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Abstract: The latest published version of GRASP (General-purpose Relativistic Atomic Structure
Package), i.e., GRASP2018, retains a few suboptimal subroutines/algorithms, which reflect the limited
memory and file storage of computers available in the 1980s. Here we show how the efficiency of
the relativistic self-consistent-field (SCF) procedure of the multiconfiguration-Dirac–Hartree–Fock
(MCDHF) method and the relativistic configuration-interaction (RCI) calculations can be improved
significantly. Compared with the original GRASP codes, the present modified version reduces the
CPU times by factors of a few tens or more. The MPI performances for all the original and modified
codes are carefully analyzed. Except for diagonalization, all computational processes show good
MPI scaling.

Keywords: relativistic self-consistent-field (SCF) procedure; relativistic configuration interaction;
configuration state function generators; performance tests; code improvements

1. Introduction

Atomic energy levels, oscillator strengths, transition probabilities and energies are
essential parameters for abundance analysis and diagnostics in astrophysics and plasma
physics. In the past decade, the atomic spectroscopy group of Fudan University carried
out two projects to calculate transition characteristics with high accuracy in collaboration
with other groups. One project focused on the ions with Z . 30, which are generally
of astrophysical interest, and the other on tungsten ions (Z = 74), which are relevant in
the research of magnetic confinement fusion. Employing the multiconfiguration Dirac–
Hartree–Fock (MCDHF) approach [1–5], implemented within the GRASP2K package [6],
and/or the relativistic many-body perturbation theory (RMBPT) [7], implemented within
the FAC package [8–10], we performed a series of systematic and large-scale calculations of
radiative atomic data for ions of low and medium Z-values belonging to the He I [11], Be I-
Ne I [12–22], Si I-Cl I [23–27] isoelectronic sequences, and for the highly-charged isonuclear
sequence ions of tungsten [28–33]. A large amount of atomic data, including level energies,
transition wavelengths, line strengths, oscillator strengths, transition probabilities and
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lifetimes, were obtained. Their uncertainties were comprehensively assessed by cross-
validations between the MCDHF and RMBPT results and by detailed comparisons with
observations. It showed that spectroscopic accuracy was achieved for the computed
excitation and transition energies in most of the ions concerned due to the fact that electron
correlation was treated at a high level of approximation by using a very large expansion
of configuration state functions (CSF) based on extended sets of one-electron orbitals.
To make these large-scale calculations feasible and tractable, many efforts were devoted
to improving the performance and stability of the codes used. Here, we describe some
improvements made in the last two years for the rmcdhf and rci programs, which have
not yet been included in the latest published version of GRASP, i.e., GRASP2018 [34].

The GRASP2018 package is an updated Fortran 95 version of recommended programs
from GRASP2K Version 1_1 [6], providing improvements in accuracy and efficiency in
addition to the translation from Fortran 77 to Fortran 95 [34]. However, it has retained
some original subroutines/algorithms that reflect the limited memory and file storage
capacities of computers in the 1980s, when the first versions of GRASP were released [2].
For example, the spin-angular coefficients, which are used to build the Hamiltonian matrix
and the potentials, are stored on disks in unformatted files. During the iterations of the
self-consistent-field (SCF) calculations, aiming to optimize the one-electron radial functions,
the spin-angular coefficients are read from disks again and again. The calculations using
expansions of hundreds of thousands of CSFs are very time-consuming, as the disk files
easily exceed over 10 GB. This kind of inefficiency, which was considered a major bottleneck
of the GRASP package for a long time, was removed very recently by one of the authors (GG)
through two programs, rmcdhf_mem and rmcdhf_mem_mpi, which have been uploaded to
the GRASP depository [35]. The new feature of these two programs is that the spin-angular
coefficients, once they are read from disk files, are stored in memory by using arrays.
In the present work, we show that these codes can be further improved by redesigning
the procedure to obtain the direct and exchange potentials and the Lagrange multipliers,
which are used to update the radial orbitals (large and small components) during the SCF
procedure.

Once the radial functions have been determined by an MCDHF calculation based on
the Dirac–Coulomb Hamiltonian, subsequent relativistic configuration-interaction (RCI) cal-
culations are often performed to include the transverse photon interaction (which reduces
to the Breit interaction at the low-frequency limit) and the leading quantum electrody-
namics (QED) corrections. At this stage, the CSFs expansions are usually considerably
enlarged to capture additional electron correlation effects. For example, our recent MCDHF
calculations on C-like ions [16] were performed using an expansion of about two-million
CSFs, which were generated by single and double (SD) excitations from the outer subshells
of the multi-reference (MR) configurations, taking only the valence–valence correlation into
account. The subsequent RCI calculations were based on approximately 20 million CSFs to
adequately account for the additional core-valence (CV) electron correlation effects.

MCDHF and RCI calculations, using large CSFs expansions, require a lot of computing
resources. Firstly, the construction of the Hamiltonian matrix is very time-consuming. The
spin-angular integration of the Hamiltonian between pairs of CSFs has to be performed
N(N + 1)/2 times, where N is the order of the interaction matrix, i.e., the size of CSFs
expansion for the block of given J and parity. Fortunately, we recently implemented a
computational methodology based on configuration state function generators (CSFGs) that
relaxes the above scaling. Instead of having to perform the spin-angular integration for
each of the elements in the Hamiltonian matrix, the use of generators makes it possible to
restrict the integration to a limited number of cases and then directly infer the spin-angular
coefficient for all matrix elements between groups of CSFs spanned by the generators,
which takes advantage of the fact that spin-angular expressions are independent of the
principal quantum number [36]. Secondly, the time for solving the eigenvalue problem in
MCDHF and RCI may also be significant, especially if many eigenpairs are required, as is
normally the case in spectrum calculations for complex systems [16,23–27].
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The present paper, which reports on improvements both for MCDHF and RCI, is
organized as follows:

• In Section 2, we show how the diagonalization procedure in MCDHF and RCI calcula-
tions can be improved by further parallelization.

• In Section 3, we discuss the improvements in the MCDHF program resulting from the
new management of spin-angular coefficients in memory and from the redesign of
the procedures for calculating the potentials and Lagrange multipliers. Results are
reported from a number of performance tests.

• In Section 4, we study the improvements in RCI performances thanks to the use of
CSFGs. We also investigate the time ratios for constructing and diagonalizing the
Hamiltonian matrix to determine the desired eigenpairs.

• Finally, in Section 5, we summarize the results of the performance tests and identify
the remaining bottlenecks. This is followed by a discussion on how the latter could be
circumvented in future developments.

2. Additional Parallelization for the DVDRC Library of GRASP

In the DVDRC library of GRASP, the Davidson algorithm [37], as implemented in [38],
is used to extract the eigenpairs of interest from the interaction matrix. Assuming that
the K lowest eigenpairs are required of a large, sparse, real and symmetric matrix A of
order N, the original Davidson algorithm can be described as shown in Algorithm 1, in
which the upper limit of P, the order of the expanding basis, is defined by the variable
LIM = 2K + 80 in GRASP2018 [34]. The matrix-vector multiplication (6), which is the
most time-consuming step, has already been parallelized in GRASP using message passing
interface (MPI) by calling upon one of the three subroutines named DNICMV, SPODMV, and
SPICMVMPI, depending on if the interaction matrix is sparse or dense, and stored in memory
or on disk.

Algorithm 1: Davidson algorithm.

(0) Set P = K. Compute the initial Basis B = {b1, . . . , bP} ∈ RN×P,
D = AB = {d1, . . . , dP} ∈ RN×P, and the projection S = BT AB = BT D ∈ RP×P.

Repeat until converged steps (1) through (8):

(1) Solve the symmetric eigenvalue problem: SC = CU (size P× P).
(2) Target one of the K sought eigenpairs, say (u, c), c ∈ RP.
(3) If the basis size is maximal, restart: D ← DC, B← BC, C = IK , S = U, P = K.
(4) Compute R = (diag(A)− uI)−1(D− uB)c.
(5) Orthogonalize: bnew = R−∑ bibT

i R, normalize: bnew ← bnew/‖bnew‖.
(6) Matrix-vector multiplication: dnew = Abnew.
(7) Include bnew in B and dnew in D. Increase P.
(8) Compute the new column of S: Si,P = bT

i dP, i = 1, . . . , P.

It should be pointed out that the subroutines of the library in GRASP2018 [34] perform-
ing the remaining calculations, except for step (6) of the Davidson algorithm, are all serial.
Step (1), solving the small symmetric eigenvalue problem of order P, which is generally
smaller than 500, is very fast as it calls upon the DSPEVX routine from the LAPACK library.
However, in steps (3)–(5) and (7)–(8), the matrix-vector, matrix–matrix multiplication and
inner-products involve vectors of size N, such as all the column vectors of B and D. In the
MCDHF and RCI calculations, when N, the size of the CSFs expansion of a given J and
parity, is large enough, and meanwhile, dozens of eigenpairs or more are searched, steps
(3)–(5) and (7)–(8) can be as time-consuming as step (6). Hence, we have parallelized all
the possibly time-consuming routines of the DVDRC library for these steps by using MPI,
such as MULTBC, NRM_MGS, NEWVEC, ADDS, etc. We show in Sections 3 and 4 that the CPU
time for diagonalization can be significantly reduced by factors of about three in relatively
large-scale calculations.
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3. Improvements for MCDHF
3.1. Outline of the MCDHF Method

The theory of MCDHF has been comprehensively described in the literature; for exam-
ples, see [1–5]. Here it is outlined to explain the modifications of the original GRASP2018
codes. Atomic units are used throughout except for those given explicitly.

