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We present the possibility of the low seesaw scenario in the Grimus–
Neufeld model. We argue that it can be natural and phenomenologically
interesting, while consistent with neutrino data. We present the approxi-
mated expressions for neutrino masses and estimate the magnitude of the
Yukawa couplings. We show that they can be sizable and can lead to pos-
sible restrictions on the scalar sector.
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1. Introduction

Direct evidence of physics beyond the Standard model (SM) are the non-
vanishing neutrino masses [1–4]. Addressing their nature by various models
has already quite a long history. Nevertheless, these realizations are usually
not very predictive and hence, large parameter regions in these models are
not probed by the experiments. As a result, even the very minimal exten-
sions of the SM, which include neutrino masses, are neither excluded nor
confirmed. As the neutrino sector must inevitably be an integral part of any
model that has an ambition to explain the full picture of particle physics, it
makes sense to think of these minimal realizations of neutrino mass models
as part of some bigger model. Yet this leaves the neutrino sector a somewhat
unessential part in these models, which is simply just there. In this context,
it is worthwhile to rethink the minimal realizations for neutrino masses with
bigger scrutiny and try to look for parameter regions which can actually be
sensitive to the current experimental limits.

By the term minimal, we usually refer to the extension which adds some-
thing to the model that is just enough to explain the phenomena under con-
sideration — in this case, the neutrino masses and mixings. In this sense,
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the seesaw mechanism [5] is minimal, as it introduces only one additional
particle to the SM per needed mass parameter. A slightly more sophisti-
cated mechanism is the radiative mass generation, which includes a larger
scalar sector. In the context of the widespread belief that the scalar sec-
tor is probably larger than the one of the SM anyways, this also can be
thought of being minimal. This approach is known as the scotogenic model
[6], which postulates the existence of sterile neutrinos, but prevents them
from acquiring tree-level masses by a Z2 symmetry.

In both of these scenarios, seesaw or scotogenic, it is customary to study
only the parameter region which has the non-SM neutrino (or sterile neu-
trino) very heavy, a way heavier than the electroweak scale1. Moreover, both
of the models are rather idealistic: the seesaw model alone is idealistic in
the sense that it does not consider the possibility of a larger scalar sector,
which immediately gives the possibility of additional radiative mass genera-
tion; while the scotogenic model relies on the exact Z2 symmetry, which, if
even slightly broken, can allow for the seesaw mechanism. We find that the
latter option might be particularly interesting in a phenomenological sense,
as it naturally gives the low seesaw scale and suppressed Yukawa couplings
to the SM Higgs, while allowing sizable ones to the 2nd Higgs doublet. In
addition, since it has two mechanisms for generating neutrino masses inter-
playing with each other, it is enough to have only a single sterile neutrino to
explain both of the experimentally observed mass squared differences. This
scenario is just a specific parameter region of a more general model, called
the Grimus–Neufeld [8] (GN) model, which is simply the general 2HDM,
extended with a single seesaw neutrino. In contrast to the more restrictive
approaches (scotogenic or pure seesaw), this is quite general, but it is “truly
minimal” as it can be realized with only a single sterile neutrino instead of
two or three.

The low seesaw scale was never studied in the GN model before, yet it
is an interesting scenario due to the following reasons:

— It has a similarity to the “idealistic” scenario of the scotogenic model
[6] by having an approximate Z2 symmetry in the neutrino Yukawa
sector (instead of an exact one), but has a lower number of postulated
particles, thus does not make the study more complicated. There is
also a limiting case of it to the scoto-seesaw model [9, 10], in which the
seesaw mechanism is strictly separated by an opposite Z2 charge of the
two sterile neutrinos. There are no restrictions in the GN model, and
thus studying its parameter space around the mentioned limiting sce-
narios can give us an insight into the situation how phenomenologically
distinguishable these exact limits really are.

