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Abstract: An aqueous sol-gel preparation technique was applied for the synthesis of calcium-
substituted lanthanum molybdate with the initial composition of La2–xCaxMo2O9–x/2. The influence
of the substitution effect, which plays a crucial role in the formation of final ceramics, was investigated.
The thermal behavior tendencies of phase transition at elevated temperatures from the monoclinic
crystal phase to cubic as well as reversible transformation were identified and discussed in detail. It
was proved that the phase transformation in the obtained mixture significantly depends only on the
impurities’ amount, while the partial substitution by calcium atoms above the value of x = 0.05 does
not create a homogeneous multicomponent system for La2–xCaxMo2O9–x/2 composition.
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1. Introduction

Since the discovery of enhanced ionic conductivity for the La2Mo2O9 compound by
Lacorre in 2000 [1], the efforts of application [2] for this system in different electrochemical
devices have continuously increased [3]. Oxygen pumps, sensors, and solid oxide fuel cells
(SOFCs) [4–7] are only a few types of equipment where lanthanum molybdenum oxide can
be successfully applied. Despite a reversible phase transformation [8,9] above 540 ◦C from
a low-temperature form α-La2Mo2O9 [10] to a high-temperature form β-La2Mo2O9 [11],
its chemical stability [12] under air atmosphere in the range of temperature from 600 ◦C
to 1000 ◦C creates the conditions for using this compound as a solid electrolyte of oxygen
ions [13]. Moreover, the densification [14] of the corresponding ceramic could be suc-
cessfully applied below the temperature of 1200 ◦C while creating desirable surface and
crystalline properties [15,16]. The synthesis technique [17–19] that allows the preparation
of the initial mixture of lanthanum and molybdenum oxides also plays an important role
during the formation of the final ceramic at high temperatures. However, the molar ratio of
initial metals remains the main factor that determines the formation of the La2Mo2O9 com-
position. This is the reason why the partial substitution [20–22] of either lanthanum [23–25]
or molybdenum [26–29] leads to the crystallization of side phases [30,31], which signifi-
cantly affects the physical properties [32,33] of the corresponding compound. This effect is
directly related to both the amount of the La2Mo2O9 phase in the final ceramic mixture and
the increased stabilization of the cubic phase at room temperature. Therefore, the main aim
of this work was to study the dependence of the phase transition of La2Mo2O9 ceramics on
the degree of calcium substitution in the corresponding system.

2. Materials and Methods

La–Ca–Mo–O tartrate gel precursor for La2–xCaxMo2O9–x/2 ceramic was prepared
by an aqueous sol-gel synthesis using tartaric acid as a chelating agent that interacts as a
ligand at the molecular level with the reaction mixture during both the dissolution in water
and either sol or gel formation. The general scheme of this experiment is illustrated and
presented in Figure 1.
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La2MoO6 [34]. Nitric acid (HNO3 66% Reachem (Mississauga, Canada)), distilled water, 
and concentrated ammonia solution (NH3 · H2O 25% Penta (Prague, Czech Republic)) 
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Figure 1. Synthesis scheme of the La–Ca–Mo–O tartrate precursor for La2–xCaxMo2O9–x/2 ceramic.

Lanthanum (III) oxide (La2O3, 99.99% Alfa Aesar), molybdenum (VI) oxide (MoO3,
99.95% Alfa Aesar), and calcium (II) nitrate tetrahydrate (Ca(NO3)2·4H2O 99.98% Alfa
Aesar) were used as starting materials and weighed before the dissolution procedure
according to the desired stoichiometric ratio. It should be noted that, despite the high purity
of the lanthanum (III) oxide, it was additionally heat-treated at 1000 ◦C for 5 h because of
its tendency of the reaction with humidity and carbon dioxide from the air. In this case,
even a slight deviation in the lanthanum amount from the ideal composition for La2Mo2O9
ceramic creates conditions for the formation of impurity phases such as La2Mo3O12 or
La2MoO6 [34]. Nitric acid (HNO3 66% Reachem (Mississauga, Canada)), distilled water,
and concentrated ammonia solution (NH3 · H2O 25% Penta (Prague, Czech Republic))
were used as solvents and reagents to regulate the pH of the solution. Tartaric acid
(L–(+)–Tartaric acid (C4H6O6) (TA) ≥ 99.5% Sigma-Aldrich (Darmstadt, Germany)) was
applied for escalation of solubility via coordination of starting compounds in the reaction
mixture, especially during the pH changes and evaporation before sol-gel formation. The
mechanism of the corresponding chemical process in the frame of the aqueous tartaric
acid-assisted synthesis for the preparation of the La–Mo–O gel precursor was discussed
in our previous work [35]. Finally, the obtained La−Ca−Mo−O tartrate gel precursor for
La2−xCaxMo2O9−x/2 ceramics was heat-treated for 5 h at 1000 ◦C in the air atmosphere.