In MCDHF calculations with GRASP, only the Dirac–Coulomb Hamiltonian (HDC) is
taken into account. The Dirac one-electron orbital a is given by

ua(r) =
1
r

(
Pnlj(r)Ωκm(θ, φ)

i Qnlj(r)Ω−κm(θ, φ)

)
, (1)

in which P and Q are the radial functions, and Ω is the usual spherical spinor, i.e., the
spin-angular function, κ = −2(j− l)(j + 1/2), a ≡ (n, l, s, j, m) ≡ (n, κ, m). For a state α of
given total angular momentum J, total magnetic quantum number MJ , and parity π, the
atomic state function (ASF) is formed by a linear combination of CSFs

Ψ(αJMJπ) ≡ |αJMJπ〉 =
NCSF

∑
r=1

cα;r Φ(γr JMJπ) . (2)

NCSF is the number of CSFs used in the expansion. Each CSF, Φ(γr JMJπ), is constructed
on four-component spinor orbital functions (1). The label γr contains all the needed
information on its structure, i.e., the constituent subshells with their symmetry labels and
the way their angular momenta are coupled to each other in jj-coupling. The level energy Eα

and the vector of expansion coefficients cα are solved from the following secular equation:

(H − Eα I)cα = 0, (3)

with
Eα = 〈αJMJπ|HDC|αJMJπ〉 =

1√
2J + 1

〈αJπ‖HDC‖αJπ〉 (4)

where the reduced matrix element (RME) 〈αJπ‖HDC‖αJπ〉 is defined from Edmond’s
formulation of the Wigner–Eckart theorem [39]. This RME can be developed in terms of
RMEs in the CSF basis, Hrs = 〈Φr(γr J)‖HDC‖Φs(γs J)〉, which are generally expressed as

Hrs = ∑
ab

trs
ab I(a, b) + ∑

abcdk
vrs

abcd; k Rk(ab, cd) . (5)

The radial integrals I(a, b) and Rk(ab, cd) are, respectively, relativistic kinetic-energy and
Slater integrals, trs

ab and vrs
abcd; k are the corresponding spin-angular coefficients, and k is the

tensor rank.
The radial functions of the orbitals are unknown and should be determined on a grid.

The stationary condition with respect to variations in the radial functions, in turn, gives the
following MCDHF integro-differential equations for each orbital a [1–4]:

(
d
dr

+
κa

r

)
Pa −

(
2c− εa

c
− Vnuc

c
+

Ya

cr

)
Qa = −

1
cqa

nw

∑
b 6=a

δκaκb εabQb −
X(P)

a
r

,

(
d
dr
− κa

r

)
Qa +

(
− εa

c
− Vnuc

c
+

Ya

cr

)
Pa =

1
cqa

nw

∑
b 6=a

δκaκb εabPb +
X(Q)

a
r

,

(6)
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in which the Lagrange multipliers εa and εab ensure that the nw orbitals of {a, b, · · · } form
an orthonormal set. The direct potential Ya(r) arising from the two-body interactions,
summing over the allowed tensor rank k, is given by

Ya(r) = −
nw

∑
b=1

∑
k

yk(ab)Yk(bb; r)−∑
k

∑
b,d

yk(abad)Yk(bd; r) , (7)

with Yk(; r) being the relativistic one-dimensional radial integrals [1–4], and

q(a)yk(ab)/(1 + δab) = ∑
r

drr f k
r (ab) , (8)

q(a)yk(abad) = ∑
r,s

drsvrs
abad; k , (9)

where f k
r (ab) ≡ vrr

abab; k and vrs
abad; k are the spin-angular coefficients. The exchange potentials

Xa(r) in Equation (6) are given by

X(P)
a (r) =

1
c

[ nw

∑
b 6=a

∑
k

xk(ab)Yk(ab; r)Qb + ∑
bcd,c 6=a

∑
k

xk(abcd)Yk(bd; r)Qc

]
,

X(Q)
a (r) =

1
c

[ nw

∑
b 6=a

∑
k

xk(ab)Yk(ab; r)Pb + ∑
bcd,c 6=a

∑
k

xk(abcd)Yk(bd; r)Pc

]
,

(10)

with
q(a)xk(ab) = ∑

r
drrgk

r (ab) , (11)

q(a)xk(abcd) = ∑
rs

drsvrs
abcd; k , (12)

where gk
r (ab) ≡ vrr

abba; k and vrs
abcd; k are also the spin-angular coefficients. The coefficients drs

are the generalized weights

drs =
nL

∑
α=1

gα cα;r cα;s (13)

in which gα is the weight attributed to level α, and nL is the number of targeted levels. In the
extended optimal level (EOL) calculation of GRASP, the MCDHF optimization procedure
ensures that the average energy weighted by gα, i.e., E = ∑ gαEα, is stationary with respect
to small changes of the orbitals and expansion mixing coefficients. In all of the above
equations, q(a) is the generalized occupation number of orbital a:

q(a) = ∑
r

drrqr(a), (14)

where qr(a) is the occupation number for orbital a of CSF r. The resulting direct and
exchange potentials are also used to determine the Lagrange multipliers [1].

It should be mentioned that b, c, d 6= a is assumed in both Equations (9) and (12),
whose left-hand sides should be multiplied by some adequate factors if b = a and/or d = a,
as given in Equation (8). In addition, the contributions to the exchange potential arising
from off-diagonal one-body integrals I(a, b) δκa ,κb are not presented here, but they have
been included since the GRASP92 version [40].

Spin-angular coefficients f k
r (ab) and gk

r (ab) are known in closed forms [1,2] and calcu-
lated during the constructions of potentials and the Hamiltonian matrix, whereas vrs

abcd; k, as
well as trs

ab involving a one-body integral I(a, b), are obtained from the unformatted disk
files, namely mcp.XXX, which are generated by the rangular program [41–43] of GRASP.
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3.2. Redesigning the Calculations of Potentials

The MCDHF calculations are generally divided into two parts, i.e., (i) searching the
concerned eigenpairs from solving Equation (3) for a given set of one-electron orbitals
and (ii) updating the orbitals from iteratively solving the orbital equations Equation (6)
for a given set of mixing coefficients. In addition to the additional parallelization for the
DVDRC Library of GRASP mentioned in Section 2, the computational task can be reduced
significantly by redesigning the calculations of potentials.

The general MCDHF procedure used in rmcdhf or rmcdhf_mpi programs of
GRASP2018 [34] is illustrated in Algorithm 2. The notes integrated in the description of
the SCF procedure outline the modifications provided in the memory-version rmcdhf_mem
and rmcdhf_mem_mpi [35], and the present modified version referred to as rmcdhf_mpi_FD
for convenience. Only the parallel versions are referred to hereinafter, as we focus on
large-scale MCDHF calculations.

Algorithm 2: SCF procedure.

(0.0) Load all of the mcp.XXX files into arrays. Note: This step is added in both rmcdhf_mem_mpi
and rmcdhf_mpi_FD.

(0.1) Initialize the orbitals, read CSFs expansion, perform any other needed initialization.
(0.2) Determine NEC, the number (NEC) of needed off-diagonal Lagrange multipliers εab with

a 6= b and κa = κb, and subshells a and/or b are partially occupied. Labels a and b
recorded.

(0.3) Call MATRIXmpi and then MANEIGmpi, set H-matrix and solve Equation (6) to obtain E(0)
α

and c(0)α , α = 1, · · · , nL, calculate q(0) for all orbitals and E(0). Note: Additional paral-
lelizations for the DVDRC library presented in Section 2 are included in rmcdhf_mpi_FD.

(0.4) For each orbital a involved in the NEC off-diagonal Lagrange multipliers, construct the
sorted NYA and NXA arrays storing the unique and packed labels to identify the possible
direct and exchange contributions in Equations (7) and (10), respectively. Note: This step
is added in rmcdhf_mpi_FD.

Start the SCF procedure, repeat until E converged, in the ith loop:

(1.0) For all orbitals a involved in the calculations of NEC off-diagonal Lagrange multipliers,
update the yk and xk coefficients needed in Equations (7) and (10), respectively, by using
Equations (8) and (9) or by Equations (11) and (12) in which q(i−1) is used. The eigenvector
matrix c(i−1) is used in Equation (13). The results are saved in YA and XA arrays in the
same order of NYA and NXA arrays. Note: This step is added in rmcdhf_mpi_FD.

(1.1) Call routine SetLAGmpi to determine the needed NEC off-diagonal Lagrange multipliers
εab

(a1) For orbital a, call routine SETCOF to build unsorted NYA and NXA arrays, sequen-
tially update the needed yk and xk coefficients. Note: This step is removed in
rmcdhf_mpi_FD as the needed data have been obtained in steps (0.4) and (1.0).

(a2) Build the potentials for orbital a by calling routines YPOT, XPOT and DACON. Note:
Routines YPOT and XPOT have been parallelized using MPI in rmcdhf_mpi_FD.

(b1) As done in (a1) but for orbital b. Note: This step is removed in rmcdhf_mpi_FD.
(b2) As done in (a2) but for orbital b.
(c1) Calculate εab from the equations given in [1].

(2) Call routine IMPROVmpi to update the orbitals by solving Equation (6), update the poten-
tials for each varied orbital by calls of SETCOF, YPOT, XPOT, etc. Note: The inside calling
routine SETCOF is removed in rmcdhf_mpi_FD.

(3) As done in step (0.3) but using the updated orbitals, obtain E(i)
α , c(i)α , E(i) and q(i), etc.

We describe some of the modifications in detail below:

• One routine SETMCP_MEM is added in rmcdhf_mem_mpi and retained in rmcdhf_mpi_FD
to read the trs

ab and vrs
abcd; k spin-angular coefficients together with the corresponding

packed orbital labels from mcp.XXX disk-files into arrays. When needed, the data are
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fetched from memory in rmcdhf_mem_mpi and rmcdhf_mpi_FD, whereas rmcdhf_mpi
reads the mcp.XXX disk-files in steps (0.3), (a1), (b1), (2) and (3) of Algorithm 2.

• The most time-consuming SETCOF subroutine of rmcdhf_mpi is split into two routines,
i.e., SETTVCOF and SETALLCOF in rmcdhf_mpi_FD.