1 There exist exceptions to this, for example, [7].
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— A high seesaw scale induces a naturalness problem in the scalar sector
[11]. It is rather surprising that this issue is rarely even mentioned
and often just ignored in the studies of various models with the seesaw
mechanism. Ironically, the seesaw mechanism is introduced to be a
“natural” explanation of the smallness of neutrino masses and by “nat-
ural” it is meant that the Yukawa couplings are kept to be of O (1),
or simply not extremely small. The neutrino mass in Type I seesaw is
then

mν =
y2v2

2M
, y = O (1)⇒M ≈MGUT , (1)

where M is the sterile neutrino mass, y is the Yukawa coupling for the
neutrino, and v is the v.e.v. of the Higgs boson. One can immediately
see that this can be a problem in the scalar sector: for M > 107 GeV,
we get that the correction to the Higgs mass is higher than the mass
itself [11], since

δmh ∼
y2

16π2
M2 . (2)

Hence, there is no really a natural way to address the neutrino masses
with Type I seesaw. However, from the ’t Hooft naturalness point
of view, the limit of y → 0 actually increases the symmetry of the
Lagrangian, which again is a strong motivation for Type I seesaw with
a small M and gives a new meaning to the natural seesaw mechanism.

— Values for M in the keV, MeV, or GeV range are simply not excluded.

In this report, we show that the low seesaw scale is a perfectly viable pa-
rameter region in the GN model, which can reproduce the observed neutrino
data with almost any scalar potential2.

2. Quick introduction to the model

A detailed presentation of the model can be found in [8, 12–14]. For
completeness and setting the notation, we present only the essential parts
of the model.

The scalar sector consists of the 2HDM. We pick the Higgs basis, in
which

〈H1〉 =
1√
2
v , 〈H2〉 = 0 . (3)

Hence, when we say “first Higgs doublet”, it always means the SM-like one,
in which the pseudoscalar and the charged components of the doublet are
the Goldstone bosons.

2 There is only one fine-tuned exception, which is described in the paper below.
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We pick the flavour basis for the Yukawa couplings for charged fermions
and, for simplicity, we set the Yukawa couplings of charged fermions to the
second Higgs doublet to zero, which reads

Y E1
`i

=

√
2mi

v
, Y E2

`i
= 0 , i = e, µ, τ . (4)

The only fermion, N , that is added is a singlet under all gauge groups with
a mass M . This allows the Yukawa couplings for neutrinos, which are then
2 general complex 3-vectors, Y ν1 and Y ν2. The Lagrangian part of the main
interest is then

LYuk+M = −Y 1
νi`iH1N − Y 2

νi`iH2N −
1

2
MN2 + H.c. ,

`i =

(
νi
e−i

)
, i = e, µ, τ , (5)

where all fermions are written in terms of left-handed Weyl spinors. The pro-
duct `H has to be understood as the invariant SU(2) product. By applying
a unitary transformation V on neutrinos, we pick a new basis

νF= V ν , Y 1
ν = (0, 0, iy)V † , Y 2

ν =
(
0, d, id ′

)
V † , y, d ∈ R+ , d ′ ∈ C .

(6)
In this basis, there is a clear zero-mass state, which does not interact with
the scalar sector at all and a clear seesaw-mass state, which is the only
one which interacts with the first Higgs doublet. Thus at tree level, two
neutrinos are massless

m1 = m2 = 0 , m4 > m3 > 0 , (7)

where the non-zero masses are given by the seesaw relations

M = m4 −m3 ,
y2v2

2
= m3m4 . (8)

At loop level, only the neutrino that does not interact with Higgses at all
stays massless. For simplicity, we always order the neutrinos by their mass,
hence at one loop, we will have

mpole
1 = 0 ,

mpole
4 > mpole

3 > mpole
2 > 0 . (9)

