence of Dc on A is caused
by a similar dependence of the excitability threshold V2 on A. The dependence
V2 = V2(A) is shown in the inset of Fig. 2.11. We see that in a certain interval
of the stimulation parameter A, the HFS reduces the excitability threshold of
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excitable elements, and this enhances the pulse propagation. Similarly, the sup-
pression of pulse propagation for large A is explained by the sudden increase of
the excitability threshold V2(A) for A > A∗.

(II) The pulse speed

The speed of the pulse is determined by the discrete Nagumo Eq. (2.38) that
describes the motion of the leading front. Analytical expressions for the front
speed of the discrete Nagumo equation have been derived for two cases: (i) for
small coupling strength, when D is close to the critical value Dc [96] and (ii) for
large D, when the difference operator in the Nagumo equation can be approxi-
mated by the diffusion operator and a small correction term [4]. Here we utilize
these theoretical results in order to estimate the dependence of the front speed on
the stimulation parameter A.

For d close to dc, the front speed of the Nagumo system written in the form of
Eq. (2.44) has been derived in Ref. [96]. In the notations of Eq. (2.38) this reads:

c =

√
3(D −Dc)

V1
[
arctan

(
V2

√
3/(D −Dc)/6

)
+ π/2

] . (2.52)

For large D, the expression for the front speed can be found in Ref. [98]:

c = c0
√
D
[
1− τ1(c0)c2

0/2D
]
, (2.53)

where
c0 = (V1 − 2V2) /

√
6 (2.54)

and c0
√
D is the front speed in the spatially continuous case. The coefficient τ1(c0)

depends on the front profile and can be computed according to the algorithm
described in Ref. [98] (p. 279).

In Fig. 2.12, we show the dependence of the front speed on the stimulation
parameter A computed from Eqs. (2.52) and (2.53) for small and large values of
the coupling strength, respectively. We compare these analytical results with the
results of direct numerical simulation of Eq. (2.38). We see that the accuracy
of Eq. (2.52) is good in the regions of the parameter A, where the front speed
approaches zero, i.e close to the thresholds of the propagation failure, and the
accuracy declines beyond these regions. For large D, the discrete system can be
well approximated by the continues model, and Eq. (2.53) provides an accurate
estimate of the front speed for all A.
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D

A

Figure 2.12: Scaled front speed cD−1/2 as a function of the stimulation parameter
A for different values of the coupling strength D. The dashed and solid curves
represent analytical results obtained from Eqs. (2.52) and (2.53), respectively.
The symbols show the results of numerical simulation of Eq. (2.38).

(III) The pulse length and propagation failure for a finite ε

For the spatially discrete system, the durations of the pulse overshoot TO and
undershoot TU can be estimated in a similar manner as in the spatially continuous
case (cf. [95, 98]):

TO =
∫ W̄

0

dδwn
ε [R3(δwn)− γδwn] , (2.55)

TU =
∫ 0

W̄

dδwn
ε [R1(δwn)− γδwn] . (2.56)

Equations (2.55) and (2.56) follow from Eqs. (2.40) and (2.43), respectively. The
lengths of the pulse overshoot LO and undershoot LU measured in a number of
nodes per corresponding segment can be estimated by multiplying the above times
with the pulse speed:

LO = cTO = c

ε

∫ R̃3

V1

F
′(δvn)dδvn

δvn − γF (δvn) , (2.57)

LU = cTU = c

ε

∫ 0

R̃1

F
′(δvn)dδvn

δvn − γF (δvn) . (2.58)

Here the integral expressions are rewritten in a form convenient for numerical
estimation. The integration variable δwn is replaced by δvn taking into account
the relationship (2.39). The F ′(δvn) denotes the derivative of the function F (δvn).
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Note that the lengths LO and LU decrease as ε−1 with the increase of ε and the
pulse ceases to exist at some ε = εc when the shorter length LO falls below 1. This
condition defines a simple criterion for the pulse propagation failure at finite ε.

In Fig. 2.13 (a) and (b), we show the dependence of εLO on the stimulation pa-
rameter A for different D. The solid curves are obtained from Eq. (2.57), while the
symbols denote the results of direct numerical simulation of the averaged system
(2.36). In fact, the variable εLO provides an estimate for the critical value of the
parameter ε at which the pulse ceases to exist, since εLO = εc when LO = 1. For
large D [Fig. 2.13 (a)], the dependence of εc on A is monotonous and thus the HFS
can cause only suppression of pulse propagation. For small D [Fig. 2.13 (b)], the
non-monotonous dependence of εc on A makes possible both effects, the enhance-
ment and suppression of the propagation. Note that for large D, the Eq. (2.57)
approximates well the results of the averaged system (2.36), while for small D the
accuracy of Eq. (2.57) declines.

To verify the law of proportionality LO ∝ ε−1 anticipated by Eq. (2.57), in
Fig. 2.13 (c) we present the dependence LO on ε (for different values of A) in a
double logarithmic scale. Then this dependence should take the form of straight
lines. As is seen from the figure, the direct numerical simulations of the averaged
Eqs. (2.36) indeed support this law for sufficiently small values of ε.

2.3.3 Numerical simulations of the original system

In the previous section, we have shown that the asymptotic theory described
in Sec. 2.3.1 predicts rather well the properties of the averaged system (2.36)
provided the parameter ε is sufficiently small. We recall that the system (2.36)
has been derived from the original Eqs. (2.34) using the method of averaging. To
support the validity of this approximation, the main effects of HFS observed in the
averaged system (2.36) we now confirm by numerical simulations of the original
system (2.34).

In Fig. 2.14 we show the solutions of Eqs. (2.34), which demonstrate the effect
of enhanced pulse propagation under action of HFS. The value of the coupling
strength is chosen sufficiently small, D = 0.015, so that for ε = 0.0008 the pulse
cannot propagate in the free (A = 0) system. The simulations were performed
with the boundary conditions v0 = v1, and vN+1 = vN . The initial conditions
for all elements were chosen equal to the fixed point of the averaged equations at
the given stimulation intensity except for ten nodes in the middle of the sample,
where the potential variable was enlarged by 2. In the part (a) of Fig. 2.14 the
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(a) (b)

(c)

Figure 2.13: (a) and (b) The length of pulse overshoot multiplied by ε as a func-
tion of the stimulation parameter A for different values of the coupling strength
D. (c) The dependence of the length of pulse overshoot on ε for fixed D = 0.05
and different values of A. Solid curves represent estimations based on the formula
(2.57) while symbols show the results of direct numerical simulations of the aver-
aged system (2.36). The length of pulse in (a) and (b) has been estimated from
(2.36) for ε = 0.0008.

stimulation is off (A = 0) and the initial excitation of the middle nodes dies out,
while in the part (b) the HFS of amplitude A = 0.7 cancels the propagation
failure, and we observe two pulses propagating in different directions.

In order to test an influence of noise on the above effect, we performed simu-
lations of the system (2.34) with the modified Eq. (2.34b):

ẇn = ε [vn + β − γwn + σξn(t)] . (2.59)

We added white Gaussian noise term σξn(t) with 〈ξn(t)〉 = 0 and 〈ξn(t)ξn′(t′)〉 =
δn,n′δ(t − t′). Here the parameter σ governs the amplitude of noise, δn,n′ is the
Kronecker delta and δ(t) is the Dirac delta function. The results of simulations
are presented in the parts (c) and (d) of Fig. 2.14. The small noise intensity
σ = 0.1 in (c) does not influence the effect. However, sufficiently large noise may
destroy the pulse propagation. In the part (d), we see that for σ = 0.5 the pulse
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Figure 2.14: Spatio-temporal evolution of the membrane potential obtained from
Eqs. (2.34) without noise [(a) and (b)] and from Eqs. (2.34a) and (2.59) in the
presence of noise [(c) and (d)]. The background of homogeneous high-frequency
oscillations is excluded by subtracting from the membrane potential the term
A sin(ωt) [cf. Eq. (2.35a)], i.e. the color encodes the value vn − A sin(ωt). The
values of the fixed parameters are: ω = 10, N = 100, ε = 0.0008 and D = 0.015.
The variable parameters are: (a) A = 0, σ = 0, (b) A = 0.7, σ = 0, (c) A = 0.7,
σ = 0.1 and (c) A = 0.7, σ = 0.5.
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Figure 2.15: The same graphs as in Fig. 2.14 but the coupling strength is larger,
D = 0.02, and the variable parameters are: (a) A = 0, σ = 0, (b) A = 1.1, σ = 0,
(c) A = 1.1, σ = 0.1 and (c) A = 1.1, σ = 0.5.
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propagating to the right dies out, while the pulse propagating to the left is not
destroyed.

Notice that the effect of an enhanced propagation of a harmonic low-frequency
signal under action of HFS has been observed in numerical simulations of the
Barkley’s model [99] in Ref. [100], but no theoretical treatment of the results has
been presented. Moreover, the crucial role of the discreetness of the excitable
system for the existence of this effect has not been highlighted.

In Fig. 2.15 we demonstrate the effect of suppression of pulse propagation.
Here all the parameters are the same as in Fig. 2.14 except of the coupling strength,
which is now increased to the value D = 0.02, so that the system without HFS
admits pulse propagation. The two propagating pulses in the free system (A = 0)
are shown in the part (a) of Fig. 2.15. The part (b) demonstrates the propagation
failure in the presence of HFS with the amplitude A = 1.1. The parts (c) and
(d) show the same effect when the noise is superimposed upon the system. We
see that even large noise does not destroy the effect of propagation failure. This
suggests that the effect of suppression of pulse propagation is less sensitive to the
noise than the effect of enhancement of propagation.

2.4 Summary

We have analyzed the effect of a homogeneous high-frequency stimulation on
the simple models of unmyelinated and myelinated axons described by spatially
continuous and discrete FitzHugh-Nagumo equations. We have shown that, de-
pending on the amplitude, the HFS may suppress the pulse propagation through
the axon. Furthermore, the HFS may enhance the pulse propagation in the dis-
crete systems. This differs essentially from the continuous case.

Our analysis is based on two main approximations. The first utilizes different
time scales of the neuron and the high-frequency signal. Applying the method
of averaging, we eliminate the high-frequency term and reduce the problem to
the analysis of autonomous systems that describes the slow motion. It appears
that the HFS influences the slow dynamics through a parameter A equal to the
ratio of the amplitude to the frequency of HFS. The second approximation is
related to the solution of the averaged equations. Here we utilize the smallness of
the parameter ε that defines the ratio between the time scales of the membrane
potential and the recovery variable. We adapt the asymptotic methods developed
for the free FHN system and derive the main characteristics of the traveling pulse
in the dependence of the stimulation parameter A.
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As an important result of this approach, we have established an analytical
criterion for the propagation failure and revealed the mechanism underling the
effects of enhancement and suppression of pulse propagation. We have shown
that the effects are related to the fact that the HFS of a small amplitude reduces
the excitability threshold of excitable elements, while the HFS of a large amplitude
increases the threshold. The validity of the above two approximations is supported
by numerical simulations of the averaged equations and the original system.

The results of this section are published in Refs. [101,102].





3. Controlling synchrony in os-
cillatory networks via act-and-
wait method

In this chapter, we propose an algorithm for synchrony suppression in en-
sembles of globally coupled oscillators for a complicated control situation, when
an output signal is small in comparison to a stimulated signal so that the reli-
able simultaneous registration and stimulation of the system is not possible, and
the standard feedback control algorithms cannot be applied. Such a situation is
typical for neuronal systems. Our algorithm is based on the act-and-wait control,
which assumes a separation in time the registration and stimulation stages. In the
registration (wait) stage, the mean field of the free oscillatory system is recorded
in a memory and in the stimulation (act) stage it is fed back to the system. The
periodic repetition of these two stages can effectively destroy the mutual synchro-
nization in ensembles of globally coupled oscillators. Mathematically, this algo-
rithm is described by delay differential equations with the periodically switched on
and off time-delay feedback term. Although systems with time delay are usually
associated with an infinity dimensional phase space, here the problem of stabil-
ity of the incoherent state is defined by the eigenvalues of a finite dimensional
monodromy matrix. This fact facilitates considerably the search for appropriate
control parameters that guarantee the stability of the incoherent state.