The thermal analysis of heat-treated powders was performed with TG–DSC, with a
STA 6000 PerkinElmer instrument using a sample mass of about 20 mg and a heating rate
of 40 ◦C min–1 under an airstream of 20 cm3·min–1 at ambient pressure. The heating and
cooling cycle was fulfilled twice from 300 ◦C to 800 ◦C and from 800 ◦C to 300 ◦C. The
sample mass, heating rate, atmosphere, and its flow rate were selected empirically during
numerous tests to ensure the best signal peak efficiency and to minimize the noises and
background signals, which occur because of the influence of the corundum crucible and
equipment limits. The characteristics of the phase transition peak were evaluated in the
ranges of temperature from 530 ◦C to 600 ◦C for heating and from 560 ◦C to 490 ◦C for the
cooling regime. X-ray diffraction (XRD) patterns were recorded in air at room temperature
by employing a powder X-ray diffractometer Rigaku MiniFlex II using CuKα1 radiation.
XRD patterns were recorded at the standard rate of 1.5 2θ min–1. The sample was spread
on the glass holder to obtain the maximum intensity of the characteristic peaks in the XRD
diffractograms. The Rietveld refinements of the obtained XRD patterns were performed
using X’Pert HighScore Plus version 2.0a software.

3. Results and Discussion
3.1. Thermal Analysis

In this work, thermal analysis as a powerful investigation technique was used for
a detailed investigation of the crystal phase transition from the monoclinic α-phase to
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cubic β-phase and from the cubic β-phase to monoclinic α-phase in the La2–xCaxMo2O9–x/2
ceramic system. An example of a differential scanning calorimetry (DSC) curve for the
La1.95Ca0.05Mo2O8.975 compound is presented in Figure 2. The corresponding results for
other samples are presented in the Appendix A. Meanwhile, the data of the phase transition
during the repeated heat treatments are collected in Table 1.

Table 1. Thermoanalytical data and α↔β phase transition peak properties for La2–xCaxMo2O9–x/2

ceramic.