To be consistent with neutrino data [15], we must have

Normal hierarchy: mpole
2 =

√
∆m2

21 , mpole
3 =

√
∆m2

21 +
∣∣∆m2

32

∣∣ ,
Inverted hierarchy: mpole

2 =
√∣∣∆m2

32

∣∣−∆m2
21 , mpole

3 =
√∣∣∆m2

32

∣∣ .
(10)
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The idea is to make these masses as input parameters and define 2 free
parameters in terms of them, by solving the 1-loop equations for masses.
V is then also related to the PMNS matrix at one-loop level. For simplicity,
we will concentrate on masses only, as not all the parameter values can be
consistent with Eq. (10), while the PMNS matrix can always be reproduced.
From the solutions that satisfy Eq. (10), we can then see which parameter
regions are allowed in the GN model.

3. One-loop mass calculations

To calculate the one-loop neutrino masses in general, we must first cal-
culate the 4 × 4 matrix of self-energies. However, since we are interested
in light-neutrino masses only, this can be radically simplified by using the
Grimus–Lavoura approximation [16]. It can be summarized as follows:

— Evaluate all self-energies at p2 = 0.

— Assume m4 � m3, make a large mass expansion, and pick the leading
order. This also gives mpole

4 ≈ m4. In GN at one loop, it is equivalent
to expanding the loop functions in terms of Yukawa couplings [14].

We note that since m3 is really small, m4 can be relatively small, certainly
smaller than the electron mass for the GL approximation to be applicable.
Then the 4× 4 matrix becomes block diagonal and the 2× 2 block for light
neutrinos can be studied separately. All the diagrams that are contributing
to this mass matrix are shown in Fig. 1.
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Fig. 1. Feynman diagrams that contribute to light neutrino masses in the basis
defined by Eq. (6).



2-A17.6 V. Dūdėnas, T. Gajdosik

The resulting 2× 2 mass matrix for light neutrinos can be then written
as [13]

MGL
ν =

(
0 0
0 m3

)
+
m4

32π2

( −d 2F22 −i (dd ′F22 + dyF12)

−i (dd ′F22 + dyF12) y
2F11 + (d ′)2 F22 + 2yd ′F12

)
, (11)

where Fijs are the dimensionless loop functions to be read out from Fig. 1
with i, j being Higgs family indices3. This mass matrix is finite and gauge
invariant and thus, in principle, we can directly relate any of the two free
parameters that this matrix depends on to the measured neutrino mass
squared differences. The loop functions are

F11 = −3fZ − fH cos2 (β − α)− fh sin2 (β − α) ,

F22 = fA − fH sin2 (β − α)− fh cos2 (β − α) ,

F12 = (fH − fh) sin (β − α) cos (β − α) , (12)

where, assuming the low seesaw scale, we have

fi =
m2

4

m2
4 −m2

i

ln

(
m2

4

m2
i

)
≈ ln

(
m2

4

m2
i

)
,

for m3 � m4 < v ∼ mi , i = h,H,A . (13)

β–α is the mixing angle between H1 and H2. From
∣∣detMGL

ν

∣∣ = mpole
3 mpole

2 ,
one can express the coupling d2 in terms of one loop, GL-approximated pole
masses [13]. Assuming m4

4πv < 1, we can make an expansion and take only
the leading term

d2 =

(
4πv

m4

)4 2mpole
3 mpole

2

v2
m4

m3

1∣∣∣∣F 2
12 − F22

[
F11 +

(
4πv
m4

)2]∣∣∣∣
=

32π2mpole
3 mpole

2

m4m3

(
1

|F22|
+O

(( m4

4πv

)2))
. (14)

Then, using Eq. (8), we get

y2

d2
=

2m2
3m

2
4

(4π)2 2mpole
3 mpole

2 v2
|F22| =

( m4

4πv

)2 m2
3

mpole
3 mpole

2

|F22| , (15)