The chapter is organized as follows. In Sec. 3.1 the act-and-wait algorithm is
presented, its use in the linear systems and networks of oscillators are compared
and the limit of small delay times is discussed. In Secs. 3.2 and 3.3 we apply
the algorithm to an ensemble of globally coupled standard and modified Stuart-
Landau (SL) oscillators. We present an analytical treatment of this problem in
the thermodynamic limit. Section 3.4 is devoted to control of synchronization
in synaptically coupled FitzHugh-Nagumo (FHN) neurons. Here we introduce
a modification of our algorithm that takes into account the charge-balanced re-



58 3. Controlling synchrony in oscillatory networks via act-and-wait method
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Stimulation (act) stage

Figure 3.1: Block diagram of the algorithm with the separated in time registration
(wait) and stimulation (act) setup. The wait and act stages are periodically
repeated with the period Tc = τw + τa, where τw and τa are the durations of the
wait and act stages, respectively. In the wait stage 0 ≤ mod (t, Tc) < τw, the
mean field of the free neuronal population is recorded in a memory. In the act
stage τw ≤ mod (t, Tc) < Tc, the system is stimulated by memorized signal,
previously processed by controller.

quirement. In Sec. 3.5 we apply our algorithm to an ensemble of realistic model
neurons described by Hodgkin-Huxley (HH) equations. Finally, in Sec. 3.6 we
conclude this chapter by summarizing our results.

3.1 Act-and-wait algorithm

In certain experimental systems, the implementation of feedback methods can
meet fundamental problems. For example, in DBS the stimulation current exceeds
the measured neuronal currents by several orders of magnitude, so that reliable
registration of neuronal activity in the presence of simultaneous stimulation can
be hardly achieved [103]. To avoid this problem we developed a feedback algo-
rithm, called the act-and-wait method, where the processes of the stimulation
and registration were separated in time. The block-diagram of our algorithm is
presented in Fig. 3.1. The control process involves the periodic repetition of two
stages. In the first stage, the mean field of the free neuronal population is regis-
tered and recorded in a memory, and in the second stage, the memorized signal
is processed by a controller and fed back to the system.
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Let’s consider a typical neural network model under the act-and-wait control

v̇i = Fi(vi, ..., vN ,wi)− PG(t)V (t− τ), (3.1a)

ẇi = Qi(vi,wi), (3.1b)

where vi represents ith’s neuron voltage variable, while other variables are defined
by the vector wi. The function Fi(vi, ..., vN ,wi) defines individual neuron’s dy-
namics as well as the coupling between neurons. The last term in Eq. (3.1a) comes
from control, where P is a feedback gain and function G(t) is periodic switching
function

G(t) =


0, 0 ≤ mod (t, Tc) < τw,

1, τw ≤ mod (t, Tc) < τw + τa = Tc.
(3.2)

so that the control force is switched off for a period of length τw (wait), and it
is switched on for a period of length τa (act). Feedback is proportional to the
measured mean field V (t), which was generated by neurons, as in the experiments
it is impossible to measure every neurons state in the brain.

In fact this algorithm for a different situation was introduced in the works of
Insperger [104, 105]. The problem that authors were solving was the control of
linear system, when due to physical limitations the feedback signal has some delay

ẋ(t) = Ax(t)−Bx(t− τ), (3.3)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n constant matrix, B ∈ Rn×n

is the control matrix and τ is delay time. The delay complicates the control,
because the problem becomes infinite dimensional. This means that with a finite
number of matrix B elements one has to control an infinite number of poles
(also called characteristic roots or the characteristic exponents) determined by a
transcendental characteristic equation

det(λI −A−Be−τλ) = 0. (3.4)

In order to overcome this problem Insperger suggested to change the control ma-
trix B by

B = PG(t), (3.5)

where G(t) is periodic switching function defined in Eq. (3.2). As pointed out in
Refs. [104, 105], if τa ≤ τw then this condition leads to an essential simplification
of the time delay problem. For τa ≤ τw, we can reduce the problem to a finite
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dimensional map that relates the state variables of the system at the beginning
of the n + 1-st control period with the state variables at the beginning of the
n-th control period, so that the stability of the controlled system is defined by
eigenvalues of a finite dimensional monodromy matrix1. The idea can be simply
explained by the example presented below.

Example: Stabilization of the exponential growth. Here we use the
act-and-wait method for the stabilization of the zero fixed point x∗ = 0 of the
exponential growth

ẋ = λx− PG(t)x(t− τ), (3.6)

where λ > 0. For the control we choose equal waiting, acting and delay times,
i.e. τw = τa = τ . Thus the control has two parameters P and τ , which have to be
determined. Let’s say that at the beginning of the n-th registration-stimulation
period the system is at the state Xn. For the registration stage t ∈ (0, τ), the
system evolves freely according to the exponential growth, thus for this period
x(t) = Xn exp(λt). During the stimulation stage the system evolves according to
the equation

ẋ = λx− PXn exp(λt), (3.7)

which, taking into account the initial condition, has the solution

x(t) = (eλτ − Pτ)eλtXn. (3.8)

From this expression one can tell that in this case the monodromy matrix is just a
scalar value A(τ) = (eλτ −Pτ)eλτ , which relates Eq. (3.6) states at the beginning
of the nth and n + 1 stimulation-registration periods Xn+1 = (eλτ − Pτ)eλτXn.
Because of the fact that the investigated system is one-dimensional, the value
of the monodromy matrix coincides with the Floquet multiplier. Therefore one
can conclude that the act-and-wait algorithm stabilizes zero fixed point, when
the absolute value of the Floquet multiplier A(τ) will be less than 1, or in other
words, when parameters τ and P satisfy the inequality

|(eλτ − Pτ)eλτ | < 1. (3.9)

1If we have the liner ODE
ẋ(t) = C(t)x(t),

where matrix C(t) = C(t + T ) is T -periodic, then the monodromy matrix A(T ) relates the
given system’s initial state x0 with the systems state after time T , i.e. x(T ) = A(T )x0. The
eigenvalues of the monodromy matrix, called Floquet multipliers, defines the stability of the
periodic solutions.
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The stabilization is the fastest when the Floquet multiplier is equal to 0, i.e. when
eλτ = Pτ .

Further we restrict ourselves to the case of equal act, wait and delay durations
τa = τw = τ . Then the period of act-and-wait switching is Tc = 2τ and the
2τ -periodic function G(t) can be presented as

G(t) = H [− sin(πt/τ)] , (3.10)

where H(·) is the Heaviside step function.

The limit of small τ

For the limit of the small delays τ → 0 the control current in Eq. (3.1) can be
approximated as

Icon(t) = G(t)P [V (t) +O(τ)]. (3.11)

up to the first order in τ . Substituting Eq. (3.11) into Eq. (3.1) we get a nonau-
tonomous system of ordinary differential equations with the high-frequency peri-
odic function G(t). Such a system can be treated by the method of averaging (see
previous chapter or Ref. [88]). To transform our system to the standard form of
equations as typically used by this method we rescale the time variable t̄ = t/τ

(here t̄ is the “fast” time) and obtain

dvj
dt̄

= τ{Fj(v1, . . . , vN ,wj)− G̃(t̄)P [V +O(τ)]}, (3.12a)
dwj

dt̄
= τQj(vj,wj). (3.12b)

Due to the small factor τ , the variables vj and wj vary slowly while the periodic
function G̃(t̄) ≡ G(τ t̄) = H[− sin(πt̄)] oscillates fast. According to the method
of averaging [88], an approximate solution of system (3.12) can be obtained by
averaging the r.h.s. of the system over fast oscillations. Specifically, let us denote
the variables of the averaged system as (v̄j, w̄j). They satisfy the equations:

dv̄j
dt̄

= τ

2

∫ 2

0
{Fj(v̄1, . . . , v̄N , w̄j)− G̃(s)PV̄ }ds, (3.13a)

dw̄j

dt̄
= τ

2

∫ 2

0
Qj(vj, w̄j)ds, (3.13b)

where V̄ = N−1∑N
j=1 v̄j. The method of averaging states that the averaged system

(3.13) approximates the solutions of the system (3.12) with the accuracy of O(τ),
i. e., vj = v̄j +O(τ) and wj = w̄j +O(τ). After performing the integration (note
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that
∫ 2

0 G̃(s)ds = 1) and coming back to the original time scale, the averaged
system (3.13) takes the form:

˙̄vj = Fj(v̄1, . . . , v̄N , w̄j)− PV̄ /2, (3.14a)
˙̄wj = Qj(v̄j, w̄j). (3.14b)

Here the dot denotes differentiation with respect to the original time t. Thus
the nonautonomous system (3.1) with the accuracy O(τ) can be transformed to
the autonomous averaged system (3.14). The last term in Eq. (3.14a) describes
the standard proportional feedback control with the strength P/2. Therefore, the
act-and-wait control algorithm for τ → 0 transforms to the proportional feedback
control algorithm.

3.2 Stuart-Landau oscillators coupled and con-
troled via both variables

Consider an ensemble of N globally coupled and stimulated SL oscillators,
representing a normal form of a supercritical Andronov-Hopf bifurcation

żj = (iωj + 1− |zj|2)zj +KZ − PG(t)Z(t− τa). (3.15)

Here zj = xj + iyj is a complex valued variable, that defines the state of the
jth oscillator, j = 1, . . . , N . Without coupling (K = 0) and without stimulation
(P = 0) each oscillator performs an uniform rotation with the natural frequency
ωj and amplitude 1. The oscillators are globally coupled via the mean field

Z = 1
N

N∑
k=1

zk. (3.16)

We suppose that both components x and y of the complex variable z are coupled
with the same coupling strength defined by the real valued parameter K. The
last term in Eq. (3.15) describes the act-and-wait control force. The delayed mean
field Z(t−τa), which is recorded in a memory during the wait period, is multiplied
by the Tc-periodic act-and-wait switching function defined in (3.10).
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3.2.1 Equation for the order parameter

To explore the advantages of the act-and-wait control algorithm we investigate
the phase dynamics of the system (3.15). Substituting zj = ρje

iθj and neglecting
the dynamics of the amplitudes ρj one can transform Eq. (3.15) to the following
equation for the phases θj:

θ̇j = ωj + [Kr − PG(t)rτ ]e−iθj/2i+ c.c.. (3.17)

Here r = r(t) is the complex order parameter

r = 1
N

N∑
k=1

eiθk (3.18)

and the subscript τ denotes the time delayed value rτ (t) ≡ r(t − τ). The abbre-
viation “c.c.” stands for complex conjugate. Without control (P = 0), Eq. (3.17)
represents the classical Kuramoto model [14]. We assume that the frequencies ωj
are randomly distributed according to a symmetric probability density function
g(ω), g(Ω − ω) = g(Ω + ω), where Ω is the central frequency. Then the critical
coupling for spontaneous synchronization is [14, 16]: Kc = 2/πg(Ω). For K < Kc

the ensemble relaxes to the state, where all oscillators move incoherently, and for
K > Kc mutual synchronization occurs in a group of oscillators.