– During the first call just before the SCF iterations start, SETTVCOF records the Slater
integrals Rk(ab, cd) contributing to the NEC off-diagonal Lagrange multipliers,
the packed labels, i.e., LABV = ((IA × KEY + IB) × KEY + IC) × KEY + ID
with KEY = 215 (and nw ≤ 214, which is the maximum value allowing for that
LABV variable that may be stored as an integer of 4 bytes), and the corresponding
tensor rank k are saved into arrays. IA, IB, IC, ID are, respectively, the positions
of a, b, c, d in the set consisting of nw orbitals. There are many identical Slater
integrals Rk(ab, cd) arising from different Jπ blocks.

– During the SCF procedure, SETTVCOF only performs all the summations of Equa-
tions (9) and (12) within one entrance for each iteration.

– Within the first entrance just before the SCF iterations start, SETALLCOF constructs
the NYA(:, a) and NXA(:, a) arrays for all the orbitals involved in the calcu-
lations of all off-diagonal Lagrange multipliers. The diagonal Slater integrals
Rk(ab, ab) or Rk(ab, ba) of the Hamiltonian matrix involved in the calculations
for yk and xk (see Equations (8) and (11)), and those Rk(ab, cd), recorded by
SETTVCOF and involved in Equations (9) and (12), are considered. The labels
LABYk (= (IB× KEY + ID)× KEY + k) and LABXk packed by (((IC× KEY +
IB)× KEY + ID)× KEY) + k are sorted and saved into NYA(:, a) and NXA(:, a)
arrays, respectively. Hence, NYA(:, a) and NXA(:, a) are sorted lists with distinct
elements. All MPI processes are modified to have the same NYA and NXA
arrays. The yk and xk coefficients, arising from the same Slater integrals but from
different Jπ blocks, are accumulated, respectively, according to the LABYk and
LABXk values stored in NYA(:, a) and NXA(:, a).

– During SCF iterations, SETALLCOF only accumulates all the needed coefficients in
Equations (7) and (10) across different Jπ blocks, employing a binary search strat-
egy (with time complexity of O(log2(n)) to match the LABYk and LABXk values
with those stored in the NYA and NXA arrays, respectively. The accumulated
yk and xk coefficients are saved into YA and XA arrays at the same positions as
those of LABYk and LABXk in NYA and NXA arrays. This accumulation scheme
significantly reduces the computation efforts for the relativistic one-dimensional
radial integrals Yk(; r) in Equations (7) and (10).

– In both SETTVCOF and SETALLCOF routines, the computation efforts are signifi-
cantly reduced by taking advantage of the symmetry properties of Equations (8),
(9), (11) and (12). Their right-hand sides, i.e., the summations, are the same for all
the involved orbitals and performed only once within the individual SCF loop.
For example, given a 6= b 6= c 6= d, the corresponding Rk(ab, cd) contributes to
the exchange parts of the four orbitals, and the associated four xk coefficients can
be obtained simultaneously by considering their generalized occupation number.

– In theSETCOF routine of rmcdhf_mpi, the symmetry properties are not yet consid-
ered. The NYA and NXA arrays are constructed again and again in each entrance
and have repetitious labels for which the sequential search method (with time
complexity of O(n)), used to accumulate the corresponding yk and xk coefficients,
is inefficient. In MCDHF calculations using many orbitals, the number of labels
LABXk can easily exceed hundreds of thousands or even more. This inefficiency
of rmcdhf_mpi significantly slows down the computations.

• In rmcdhf_mpi_FD, the subroutines YPOT and XPOT are parallelized by using MPI,
whereas they are serial in both rmcdhf_mpi and rmcdhf_mem_mpi.

• Obviously, compared with rmcdhf_mpi and rmcdhf_mem_mpi, the new code rm-
cdhf_mpi_FD is more memory-consuming since many additional arrays possibly
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of large size are maintained during the SCF procedure, and dozens of additional GB
of memory are needed if the number of labels LABXk reaches several million.

3.3. Performance Tests for MCDHF

In the present section, we would like to compare the relative performances of the three
available codes, rmcdhf_mpi, rmcdhf_mem_mpi and rmcdhf_mpi_FD, to perform MCDHF
calculations. Here we choose two examples, i.e., Mg VII and Be I, to illustrate and discuss
the improvements in efficiency obtained with the two new codes, i.e., rmcdhf_mem_mpi and
rmcdhf_mpi_FD. The calculations are all performed using the Linux server with two Intel(R)
Xeon(R) Gold 6 278C CPU (2.60 GHz) and 52 cores, except in some cases for which the used
CPU is explicitly given. In this comparative work, we carefully checked that the results
obtained with the three codes were identical. Throughout the present work, the reported
CPU times are all wall-clock times, as they are more meaningful for the end-users.

3.3.1. Mg VII

In our recent work on C-like ions [16], large-scale MCDHF-RCI calculations were
performed for the n ≤ 5 states in C-like ions from O III to Mg VII. Electron correlation
effects were accounted for by using large configuration state function expansions, built
from the orbital sets with principal quantum numbers n ≤ 10. A consistent atomic
data set including both energies and transition data with spectroscopic accuracy was
produced for the lowest hundreds of states of C-like ions from O III to Mg VII. Here we take
Mg VII as an example to investigate the performances of rmcdhf_mpi, rmcdhf_mem_mpi and
rmcdhf_mpi_FD programs.

In the MCDHF calculations of [16] aiming at the orbital optimisation, the CSF ex-
pansions were generated by SD-excitations up to 10(spd f ghi) orbitals from all possible
(1s2)2l3n′l′ with 2 ≤ n′ ≤ 5 configurations. (More details can be found in [16].) The
MCDHF calculations were performed layer by layer using the following sequence of active
sets (AS):

AS1 = {6s, 6p, 6d, 6 f , 6g, 6h},
AS2 = {7s, 7p, 7d, 7 f , 7g, 7h, 7i},
AS3 = {8s, 8p, 8d, 8 f , 8g, 8h, 8i},
AS4 = {9s, 9p, 9d, 9 f , 9g, 9h, 9i},
AS5 = {10s, 10p, 10d, 10 f , 10g, 10h, 10i}.

Here the test calculations are carried out only for the even states with J = 0–3. The CSF
expansions using the above AS orbitals, as well as the number of targeted levels for each
block, are listed in Table 1. To keep the calculations tractable, only two SCF iterations
are performed, taking the converged radial functions from [16] as the initial estimation.
The zero- and first-order partition techniques [4,44], often referred to as ‘Zero-First’ meth-
ods [45], are employed. The zero-space contains the CSFs with orbitals up to 5(spd f g), the
numbers of which are also reported in Table 1. The corresponding sizes of mcp.XXX files
are, respectively, about 5.2, 11, 19, 29, and 41 GB in the AS1 through AS5 calculations.

The CPU times for these MCDHF calculations using the AS3 and AS5 orbital sets are
reported in Tables 2 and 3, respectively. To show the MPI performance, the calculations
are carried out using various numbers of MPI processes (np) ranging from 1 to 48. The
rmcdhf_mpi and rmcdhf_mem_mpi MPI calculations using the AS5 orbitals set are only
performed with np ≥ 8, as the calculations with smaller np-values are too time-consuming.
The CPU times are presented in the time sequence of Algorithm 2. For MCDHF calculations
limited to two iterations, the eigenpairs are searched three times, i.e., once at step (0.3)
and twice at step (3). The three rows with label “SetH&Diag” in Tables 2 and 3 report the
corresponding CPU times for setting the Hamiltonian matrix (routine MATRIXmpi) and for
its diagonalization (routine MANEIGmpi), whereas the row with “Sum(SetH&Diag)” reports
their sum. Steps (1.1) and (2) of Algorithm 2 are carried out twice in all calculations, as
well as step (1.0) in rmcdhf_mpi_FD calculations. The rows labeled by “SetCof + LAG”
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and “IMPROV” report, respectively, the CPU times for routines SETLAGmpi and IMPROVmpi,
i.e., for steps (1.1) and (2) of Algorithm 2, while the row “Update” gives their sum. The
rows labeled “Sum(Update)” display the total CPU times needed to update the orbitals
twice. The rows “Walltime” represent the total code execution times. The differences
between the summed value “Sum(Update)” + “Sum(SetH&Diag)” and the “Walltime” ones
represent the CPU times that are not monitored by the former two. It can be seen that these
differences are relatively small in cases of rmcdhf_mpi and rmcdhf_mem_mpi, implying that
most of the time-consuming parts of the codes have been included in the tables, while the
relatively large differences in the case of rmcdhf_mpi_FD could be reduced if the CPU times
needed for constructing the sorted NXA and NYA arrays in step (0.4) of Algorithm 2 would
be taken into account.

Table 1. MCDHF calculations for the even states of Mg VII. For each J-block, the number of targeted
levels (eigenpairs) and sizes (number of CSFs) of the zero-space and CSF-expansions for the different
orbital active sets are listed.

J = 0 J = 1 J = 2 J = 3

Eigenvalues 23 47 54 36

Zero space 3 931 11 060 15 487 16 089

AS1 9 912 31 046 45 779 49 053
AS2 19 449 65 099 99 824 109 618
AS3 32 534 113 193 177 519 197 601
AS4 49 167 175 328 278 864 313 002
AS5 69 348 251 504 403 859 455 821

In the rmcdhf_mpi_FD calculations, five kinds of CPU times are additionally recorded,
labeled, respectively, “NXA&NYA”, “SetTVCof”, “WithoutMCP”, “WithMCP”, and “Set-
LAG”. Row “NXA&NYA” reports the CPU times to construct the sorted NXA and NYA
arrays. The “SetTVCof” displays the CPU times required to perform all the summations
of Equations (9) and (12) in the newly added routine SETTVCOF. The “WithoutMCP” and
“WithMCP” rows report the CPU times spent in the added routine SETALLCOF to accumu-
late the yk and xk coefficients using Equations (8) and (11), and Equations (9) and (12),
respectively. These three contributions—“SetTVCof”, “WithoutMCP” and “WithMCP”, cor-
respond to the computation effort associated with step (1.0) of Algorithm 2. The “SetLAG”
row represents the CPU times required to calculate the off-diagonal Lagrange multipliers
εab in routine SETLAGmpi using the calculated yk and xk coefficients. The “SetCof + LAG”
CPU time values correspond approximately to the sum of the four tasks “SetTVCof” +
“WithoutMCP” + “WithMCP” + “SetLAG”, as the calculations involving the one-body
integral contributions are generally very fast. The “Update” row reports the summed value
of “SetCof + LAG” and “IMPROV”, as done above for rmcdhf_mpi and rmcdhf_mem_mpi.
(The CPU times with the same labels for the different codes can be compared because they
are recorded for the same computation tasks.)