3 We define the Z-boson contribution absorbed into F11.
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which shows that for small m4, the y coupling is significantly smaller than d.
We thus can neglect the diagrams that are ∼ y in the loop, which means that
F11 and F12 are neglected in the 2×2 mass matrix for light neutrinos, which
corresponds to neglecting the diagrams having H1, Z and H1–H2 mixing in
the loop in Fig. 1. This leads to the following simplified matrix:

Mν =
1

32π2
m4F22d

2 ×

 −1 −i d ′d
−i d ′d

(
1
F22

(
4πv
m4

)2)
y2

d2
+
(
d ′

d

)2  , (16)

F22 = ln

(
m2
H

m2
A

)
− ln

(
m2
H

m2
h

)
cos2 (β − α) . (17)

Note that the limit of y → 0 makes this matrix singular, which automat-
ically means that one of the pole masses for light neutrino vanishes. This
limit corresponds to the exact Z2 symmetry in the Yukawa Lagrangian,
thus it is consistent with the statement that one cannot reproduce the two
non-vanishing light neutrino masses with a single sterile neutrino in the sco-
togenic (exactly Z2-symmetric) model. Hence, we have a lower bound on y,
even though it can be really small (e.g. y = O

(
10−9

)
for m4 = O (MeV)),

thus we can talk of an “approximate” Z2 symmetry, while still reproducing
neutrino masses in the GN model.

Putting Eq. (14) and Eq. (15) into Eq. (16), we get

Mν =
mpole

3 mpole
2

m3
sign(F22)×

 −1 −i d ′d
−i d ′d

m2
3

mpole
3 mpole

2

Sign(F22) +
(
d ′

d

)2  .

(18)
In this form, no dependence on the size of F22 is present in the mass matrix,
but it depends on the sign of F22. The size of F22 only controls the size of d
via Eq. (14) and thus the overall size of the Yukawa couplings. Equation (14)
has to give perturbative d for the description to make sense, which we will
talk about in the next section. If this is the case, for checking whether the
model can consistently reproduce the observed neutrino data, it is enough
to show for which parameter regions the singular values of Eq. (18) are
consistent with the observed mass squared differences. For this, we first
abbreviate

Zm3 =
m3

mpole
3

, κ = arg
(
d ′
)
, x =

∣∣∣∣d ′d
∣∣∣∣2 , m32 =

mpole
3

mpole
2

, (19)
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and then from Tr
(
M †M

)
=
(
mpole

2

)2
+
(
mpole

3

)2
, we get the equation for

the real parameter x

(1 + x)2
1

Z2
m3

+ sign(F22)
(
2 cos2 (κ)− 1

)
m32x+m2

32

(
Z2
m3 − 1

)
− 1 = 0 .

(20)
The parameters κ and Zm3 are then the free input parameters. However,
they are restricted, as x ≥ 0. From this, we get the lower bound on Zm3

(or y)

Zm3 ≥
mpole

2

mpole
3

⇒ m3 ≥ mpole
2 ⇒ y2 ≥ 2mpole

2

v2
m4 , (21)

which tells us how close we can approach the scotogenic model. The pa-
rameter Zm3 has to be restricted from above to avoid a large cancellation
between the loop level and the tree-level diagrams. For instance, the re-
striction that no more than 50% of the tree-level mass is canceled by loop
corrections translates into Zm3 < 2. The solutions of Eq. (20) as a function
of κ at different values of Zm3 are shown in Fig. 2. As can be seen from
Fig. 2, the parameter κ is only restricted for Zm3 > 1. Moreover, if we now
put in the values of Eq. (10), from Eq. (21) we see that the allowed values
for Zm3 and κ in the inverted hierarchy have a smaller parameter space than
for the normal hierarchy. Nevertheless, given these values and provided that
F22 6= 0, Eq. (20) always has real and positive solutions, which means that
the GN model can always reproduce the correct neutrino data, both in the
normal and inverted hierarchy. The question is, whether the Yukawa cou-
plings can be large enough to give signatures elsewhere, and: can we actually
give a restriction on the scalar sector from that?