We now analyze the synchronization properties of the system in the presence
of the act-and-wait control. We characterize the synchronization by the absolute
value of the order parameter (3.18). The values of |r| vary in the interval [0, 1]
such that small values indicate the incoherent state while the values close to 1
represent the strong mutual synchronization. To solve the problem analytically
we analyze the system (3.17) in the thermodynamic limit N → ∞. We describe
the state of the oscillator system at time t by a continuous distribution function,
f(ω, θ, t), in frequency ω and phase θ that satisfies the normalization

∫ 2π

0
f(ω, θ, t)dθ = g(ω) (3.19)

for all t. Since oscillators are conserved f must satisfy the continuity equation

∂

∂t
f(ω, θ, t) = − ∂

∂θ
[f(ω, θ, t)v(ω, θ, t)], (3.20)
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where the velocity v(ω, θ, t) is defined by the r.h.s. of Eq. (3.17)

v(ω, θ, t) = ω + [Kr − PG(t)rτ ]e−iθ/2i+ c.c. (3.21)

In the continuum limit, Eq. (3.18) can be written as

r =
∫ 2π

0

∫ ∞
−∞

eiθf(ω, θ, t)dωdθ. (3.22)

Expanding f(ω, θ, t) in Fourier series in θ we have

f = g(ω)
2π

(
1 +

[ ∞∑
n=1

fn(ω, t)einθ + c.c.
])

. (3.23)

Following Ott and Antonsen [106], we restrict our analysis to a special class of
distribution functions defined by the ansatz:

fn(ω, t) = [α(ω, t)]n, (3.24)

where |α(ω, t)| ≤ 1 to avoid divergence of the series. Substituting this series
expansion into Eqs. (3.20) and (3.22) we find that this special form of f satisfies
Eqs. (3.20) and (3.22) if

α̇ = K

2 (r∗ − rα2)− iωα + G(t)
2 (Pα2rτ − P ∗r∗τ ) (3.25)

and
r =

∫ +∞

−∞
α∗(ω, t)g(ω)dω. (3.26)

Further simplification can be gained by choosing the density distribution of the
natural frequencies in the Lorentzian function form

g(ω) = gL(ω) ≡ (∆/π)
[
(ω − Ω)2 + ∆2

]−1
, (3.27)

where ∆ defines the width of the distribution. This form allows us to solve the ω
integral in Eq. (3.26) and obtain an explicit relation r∗(t) = α(Ω− i∆, t). Putting
this result into Eq. (3.25) and setting ω = Ω− i∆ we finally get a closed equation
for the complex order parameter

ṙ =
[
iΩ−∆ + K

2 (1− |r|2)
]
r + G(t)

2 (P ∗r2r∗τ − Prτ ). (3.28)

This equation is considerably simpler than the original system (3.15) and allows for
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the direct analysis of the influence of the act-and-wait control on the macroscopic
properties of the system. From this equation it follows, that without control
(P = 0) the order parameter r(t) experiences the Andronov-Hopf bifurcation when
the coupling strength K is increased. For K < Kc = 2∆, the order parameter
relaxes to the stable fixed point r = 0, which means the incoherent state of the
oscillator system. When the coupling exceeds the critical value K > Kc, the
fixed point loses the stability and r approaches the stable limit cycle with the
amplitude |r| = (1 − Kc/K)1/2 and frequency Ω. This corresponds to a partial
synchronization, which becomes more and more stronger when K is increased.
For K → ∞ the systems tends to the fully synchronized state, since |r| → 1.
Below we analyze how this scenario changes in the presence of the act-and-wait
control.

(I) Linear stability analysis

We now consider an influence of the act-and-wait control on the dynamics of
the order parameter defined by Eq. (3.28). The goal of the control is to suppress
the synchronization that we assume to exist in the free system due to a large
global coupling, i.e., we take K > Kc, so that the fixed point r = 0 of the free
system is unstable. The incoherent state can be rebuilt by control if the last
term in Eq. (3.28) proportional to G(t) stabilizes the fixed point. To analyze the
stability of the fixed point we first rewrite system (3.28) in the rotating frame
with the mean frequency Ω by changing the variable r = eiΩtR. Then linearizing
the system with respect to small R we obtain

Ṙ = (K/2−∆)R−G(t)Pe−iΩτRτ/2. (3.29)

The change of the coordinate system does not change the absolute value of the
order parameter, |R| = |r|. To analyze the stability of the fixed point R = 0 it is
useful to rewrite Eq. (3.29) in terms of real valued coordinates x+ iy = R,

 ẋ

ẏ

 = λ

 x

y

−G(t)
 P̄x −P̄y
P̄y P̄x

 xτ

yτ

 . (3.30)

Here we introduced the notations λ = K/2−∆ > 0, P̄x = |P | cos(ϕ−Ωτ)/2 and
P̄y = |P | sin(ϕ−Ωτ)/2, where ϕ is the argument of the complex valued parameter
P = |P |eiϕ.

Though the system (3.30) contains time delay feedback terms, which are usu-
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ally associated with an infinite dimensional phase space, it can be transformed to
a finite-dimensional map (c.f. [104, 105]). Such a transformation is possible due
to the presence of the periodic act-and-wait switching function G(t). Denote the
state variables of the system at the beginning of the n-th act-and-wait control pe-
riod by xn = x(2τn) and yn = y(2τn). Then for the wait period 2τn ≤ t < 2τn+τ
the parameter G(t) = 0 and we obtain the solution of (3.30) as x(t) = xne

λ(t−2τn)

and y(t) = yne
λ(t−2τn). In the next act period 2τn + τ ≤ t < 2τ(n + 1), the

parameter G(t) = 1 so that the time delay functions xτ and yτ come into play.
These functions are exactly the above solutions obtained in the wait stage, so that
here Eq. (3.30) represents a linear non-autonomous system. Solving this system
we find the values of the state variables at the end of the act stage and finally
obtain the map  xn+1

yn+1

 = A

 xn

yn

 , (3.31)

where

A = eλτ

 −τ P̄x + eλτ τ P̄y

−τ P̄y −τ P̄x + eλτ

 (3.32)

is the monodromy matrix. The eigenvalues µ1,2 of this matrix defined by the
characteristic equation

det(A− Iµ) = 0, (3.33)

are responsible for the stability of the system (3.30). The origin of this system
is stable if the both eigenvalues are inside the unit circle in the complex plane,
|µ1,2| < 1. From Eqs. (3.32) and (3.33) we obtain

|µ1,2| = eλτ
[
(τ P̄x − eλτ )2 + τ 2P̄ 2

y

]1/2
. (3.34)

Thus despite the presence of time delayed feedback the stability of the system
is defined by only two eigenvalues. By appropriate choice of the two control
parameters P̄x and P̄y both eigenvalues can be easily placed inside the unit circle.
As is seen from Eq. (3.34) the parameter P̄y plays destructive role; it can only
enhance the values of |µ1,2|. Thus the best choice is to make it zero, P̄y = 0.
In terms of the initial complex valued parameter P this means that we fix its
argument at ϕ = Ωτ , i.e., choose the feedback strength in the form P = |P |eiΩτ .
Then on substitution of P̄x = |P |/2 and P̄y = 0 into Eq. (3.34) the criterion of
the stability simplifies to

|µ1,2| =
∣∣∣eλτ − |P |τ/2∣∣∣ eλτ < 1.
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From this it follows that the act-and-wait control force can stabilize the incoherent
state of strongly coupled (K > Kc) SL oscillators if the feedback strength satisfies
the inequalities

Pmn < |P | < Pmx, (3.35)

Pmx,mn = 2
[
e(K/2−∆)τ ± e(−K/2+∆)τ

]
/τ. (3.36)

The optimal value of the feedback strength is attained at |P | = 2eλτ/τ , when the
both eigenvalues vanish |µ1,2| = 0 and the incoherent state becomes superstable.

(II) Numerical simulations

To demonstrate the efficacy of the act-and-wait control algorithm and ver-
ify the validity of the above analytical theory we have numerically simulated an
ensemble of N = 1000 globally coupled Stuart-Landau oscillators described by
Eqs. (3.15). The natural frequencies ωj were randomly chosen from the Lorentzian
distribution (3.27) with Ω = 0.25π and ∆ = 0.1. The coupling strength K = 0.5
was taken far away above the critical value of the spontaneous synchronization,
Kc = 2∆ = 0.2. In this case Eq. (3.28) predicts rather large stationary value of
the order parameter of the uncontrolled system, |r| = (1 −Kc/K)1/2 ≈ 0.77. In
Fig. 3.2(a), the dynamics of the order parameter (3.18) computed by direct inte-
gration of the system (3.15) is presented by blue (dark) curve. For t < 100, the
control is not activated and the order parameter fluctuates with a small amplitude
around the predicted value |r| = 0.77. When the act-and-wait control is switched
on (t ≥ 100) the oscillator system approaches suddenly the incoherent state and
the value of the order parameter falls to zero. In the same figure, we also show [by
red (grey) curve] the dynamics of the order parameter obtained from the macro-
scopic Eq. (3.28). We see that the solution of this equation reproduces well the
results obtained from the direct integration of the oscillator system (3.15). This
confirms the validity of Ott-Antonsen ansatz (3.24), which allowed us to find an
analytical solution of the continuity Eq. (3.20) in the presence of the act-and-wait
control. In panel (b) of Fig. 3.2, we demonstrate how the act-and-wait control
changes the dynamics of individual oscillators, by taking the first three oscillators
as an example.

Incoherent state stability domains in the plane of parameters (τ , |P |) are pre-
sented in Fig. 3.3. The linear theory predicts the domain of stability lying be-
tween two thick black curves Pmx,mn(τ) defined by Eqs. (3.35) and (3.36). In
panels (a) and (b), the values of the order parameter evaluated from the solu-
tions of Eqs. (3.28) and (3.15), respectively, are encoded in color. We see that
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Figure 3.2: Dynamics of N = 1000 globally coupled Stuart-Landau oscillators
(3.15) under act-and-wait control. For t < 100 the control is off (|P |=0), while for
t ≥ 100 the act-and-wait control with the feedback strength |P | = 4 is activated.
(a) Absolute value of the order parameter estimated from direct integration of
Eqs. (3.15) [blue (dark)] and from macroscopic Eq. (3.28) [red (grey)]. (b) Dy-
namics of the first three oscillators. The values of the parameters are: K = 0.5,
Ω = 0.25π, ∆ = 0.1 and τ = 0.4. The complex feedback strength is chosen in the
form P = |P |eiΩτ .

the linear theory predicts well the results obtained from solution of the nonlinear
Eq. (3.28) for the order parameter. However, the prediction for the original sys-
tem (3.15) of SL oscillators is limited. Here the linear theory predicts well only
the lower boundary |P | = Pmn(τ) of the stability domain, but with the increase
of |P | the oscillators start to synchronize before |P | reaches the upper boundary
|P | = Pmx(τ). Such a discrepancy between the results obtained from Eqs. (3.15)
and (3.28) is explained by the fact that for large |P | the act-and-wait control force
influences not only the phases of the individual oscillators but the amplitudes as
well. Therefore, for large |P | we cannot neglect the dynamics of the amplitudes
and substitute the original system (3.15) by the Kuramoto model (3.17) that takes
into account only the dynamics of the phases.

3.3 Coupling and control via a single variable

We now consider a situation typical for neuronal systems where the interaction
between neurons is provided by a single variable, the membrane potential, while
the other (gate) variables do not participate directly in the interaction. Electrical
stimulation acts directly also only on the membrane potential of neurons. We can
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Figure 3.3: Incoherent state stability domains in the plane of parameters (τ , |P |)
for the Stuart-Landau oscillators (3.15) controlled by the act-and-wait algorithm.
The thick black curves represent the boundaries of stability Pmx,mn(τ) defined by
Eqs. (3.36). The color encodes the absolute value |r| of the order parameter
estimated from (a) Eq. (3.28) and (b) Eqs. (3.15). The values of the parameters
are: N = 1000, K = 0.5 and ∆ = 0.1. The computations are performed in the
rotating coordinate frame where Ω = 0.

mimic this situation by modifying the system (3.15) as follows:

żj = (iωj + 1− |zj|2)zj +KReZ − PG(t)ReZ(t− τ). (3.37)

Here, unlike to Eqs. (3.15), the term of the global coupling and the act-and-
wait control force are applied only to the real part of SL equations. We assume
that both, the coupling strength K and the feedback strength P , are real valued
parameters.

