Title |
Ultrafast laser processing of materials: from science to industry / |
Authors |
Malinauskas, Mangirdas ; Žukauskas, Albertas ; Hasegawa, Satoshi ; Hayasaki, Yoshio ; Mizeikis, Vygantas ; Buividas, Ričardas ; Juodkazis, Saulius |
DOI |
10.1038/lsa.2016.133 |
Full Text |
|
Is Part of |
Light: Science & Applications.. London : Nature Publishing Group. 2016, Vol. 5, Art. No. e16133.. ISSN 2047-7538 |
Keywords [eng] |
ultrashort laser pulses ; direct laser writing ; nonlinear light-matter interaction ; material processing ; 3D structuring ; functional microdevices ; biomedical applications |
Abstract [eng] |
Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological, and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photoionization and thermal processes with the highest precision, inducing local photomodification in sub- 100-nm sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 µm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt, and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted. |
Published |
London : Nature Publishing Group |
Type |
Journal article |
Language |
English |
Publication date |
2016 |