Table 2. CPU times (in s) for the Mg VII AS3 SCF calculations using the rmcdhf_mpi, rmcdhf_mem_mpi
and rmcdhf_mpi_FD codes as a function of the number of MPI processes (np). See text for the label
meanings.

np 1 2 4 8 16 24 32 40 48

rmcdhf_mpi
SetH&Diag 1 001.71 752.79 608.58 565.55 522.02 546.13 576.30 648.67 759.93

Iteration 1
SetCof + LAG 8 366.72 4 960.48 2 614.34 1 604.33 815.48 571.63 449.01 378.51 320.42

IMPROV 1 727.39 947.32 541.60 332.96 167.40 116.33 90.86 76.15 63.73
Update 10 094.10 5 907.80 3 155.94 1 937.29 982.89 687.96 539.88 454.66 384.15

SetH&Diag 165.64 88.89 50.55 35.02 24.23 18.59 21.29 21.08 21.49
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Table 2. Cont.

np 1 2 4 8 16 24 32 40 48

Iteration 2
SetCof + LAG 8 291.35 4 965.60 2 615.25 1 603.00 815.35 571.02 448.73 378.33 320.51

IMPROV 1 707.80 944.99 540.88 332.16 167.28 116.17 90.84 76.11 63.65
Update 9 999.14 5 910.59 3 156.13 1 935.16 982.63 687.18 539.57 454.45 384.15

SetH&Diag 167.34 83.26 47.78 29.61 22.60 19.88 18.23 21.88 18.68

Sum(SetH&Diag) 1 334.69 924.94 706.91 630.18 568.85 584.60 615.82 691.63 800.10
Sum(Update) 20 093.24 11 818.39 6 312.07 3 872.45 1 965.52 1 375.14 1 079.45 909.11 768.30

Walltime 21 467 12 773 7 044 4 528 2 554 1 978 1 714 1 619 1 587

rmcdhf_mem_mpi
SetH&Diag 983.97 723.53 600.12 559.52 515.09 544.02 570.96 649.47 760.98

Iteration 1
SetCof + LAG 3 152.54 1 858.49 1 205.67 833.63 454.55 312.74 252.01 214.02 170.87

IMPROV 644.27 381.98 246.99 171.34 91.89 62.32 49.69 41.80 33.40
Update 3 796.81 2 240.47 1 452.66 1 004.96 546.44 375.06 301.69 255.82 204.27

SetH&Diag 118.09 64.93 38.78 28.84 21.23 16.26 19.59 18.80 20.19
Iteration 2

SetCof + LAG 3 028.23 1 859.01 1 205.41 833.44 454.53 312.95 251.81 214.09 171.05
IMPROV 616.07 381.84 246.87 171.41 91.94 62.29 49.69 41.79 33.39
Update 3 644.30 2 240.85 1 452.28 1 004.85 546.47 375.24 301.50 255.89 204.44

SetH&Diag 116.69 59.44 35.83 23.42 19.38 17.62 16.54 19.51 17.40

Sum(SetH&Diag) 1 218.75 847.90 674.73 611.78 555.70 577.90 607.09 687.78 798.57
Sum(Update) 7441.11 4 481.32 2 904.94 2 009.81 1 092.91 750.30 603.19 511.71 408.71

Walltime 8 822 5 420 3 636 2 662 1 677 1 353 1 233 1 221 1 228

rmcdhf_mpi_FD
SetH&Diag 962.78 548.74 342.01 246.59 202.29 210.55 222.01 259.01 296.04
NXA&NYA 33.62 17.15 9.22 5.11 2.90 2.09 1.89 1.78 1.80

Iteration 1
SetTVCof 130.05 68.21 38.31 23.73 11.84 7.96 6.18 5.09 4.39

WithoutMCP 125.65 32.55 12.06 6.72 3.07 2.08 1.26 1.02 0.80
WithMCP 0.41 0.41 0.40 0.41 0.43 0.42 0.42 0.42 0.43
SetLAG 4.61 2.33 4.06 0.64 0.69 0.47 0.53 0.33 0.24

SetCof + LAG 261.89 104.06 55.15 31.68 16.12 10.99 8.44 6.92 5.90
IMPROV 0.63 0.32 0.17 0.09 0.05 0.04 0.03 0.03 0.03
Update 262.52 104.38 55.32 31.77 16.16 11.03 8.47 6.94 5.93

SetH&Diag 118.26 67.76 37.13 25.90 18.96 15.28 13.52 17.35 20.45
Iteration 2

SetTVCof 130.01 68.20 38.34 23.67 11.82 7.95 6.16 5.06 4.35
WithoutMCP 125.13 32.73 12.06 6.72 3.06 2.08 1.25 1.01 0.79

WithMCP 0.41 0.41 0.40 0.41 0.43 0.42 0.42 0.42 0.43
SetLAG 4.61 2.33 4.00 0.84 0.67 0.44 0.51 0.33 0.27

SetCof + LAG 261.28 104.23 55.11 31.83 16.08 10.95 8.39 6.86 5.88
IMPROV 0.63 0.32 0.17 0.09 0.05 0.04 0.03 0.03 0.03
Update 261.91 104.55 55.28 31.92 16.12 10.98 8.42 6.88 5.91

SetH&Diag 112.99 63.32 35.53 22.23 16.77 14.37 15.57 16.98 17.19

Sum(SetH&Diag) 1 194.03 679.82 414.67 294.72 238.02 240.20 251.10 293.34 333.68
Sum(Update) 524.43 208.93 110.60 63.69 32.28 22.01 16.89 13.82 11.84

Walltime 1 915 997 591 404 301 289 292 331 369
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Table 3. CPU times (in s) for the Mg VII AS5 SCF calculations using the rmcdhf_mpi, rmcdhf_mem_mpi
and rmcdhf_mpi_FD codes as a function of the number of MPI processes (np). See text for the
label meanings.

rmcdhf_mpi rmcdhf_mem_mpi rmcdhf_mpi_FD

np 16 32 48 16 32 48 16 32 48

SetH&Diag 1 299.62 1 605.74 2 478.68 1 290.83 1 598.93 2 475.46 452.67 595.13 944.78
NXA&NYA 6.52 4.51 4.26

Iteration
1

SetTVCof 28.25 13.82 9.90
WithoutMCP 22.14 9.55 7.15

WithMCP 1.19 1.19 1.13
SetLAG 10.32 3.38 1.79

SetCof + LAG 3 172.04 1 575.54 1 209.01 1 999.94 986.68 761.89 62.09 28.06 20.07
IMPROV 461.45 222.55 168.86 288.38 135.88 103.19 0.07 0.04 0.04
Update 3 633.49 1 798.09 1 377.87 2 288.32 1 122.56 865.08 62.16 28.10 20.11

SetH&Diag 54.67 59.44 55.03 47.39 55.00 51.87 58.24 41.64 48.01
Iteration

2
SetTVCof 28.09 13.80 9.82

WithoutMCP 25.32 9.76 7.09
WithMCP 1.09 1.18 1.14
SetLAG 7.59 3.18 1.83

SetCof + LAG 3 174.72 1 576.07 1 207.94 2 000.64 986.54 761.64 62.27 28.02 19.95
IMPROV 461.71 222.33 168.74 288.50 135.88 103.11 0.07 0.04 0.04
Update 3 636.44 1 798.41 1 376.68 2 289.14 1 122.43 864.75 62.34 28.06 19.99

SetH&Diag 54.00 40.46 59.74 46.67 38.17 56.65 43.45 32.79 40.38

Sum(SetH&Diag) 1 408.29 1 705.64 2 593.45 1 384.89 1 692.10 2 583.98 554.36 669.56 1 033.17
Sum(Update) 7 269.93 3 596.50 2 754.55 4 577.46 2 244.99 1 729.83 124.50 56.16 40.10

Walltime 8 728 5 344 5 391 6 030 3 987 4 366 754 782 1 129

Based on the CPU times reported in Tables 2 and 3, some comparisons are illustrated
in Figures 1–4. We discuss below the relative performances of the three codes.