Similar as in Sec. 3.2.1, we neglect the dynamics of the amplitudes and derive
an equation for the phases

θ̇j = ωj − sin(θj)Re [Kr −G(t)Prτ ] . (3.38)

Now assuming that the natural frequencies are distributed by the Lorentzian law
(3.27) and repeating the procedure presented in Sec. 3.2.1 one can show that in
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the thermodynamic limit N →∞, the order parameter obeys the equation

ṙ = (iΩ−∆)r + 1− r2

2 [KRe(r)−G(t)PRe(rτ )] . (3.39)

To analyze the stability of the incoherent state r = 0, we rewrite Eq. (3.39) in
terms of real valued coordinates x + iy = r and linearizing it with respect to the
fixed point (x, y) = (0, 0), obtain

 ẋ

ẏ

 =
 K/2−∆ −Ω

Ω −∆

 x

y

−G(t)P2

 xτ

0

 . (3.40)

From this it follows that the incoherent state of the control free (P = 0) system is
unstable for K > Kc = 4∆. We suppose that this inequality is fulfilled and look
for the act-and-wait control parameters (τ, P ), which lead to the stabilization of
the zero fixed point of the system (3.40). As well as in Sec. 3.2.1, an analytical
solution of this system can be written in the form of Eq. (3.31). However, an
expression for the monodromy matrix is now much more complicated and we do
not present it here. Generally, analytical expressions for the stability domains in
the (τ, P ) plane are not available, but they can be easily estimated numerically.

An exception where an analytical result can be gained is the case of small τ .
As it is shown in the Sec. 3.1, for τ → 0, the system (3.37) can be treated by the
method of averaging and its solution can be approximated as zj ≈ z̄j, where z̄j
satisfy the averaged equations

˙̄zj = (iωj + 1− |z̄j|2)z̄j + (K − P/2)ReZ̄ (3.41)

with Z̄ = N−1∑N
j=1 z̄j. By comparison of Eqs. (3.41) and (3.37) we see that for

τ → 0 the act-and-wait control transforms to the proportional feedback control.
On the other hand, Eq. (3.41) can be treated as a control-free equation but with
the modified coupling strength K → K − P/2. Then from Eq. (3.40) we obtain
a simple criterion for the stability of the incoherent state

P > 2(K − 4∆). (3.42)

The results of numerical simulations of Eqs. (3.37), (3.39) and the linear sta-
bility analysis based on Eq. (3.40) are presented in Figs. 3.4 and 3.5. In Fig. 3.4,
we choose the values of the parameters ∆ = 0.1 and K = 1 > Kc = 0.4 so that
the control-free system is synchronized (|r| ≈ 0.78) and show that the switch-
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Figure 3.4: Dynamics of globally coupled N = 1000 Stuart-Landau oscillators
(3.37) under act-and-wait control. For t < 100 the control is off (P=0), while for
t ≥ 100 the act-and-wait control with the feedback strength P = 1.5 is activated.
(a) Absolute value of the order parameter estimated from direct integration of
Eqs. (3.37) [blue (dark)] and from macroscopic Eq. (3.39) [red (grey)]. (b) Dy-
namics of the first oscillator. The values of the parameters are: K = 1, Ω = π,
∆ = 0.1 and τ = 2.

ing on the act-and-wait control leads to the desynchronization characterized by a
small value of the order parameter. The dynamics of the order parameter [panel
(a)] obtained from Eq. (3.39) agree well with the results of direct simulation of
Eqs. (3.37). In panel (b), we show the dynamics of the first oscillator. The re-
sults of the linear stability analysis are presented in Fig. 3.5 (thick black curves).
Incoherent state stability domains in the (τ, P ) plane have a resonance structure;
they are located at the values of τ = mT/2, where T = 2π/Ω is the mean natural
period of the oscillators and k = 0, 1, 2, . . . is a nonnegative integer number. The
feedback strength P in these domains change the sign depending on m being odd
or even number. In panels (a) and (b) the values of the order parameter evaluated
from the solutions of Eqs. (3.39) and (3.37), respectively, are encoded in color.
The linear theory predicts well the results obtained from solution of the nonlinear
Eq. (3.39), however, the prediction for the original system (3.37) is limited. This
limitation is again due to ignoring the dynamics of oscillator amplitudes in the
transition from the original system (3.37) to the Kuramoto model (3.38). Note
that for the given values of the parameters, the analytical condition (3.42) derived
for τ → 0 reads P > 1.2. This is in good agreement with the numerical results
presented in Fig. 3.5.



72 3. Controlling synchrony in oscillatory networks via act-and-wait method

P
−2

0

2

4

τ/T

P

 

 

0.5 1 1.5

−2

0

2

4

0

0.2

0.4

0.6

0.8

1

(a)

(b)

Figure 3.5: Incoherent state stability domains in the plane of parameters (τ ,P )
for the Stuart-Landau oscillators (3.37) controlled by the act-and-wait algorithm.
The thick black curves represent the boundaries of stability derived from linear
Eq. (3.40). The color encodes the absolute value |r| of the order parameter esti-
mated from (a) Eq. (3.39) and (b) Eqs. (3.37). The values of the parameters are:
N = 1000, K = 1, ∆ = 0.1, Ω = π and T = 2π/Ω.

3.4 Synaptically coupled FitzHugh-Nagumo neu-
rons

We now test the efficacy of the act-and-wait control for neuronal systems. We
start from a simple model of synaptically coupled FitzHugh-Nagumo [6,7] neurons

v̇j = f(vj)− wj + Ij − Isyn − Icon, (3.43a)

ẇj = ε(vj + β − γwj). (3.43b)

Here the variable vj denotes the membrane potential and wj is the recovery vari-
able of j-th neuron (j = 1, . . . , N), f(vj) = vj−v3

j/3 is the cubic source term of an
ionic current, Ij is a stimulus current that defines the spiking frequency of the free
neuron, Isyn stands for the synaptic current of the j-th neuron due to connection
with other neurons and Icon is the current generated by the act-and-wait control
algorithm. The constant ε > 0 is the ratio between the characteristic time scales
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of vj and wj variables. We choose the standard values of the parameters ε = 0.2,
γ = 0.8 and β = 0.7.

In order to spread the natural spiking frequencies of neurons, the stimulus
currents Ij are generated by a normal distribution with the mean value 〈I〉 = 1
and the standard deviation σ = 0.1. We assume that neurons are globally coupled
via a synaptic current defined as

Isyn = g(vj − vc)
1

N − 1
∑
k 6=j

Θ(vk − v0), (3.44)

where Θ(v) = 1/[1 + exp(−v/vth)] is a sigmoid function with the characteristic
threshold parameter vth and vc is the reversal potential. We choose the parameters
of synaptic current in such a way as to model an excitatory coupling; each gen-
erated spike speeds up other neurons to generate spikes, so that without control
(Icon = 0) the population spikes in synchrony. Then we seek to suppress the syn-
chronization by an external current constructing in the form of the act-and-wait
control

Icon(t) = G(t)PV (t− τ), (3.45)

where
V (t) = 1

N

N∑
k=1

vk(t). (3.46)

is the mean field of membrane potential, which we assume is accessible for the
measurement. The parameter P defines the feedback strength, and the 2τ -periodic
act-and-wait switching function G(t) is defined by Eq. (3.10).

3.4.1 Criteria of synchronization and numerical results

In coupled and controlled neuronal population the individual phases of neurons
can be defined as in Ref. [13]:

θj(t) = 2π t− t(j)k
t
(j)
k+1 − t

(j)
k

, t
(j)
k ≤ t ≤ t

(j)
k+1. (3.47)

Here t(j)k are the moments when the membrane potential of the j-th neuron reaches
the maximum. Using this phase definition we can characterize the synchroniza-
tion between neurons by the standard order parameter r = N−1∑N

j=1 e
iθj . The

dynamics of this characteristic for N = 500 synaptically coupled FHN neurons is
presented in Fig. 3.6 (a). For t < 1500, when the control is off (Icon = 0), the
value of the order parameter is close to one. This indicates a highly synchronized
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Figure 3.6: Dynamics of N = 500 synaptically coupled FitzHugh-Nagumo neu-
rons (3.43) under act-and-wait control. For t < 1500 the control is off (Icon=0),
while for t ≥ 1500 the act-and-wait control (3.45) with the parameters τ = 18.5
and P = 0.2 is activated. (a) Absolute value of the order parameter, (b) the mean
field of membrane potential (3.46) and (c) the membrane potential of the first
neuron. The values of the parameters are: ε = 0.2, β = 0.7, γ = 0.8, v0 = 1,
vc = 2.8, g = 0.05 and vth = 0.1.

state induced by synaptic interjection. Then for t > 1500 the synchronization is
effectively suppressed, when the control current (3.45) with appropriate values of
the parameters τ = 18.5 and P = 0.2 is switched on. Here the order parame-
ter falls to values close to zero. The effect of synchronization suppression is also
observed in the dynamics of the mean field (3.16) presented in panel (b). When
neurons are synchronized (t < 1500), the mean field oscillates with an amplitude
comparable to the amplitude of individual neurons, but incoherently spiking neu-
rons (t > 1500) produce mean field oscillations with a small amplitude. In order
to demonstrate that the act-and-wait control does not destroy the spiking of in-
dividual neurons, in panel (c) we show the dynamics of the first neuron, as an
example.

The phase definition (3.47) is not universal and its use becomes problematic
when the dynamics of individual neurons is complex. Such a complex dynamics
appears, e.g., for the values of the act-and-wait control parameters that do not
succeed in the desynchronization. Thus for more detailed analysis of outcomes
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Figure 3.7: Performance of the act-and-wait control algorithm for synaptically
coupled FHN neurons (3.43): (a) control law (3.45) without charge-balanced re-
quirement and (b) control law (3.50) with the charge-balanced requirement. The
color in the (τ, P ) parameter plane encodes the value of the synchronization crite-
rion S defined by Eq. (3.48). Incoherent states are characterized by small values
of S. The period of the mean field oscillations of the coupled control-free neurons
is T ≈ 19.8 and other parameters are the same as in Fig. 3.6.

of the act-and-wait control algorithm we need an alternative, more universal,
criterion of synchronization. Below we use the criterion based on the comparison
of mean fields of the controlled and uncontrolled systems [73]:

S = [Var(Vstim)/Var(Vfree)]1/2 . (3.48)

The parameter S is defined as a square root of the ratio between the variances of
the mean fields of the controlled Var(Vstim) and control free Var(Vfree) system. In
the synchronized state, when all neurons spike simultaneously, the value of this
parameter is close to one, while in the incoherent state it is close to zero.