4. The magnitude of d2 and restrictions on the scalar sector

Up until now, we assumed that F22 6= 0, but we did not look how small
it can be. Since

∣∣∣d ′d ∣∣∣ does not depend on the magnitude of F22 and the value

of
∣∣∣d ′d ∣∣∣ is limited, as can be seen from Fig. 2, the size of d can be used as

an estimate of a possible size of the Yukawa couplings of neutrinos to the
second Higgs doublet, see Eq. (6). Since d2 ∼ 1

F22
, the description breaks

down if d2 is no longer perturbative. Using Eq. (14) and limiting d2 < 4π,
gives the theoretical lower bound on F22

8πmpole
3 mpole

2

m4m3
< |F22| . (22)
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Fig. 2. Solutions of Eq. (20), as a function of sin (κ), for F22 < 0 (or cos (κ), for
F22 > 0) at different values of Zm3 for NH (left) and IH (right). For Zm3 > 1, κ is
no longer a completely free parameter and becomes restricted by the consistency
with the neutrino data. Note the scale change on the x-axis for IH, as κ is way
more restricted for IH than for NH for Zm3 > 1.

Since mpole
2 ≈ 10−2eV and Zm3 =

mpole
3
m3

= O (1), this limit is rather weak.
For instance, if we consider the case of no mixing between the Higgs doublets,
we have

O

(
eV
m4

)
< |F22| =

∣∣∣∣ln(mH

mA

)∣∣∣∣ =

∣∣∣∣ln(1 +
mH −mA

mA

)∣∣∣∣ ≈ ∣∣∣∣mH −mA

mA

∣∣∣∣ .
(23)

We see that it is not satisfied only if the degeneracy between mA and mH

holds to at least in the ∼ log10
m4
eV digit accuracy, which, for m4 ∼ O (MeV–

GeV), is rather fine-tuned. It is unrealistic to expect to see such accuracy
in any near-future experiment, even if this would turn out to be a realistic
scenario. On the other hand, d2 gives an overall magnitude of the Yukawa
couplings, thus if, instead of restricting its size from perturbativity, it is
restricted from somewhere else, we can make this limit on the scalar sector
stronger by orders of magnitude. To illustrate what size for d2 we can expect,
for normal and inverted hierarchy, it is

NH: d2 =
2.7 eV
Zm3m4

1

|F22|
, IH: d2 =

16 eV
Zm3m4

1

|F22|
. (24)

Assuming Zm3 = O (1), we get

m4 = O (MeV) and d2 = O
(
10−2

)
:

{
NH: |F22| = O

(
10−4

)
,

IH: |F22| = O
(
10−3

)
.

(25)

We see that couplings are relatively large, while the mass of the heavy neu-
trino is light enough so that it does not give a kinematical suppression in
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contrast to the usual, large-scale seesaw mechanism. This indeed might give
some effect already, and we expect to exclude a larger parameter space of
the scalar sector in this regime and put a stronger bound than the one in
Eq. (22).

5. Conclusions

In the GN model, the Yukawa sector is almost completely determined
by neutrino oscillations, with only 2 free degrees of freedom, which we
parametrized by Zm3 and arg (d ′). The scalar potential must satisfy the
limit defined in Eq. (22), but this limit is quite weak, and we can say
that, to a good approximation, the neutrino sector can be realized with
any scalar potential in the GN model. However, in the low seesaw regime,
the Yukawa couplings to the second Higgs doublet can become significant
and we might expect tensions with other experiments. This could poten-
tially lead to stronger constraints on the scalar potential than the bound
given in Eq. (22). We expect the strongest constraints to come from flavour
violating decays, such as µ → eγ, which we plan to investigate in a near
future.
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ect No. 09.3.3-LMT-K-712-19-0013) under the grant agreement with the
Research Council of Lithuania (LMTLT).
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