Initial Composition Sample
Mass/mg Heating/Cooling Stages

Temperature/◦C Heat

Onset End Peak
Position Flow/mJ Enthalpy/J·g–1

La2Mo2O9 20.181

heating
stage I 556.07 579.33 563.25 195.047 9.665

stage II 555.69 578.84 563.03 204.953 10.1559

cooling
stage I 540.31 523.80 533.34 –146.255 –7.2473

stage II 540.26 523.17 533.29 –147.886 –7.3281

La1.999Ca0.001Mo2O8.9995 22.158

heating
stage I 558.63 580.56 567.11 191.073 8.6231

stage II 556.36 578.06 564.68 209.688 9.4632

cooling
stage I 537.43 511.92 525.65 –156.176 –7.0482

stage II 537.45 511.92 526.09 –153.356 –6.9209

La1.99Ca0.01Mo2O8.995 22.153

heating
stage I 562.12 585.08 569.41 194.41 8.7757

stage II 559.49 582.62 566.63 197.462 8.9134

cooling
stage I 533.02 512.79 523.19 –145.764 –6.5798

stage II 532.63 511.21 522.73 –142.37 –6.4266

La1.95Ca0.05Mo2O8.975 22.146

heating
stage I 565.55 587.31 573.98 183.43 8.2826

stage II 563.28 587.47 571.59 193.262 8.7266

cooling
stage I 527.46 497.28 517.3 –134.667 –6.0808

stage II 527.68 498.61 518.05 –137.095 –6.1904

La1.9Ca0.1Mo2O8.95 22.183

heating
stage I 567.18 589.94 575.53 182.851 8.2429

stage II 564.64 587.71 573.60 191.273 8.6225

cooling
stage I 530.34 512.47 525.64 –139.347 –6.2817

stage II 530.42 513.60 525.82 –140.215 –6.3208

La1.85Ca0.15Mo2O8.925 22.189

heating
stage I 566.04 589.64 574.53 181.146 8.146

stage II 563.04 588.21 572.27 189.325 8.5323

cooling
stage I 530.33 515.25 525.78 –137.468 –6.1953

stage II 530.38 515.97 526.06 –137.764 –6.2086

La1.8Ca0.2Mo2O8.9 22.200

heating
stage I 566.1 589.06 574.45 175.753 7.9168

stage II 563.01 585.8 571.18 183.708 8.2751

cooling
stage I 532.05 515.17 526.57 –137.915 –6.2124

stage II 532.12 516.21 526.66 –133.617 –6.0188

La1.75Ca0.25Mo2O8.875 22.182

heating
stage I 561.67 586.44 571.56 181.96 8.203

stage II 547.82 573.6 556.83 182.224 8.2148

cooling
stage I 526.46 508.12 521.81 –115.632 –5.2128

stage II 526.48 510.01 521.98 –118.351 –5.3354

La1.7Ca0.3Mo2O8.85 22.192

heating
stage I 560.67 585.41 569.80 176.441 7.9507

stage II 546.08 571.05 555.68 178.614 8.0486

cooling
stage I 526.23 508.93 521.35 –111.515 –5.0250

stage II 526.17 510.26 521.13 –113.167 –5.0995
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Figure 2. DSC curve of the phase transition cycles for La1.95Ca0.05Mo2O8.975 ceramic heat-treated at
1000 ◦C.

It is seen from Table 1 that the enthalpy values of the first heating cycle are slightly
lower, especially in the cases with a smaller amount of calcium ions, compared with the
second one. The reversible stabilization of the cubic phase at room temperature after
partial transformation from the monoclinic α-phase determines the main reason for such
behavior. According to the measurement conditions, the second heating cycle corresponds
to phase transition energy more precisely. Therefore, the representation of the tendency of
enthalpy change of only the second heating and cooling cycles according to the substitution
degree of calcium ions is shown in Figures 3 and 4. The decrease in the tendency of
phase transition enthalpy by increasing the calcium amount in the corresponding system is
directly related to the amount of the monoclinic crystal phase of the La2Mo2O9 compound.
Nevertheless, during the cooling stage, the increased enthalpy of the phase transition in
the La1.9Ca0.1Mo2O8.95 sample shows that the reduction of the La2Mo2O9 phase is not the
only factor that determines the energetics of the phase transition.
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in the La2–xCaxMo2O9–x/2 system under the second cooling stage.

This phenomenon could be explained either by the increase in the amount of the
monoclinic phase or by the influence of calcium ions on the formation of side phases in
the final ceramic mixture. By further increasing the concentration of calcium ions in the
La2–xCaxMo2O9–x/2 system, the enthalpy of the phase transition starts to decrease, and this
result is directly related to the decrease in the amount of the crystalline phase for La2Mo2O9
in the final ceramic.

Summarizing the phase transition results obtained from cooling cycles, it can be
concluded that homogeneous substitution by Ca2+ ions in the La2–xCaxMo2O9–x/2 system
takes place up to the value of x = 0.05. In this case, the phase transition mainly depends only
on the amount of the monoclinic crystal phase in the La2Mo2O9 ceramic homogeneously
substituted by Ca2+ ions. The increase in enthalpy values of the phase transition for
La2–xCaxMo2O9–x/2 (x = 0.10 and 0.15) samples during the cooling stages could be explained
by the side phase effect, which increases the amount of pure La2Mo2O9 compound and its
monoclinic phase in the final ceramic mixture.

3.2. X-ray Diffraction

In order to prove the crystalline composition in the obtained La2–xCaxMo2O9–x/2
system, the XRD analysis of the corresponding ceramic was also performed. The XRD
patterns of all samples that correspond to the data collected in Table 2 are presented in the
Appendix B.
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Table 2. Crystal system, mass fraction, crystallite size, lattice parameters, and agreement indices for
the La2–xCaxMo2O9–x/2 ceramic.