As seen in Table 2 and Figure 1 for the AS3 calculations, the MPI performances for
diagonalization are unsatisfactory for all three codes. The largest speed-up factors are about
1.9 for rmcdhf_mpi and rmcdhf_mem_mpi, and 4.7 for rmcdhf_mpi_FD. The optimal numbers
of MPI processes used for diagonalization are all around np = 16 and the MPI performances
deteriorate when np exceeds 24. The CPU times of rmcdhf_mem_mpi and rmcdhf_mpi are
very similar. Compared to these two codes, the CPU time of rmcdhf_mpi_FD is reduced by
a factor of'2.5 with np ≥ 16, thanks to the additional parallelization described in Section 2.
The speed-up efficiency of rmcdhf_mpi_FD relative to rmcdhf_mpi increases slightly with
the size of the CSF expansion. As seen from the first line of Table 3, the CPU time gain factor
reaches ≈ 3 for the calculations using the AS5 orbital set. It should be noted that the CPU
times to set the Hamiltonian matrix are negligible in all three codes, being tens of times
shorter than those for the first search of eigenpairs. The eigenpairs are searched three times,
and the corresponding CPU times are included in the three rows labeled “SetH&Diag”.
As seen in Table 3, the first “SetH&Diag” CPU time is 945 s in the rmcdhf_mpi_FD AS5
calculation with np = 48, consisting of 14 and 931 s, respectively, for the matrix construction
and diagonalization. For the subsequent two “SetH&Diag”, the matrix construction CPU
times are still about 14 s, whereas those for diagonalization are, respectively, reduced to 34
and 26 s because the mixing coefficients are already converged. If the present calculations
would be initialized by Thomas–Fermi or hydrogen-like approximations, these CPU times
should reach about 900 s.
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Figure 1. MPI performances of the first diagonalization in the Mg VII AS3-SCF calculations. Solid
lines (left y axis): CPU times (T in s) of rmcdhf_mpi (squares), rmcdhf_mem_mpi (circles), and
rmcdhf_mpi_FD (triangles) codes versus the number of MPI processes (np) (also listed in the first
“SetH&Diag” line for each code of Table 2). Dashed lines (right y axis): speed-up factors for the three
codes, with the same corresponding symbols, estimated from the ratios of T(np = 1) to others. Dotted
line (right y axis) (square symbols): speed-up of rmcdhf_mpi_FD relative to rmcdhf_mpi, calculated as
T(rmcdhf_mpi)/T(rmcdhf_mpi_FD).
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Figure 2. MPI performances for updating orbitals in the Mg VII AS3-SCF calculations. (a) Solid lines
(left y axis): orbital updating CPU times (T in s) of rmcdhf_mpi (squares), rmcdhf_mem_mpi(circles),
and rmcdhf_mpi_FD (triangles) codes versus the number of MPI processes (np) (also listed in the
second “Update” line for each code of Table 2). Dashed lines (right y axis): speed-up factors for the
three codes, with the same corresponding symbols, estimated from the ratios of T(np = 1) to others.
(b) Speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mpi (squares) and to rmcdhf_mem_mpi (cir-
cles) calculated as T(rmcdhf_mpi)/T(rmcdhf_mpi_FD) and T(rmcdhf_mem_mpi)/T(rmcdhf_mpi_FD),
respectively. Speed-up factors of rmcdhf_mem_mpi relative to rmcdhf_mpi (stars) calculated as
T(rmcdhf_mpi)/T(rmcdhf_mem_mpi).
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Figure 3. MPI performances for the code running times in the Mg VII AS3-SCF calculations. (a) Solid
(left y axis): walltimes (in s) for rmcdhf_mpi (squares), rmcdhf_mem_mpi (circles), and rmcdhf_mpi_FD
(triangles) codes versus the number of MPI processes (np). Dashed lines (right y axis): speed-up
factors for the three codes, with the same corresponding symbols, estimated from the ratios of
T(np = 1) to others. (b): Speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mpi (squares) and to
rmcdhf_mem_mpi (circles), respectively. Speed-up factors of rmcdhf_mem_mpi relative to rmcdhf_mpi
(stars).
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Figure 4. MPI performances of the codes for the Mg VII AS5-SCF calculations. (a) Solid lines
(left y axis): walltimes (in s) for rmcdhf_mpi (squares), rmcdhf_mem_mpi (circles) and rmcdhf_mpi_FD
(triangles) codes versus the number of MPI processes (np). Dashed line (right y axis): speed-up factors
for rmcdhf_mpi_FD (triangles) calculated as the ratios of T(np = 1) to others. Dotted lines (right y
axis): speed-up factors for rmcdhf_mpi_FD relative to rmcdhf_mpi (squares) and to rmcdhf_mem_mpi
(circles), respectively. (b) Solid lines (left y axis): orbital updating CPU times (T in s) for rmcdhf_mpi
(squares), rmcdhf_mem_mpi (circles) and rmcdhf_mpi_FD (triangles) calculations. Dashed line (right
y axis): speed-up factors (triangles) for rmcdhf_mpi_FD estimated from the ratios of T(np = 1) to
others. The second “Update” times given in Table 3 are shown here. Dotted lines (right y axis):
speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mpi (squares) and to rmcdhf_mem_mpi (circles),
respectively.

As far as the orbital updating process is concerned, the MPI performances of the three
codes scale very well. The linearity is indeed attained even with np = 48 or more, as seen
in Figures 2a and 4b. The speed-up factors with np = 48 are, respectively, 26.0, 17.8 and
44.3 for the rmcdhf_mpi, rmcdhf_mem_mpi and rmcdhf_mpi_FD AS3 calculations, while it
is 43.2 for the AS5 calculation using rmcdhf_mpi_FD. The slopes obtained by a linear fit
of the speed-up factors as a function of np are, respectively, 0.53, 0.35, and 0.93 for the
rmcdhf_mpi, rmcdhf_mem_mpi, and rmcdhf_mpi_FD AS3 calculations, while it reaches 0.91
for the rmcdhf_mpi_FD AS5 calculation. In the AS3 calculations, compared to rmcdhf_mpi
and rmcdhf_mem_mpi, the rmcdhf_mpi_FD CPU times for updating the orbitals with np ≥ 8
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are, respectively, reduced by factors (60− 65) and (31− 37), as seen in Figure 2b. The
corresponding reduction factors are (57− 69) and (36− 43) for the AS5 calculations, as seen
in Figure 4b. These large CPU time-saving factors result from the new strategy developed
to calculate the potentials, as implemented in rmcdhf_mpi_FD, and described in Section 3.2.
Unlike the diagonalization part, the memory version rmcdhf_mem_mpi brings about some
interesting improvements over rmcdhf_mpi: the orbital updating CPU times are indeed
reduced by a factor of 2 and 1.6 for the AS3 and AS5 calculations, respectively.

The MPI performances for the “walltimes” are different from each other among the
three codes. As seen in Tables 2 and 3, the orbital updating CPU times are predominant in
most of the rmcdhf_mpi and rmcdhf_mem_mpi MPI calculations, whereas the diagonaliza-
tion CPU times dominate in all rmcdhf_mpi_FD MPI calculations for all np values. Hence,
as seen in Figures 3a and 4a, the global MPI performance of rmcdhf_mpi_FD is similar to the
one achieved for diagonalization. The maximum speed-up factors are, respectively, about
6.6 and 7.3 for the AS3 and AS5 calculations, both with np = 16–32, though the “Update”
CPU times could be reduced by factors of 44 or 43 with np = 48, as shown above. The
speed-ups increase along with np in the rmcdhf_mpi and rmcdhf_mem_mpi AS3 calculations,
being, respectively, about 13.5 and 7.2 with np = 48. As shown in Figure 3b, compar-
ing to rmcdhf_mpi, the walltimes are, respectively, reduced by a factor of 11.2 and 4.3 in
rmcdhf_mpi_FD AS3 calculations using np = 8 and np = 48, while the reduction factors are,
respectively, 15 and 4.8 for the AS5 calculations, as shown in Figure 4a. The corresponding
speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mem_mpi are smaller by a factor of
1.5, as rmcdhf_mem_mpi is 1.5 times faster than rmcdhf_mpi, as seen in Figure 3b.

As mentioned above, the total CPU times for diagonalization reported in Tables 2 and 3
(see rows labeled “Sum(SetH&Diag)”) are dominated by the first diagonalization, as the
initial radial functions are taken from the converged calculations. In SCF calculations initial-
ized by Tomas–Fermi or screened Hydrogenic approximations, more computation efforts
have to be devoted to subsequent diagonalization during the SCF iterations. It is obvious
that the limited MPI performance for diagonalization is the bottleneck in rmcdhf_mpi_FD
calculations. As seen in Tables 2 and 3 and Figures 3a and 4a, more CPU time is required
if np exceeds the optimal number of cores for diagonalization, which is generally in the
range of 16–32. In rmcdhf_mpi and rmcdhf_mem_mpi calculations, the inefficiency of the
orbital-updating procedure is another bottleneck, though this limitation may be alleviated
by using more cores to perform the SCF calculations. However, this kind of alleviation
would be eventually prohibited by the limited MPI performance of diagonalization. As
seen in Table 3 and Figure 4a for the rmcdhf_mpi and rmcdhf_mem_mpi AS5 calculations,
the walltimes with np = 48 are longer than those with np = 32, though the CPU times for
updating the orbitals are still reduced significantly in the former calculation.

3.3.2. Be I

To further understand the inefficiency of the orbital updating process in both rmcdhf_mpi
and rmcdhf_mem_mpi codes, the second test case is carried out for a rather simple system,
i.e., Be I. The calculations are performed to target the lowest 99 levels arising from the
configurations (1s2)2ln′l′ with n′ ≤ 7. The 99 levels are distributed over 15 Jπ blocks,
i.e., 0+, 0−, · · · , 7+, with the largest numbers of 12 for 1− and 2+ blocks. The MCDHF
calculations are performed simultaneously for both even and odd parity states. The largest
CSF space contains 55 166 CSFs formed by SD excitation up to 15(spd f g)14(hi)13(kl)
orbitals from all the targeted states distributed over the above 15 Jπ blocks, with the largest
size of 4 868 for 4+. The orbitals are also optimized with a layer-by-layer strategy. The
CPU times recorded for the calculations using 9(spd f ghikl) and 15(spd f g)14(hi)13(kl)
orbital sets are given in Tables 4 and 5. These calculations are hereafter labeled n = 9 and
n = 15. The corresponding sizes of mcp.XXX files are, respectively, 760 MB and 19 GB. As
the rmcdhf_mpi and rmcdhf_mem_mpi n = 15 calculations are time-consuming, they are
only performed with np ≥ 16.
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Table 4. CPU times (in s) for the Be I n = 9 SCF calculations using the rmcdhf_mpi, rmcdhf_mem_mpi
and rmcdhf_mpi_FD codes as a function of the number of MPI processes (np). See text for the
label meanings.

np 1 2 4 8 16 24 32 40 48

rmcdhf_mpi
SetH&Diag 73.43 42.57 25.77 15.98 9.61 8.20 7.13 7.34 7.83

Iteration 1
SetCof + LAG 3 441.24 1 858.12 905.13 386.56 153.14 89.56 61.99 50.20 41.14

IMPROV 821.38 454.10 225.33 100.92 41.49 25.73 18.21 14.76 12.38
Update 4 262.62 2 312.22 1 130.46 487.48 194.63 115.29 80.20 64.96 53.51