In Fig. 3.7 (a), we present the results of numerical computation of the param-
eter S dependence on the act-and-wait control parameters τ and P . The values
of S in the (τ , P ) plane are depicted in color code. We see that the incoherent
state domains have a resonance structure similar to that obtained for the Stuart-
Landau oscillators (see Fig. 3.5). They are located at τ = mT/2, where T ≈ 19.8
is the period of the mean field oscillations of the coupled control-free neurons and
m = 0, 1, 2, . . . is a nonnegative integer number. The odd m defines the domains
with positive values of P , while the even m corresponds to the negative P .
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3.4.2 Charge-balanced stimulation

In practice, electrical neuron stimulation algorithms require some additional
constraints. One of them is that the control current has not to accumulate charge
in the cell, i.e., the control current integrated over the period of stimulation has
to vanish. This so-called charge-balanced stimulation requirement is clinically
mandatory to avoid tissue damage [107, 108]. Such a requirement can be easily
satisfied by a simple modification of the act-and-wait control algorithm as follows.
For each n-th wait stage we estimate the mean value of the recorded signal

V̄n = 1
τ

∫ (2n+1)τ

2nτ
V (t)dt (3.49)

and then in the following act stage we subtract this value from the recorded signal,
i.e., instead of the control current (3.45) we apply the current in the form:

Icon(t) = G(t)P
[
V (t− τ)− V̄n

]
. (3.50)

As is seen from Fig. 3.7 (b) this algorithm is successful as well as the algorithm
without charge-balanced requirement, whose performance is presented in panel
(a) of the same figure. The only qualitative effect induced by charge-balanced
requirement is that the act-and-wait control technique stops working for small
values of τ . Comparing panels (a) and (b) we see that the domain of successful
desynchronization at small τ exists in (a) and disappears in (b). This effect can
be explained by repeating the steps introduced in the Sec. 3.1, where the limit
case was investigated. The analysis will show that at the limit τ → 0 the control
current also vanishes Icon → 0.

3.5 Hodgkin-Huxley neurons under a charge-balanced
act-and-wait control

As a last example demonstrating the efficacy of our algorithm we consider
synchronization control in an ensemble of synaptically coupled realistic model
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neurons described by the Hodgkin–Huxley equations [3]:

Cv̇j = −gNam3
jhj(vj − vNa)− gKn4

j(vj − vK)

− gL(vj − vL) + Ij + Isyn + Icon, (3.51a)

ṁj = αm(vj)(1−mj)− βm(vj)mj, (3.51b)

ḣj = αh(vj)(1− hj)− βh(vj)hj, (3.51c)

ṅj = αn(vj)(1− nj)− βn(vj)nj. (3.51d)

Here vj is the membrane potential of the j-th neuron (j = 1, . . . , N) mea-
sured in mV. We take the standard values of the parameters: C = 1 µF/cm2,
(vL, vK , vNa) = (10.6,−12, 115) mV, (gL, gK , gNa) = (0.3, 36, 120) mS/cm2. The
rate parameters defining the dynamics of the gating variables mj, hj and nj are
defined in Eqs. (1.6). The voltage scale in this model is shifted in such a way
that the membrane resting potential (i.e., the steady state value of the membrane
potential without external currents, Ij = Isyn = Icon = 0) is zero.

The spiking regimes of individual neurons are induced by direct stimulation
currents Ij. In order to spread the natural spiking frequencies of neurons we choose
these values randomly from a normal distribution with the mean 〈I〉 = 25 µA/cm2

and standard deviation σ = 0.5µA/cm2. The neurons are globally coupled via
synaptic current Isyn defined by Eq. (3.44) with the parameters (vc, v0, vth) =
(120, 50, 10) mV/cm2. The charge-balanced act-and-wait control is performed via
the current Icon determined by Eq. (3.50).

In Fig. 3.8 we show the results of numerical simulation of system (3.51) for
N = 100 neurons. In the time interval t ∈ [0, 1000] ms the dynamics of uncoupled
(g = 0) and uncontrolled (P = 0) neurons is presented. Then in the inter-
val t ∈ [1000, 2500] ms the synaptic coupling (3.44) with the strength g = 0.05
mS/cm2 is activated but the control is off. Finally, for t ≥ 2500 ms we activate the
charge-balanced act-and-wait control (3.50) with the strength P = 0.23 mS/cm2

and delay time τ = 10.5 ms. We see that the mean field V of uncoupled and
uncontrolled neurons fluctuates with a small amplitude about some mean value
[panel (a)] and the order parameter |r| is small [panel (b)]. When the synaptic
coupling is switched on, the neurons synchronize and the amplitude of the mean
field as well as the order parameter increase. This synchronization is effectively
suppressed when the control is switched on. The amplitude of the mean field
suddenly decreases and we observe the fluctuations of the mean field similar to
those observed without coupling and control. The order parameter also falls sud-
denly to small values. In panel (c), we show the dynamics of the control current.



78 3. Controlling synchrony in oscillatory networks via act-and-wait method

−20

0

20

40

60

V
[m

V
/
cm

2
]

0 1000 2000 3000
−15

−10

−5

0

5

I c
o
n
[µ
A
/
cm

2
]

t [ms]

0

0.5

1

|r|
(a)

(b)

(c)

Figure 3.8: Dynamics of an ensemble of N = 100 Hodgkin-Huxley neurons (3.51).
In the time interval t ∈ [0, 1000] ms the control and coupling is off (g = 0, P = 0).
In the interval t ∈ [1000, 2500] ms the synaptic coupling (3.44) with the strength
g = 0.05 mS/cm2 is activated but the control is off. For t ≥ 2500 ms the charge-
balanced act-and-wait control (3.50) with the strength P = 0.23 mS/cm2 and
delay time τ = 10.5 ms is activated. (a) The mean field of membrane potential,
(b) absolute value of the order parameter, and (c) the control current.

When the system is desynchronized, the control current does not vanish. This
is conditioned by the mean field fluctuations that remain in the desynchronized
state due to the finite number of neurons. Here we do not show the dynamics of
individual neurons, because it is analogous to that observed in the FHN model;
the control does not destroy the spiking of individual neurons.

In Fig. 3.9, we present the results of numerical computation of the synchro-
nization criterion (3.48) in the dependence of the act-and-wait control parameters
τ and P . The values of the parameter S in the (τ , P ) plane are depicted in color
code. The incoherent state domains have again the resonance structure similar
to that obtained for the FHN neurons [see Fig. 3.7 (b)]. Note that here as well
as for the FHN neurons the charge-balanced act-and-wait control fails for τ → 0
(see Sec. 3.1 for details).



3.6 Summary 79

τ/T

P
[m

S
/
cm

2
]

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.9: Performance of the charge-balanced act-and-wait control algorithm
for synaptically coupled Hodgkin-Huxley neurons (3.51). The color in the (τ, P )
parameter plane encodes the value of the synchronization criterion S defined by
Eq. (3.48). Incoherent states are characterized by small values of S. The period
of the mean field oscillations of the coupled control-free neurons is T ≈ 10.5 ms.
The values of the parameters are the same as in Fig. 3.8.

3.6 Summary

In this chapter, the act-and-wait control algorithm was proposed to suppress
synchrony in globally coupled oscillatory networks in the situation when the simul-
taneous registration and stimulation of the system is not possible. The algorithm
involves the periodic repetition of the registration (wait) and stimulation (act)
stages, such that in the first stage the mean field of the free system is recorded in a
memory and in the second stage the system is stimulated with the recorded signal.
A modified version of the algorithm that takes into account the charge-balanced
requirement is considered as well. The efficiency of our algorithm is demonstrated
analytically and numerically for globally coupled Stuart-Landau oscillators, and
synaptically all-to-all coupled FitzHugh-Nagumo as well as Hodgkin-Huxley neu-
rons.

The results of this section are published in Ref. [109].
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4. Eliminating synchronization in
bistable networks

In this chapter, we consider the problem of controlling synchrony in bistable
networks, which possess the coexisting coherent and incoherent states, both being
stable for the same values of the parameters. The specific asymptotic state of
such a system depends on the initial conditions. The control problem that we
formulate here is as follows. We assume that a bistable network is initially in
the stable coherent state and our aim is to design a particular time-dependent
perturbation which enables us to switch the system to the stable incoherent state.
Such a problem can be motivated, e.g., by a possible control of epilepsy, which is
modelled by a bistable neural network in which the disease and healthy states are
associated with the stable coherent and incoherent states, respectively.

Motivated by neural networks with excitatory and inhibitory coupling we
have implemented in Ref. [110] introduced conformist-contrarian phase oscillators
model. Along with this known Kuramoto-type model, we introduce the bistable
networks consisting of all-to-all coupled noisy FitzHugh-Nagumo neurons.In the
real brain most neurons are connected relatively sparsely and locally. There are a
very small proportion of highly connected neurons (hubs), which have connections
spanning much longer distances, whilst most neurons would only interact with a
few neighbours. The mentioned properties are characteristic for networks with
scale-free topology, which we implemented with phase oscillators model.

We suggest two different algorithms to switch the bistable networks from the
stable coherent state to the stable incoherent state. One of them is an act-and-wait
control method, which was presented in chapter 3. We show that this algorithm is
efficient for the globally coupled populations. Another algorithm is based on the
multisite coordinated reset stimulation (MCR). The algorithm is nonfeedback,
but it uses inhomogeneous perturbations and is efficient even for the networks
with a complex scale-free topology. In addition to the numerical analysis of fi-
nite size networks, the analytical results for the Kuramoto-type models in the
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thermodynamic limit are presented.
The chapter is organized as follows. In Sec. 4.1, three models of bistable

networks are presented and the existence of a hysteresis in synchronization dia-
grams is demonstrated. Sections 4.2 and 4.3 are devoted to the act-and-wait and
MCR control algorithms, respectively. Using numerical and analytical methods we
demonstrate their capability to eliminate synchronization in the above described
networks. The conclusions are presented in Sec. 4.4.

4.1 Models of bistable oscillatory networks

4.1.1 Kuramoto model with positive and negative cou-
plings

A generalized Kuramoto model that demonstrates synchronization bistability
has been proposed in Ref. [110]:

θ̇j = ωj + Kj

N

N∑
l=1

sin(θl − θj), j = 1, . . . , N. (4.1)

Here θj is the phase of the jth oscillator and ωj is its natural frequency, chosen
at random from a unimodal, symmetric probability density g(ω). There are two
types of oscillators in the population referred to as conformists and contrarians.
The conformists are positively connected (Kj > 0) to all other oscillators of the
population and they tend to fall in line with whatever rhythm has emerged in the
population. The contrarians have negative coupling strength Kj < 0 and they
are repelled by the prevailing rhythm. In terms of neuroscience, the positive and
negative values of the coefficients Kj correspond to the excitatory and inhibitory
coupling, respectively.

For the Kuramoto-type models, the collective rhythm is quantified by the
complex order parameter

R = 1
N

N∑
l=1

eiθl . (4.2)

The absolute value 0 ≤ |R| ≤ 1 of this parameter measures the macroscopic
coherence of the system. The value |R| = 0 indicates the incoherent state while
|R| = 1 defines the fully synchronized state. The values in-between represent
partially synchronized states. Note, that differently from the previous chapters,
here the whole systems order parameter is identified by a capital letter R, while
the order parameter of some groups of oscillators will be marked by lower case
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letter r. By means of the definition (4.2), the system (4.1) can be rewritten as

θ̇j = ωj + Im
[
KjRe

−iθj

]
, j = 1, . . . , N. (4.3)

In our numerical simulations, we choose the natural frequencies of the oscilla-
tors from the Lorentz distribution

g(ω) = (∆/π)
[
(ω − ω0)2 + ∆2

]−1
(4.4)

and then subdivide randomly the whole population ofN oscillators into two groups
with N− and N+ oscillators in each subpopulation. For all oscillators in the
first subpopulation we assign the same negative value of the coupling strength
Kj = κ1 < 0 and label these oscillators as contrarians. Similarly, for the second,
conformist subpopulation, we set Kj = κ2 > 0. We also introduce the parameter
p = N+/N that denotes the proportion of conformists in the population.