Initial Composition Crystal
Phase

Crystal
System

Mass
Fraction/%

Crystallite
size/nm

Unit Cell
Weighted
R Profile

Goodness
of Fita/pm b/pm c/pm

alpha/o beta/o gamma/o

La2Mo2O9

La2Mo2O9 monoclinic 71.4 104.75
1431.438 2145.289 2855.431

12.99106 1.29603
90.00000 90.42323 90.00000

La2Mo2O9 cubic 28.6 47.03
715.106 715.106 715.106

90.00000 90.00000 90.00000

La1.999Ca0.001Mo2O8.9995

La2Mo2O9 monoclinic 48.9 66.33
1432.093 2145.928 2857.133

10.70047 1.87511

90.00000 90.35913 90.00000

La2Mo2O9 cubic 50.4 45.56
715.357 715.357 715.357

90.00000 90.00000 90.00000

CaMoO4 tetragonal 0.7 – – – –

La1.99Ca0.01Mo2O8.995

La2Mo2O9 monoclinic 54.1 71.50
1431.437 2145.437 2856.032

10.55389 1.79591

90.00000 90.38470 90.00000

La2Mo2O9 cubic 44.2 46.61
715.103 715.103 715.103

90.00000 90.00000 90.00000

La2Mo3O12 monoclinic 1.2 41.08
1739.278 1186.510 1624.259

90.00000 107.93130 90.00000

CaMoO4 tetragonal 0.5 – – – –

La1.95Ca0.05Mo2O8.975

La2Mo2O9 monoclinic 59.1 70.52
1431.201 2145.733 2857.156

10.32976 1.76384

90.00000 90.35389 90.00000

La2Mo2O9 cubic 40.3 48.10
715.171 715.171 715.171

90.00000 90.00000 90.00000

CaMoO4 tetragonal 0.6 – – – –

La1.9Ca0.1Mo2O8.95

La2Mo2O9 monoclinic 44.5 35.83
1432.385 2140.825 2855.251

12.83825 2.41047

90.00000 90.15601 90.00000

La2Mo2O9 cubic 49.3 42.06
714.384 714.384 714.384

90.00000 90.00000 90.00000

CaMoO4 tetragonal 3.8 – – – –

La2Mo3O12 monoclinic 1.4 43.47
1719.584 1166.525 1614.533

90.00000 108.09910 90.00000

La2MoO6 tetragonal 1.0 42.52
582.792 582.792 3031.347

90.00000 90.00000 90.00000

La1.85Ca0.15Mo2O8.925

La2Mo2O9 monoclinic 76.0 66.77
1430.812 2144.216 2854.451

16.89944 2.2630

90.00000 90.36139 90.00000

La2Mo2O9 cubic 17.1 44.52
714.631 714.631 714.631

90.00000 90.00000 90.00000

CaMoO4 tetragonal 5.8 59.84
526.101 526.101 1153.607

90.00000 90.00000 90.00000

La2Mo3O12 monoclinic 1.1 42.68
1732.883 1168.940 1619.405

90.00000 107.77000 90.00000

La1.8Ca0.2Mo2O8.9

La2Mo2O9 monoclinic 56.2 45.44
1428.985 2143.602 2858.397

12.46852 2.36196

90.00000 90.31453 90.00000

La2Mo2O9 cubic 36.4 46.98
714.584 714.584 714.584

90.00000 90.00000 90.00000

CaMoO4 tetragonal 7.4 58.26
525.675 525.675 1151.621

90.00000 90.00000 90.00000
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Table 2. Cont.