SetH&Diag 71.50 40.70 23.85 14.23 7.73 6.30 5.32 5.20 5.38
Iteration 2

SetCof + LAG 3 440.46 1 857.90 903.92 386.53 153.12 89.48 61.97 49.95 41.20
IMPROV 821.16 453.98 225.12 100.91 41.45 25.72 18.20 14.76 12.37
Update 4 261.62 2 311.88 1 129.04 487.43 194.57 115.20 80.18 64.71 53.57

SetH&Diag 71.67 40.72 23.82 14.03 7.72 6.07 5.30 5.20 5.44

Sum(SetH&Diag) 216.60 123.99 73.44 44.24 25.06 20.57 17.75 17.74 18.65
Sum(Update) 8 524.24 4 624.10 2 259.50 974.91 389.20 230.49 160.38 129.67 107.08

Walltime 8 741 4 748 2 333 1 019 414 251 178 147 126

rmcdhf_mem_mpi
SetH&Diag 70.68 41.05 24.64 15.57 8.97 7.99 7.35 7.29 7.43

Iteration 1
SetCof + LAG 3 065.84 1 656.84 795.63 329.83 123.75 70.08 47.42 37.94 30.53

IMPROV 741.20 410.89 201.45 88.74 35.15 21.54 15.06 12.19 10.10
Update 3 807.03 2 067.72 997.09 418.56 158.90 91.62 62.48 50.12 40.63

SetH&Diag 69.06 39.42 23.04 13.68 7.49 5.93 5.22 5.12 5.32
Iteration 2

SetCof + LAG 3 065.78 1 656.36 795.29 329.60 123.63 69.96 47.37 37.91 30.56
IMPROV 741.54 410.94 201.15 88.73 35.14 21.51 15.06 12.18 10.10
Update 3 807.32 2 067.29 996.44 418.33 158.77 91.47 62.43 50.09 40.66

SetH&Diag 69.10 39.31 22.92 13.67 7.49 5.91 5.19 5.07 5.40

Sum(SetH&Diag) 208.84 119.78 70.60 42.92 23.95 19.83 17.76 17.48 18.15
Sum(Update) 7 614.35 4 135.01 1 993.53 836.89 317.67 183.09 124.91 100.21 81.29

Walltime 7 833 4 260 2 068 881 342 203 143 118 99

rmcdhf_mpi_FD
SetH&Diag 68.82 39.33 23.11 13.82 8.92 7.43 6.83 7.14 7.30
NXA&NYA 10.98 7.52 5.03 3.21 2.45 2.34 2.48 2.84 3.29

Iteration 1
SetTVCof 2.21 1.17 0.62 0.32 0.16 0.11 0.08 0.07 0.06

WithoutMCP 1.69 0.50 0.26 0.14 0.08 0.05 0.04 0.03 0.03
WithMCP 7.39 4.43 2.93 1.70 0.96 0.70 0.53 0.44 0.39
SetLAG 43.21 21.89 11.50 5.96 3.16 2.29 1.85 1.79 1.75

SetCof + LAG 54.64 28.01 15.33 8.13 4.38 3.18 2.55 2.38 2.29
IMPROV 10.10 5.09 2.70 1.39 0.73 0.54 0.44 0.43 0.42
Update 64.74 33.10 18.03 9.52 5.11 3.72 2.98 2.81 2.71

SetH&Diag 67.71 38.12 22.05 12.76 7.71 6.02 5.20 5.08 5.30
Iteration 2

SetTVCof 2.21 1.17 0.62 0.31 0.16 0.11 0.08 0.07 0.06
WithoutMCP 1.69 0.50 0.26 0.14 0.08 0.05 0.04 0.03 0.03

WithMCP 7.42 4.43 2.93 1.70 0.96 0.70 0.53 0.44 0.39
SetLAG 43.33 21.86 11.52 5.96 3.15 2.28 1.85 1.79 1.75

SetCof + LAG 54.71 27.97 15.35 8.12 4.37 3.17 2.53 2.38 2.29
IMPROV 10.13 5.09 2.70 1.38 0.73 0.54 0.43 0.42 0.41
Update 64.84 33.06 18.05 9.51 5.10 3.71 2.97 2.80 2.70

SetH&Diag 67.75 38.11 22.11 12.68 7.64 6.01 5.20 5.08 5.25
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Table 4. Cont.

np 1 2 4 8 16 24 32 40 48

Sum(SetH&Diag) 204.28 115.56 67.27 39.26 24.27 19.46 17.23 17.30 17.85
Sum(Update) 129.58 66.16 36.08 19.03 10.21 7.43 5.95 5.61 5.41

Walltime 354 194 111 63 38 30 26 26 27

Table 5. CPU times (in s) for the Be I n = 15 SCF calculations using the rmcdhf_mpi, rmcdhf_mem_mpi
and rmcdhf_mpi_FD codes as a function of the number of MPI processes (np). See text for the label
meanings.

rmcdhf_mpi rmcdhf_mem_mpi rmcdhf_mpi_FD

np 16 32 48 16 32 48 16 32 48

SetH&Diag 153.13 89.00 74.25 147.02 85.08 72.15 150.04 85.14 72.63
NXA&NYA 80.17 52.07 57.96

Iteration 1
SetTVCof 3.81 1.95 1.29

WithoutMCP 1.21 0.61 0.43
WithMCP 18.86 10.77 7.92
SetLAG 46.19 28.35 28.12

SetCof + LAG 16 363.36 5 402.80 3 235.58 15 296.31 4 869.14 2 850.56 70.75 42.75 39.52
IMPROV 1 662.70 569.32 390.06 1 578.91 527.69 360.42 3.76 2.29 2.24
Update 18 026.06 5 972.12 3 625.64 16 875.21 5 396.83 3 210.99 74.51 45.04 41.76

SetH&Diag 138.23 71.42 55.28 132.74 68.96 53.04 136.68 70.91 54.79
Iteration 2

SetTVCof 3.81 1.94 1.31
WithoutMCP 1.21 0.61 0.42

WithMCP 18.86 10.78 7.93
SetLAG 46.19 28.29 28.00

SetCof + LAG 16 364.56 5 403.63 3 234.71 15 295.55 4 870.41 2 849.64 70.63 42.61 39.19
IMPROV 1 662.93 569.19 389.98 1 578.93 527.58 360.37 3.77 2.29 2.25
Update 18 027.48 5 972.82 3 624.69 16 874.48 5 397.99 3 210.00 74.40 44.90 41.44

SetH&Diag 137.86 71.35 55.03 132.37 68.86 52.82 136.66 70.62 54.62

Sum(SetH&Diag) 429.22 231.77 184.56 412.13 222.90 178.01 423.38 226.67 182.04
Sum(Update) 36 053.54 11 944.94 7 250.33 33 749.69 10 794.82 6 420.99 148.91 89.94 83.20

Walltime 36 484 12 177 7 435 34 181 11 028 6 606 672 379 331

In comparison to the Mg VII test case considered in Section 3.3.1 (see Table 1), the CSF
expansions for Be I are much smaller, and fewer levels are targeted. Hence, fewer computa-
tional efforts are expected for the construction of a Hamiltonian matrix and the subsequent
diagonalization. This is true for the diagonalization parts of all the calculations using
various np MPI processes. For example, the CPU times for searching for eigenpairs are tens
of times smaller than those for building the Hamiltonian matrix, representing 14s out of
150s, as reported by the first “SetH&Diag” value given in Table 5 for the rmcdhf_mpi_FD
calculation with np = 16. These CPU times are negligible (<1 s) for the following two
diagonalizations. Unlike the cases considered for Mg VII, the CPU times for setting the
Hamiltonian matrix predominate in the three “SetH&Diag” values, being all around 136s
in the n = 15 calculations using np = 16, as shown in Table 5. These large differences in
CPU time distributions between our Mg II and Be I test cases arise from the fact that the
n = 15 expansion in Be I is built on a rather large set of orbitals, consisting of 171 Dirac
one-electron orbitals, whereas the AS5 expansion in Mg VII involves only 88 ones. The
number of Slater integrals Rk(ab, cd) possibly contributing to matrix elements is, therefore,
much larger in Be I (95 451 319) than in Mg VII (6 144 958). Consequently, the three codes
report very similar “SetH&Diag” and “Sum(SetH&Diag)” CPU times and all attain the
maximum speed-up factors of about 10 around np = 32, as seen in Table 4.
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The MPI performances of the Be I n = 9 calculations are shown in Figure 5. In general,
a perfect MPI scaling is a speed-up factor equal to np. With respect to this, the speed-
up factors observed in rmcdhf_mpi and rmcdhf_mem_mpi are unusual, being much larger
than the corresponding np values. For example, the speed-up factors of rmcdhf_mpi and
rmcdhf_mem_mpi for the orbital updating calculations are 79.5 and 93.6 at np = 48, while
the corresponding slopes obtained from the linear fit of the speed-up factors as a function
of np are about 1.7 and 2.0, respectively. The corresponding reductions at np = 48 for the
code running times are 69.4 and 79.1, while the slopes are about 1.5 and 1.7, respectively.
These reductions should be even larger for the n = 15 calculations. A detailed analysis
shows that the inefficiency of the sequential search method largely accounts for the above
unexpected MPI performances. As mentioned in Section 3.2, the labels LABYk and LABXk
are constructed and stored sequentially in NYA(:,a) and NXA(:,a) arrays, respectively. In
the subsequent accumulations of the yk and xk coefficients, the sequential search method
is employed to match the labels. As mentioned above, a large number of Slater integrals
contribute to the Hamiltonian matrix elements in calculations using a large set of orbitals.
They are also involved in the calculations of the potential. In general, the number of xk

terms is much larger than the number of yk terms. For example, the largest number of the
former is 196 513 for all the ng9/2 orbitals while there are at most 3 916 yk terms for all the
ni11/2 orbitals in the n = 9 calculations. Similarly, for the n = 15 calculations, there are
at most 2 191 507 xk terms and 17 328 yk terms, both for the ng9/2 orbitals. These values
correspond to the largest sizes of the one-dimension vectors NXA(:,a) and NYA(:,a). The
sequential search from a large list is obviously more inefficient than from a small list, as the
time complexity is O(n). In the MPI calculations with small np values, for example np = 1,
the sequential search of the LABXk from the NXA(:,a) lists of over two million elements is
very time-consuming. It is obvious that the sizes of NXA(:,a) in each MPI process decrease
as np increases, alleviating the inefficiency of the sequential search method, as also shown
in Mg VII calculations. For example, when np = 48, the size of NXA(:, ng9/2) in each MPI
process is reduced to 528 802 in the n = 15 calculations, and consequently, the unusually
high speed-up factors are attained with both rmcdhf_mpi and rmcdhf_mem_mpi.