Continuation diagram. In Fig. 4.1, we present an example of a synchro-
nization diagram that demonstrates the hysteresis in the dependence |R| versus p
and thus the existence of the bistability. The system (4.1) consisting of N = 10000
phase oscillators was numerically simulated for the fixed values of the parameters
ω0 = 0, ∆ = 0.05, κ1 = −3 and κ2 = 1. The values of the parameter p were first
increased progressively for p0, p0 + δp, . . . , p0 + nδp (forward continuation) and
then decreased from p0 +nδp to p0 (backward continuation). For each fixed p, the
stationary post-transient values of the order parameter |R| were computed and
depicted in Fig. 4.1. In this diagram, the lower branch indicates the incoherent
state, when the oscillators are completely desynchronized and scattered uniformly
across all phases. The upper branch represents the state in which the conformists
and contrarians are partially synchronized into two diametrically opposed clusters
whose phases are separated by the angle π. The forward and backward contin-
uations lead to the sudden jumps of the order parameter from zero (incoherent
state) to a finite value (coherent state) and back. The jumps take place at differ-
ent values of the parameter p. The stable incoherent and coherent states coexist
in the interval of p between the jumps of the order parameter.

The main advantage of this model is that it admits an analytical treatment
in the thermodynamic limit of infinite number of oscillators N → ∞. In the
next sections, we will use this approach to facilitate the analysis of our proposed
bistability control algorithms.
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Figure 4.1: Synchronization diagram for the generalized Kuramoto model (4.1)
consisting of N = 10000 coupled phase oscillators at the parameter values ω0 = 0,
∆ = 0.05, κ1 = −3 and κ2 = 1. Blue (dark) and red (light) curves show the
forward and backward continuations, respectively. The continuation step is δp =
0.0075.

4.1.2 Synaptically coupled FitzHugh-Nagumo neurons

In this section, we present a bistable network constructed in a similar way
as described above, but instead of the phase oscillators as units of the network
we utilize FHN neurons. Moreover, we take into account the synaptic coupling
between neurons and the presence of noise. Specifically, our model is as follows:

v̇j = f(vj)− wj + I − Isyn − Icon + ξj, (4.5a)

ẇj = εj(b0 + b1v − wj) (4.5b)

for j = 1, . . . , N . Here the variable vj denotes the membrane potential and wj is
the recovery variable of the jth neuron, f(vj) = vj−v3

j/3 is the cubic source term
of an ionic current and I is a constant current that defines the spiking regime of
uncoupled neurons. The current Isyn defines the coupling between neurons and
Icon is the control current, which will be defined in the next sections. Here we
take Icon = 0. The last term in Eq. (4.5a) is the white Gaussian noise, which
is different and independent for each neuron. We assume that the mean value of
the noise is zero 〈ξj〉 = 0 and the standard deviation is σξj

= 0.1. The parameter
εj defines the ratio between the characteristic time scales of vj and wj variables
and also the spiking period of the jth neuron. To scatter the spiking periods of
the neurons we choose εj randomly from the Gaussian distribution with the mean
〈ε〉 = 0.02 and the standard deviation σε = 0.1〈ε〉. The other parameters are
chosen as follows b0 = 2 and b1 = 1.5.

To mimic realistic junctions between neurons, we couple them synaptically. We
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assume for simplicity that the coupling is global and write the term of synaptic
current in the form

Isyn = Kj(vj − Uj)
1

N − 1
∑
k 6=j

Θ(vk − v0), (4.6)

where Kj is the coupling strength and Uj defines the reversal potential of the
jth neuron. Θ(v) = 1/[1 + exp(−(v − vth)/∆)] is the sigmoid function with
the threshold parameter vth = 1.5 and the width ∆ = 0.1. In analogy to the
previous model, we subdivide randomly the whole population of N neurons into
two groups consisting of Nexc and Ninh neurons, characterized by the excitatory
and inhibitory coupling, respectively. We distinguish them by the values of the
parameters Kj and Uj. For excitatory coupled neurons, we choose Kj = κ1 = 0.4
and Uj = u1 = 2.5, while for inhibitory coupled neurons, we take Kj = κ2 = 1.2
and Uj = u2 = −2.5. We denote by p = Nexc/N the proportion of excitatory
coupled neurons.

As in the case of Sec. 3.4, the use of the order parameter (4.2) for the system
(4.5) is problematic, since it is difficult to define the phases of individual neurons
when their dynamics is complex. Therefore we use an alternative synchronization
criterion based on the variance Var(V ) of the mean field:

V (t) = 1
N

N∑
j=1

vj(t). (4.7)

In the synchronized state, when all neurons spike simultaneously, the value of this
parameter is large, while in the incoherent state it is close to zero. In addition, we
introduce the variances Var(Vexc) and Var(Vinh) for the mean fields of excitatory
and inhibitory coupled neurons in order to separately measure the synchronization
level in each of the subpopulations.

Figure 4.2 shows dependence of the variances Var(V ), Var(Vinh) and Var(Vexc)
on the parameter p. The computations were performed for the total number of
N = 5000 neurons with the continuation step δp = 0.017. The hysteresis in
these dependencies indicates the presence of the bistability. In the interval of
the parameter p ∈ (0.45, 0.62) the phase space of the system has two attractors
related to the coherent and incoherent states.
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Figure 4.2: Synchronization diagrams for the network of N = 5000 synaptically
coupled FHN neurons (4.5). Blue (dark) and red (light) curves show the forward
and backward continuations, respectively. The continuation step is δp = 0.0075,
the values of other parameters are presented in the text. Equations (4.5) were
integrated by Euler-Maruyama method with time step h = 0.05.

4.1.3 Scale-free network of phase oscillators

The last bistable network analyzed in this thesis differs essentially from the
previous three by the topology of connections. Now we consider a network of
phase oscillators connected by a scale-free topology:

θ̇j = ωj +K
N∑
l=1

ajl sin(θl − θj). (4.8)

Here ajl is an element of the adjacency matrix A, which encodes network’s topol-
ogy. For the connected j and l oscillators, the matrix element is equal to one,
ajl = 1, while ajl = 0 otherwise. We assume that the coupling is symmetric
alj = ajl and there are no self-connections all = 0. In the scale-free networks,
the proportion P (k) of nodes having k connections satisfies for large k the power
law P (k) ∼ k−γ with 2 < γ ≤ 3. It was shown [111] that in scale-free networks
the hysteresis appears when the natural frequencies ωj of oscillators are positively
correlated with their degrees (numbers of connections kj), i.e. when ωj ∼ kj.

The degree of synchronization among oscillators is quantified by the order
parameter (4.2). We performed numerical simulations with networks consisting
N = 103 ÷ 104 number of oscillators with various power law exponents γ and
average degree 〈k〉. Our simulations show that the position and the width of
hysteresis in continuation plot depends strongly on specific networks realisation.
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Figure 4.3: Synchronization diagram for the scale-free network of N = 1000
phase oscillators (4.8). The adjacency matrix is generated using the configuration
model [113] with the parameters γ = 2.4, 〈k〉 = 6 and kmin = 1. The natural
frequency for each oscillator is equal to its degree, ωj = kj. Blue (dark) and red
(light) curves show the forward and backward continuations, respectively. The
continuation step is δK = 0.05.

This means that the different networks generated from the same sequence of os-
cillators degrees can have different continuation diagrams for the order parameter
defined in (4.2). For demonstration purpose of our algorithms we have chosen one
realisation (showed in Fig. 4.3) with sufficiently wide range of bistability. Here
is a scale-free network consisting of N = 1000 oscillators. The adjacency matrix
was generated according to the configuration model [113] with the scale factor
γ = 2.4, average degree 〈k〉 = 6 and minimal junction number kmin = 1. The
natural frequency of each oscillator was chosen equal to its degree, ωj = kj. The
observed hysteresis indicates the bistability of synchronization in the interval of
the coupling strength K ∈ (0.54, 0.65).

4.2 Eliminating synchronization via an act-and-
wait algorithm

We verify the efficacy of the act-and-wait algorithm for eliminating synchro-
nization in bistable networks described above (see Sec. 4.1). We present the results
only for the first two models. The last model is omitted, since it turned out that
this algorithm is inefficient for the scale-free networks. Nonetheless, in Sec. 4.3
we will show that the bistable scale-free networks can be effectively controlled by
the MCR algorithm.
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4.2.1 Kuramoto model with positive and negative cou-
plings

In the presence of the act-and-wait control, the Kuramoto model Eqs. (4.3)
transform to

θ̇j = ωj + Im
[
(KjR− PG(t)Rτ ) e−iθj

]
(4.9)

for j = 1, . . . , N . Here the additional term PG(t)Rτ stands for the act-and-wait
control force, where P is the feedback strength, G(t) is the periodic function
defined by Eq. (3.10) and the subscript τ in Rτ denotes the time-delayed value
Rτ ≡ R(t− τ). The form of the control term is derived from a model of coupled
and stimulated Stuart-Landau oscillators in the assumption that only mean field
is available for the measurement and the control perturbation is applied homoge-
neously.

The results of successful elimination of synchronization in system (4.9) con-
sisting of N− = 1500 contrarians and N+ = 3500 conformists are presented in
Fig. 4.4. The blue (dark) curve in panel (a) shows the dynamics of the order
parameter (4.2). For t < 100, the control perturbation is off, P=0. The initial
conditions are chosen such that the bistable system settles to the synchronized
state. In this state, the order parameter fluctuates around the value |R| = 0.31.
The contrarians and conformists crowd into two diametrically opposed clusters
whose phases are separated by the angle π. This is evident from the dynamics of
the phase distribution shown in panel (b). For 100 < t < 200, the act-and-wait
control algorithm with the strength P = 2 is activated. We see that the act-
and-wait feedback perturbation destroys the coherent clustered state. However,
the feedback perturbation is constructed in such a way that it does not destroy
the incoherent state of the system, and moreover this state remains stable in the
presence of control. The feedback seemingly makes the incoherent state the only
attractor of the system and because of that it settles to this state after a short
transient period. As a result the value of the order parameter falls to zero and the
phase distribution becomes uniform. For t > 200, the control force is switched off,
P = 0. Since the control-free system is bistable, it remains in its stable incoherent
state in the absence of control.

The system (4.9) admits an analytical treatment and essential simplification
in the thermodynamic limit of infinite number of oscillators, N → +∞. Using
the Ott-Antonsen ansatz [106] with the assumption that the natural frequencies
ωj satisfy the Lorentz distribution (4.4), system (4.9) can be reduced to only two
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Figure 4.4: Eliminating the synchronization by act-and-wait control in the Ku-
ramoto model (4.9) for N = 5000, p = 0.7, ω0 = 0, ∆ = 0.05, κ1 = −3 and κ2 = 1.
For t < 100, the system is control-free (P = 0), in the interval 100 < t < 200
the act-and-wait control is on with P = 2 and τ = 0.2 and for t > 200, the
system is again control-free. (a) Red (light) curve shows the absolute value of the
order parameter computed from the system (4.9) while blue (dark) curve shows
the same result obtained from the reduced system (4.10). (b) Dynamics of the
phase distribution of Eqs. (4.9). The values of the phase density are encoded by
colours.

differential equations (cf. [110] and Sec. 3.2):

ṙ1 = κ1(R∗ −Rr2
1)/2− (iω0 −∆)r1 + F1, (4.10a)

ṙ2 = κ2(R∗ −Rr2
2)/2− (iω0 −∆)r2 + F2, (4.10b)

where r1 and r2 are the complex order parameters of the contrarian and conformist
subpopulations, respectively and

F1,2 = −PG(t)(R∗τ −Rτr
2
1,2)/2 (4.11)

are the act-and-wait feedback forces. The total order parameter (4.2) is related
to this parameters via a simple algebraic expression

R = (1− p)r∗1 + pr∗2. (4.12)

To verify the validity of the reduced system (4.10), we have computed the dynam-
ics of the order parameter using Eqs. (4.10) with the same conditions as above.
The result is depicted in Fig. 4.4 (a) by the red (light) curve. We see that this
curve is close to the blue (dark) curve obtained by direct simulation of the original
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Figure 4.5: Domain of successful elimination of synchronization in the plane of
parameters (P, τ) for the Kuramoto model with positive and negative couplings
estimated from the reduced system (4.10). Different line styles represent regions
of desynchronization for different conformists ratio p in the network. The other
values of the parameters are the same as in Fig. 4.4.

system (4.9).
The reduced system (4.10) is computationally much more efficient than the

original system (4.9) and can be used to investigate the performance of the act-
and-wait algorithm in more details. In Fig. 4.5 we show how the control perfor-
mance depends on the choice of the coupling strength P and the delay time τ for
different values of the parameter p. For a given pair of the parameters (P, τ), we
took the initial conditions at the synchronized state and applied for some period
of time the act-and-wait control. Then we switched off the control and computed
the mean absolute value of the order parameter in the post transient regime. The
region of the parameters (P ,τ) where system settles into the incoherent state is
restricted by the coloured area between the same type of lines. We see that the
increase of the delay τ narrows the range of the strength P where the act-and-wait
control is effective. Also, the increase of the strength P narrows the range of τ
where the elimination of synchronization is successful. The act-and-wait algorithm
works for the various ratios p of conformists in the network. The variation of the
parameter p changes only the bottom limit of feedback gain P in the domain of
successful control, while the top limit remains almost the same.