Initial Composition Crystal
Phase

Crystal
System

Mass
Fraction/%

Crystallite
size/nm

Unit Cell
Weighted
R Profile

Goodness
of Fita/pm b/pm c/pm

alpha/o beta/o gamma/o

La1.75Ca0.25Mo2O8.875

La2Mo2O9 monoclinic 79.6 45.63
1430.900 2142.097 2850.290

14.09104 1.54335

90.00000 90.29116 90.00000

La2Mo2O9 cubic 12.2 39.32
714.035 714.035 714.035

90.00000 90.00000 90.00000

CaMoO4 tetragonal 6.4 48.20
523.288 523.288 1146.182

90.00000 90.00000 90.00000

La2Mo3O12 monoclinic 1.8 46.96
1732.404 1167.824 1617.912

90.00000 107.70840 90.00000

La1.7Ca0.3Mo2O8.85

La2Mo2O9 monoclinic 76.1 64.96
1430.166 2143.528 2854.548

13.81435 1.44730

90.00000 90.34066 90.00000

La2Mo2O9 cubic 13.8 45.66
714.447 714.447 714.447

90.00000 90.00000 90.00000

CaMoO4 tetragonal 9.1 67.30
523.476 523.476 1146.807

90.00000 90.00000 90.00000

La2Mo3O12 monoclinic 1.0 66.99
1733.132 1169.219 1619.159

90.00000 107.79630 90.00000

Meanwhile, Figure 5 is consistent with XRD data, which show the formation process
and trends of La1–xCaxMo2O9–x/2 and CaMoO4 crystalline phases. As it seen, the enthalpy
of the phase transition for La2Mo2O9 mostly depends on the amount of the monoclinic
phase in the ceramic mixture. This assumption is confirmed by the increased stabilization
of the cubic phase up to 48.0% even after insignificant substitution of lanthanum by calcium
ions in the La1.999Ca0.001Mo2O8.9995 system.

Nevertheless, by a further increase in the substitution degree of lanthanum by calcium
(x = 0.01 and 0.05), the amount of the monoclinic phase for the La2Mo2O9 compound
slightly increases; however, the trend of phase transition enthalpy change remains in a
decreasing manner as concluded from Figure 3. Considering the fact that the amount of
impurity phases in the obtained ceramics is really small, this decrease in the enthalpy of
phase transition is basically determined by the increase in the concentration of the mixed-
phase La2–xCaxMo2O9–x/2. This statement is partially confirmed by the XRD diffractogram
of the Ca1.9Ca0.1Mo2O8.95 compound, in which quite a significant amount of the crystalline
side phase for the CaMoO4 was identified. It seems that this impurity phase effect reduces
the amount of the La2–xCaxMo2O9–x/2 homogeneous phase in the mixture and creates
conditions for the formation of pure La2Mo2O9 compound. This explains the increase in
the phase transition enthalpy in La1.9Ca0.1Mo2O8.95 and La1.85Ca0.15Mo2O8.925 samples
during both cooling stages (Figure 4). Meanwhile, by the further increase in the calcium
substitution degree in the La2–xCaxMo2O9–x/2 system, the decrease in the phase transition
enthalpy is already determined by a significant lack of the La2Mo2O9 crystalline phase.
This conclusion is confirmed by the constant increase in the concentration of the crystalline
phase of calcium molybdate in the final mixture of the obtained ceramics.
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4. Conclusions

This study showed that the homogeneous substitution of lanthanum by calcium
ions takes place up to the compound of initial composition for La1.95Ca0.05Mo2O8.975. In
this case, the decrease in the phase transition enthalpy is determined by the increase in
the concentration of the formation of the mixed compound for the initial composition of
La2–xCaxMo2O9–x/2. Meanwhile, the influence of the monoclinic phase amount on the
phase transition enthalpy remained important only in the case of the formation of a pure
La2Mo2O9 compound, the amount of which significantly increases with the appearance of
the CaMoO4 impurity phase in the ceramic mixture. In summary, it can be concluded that
the formation of the impurity of the calcium molybdate crystal phase, which compensates
for the lack of lanthanum and the excess of molybdenum in the multicomponent oxide
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La2–xCaxMo2O9–x/2 system, has a significant influence on the decrease in the phase transi-
tion enthalpy in the La2Mo2O9 compound. The influence of the monoclinic phase amount
on the phase transition enthalpy remains an important factor only in the case of the pure
lanthanum molybdate.
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Appendix A

The DSC curves for the La2–xCaxMo2O9–x/2 ceramic contain details and data support-
ing the results presented in Table 1. For comparison, the phase transition DSC curve for the
La2Mo2O9 compound is also presented in this section.
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