In rmcdhf_mpi_FD, the above inefficiency is removed by using the binary search strat-
egy from the sorted arrays NXA(:,a) and NYA(:,a), and this code benefits from some other
improvements, as discussed in Section 3.2. As seen in Figures 5a and 6a, the speed-up
factors for updating the orbitals increase slightly along with np and attain the value of
about 22 for both the n = 9 and n = 15 rmcdhf_mpi_FD calculations with np = 48, while the
corresponding reductions for the code running times are, respectively, 12.5 and 22.5, as seen
in Figures 5b and 6b. It should be mentioned that in the rmcdhf_mpi and rmcdhf_mem_mpi
calculations, the “Sum(SetH&Diag)” CPU time values are all less than the “Sum(Update)”
ones, as seen in Tables 4 and 5. However, it is the opposite for the rmcdhf_mpi_FD calcu-
lations, with all “Sum(SetH&Diag)” CPU time values still larger than the “Sum(Update)”
ones, as in Mg VII calculations. Comparing to rmcdhf_mpi, the code rmcdhf_mpi_FD re-
duces the CPU times required for updating the orbitals by a factor lying in the range of
38–20, with np = 16–48 for the n = 9 MCDHF calculations, while for the n = 15 calcula-
tions, the corresponding reduction factors are in the range of 242–287. The corresponding
reduction factor ranges for the code running times are, respectively, 11–4.7 and 54–22.5, as
seen in Figures 5b and 6b. One can conclude that the larger the scale of the calculations, the
larger the CPU time reduction factors. Moreover, the lower the number of cores used, the
larger the reduction factors obtained with rmcdhf_mpi_FD. These features become highly
relevant for extremely large-scale MCDHF calculations if they have to be performed using
a small number of cores due to the limited performance of diagonalization, as discussed in
the above section.
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Figure 5. MPI performances for the Be I 9(spd f ghikl)-SCF calculations. (a) Solid (left y axis): orbital
updating CPU times (T in s) for rmcdhf_mpi (squares), rmcdhf_mem_mpi (circles), and rmcdhf_mpi_FD
(triangles) codes versus the number of MPI processes (np). Dashed line (right y axis): speed-up
factors of the three codes (with the same corresponding symbols) estimated as the ratios of T(np = 1)
to others. Dotted line (right y axis): speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mpi
(squares) and to rmcdhf_mem_mpi (circles), calculated as T(rmcdhf_mpi)/T(rmcdhf_mpi_FD) and
T(rmcdhf_mem_mpi)/T(rmcdhf_mpi_FD), respectively. (b) Same as in (a), but for the walltimes.
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Figure 6. MPI performances for the Be I 15(spd f g)14(hi)13(kl)-SCF calculations. (a) Solid (left y
axis): orbital updating CPU times (T in s) for rmcdhf_mpi (squares), rmcdhf_mem_mpi (circles), and
rmcdhf_mpi_FD (triangles) codes versus the number of MPI processes (np). Dashed line (right
y axis): speed-up factors of rmcdhf_mpi_FD (triangles) calculated as the ratios of T(np = 1) to
others. Dotted line (right y axis): speed-up factors of rmcdhf_mpi_FD relative to rmcdhf_mpi
(squares) and to rmcdhf_mem_mpi (circles), calculated as T(rmcdhf_mpi)/T(rmcdhf_mpi_FD) and
T(rmcdhf_mem_mpi)/T(rmcdhf_mpi_FD), respectively. (b) Same as in (a), but for the walltimes.

3.3.3. Possible Further Improvements for rmcdhf_mpi_FD

As discussed above, the MPI performances of rmcdhf_mpi_FD for updating orbitals
scale well in Mg VII calculations. The speed-up factors roughly follow a scaling law of
'0.9 np (see Figures 2b and 4b). For the Be I calculations, however, as illustrated by
Figures 5a and 6a, the speed-up factor increases slightly with np to attain a maximum
value of 22. The partial CPU times for the orbital updating process, labeled “SetTVCof”,
“WithoutMCP”, “WithMCP”, and “SetLAG”, are plotted in Figure 7, together with the total
updating time labeled “Update”, for the Mg VII AS5 and for the Be I n = 15 calculations
(these labels have been explained in Section 3.3.1.). The partial CPU times labeled “IMPROV”
are not reported here, as they are generally negligible. It can be seen that the “SetTVCof”
and “WithoutMCP” partial times dominate the total CPU times required for updating
orbitals in Mg VII AS5 calculations, and they all scale well along with np. In the Be I n = 15
calculations, the partial “SetLAG” CPU times are predominant, and the remaining partial
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CPU times scale well. However, the scaling for both the partial “SetLAG” and total CPU
times is worse than in Mg VII. Extra speed-up for “SetLAG” in Mg VII AS5 calculations is
observed. These different scalings can again be attributed to the fact that there is a large
amount of xk terms contributing to the exchange potentials in Be I n = 15 calculations,
as mentioned above. For each xk(abcd) term, calculations of relativistic one-dimensional
radial integrals Yk(bd; r) are performed on the grid with hundreds of r values. All these
calculations are serial and are often repetitious for the same Yk(bd; r) integral associated
with different xk(abcd) terms which differ from each other only by a and/or c orbitals. This
kind of inefficiency could be improved by calculating all the needed Yk(bd; r) integrals
in advance and storing them in arrays. This will be implemented in future versions of
rmcdhf_mpi_FD codes.
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Figure 7. MPI performances for the partial and total CPU times for updating the orbitals in (a) Mg VII
AS5 and (b) Be I n = 15 calculations. Solid curves are the CPU times (in s) labeled “Update” (squares),
“SetTVCof” (circles), “WithoutMCP” (up-triangles), “WithMCP” (down-triangles), and “SetLAG”
(diamonds), respectively, for the first iteration of the rmcdhf_mpi_FD SCF calculations. (Some of them
are also listed in Tables 3 and 5). In addition, the “NXA&NYA” CPU times are also shown as the
dotted line.

The MPI performances of the construction of NYA and NXA arrays are also displayed
as dotted lines in Figure 7. As the distributed LABYk and LABXk values obtained by
different MPI processes have to be collected, sorted and then re-distributed, the linear
scaling begins to deteriorate at about 32 cores for the Be I n = 15 calculations. Fortunately,
this construction is realized only once, just before the SCF iterations. This slightly poor MPI
performances should not be the bottleneck in large-scale MCDHF calculations.

After a deep investigation of the procedures that could affect the MPI performances
of rmcdhf_mpi_FD, one concludes that the poor performances of diagonalization could be
the bottleneck for MCDHF calculations based on relatively large expansions consisting of
hundreds of thousands of CSFs and targeting dozens of eigenpairs. We will discuss this
issue in the next section.

4. Performance Tests for RCI Codes

The MCDHF calculations are generally followed by RCI calculations employing the
GRASP rci and rci_mpi codes. In these calculations, larger CSF expansions than those
considered in MCDHF calculations are used to capture higher-order electron correlation
effects. Corrections to the Dirac–Coulomb Hamiltonian, such as the transverse photon in-
teraction and the leading QED corrections, are also taken into account in this configuration
interaction step, without affecting the one-electron orbitals. As mentioned in Section 1, we
recently implemented in GRASP2018 [36] the original computational methodology based on
configuration state function generators (CSFG) to build the Hamiltonian matrix. This strat-
egy takes full advantage of the fact that the spin-angular integrals, such as the coefficients
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in Equation (5), are independent of the principal quantum numbers. In this approach, the
CSFs space is divided into two parts, i.e., the labeling space and correlation space. The
former typically accounts for the major correlation effects due to close degenerate and
long-range rearrangements, while the latter typically accounts for short-range interactions
and dynamical correlation. The orbitals set is also divided into two parts, i.e., a subset of
labeling-ordered (LO) orbitals and a subset of symmetry-ordered (SO) orbitals [36]. The
labeling CSFs are built with the LO orbitals only, generated by electron excitations (single
(S), double (D), tripe (T), quadruple (Q), etc.) from an MR. The correlation CSFs are built
with the LO orbitals together with SO orbitals, generated by only SD excitations also from
the given MR. In the present implementation, two electrons at most are allowed to occupy
the SO orbitals.

A CSFG of a given type is a correlation CSF in which one or two electrons occupy
the SO orbitals with the highest principal quantum number allowed. Given a CSFG, a
group of correlation CSFs can be generated by orbital de-excitations, within the SO orbitals
set, that preserve the spin-angular coupling. The generated CSFs within the same group
differ from each other only by the principal quantum numbers. The use of CSFGs makes it
possible to restrict the spin-angular integration to a limited number of cases rather than
being performed for each of the elements in the Hamiltonian matrix. Compared to ordinary
RCI calculations employing rci_mpi, the CPU times are demonstrated to be reduced by
factors of ten with the newly developed code, referred hereafter to as rci_mpi_CSFG. It is
also found that the Breit contributions involving high orbital angular momentum (l) can be
safely discarded. An efficient a priori condensation technique is also developed by using
CSFG to significantly reduce the expansion sizes, with negligible changes to the computed
transition energies. Some test calculations are presented for a number of atomic systems
and correlation models with increasing sets of one-electron orbitals in [36]. Compared to
the original GRASP2018 rci_mpi program, the larger the scale of the calculations, the larger
the CPU time reduction factors will be with rci_mpi_CSFG. The latter is, therefore, very
suitable for extremely large-scale calculations. Here we focus on the MPI performances of
rci_mpi_CSFG and rci_mpi.