4.2.2 Synaptically coupled FitzHugh-Nagumo neurons

The act-and-wait control algorithm works well for rather complicated systems.
Here we show that it can eliminate synchronization in a noisy system of synap-
tically coupled FHN neurons introduced in Sec. 4.1.2. Assuming that only the
mean field is available for the measurement and only homogeneous perturbations
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Figure 4.6: Eliminating the synchronization by act-and-wait control in the net-
work of synaptically coupled FHN neurons (4.5) for N = 5000 and p = 0.5. V
denotes the mean field of the whole population, while Vinh and Vexc are the mean
fields of inhibitory and excitatory coupled subpopulations. For t < 2000, the
system is control-free (P = 0), in the interval 2000 < t < 5000, the act-and-wait
control is on with P = 0.2 and τ = 71 and for t > 5000, the system is again
control-free

are allowed, the control current in the model (4.5) can be written as

Icon(t) = G(t)PV (t− τ), (4.13)

where G(t) is the periodic function (3.10), P is the feedback strength and V (t−τ)
is a time-delayed value of the mean field (4.7).

Figure 4.6 demonstrates the results of successful elimination of synchronization
in the network (4.5) consisting of N = 5000 neurons, a half of which is coupled
inhibitory and another half is coupled excitatory. We show the dynamics of the
mean fields V (t), Vinh(t) and Vexc(t). Without control (t < 2000), the network is
in the synchronized state; here all mean fields exhibit almost periodic oscillations
with large amplitude. In the time interval 2000 < t < 5000, the act-and-wait
control is activated with the strength P = 0.2 and the delay time τ = 71, chosen
close the period of oscillations of the mean field of control-free system. We see that
the control decreases the amplitudes of variations of the mean fields. For t > 5000,
the control is switched off and the system settles to the stable incoherent state.
Note that the amplitudes of oscillations are higher during the control than after
the control is turned off. This means that at the end of the control the system
state does not reside exactly in the incoherent attractor, but it enters its basin of
attraction.
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4.3 Eliminating synchronization via a multisite
coordinated reset stimulation

When controlling the bistable networks by MCR algorithm, we do not need
to periodically switch on and off the stimulation. Below we show that synchro-
nization can be eliminated by only single switched on and off cycle. Here we use
a soft stimulation approach [65] where the stimulation frequency is close to the
mean frequency of the network.

4.3.1 Kuramoto model with positive and negative cou-
plings

First we verify the performance of the MCR stimulation algorithm for the
Kuramoto model (4.3). In the presence of the MCR stimulation this model reads:

θ̇j = ωj + Im
[(
KjR + aei(Ωt+φ

(m)
j )

)
e−iθj

]
(4.14)

for j = 1, . . . , N . Here the amplitude a and the frequency Ω of the MCR stimu-
lation are equal for all units of the network, while the phases φ(m)

j are different.
We assume that in the case of M electrodes, each of them stimulates indepen-
dently N/M different units of the network. The phase shifts of periodic signals
applied to the electrodes are chosen as 2π(m − 1)/M , where m = 1, . . . ,M is
the number of the electrode. In this way the whole population is split into M

distinct clusters related to the different stimulation sites, respectively. For all os-
cillatory units with the index j belonging to themth cluster, the stimulation phase
is φ(m)

j = 2π(m − 1)/M . In our numerical simulations, the units are randomly
assigned to the different clusters.

We tested the MCR stimulation algorithm with M = 4 for the network (4.14)
consisting of N− = 1500 contrarians and N+ = 3500 conformists. In Fig. 4.7,
the panels (a) and (b) show the dynamics of the order parameter (4.2) and of
the phase distribution, respectively. For t < 200, the control-free system is in the
synchronized regime in which contrarians and conformists are crowded into two
opposed clusters. For 200 < t < 300, the MCR stimulation is switched on and
the network resynchronizes according to the applied signals so that phases of the
oscillators are spread into new four uniformly distributed clusters separated by the
angle π/2 with equal proportion of the oscillators in each cluster. Note that the
contrarian and conformist oscillators are now mixed in each of the clusters. The
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Figure 4.7: Eliminating the synchronization by MCR stimulation in the Ku-
ramoto model (4.14) for N = 5000, p = 0.7, ω0 = 0, ∆ = 0.05, κ1 = −3
and κ2 = 1. For t < 200, the system is control-free (a = 0), in the interval
200 < t < 300 the MCR stimulation is on with M = 4, a = 0.3 and Ω = 0 and
for t > 300, the system is again control-free. (a) Blue (dark) curve shows the
absolute value of the order parameter computed from the system (4.14) while red
(light) curve shows the same result obtained from the reduced system (4.15). (b)
Dynamics of the phase distribution of Eqs. (4.14) .

state resulting from the MCR stimulation has more uniform phase distribution
as compared to the initial synchronized state and thus it should be closer to
the incoherent state in the phase space of the free system, since the latter is
characterized by the uniform distribution of phases. This explains why the state
resulting from the MCR stimulation appearers to lie in the basin of attraction of
the incoherent attractor of the free system and why the system approaches this
attractor when the stimulation is switched off (t > 300). We see that after a short
transient period the phase distribution becomes totally uniform and the order
parameter almost vanishes.

In the thermodynamic limit N →∞, the Kuramoto model (4.14) under MCR
stimulation can be reduced by Ott–Antonsen ansatz [106] to only 2M differential
equations:

ṙ1,m = κ1

2 (R∗ −Rr2
1,m)− (iω0 −∆)r1,m + F̄

(m)
1 , (4.15a)

ṙ2,m = κ2

2 (R∗ −Rr2
2,m)− (iω0 −∆)r2,m + F̄

(m)
2 (4.15b)

for m = 1, . . . ,M . Here r1,m and r2,m are the complex order parameters of the
contrarian and conformist subpopulations, respectively, which are stimulated with
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the periodic signal having phase shift φ(m) = 2π(m−1)/M . The stimulation force
in system (4.15) reads:

F̄
(m)
j = −a2

(
e−i(Ωt+φ

(m))r2
j,m − ei(Ωt+φ

(m))
)

(4.16)

for j = 1, 2 and m = 1, . . . ,M . The order parameter of the whole network can be
computed as

R =
M∑
m=1
{(1− p)r∗1,m + pr∗2,m}. (4.17)

In Fig. 4.7 (a), we compare the dynamics of the absolute value of the order
parameter computed from the reduced system (4.15) (red/light curve) with that
obtained by direct simulation of the original system (4.14) (blue/dark curve). The
good coincidence of the above results means that the reduced system approximates
well the dynamics of large networks of the Kuramoto oscillators in the presence
of MCR stimulation.

4.3.2 Synaptically coupled FitzHugh-Nagumo neurons

The MCR stimulation current in the model (4.5) of synaptically coupled FHN
neurons has the form

Icon(t) = a cos(Ωt+ φ
(m)
j ), (4.18)

where φ(m)
j = 2π(m − 1)/M is the phase of the stimulation signal coming from

the mth electrode to the jth neuron. The results of successful elimination of
synchronization in the network (4.5) consisting of N = 5000 neurons are presented
in Fig. 4.8. The algorithm works well, although here we used only two (M = 2)
stimulation electrodes.

4.3.3 Scale-free network of phase oscillators

The MCR stimulation approach goes beyond the model of globally coupled
populations and admits some spatial structure of the network. Here we demon-
strate its efficacy to eliminate synchronization in the scale-free network (4.8). To
this end, we add to the Eqs. (4.8) the MCR stimulation term of the same form as
for the Kuramoto model with positive and negative couplings (see Eqs. (4.14)):

θ̇j = ωj +K
N∑
l=1

ajl sin(θl − θj) + a sin(Ωt+ φ
(m)
j − θj) (4.19)
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Figure 4.8: Eliminating the synchronization by MCR stimulation in the network
of synaptically coupled FHN neurons (4.5). The parameters of the network are
the same as in Fig. 4.6. For t < 5000, the system is control-free (a = 0), in the
interval 5000 < t < 10000 the MCR stimulation is on with M = 2, a = 0.1 and
Ω = 2π/74 and for t > 10000, the system is again control-free.

The results of numerical simulation of the network (4.19) are presented in Fig. 4.9.
The coupling strength K is chosen equal to 6 and the other parameters of the net-
work are the same as in Sec. 4.1.3. The panel (a) shows the dynamics of the order
parameter, while the panel (b) displays an evolution of the phase distribution. For
t < 40, the control-free network is in the synchronized state, then for 40 < t < 50,
the MCR stimulation with M = 4, a = 10 and Ω = 2π is switched on, and for
t > 50 it is switched off. As a result the system settles to the stable incoherent
state. The success of control can be again explained by the fact that the MCR
stimulation produces the state with rather uniform phase distribution, which falls
within the basin of attraction of the incoherent attractor of the free system.

4.4 Summary

In this chapter, the problem of controlling synchronization in bistable oscilla-
tory networks has been considered. We have shown that the bistability effect is
characteristic not only for the Kuramoto-type models, but also for a stochastic
model of synaptically all-to-all coupled FitzHugh-Nagumo neurons with excitatory
and inhibitory interaction. All these systems have coexisting stable coherent and
incoherent states in a certain range of parameters. In order to switch a bistable
network from the stable coherent state to the stable incoherent state, we have
suggested and tested two different algorithms. Both of them take into account
constraints typical for real-world neural networks; they satisfy the requirement
that the control and measurements of the system are available only on a macro-
scopic level.
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Figure 4.9: Eliminating the synchronization by MCR stimulation in the scale-free
network (4.19) consisting of N = 1000 oscillators with coupling strength K = 6.
Other parameters of the network are the same as in Fig. 4.3. For t < 40, the
system is control-free (a = 0), in the interval 40 < t < 50 the MCR stimulation is
on with M = 4, a = 10 and Ω = 2π, and for t > 300, the system is again control-
free. (a) Dynamics of the absolute value of the order parameter. (b) Evolution of
the phase distribution of Eqs. (4.19). Note different scales of time in panels (a)
and (b).

The first, act-and-wait control algorithm, is constructed in such a way that
it preserves the stable incoherent state of the system but destroys its coherent
state. We have shown that this algorithm is efficient for networks with all-to-all
coupling topology. The advantage of this algorithm is that it can be implemented
in neural networks by a single electrode.

The second algorithm is based on multisite coordinated reset stimulation. This
algorithm is a non-feedback and does not require online measurements of the sys-
tem state. We have shown by examples that multicluster states, formed by the
stimulation, lie in the basin of attraction of the incoherent attractor of the free
system, so that after switching off the stimulation the network approaches the in-
coherent state. The main advantage of this approach is that it works well not only
for networks with all-to-all coupling topology but is applicable for more complex
networks as well. We have demonstrated its capability to eliminate synchroniza-
tion in a bistable network with a nontrivial scale-free topology.

The results of this section are published in Ref. [114].



Main results and conclusions

1. The averaging method is adopted for a neurons under high-frequency stim-
ulation (HFS). It is shown that the effect of the HFS on the neuron is
determined by a stimulation parameter equal to the ratio of the amplitude
to the frequency of the stimulation current.

2. A homogeneous HFS is an effective tool to control pulse propagation in
the axon because the stimulation parameter regulates the pulse width and
speed. It was established that high stimulation intensities can suppress pulse
propagation. In myelinated axon, pulse enhancement is possible at a small
stimulation intensity. The mechanism of this effect is related to the fact
that threshold of neuron excitability parameter depends on the stimulation
intensity.

3. An act-and-wait feedback algorithm was proposed for a synchronization con-
trol, where standard feedback algorithms can not be applied. Its efficacy
and robustness were demonstrated analytically and numerically on various
networks of oscillators.

4. The incoherent state stability domains of the act-and-wait algorithm in the
parameter plane of the feedback delay time τ and gain P , have a resonance
structure; they are located at the values of τ = mT/2, where T is the char-
acteristic period of oscillations of the mean field of synchronized oscillators
in the absence of control and m is a non-negative integer number.

5. The act-and-wait algorithm satisfying the charge balance requirement was
introduced. The charge balance requirement does not destroy the resonance
structure of the incoherent state stability domains in the (τ , P ) plane, but
the algorithm stops to work for small values of τ .

6. The act-and-wait as well as the multisite coordinated reset stimulation
(MCR) methods were suggested for switching bistable networks from the
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stable coherent state to the stable incoherent state. The act-and-wait al-
gorithm is efficient for the globally coupled populations of oscillators, while
MCR is effective for global coupling and complex scale-free topology net-
works.
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[86] V. H. P. Louzada, N. A. M. Araújo, J. S. Andrade Jr., and H. J. Herrmann.
How to suppress undesired synchronization. Sci. Rep., 2, 658, (2012).

[87] K. Pyragas, O.V. Popovich, and P.A. Tass. Controlling synchrony in oscil-
latory networks with separate stimulation – registration setup. Europhys.
Lett., 80, 40002, (2007).

[88] J. A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear
Dynamical Systems. Springer, (2007).



107

[89] A. C. Scott. The electrophysics of a nerve fiber. Rev. Mod. Phys., 47,
487–533, (1975).

[90] J. P. Keener. Waves in excitable media. SIAM J. Appl. Math., 39, 528–548,
(1980).

[91] G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh-
Nagumo system. SIAM J. Math. Anal., 22, 392–399, (1991).

[92] C. K. R. T. Jones. Stability of the travelling wave solution of the Fitzhugh-
Nagumo system. Trans. Amer. Math. Soc., 286, 431–469, (1984).

[93] A. Dhooge, W. Govaerts, and Yu. A. Kuznetsov. MATCONT: A MATLAB
package for numerical bifurcation analysis of ODEs. ACM TOMS, 29,
141–164, (2003).

[94] R. M. Miura. Accurate computation of the stable solitary wave for the
Fitzhugh-Nagumo equations. J. Math. Biology, 13, 247–269, (1982).

[95] A. Carpio and L. L. Bonilla. Pulse propagation in discrete systems of coupled
excitable cells. SIAM Journal on Applied Mathematics, 63(2), 619–635,
(2002).

[96] Th. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction-
diffusion systems. Physica D, 67, 237–244, (1993).

[97] J. P. Keener. Propagation and its failure in coupled systems of discrete
excitable cells. SIAM J. Appl. Math., 47(3), 556–572, (1987).

[98] J. Keener and J. Sneyd. Mathematical physiology. Springer, (2001).

[99] D. Barkley, M. Kness, and L. S. Tuckerman. Spiral-wave dynamics in a
simple model of excitable media: The transition from simple to compound
rotation. Phys. Rev. A, 42, 2489–2492, (1990).

[100] E. Ullner, A. Zaikin, J. Garcia-Ojalvo, R. Báscones, and J. Kurths. Vibra-
tional resonance and vibrational propagation in excitable systems. Phys.
Lett. A, 312, 348–354, (2003).

[101] I. Ratas and K. Pyragas. Effect of high-frequency stimulation on nerve
pulse propagation in the FithzHugh-Nagumo model. Nonlinear Dyn., 67,
2899–2908, (2012).



108 Bibliography

[102] I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete
FitzHugh-Nagumo model subject to high-frequency stimulation. Phys. Rev.
E, 86, 046211, (2012).

[103] C. Beurrier, L. Garcia, B. Bioulac, and C. Hammond. Subthalamic nucleus:
A clock inside basal ganglia? Thalamus Relat. Syst., 2, 1–8, (2002).

[104] T. Insperger. Act-and-wait concept for continuous-time control systems with
feedback delay. IEEE Trans. Control Syst. Technol., 14, 974 – 977, (2006).

[105] G. Stépán and T. Insperger. Stability of time-periodic and delayed systems
— a route to act-and-wait control. Annu. Rev. Control, 30, 159–168, (2006).

[106] E. Ott and Th. M. Antonsen. Low dimensional behavior of large systems of
globally coupled oscillators. Chaos, 18, 037113, (2008).

[107] D. Harnack, Ch. Winter, W Meissner, T. Reum, A. Kupsch, and R. Mor-
genstern. The effects of electrode material, charge density and stimulation
duration on the safety of high-frequency stimulation of the subthalamic nu-
cleus in rats. J. Neurosci. Meth., 138, 207–216, (2004).

[108] B. Piallat, S. Chabardès, A. Devergnas, N. Torres, M. Allain, E. Barrat, and
A. L. Benabid. Monophasic but not biphasic pulses induce brain tissue dam-
age during monopolar high-frequency deep brain stimulation. Neurosurgery,
64, 156–163, (2009).

[109] I. Ratas and K. Pyragas. Controlling synchrony in oscillatory networks via
an act-and-wait algorithm. Phys. Rev. E, 90, 032914, (2014).

[110] H. Hong and S. H. Stogatz. Kuramoto model of coupled oscillators with
positive and negative coupling parameters: An example of conformist and
contrarian oscillators. Phys. Rev. Lett., 106, 054102, (2011).
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Santrauka

Disertacijoje nagrinėjama sužadinamų ir virpesinių neuroninių sistemų dina-
mika ir valdymas. Aptariami tiek patys paprasčiausi, tiek sudėtingesni neuronų
ir jų tinklų modeliai. Nors disertacijoje naudojami supaprastinti realių neuronų
matematiniai modeliai, tikimasi, kad šis darbas neuromoksle padės plėtoti naujus
valdymo metodus.

Disertaciją sudaro keturi skyriai, iš jų trijuose pateikiami orginalūs rezul-
tatai. Pirmame skyriuje pristatoma darbo problematika, disertacijoje naudo-
jamos sąvokos, modeliai, atliekama literatūros apžvalga. Antrame disertacijos
skyriuje nagrinėjamas aukšto dažnio poveikis impulso sklidimui aksonu. Tiriami
mielinuoto ir nemielinuoto aksono atvejai. Aksonas modeliuojamas naudojant
FitzHugh-Nagumo modelį. Siekdami analitinių rezultatų pirmiausia sistemoms
pritaikome vidurkinimo teoremą, taip atskirdami lėtąją ir greitąją neurono di-
namikas. Tokiu būdu išvedame suvidurkintas lygtis, lėtajai neurono dinamikos
daliai. Toliau taikome asimptotinį impulso konstravimo metodą. Ribiniu, mažo
parametro atveju, nustatome impulso parametrų priklausomybę nuo aukštadažnės
stimuliacijos intensyvumo. Parodyta, kad homogeninė aukštadažnė stimuliacija
efektyviai valdo impulso plotį ir greitį, o didelio intensyvumo stimuliacija gali
ir sustabdyti impulso sklidimą. Tačiau mielinuoto aksono atveju, mažo inten-
syvumo aukštadažnė stimuliacija gali pagerinti aksono pralaidumą impulsams.
Toks sistemos elgesys nulemtas neurono sužadinimo priklausomybės nuo stimu-
liacijos parametro.

Trečiame disertacijos skyriuoje yra nagrinėjamas sujungtų osciliatorių sinchro-
nizacijos valdymas. Pasiūlytas registracijos-stimuliacijos algoritmas, kurio veikimo
principas pagrįstas trūkiu grįžtamuoju ryšiu. Šis algoritmas gali veikti sudėtingose
situacijose, kai registruojamas signalas yra žymiai silpnesnis už signalą, kuriuo
veikiama sistema. Šis atvejis yra būdingas neuroninėms sitemoms. Algoritmo
veikimas paremtas periodiniu dviejų etapų kartojimu. Pirmame (registracijos)
etape, sistema neveikiama, o jos generuojamas vidutinis laukas yra įrašomas į
atminties elementą. Antro etapo (stimuliacijos) metu sistema veikiama signalu
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proporcingu įrašytajam. Šių dviejų etapų periodinis kartojimas efektyviai panaik-
ina sinchronizaciją. Nustatyta, kad registracijos-stimuliacijos algoritmo nekoher-
entinės būsenos stabilumo zonos grįžtamojo ryšio delsos τ ir stiprio P plokštu-
moje turi rezonansinę struktūrą. Šios zonos yra ties vertėmis τ = mT/2, kur T
yra charakteringas sistemos vidutinio lauko periodas, kai sistemos neveikia išor-
inė stimuliacija, o m yra neneigiamas sveikasis skaičius. Pristatytas patobulintas
registracijos-stimuliacijos algoritmas, kuriuo įgyvendinama krūvio balanso sąlyga.
Ši sąlyga nepanaikina stabilumo zonų rezonansinės struktūros (τ , P ) plokštumoje,
tačiau nustoja veikti mažų delsų riboje τ → 0. Algoritmo efektyvumas pademon-
struotas analiziškai ir skaitmeniškai su globaliai sujungtais Stuart-Landau oscilia-
toriais, sinaptiškai sujungtais FitzHugh-Nagumo, o taip pat ir su Hodgkin-Huxley
neuronais.

Ketvirtame skyriuje aptartas sinchronizacijos valdymas bistabiliuose tinklu-
ose, kur esant tam tikriems parametrų rinkiniams egzistuoja stabili koherentinė ir
nekoherentinė būsenos. Problema formuluojama tokiu būdu: tariame, kad sistema
yra koherentinėje būsenoje, naudojant išorinę homogeninę perturbaciją reikia šią
sistemą pervesti į stabilią nekoherentinę būseną. Spėjame, kad sinchronizacijos
bistabilumas gali būti būdingas ir neuronų tinklams, kas paaiškintų tinklų el-
gseną esant normaliai žmogaus būsenai (nekoherentinė) ir epilepsijos priepuolio
metu (koherentinė). Šiam tikslui buvo pritaikyti registacijos-stimuliacijos ir ko-
ordinuoto fazės postūmio metodai. Nustatyta, kad registracijos-stimuliacijos al-
goritmas efektyviai išveda globaliai sujungtų osciliatorių sistemą iš koherentinės
į nekoherentinę būseną, o koordinuoto fazės postūmio metodas veikia ir bemas-
telinio tinklo topologijos atvejais.
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