The MPI performance test calculations are performed for the 2+ block in Ne VII using
the AS5 orbitals set, i.e., 10(spd f ghi). As in the MCDHF calculations, all the possible
(1s2)2l3n′l′ with 2 ≤ n′ ≤ 5 configurations define the MR. The correlation CSFs are formed
by SD excitations from this MR, allowing at most one electron excitation from the 1s subshell.
These CSF expansions model both the VV and CV electron correlation. The number of
resulting CSFs is nc = 2 112 922. This expansion is used in the rci_mpi calculation.

In the rci_mpi_CSFG calculation, all the n ≤ 5 orbitals are treated as LO orbitals,
while the others are regarded as SO orbitals. The CSFs are generated as in the rci_mpi
calculation. The labeling space contains 95 130 CSFs, while there are 197 480 CSFGs within
the correlation space spanning 2 017 792 correlation CSFs. The total number of the original
CSF expansion, nc is reproduced by adding the sizes of the labeling and correlation spaces,
i.e., 95 130 + 2 017 792 = 2 112 922, as it should be. However, the program rci_mpi_CSFG
reads a file of only n′c = 292 610 CSFs, corresponding to the total of the labeling CSFs
(95 130) and CSFGs (197 480). The size is reduced by the ratio R = nc/n′c ' 7, compared
to the file containing all the nc CSFs treated by rci_mpi. This ratio is very meaningful,
being related to the performance enhancement of rci_mpi_CSFG, as the numbers of spin-
angular integrations are, respectively, nc(nc + 1)/2 and about n′c(n′c + 1)/2 in the rci_mpi
and rci_mpi_CSFG calculations. Ideally, relative to the former, a speed-up factor of R2

is expected for the latter. It is obvious that this kind of outperformance is impossible to
achieve because the spin-angular integration is not the whole computation load of RCI
calculations.

The MPI performances of the rci_mpi and rci_mpi_CSFG can be realized from Table 6.
All the MPI calculations are performed for the lowest 54 levels of 2+ in Ne VII, but using
various np cores in the range of 16–128 within a Linux server with two AMD EPYC 7763
64-Core Processors. Rather than using the zero-first approximation as in the above MCDHF
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calculations, here, all the matrix elements are calculated and taken into account in the RCI
calculation. The disk space taken by the nonzero matrix elements is about 173 GB. The
CPU times for building the Hamiltonian matrix, searching eigenpairs, and the sums are
also shown in Figure 8. The former can be precisely reproduced by allometric scaling, i.e.,
1 121× np−0.822 and 16 005 ×np−0.894 both in minutes, respectively, for rci_mpi_CSFG and
rci_mpi. This means that the CPU times for the matrix construction can be, respectively,
reduced by factors of 1.77 and 1.86 if using double cores, implying that both rci_mpi and
rci_mpi_CSFG have good MPI scaling to build the Hamiltonian matrix. However, the poor
MPI scaling is again seen for diagonalization. The optimal np values for the two codes
are both around 32. The CPU times increase significantly with np > 32. The rci_mpi and
rci_mpi_CSFG diagonalization with np = 128 is longer than with np = 32 by factors of
about 4.1 and 3.7, respectively. The different MPI scalings for the matrix construction and
diagonalization are not unexpected. For the former, after each MPI process obtains the
CSFs expansion, communications between different processes are not needed anymore.
However, during the diagonalization procedure, a large amount of MPI communications
are needed to ensure that each process has the same approximated eigenvector after every
matrix-vector multiplication.

Table 6. CPU times (in s) for the construction of the Hamiltonian matrix (H), its diagonalization
(D), and for the cumulated tasks (Sum) using rci_mpi and rci_mpi_CSFG for the 2+ block Mg VII
calculations, as a function of the number of MPI processes (np).

rci_mpi rci_mpi_CSFG

np H D Sum H D Sum

16 1 342.08 194.87 1 536.95 114.97 61.45 176.42
32 722.68 158.54 881.22 64.98 53.11 118.09
64 370.86 321.84 692.70 34.85 96.66 131.51
96 281.45 439.48 720.93 26.80 149.45 176.25

128 216.50 651.80 868.30 22.42 195.08 217.50
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Figure 8. MPI performances of rci_mpi and rci_mpi_CSFG. (a) CPU times (in min) for the con-
struction of the Hamiltonian matrix (squares), its diagonalization (circles), and their sum (triangles)
versus the number of MPI processes (np) for the 2+ block in Mg VII calculations with rci_mpi. The
dashed curve is reproduced by an allometric fit, see text. (b) Same as in (a), but for calculations with
rci_mpi_CSFG.

Consequently, considering both tasks (matrix construction and diagonalization), as
seen in Table 6 and Figure 8, the optimal np values for the whole code running times
are in the ranges of 64–96 and 32–64 for rci_mpi and rci_mpi_CSFG, respectively. The
latter outperforms the former by factors of 8.7 and 4.0 for the calculations using 16 and
128 cores, respectively. The best performance of rci_mpi_CSFG is 118 m using 32 cores,
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while it is 693 m using 64 cores for rci_mpi. The CPU time is reduced by a factor of
5.9 for rci_mpi_CSFG, but we should keep in mind that it uses half of the cores used by
rci_mpi. This is more interesting for public servers. The outperformance of rci_mpi_CSFG
is obviously due to the improvements in matrix construction and diagonalization, i.e.,
thanks to the implementation of CSFG and the additional parallelization, as discussed
above. The CPU times needed for these two tasks are averagely reduced by about a factor
of 10 and 3, respectively.

The scalability of the codes is also of interest if more and more eigenpairs are searched
from a given Hamiltonian matrix. In Figure 9, the diagonalization CPU times are plotted
versus nL, the number of searched eigenpairs. These calculations were also performed for
the 2+ block in Ne VII using 16 cores. We observe that the reported CPU times, T(nL) in
minutes, with large enough nL-values, can be well reproduced by a quadratic polynomial
fit as T(nL) = 5.20 + 0.519nL + 0.0662n2

L and T(nL) = −3.46 + 1.54nL + 0.00538n2
L for

calculations with rci_mpi and rci_mpi_CSFG, respectively. For the latter, T(nL) is approxi-
mately linear in nL and the quadratic term is smaller by over one order of magnitude for
this code than for rci_mpi. Consequently, the rci_mpi_CSFG outperforms rci_mpi more
significantly as nL increases, reducing the diagonalization CPU times by a factor of 4.2
for nL = 128. This feature of rci_mpi_CSFG code is very helpful for large-scale spectrum
calculation involving hundreds of levels.
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Figure 9. CPU times (in min) for searching different numbers of eigenpairs of the 2+ block in Mg VII.
Dashed lines: CPU times for rci_mpi (squares) and rci_mpi_CSFG (circles). The lines are reproduced
by a quadratic polynomial fit. Dotted line (right y axis): speed-up factors of rci_mpi_CSFG relative to
rci_mpi (circles).

5. Conclusions

In summary, the computation load of MCDHF calculations employing the GRASP

rmcdhf_mpi code is generally divided into the orbital-updating process and the matrix
diagonalization. The inefficiency found in the former part has been removed by redesigning
the calculation of direct and exchange potentials, as well as Lagrange multipliers. Conse-
quently, the CPU times may be significantly reduced by one or two orders of magnitude.
For the second part, the additional parallelization of the diagonalization procedure may
reduce the CPU times by about a factor of 3. The computation load of RCI calculations
employing GRASP rci_mpi can also be divided into the Hamiltonian matrix construction
and its diagonalization. In addition to the additional parallelization that improves the
efficiency of the latter, the load of the former is reduced by a factor of ten or more thanks to
the recently implemented computational methodology based on CSFG. Compared to the
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original rmcdhf_mpi and rci_mpi codes, the present modified versions, i.e., rmcdhf_mpi_FD
and rci_mpi_CSFG cut down the whole computation loads of MCDHF and RCI calcula-
tions by several or tens of times, a factor that depends on the calculation scale governed by
(i) the size of the CSF expansion, (ii) the size of the orbital set, (iii) the number of desired
eigenpairs and (iv) the number of MPI processes used. In general, the larger the first three,
the larger the CPU time reduction factors obtained with rmcdhf_mpi_FD and rci_mpi_CSFG.
On the other hand, the smaller the number of used cores, the larger the reduction factors
observed. These features make the rmcdhf_mpi_FD and rci_mpi_CSFG codes very suitable
for extremely large-scale MCDHF and RCI calculations.

The MPI performances of the above four codes, as well as the memory version of
rmcdhf_mpi, i.e., rmcdhf_mem_mpi, are carefully investigated. All codes have a good MPI
scaling for the orbital updating process and the matrix construction step, respectively, in
MCDHF and RCI calculations, whereas the MPI scaling for diagonalization is poor. If few
eigenpairs are searched or very small CSFs expansions are employed, the MPI calculations
may be performed using as many cores as possible. To obtain the best performance for
large-scale calculation using hundreds of thousands or millions of CSFs expansion and
targeting dozens of levels or more, the relative computation loads of diagonalization
versus orbital update and matrix construction should be considered. As the latter two
are, respectively, reduced significantly by rmcdhf_mpi_FD and rci_mpi_CSFG codes, the
diagonalization computation load will often dominate. For such cases, the MPI calculations
should be performed using the optimal number of cores for diagonalization, generally
being around 32. The poor MPI scaling of diagonalization is obviously the bottleneck
of rmcdhf_mpi_FD and rci_mpi_CSFG codes for precise spectrum calculations involving
hundreds of levels. The way to improve the MPI scaling for diagonalization is unclear
to us. An MPI/OpenMP hybridization might be helpful. By now, a temporary method
is provided for large-scale RCI calculations. Firstly, the Hamiltonian matrix is calculated
using as many cores as possible. The files storing the nonzero matrix elements are then
re-distributed by a program to match the optimal diagonalization performances.
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