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The most usual option to stabilize dark matter (DM) is a Z2 symmetry. In general, though,
DM may be stabilized by any ZN with N ≥ 2. We consider the way that ZN is a subgroup
of the internal-symmetry group G of a model; we entertain the possibility that ZN is the
center of G, yet G is not of the form ZN × G′, where G′ is a group smaller (i.e., of lower
order) than G. We examine all the discrete groups of order smaller than 2001 and we find
that many of them cannot be written as the direct product of a cyclic group and some other
group, yet they have a non-trivial center that might be used in model building to stabilize
DM.
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1. Introduction
The lightest dark matter (DM) particle ought to be stable (i.e., unable to decay), or at least it
should have a lifetime of the order of the age of the Universe. If it is stable, then there is an
unbroken cyclic ZN symmetry that is non-trivial (i.e., it has N ≥ 2), such that standard matter is
invariant under ZN while DM is not; the ZN charge different from 1 of the lightest DM particle
prevents it from decaying to standard matter, which has ZN charge 1.

The most usual option in model building is N = 2. However, some authors have considered
possibilities N > 2. For DM stabilized by a Z3 symmetry, see Refs. [1–9]. Larger cyclic groups
have been used to stabilize DM, like Z4 and Z6 [10–12], Z5 [13], or a general ZN [14–21].

The ZN that stabilizes DM may be the center of a larger internal-symmetry group G.1 The
simplest possibility consists in G being a discrete group of order2 O that is isomorphic to the
direct product ZN × G′, where G′ is a group of order O/N. In that case, all the irreducible rep-
resentations (“irreps”) of G consist of the product of an irrep of ZN (which is 1D, because ZN

is Abelian and Abelian groups have 1D irreps) and an irrep of G′; standard matter must be

1The center of a group G is its Abelian subgroup formed by the elements of G that commute with all
the elements of G.

2The order of a discrete group is the number of its elements.
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placed in the trivial representation3 of ZN while DM is placed in non-trivial representations of
ZN .

However, discrete groups G that cannot be written as the direct product of a cyclic group and
a smaller group may also have a non-trivial ZN center. If that happens, then once again an irrep
of G may represent ZN either trivially or in non-trivial fashion (namely, when some elements
of ZN are represented by a phase f with f �= 1 but fN = 1). If ZN remains unbroken when G is
(either softly or spontaneously) broken, and if there are particles with ZN charge different from
1, then those particles play the role of DM, while the particles with ZN value 1 are standard
matter.

This possibility was recently called to our attention by Ref. [22], where a group G of order
81, named �(81),4,5 was used as the internal symmetry of a model. The authors of Ref. [22]
rightly pointed out that “[some] irreducible representations [of �(81)] form a closed set under
tensor products, implying that if every Standard Model field transforms as [one of those rep-
resentations], then any field transforming as [a representation that is not in that closed set] will
belong to the dark sector. The lightest among them will then be a dark matter candidate.”

As a matter of fact, this mechanism had already been suggested before, namely, in Ref. [25].
There, it was noted that some discrete subgroups of SU(2) have subsets of irreps that are closed
under tensor products, and this fact might be used to stabilize DM.6

In this paper we make a survey of all the discrete groups of order O ≤ 2000, except groups
with either O = 512, O = 1024, or O = 1536. We select the groups that cannot be written as the
direct product of a non-trivial cyclic symmetry and a smaller group, and that moreover have
at least one faithful irreducible representation (“firrep”). We identify the center ZN of each of
those groups, and also the dimensions D of their firreps. We construct various tables with the
integers O, N, and D. We find that very many discrete groups, especially those that are not
subgroups of any continuous group SU(D), have centers ZN with N ≥ 2, and N is sometimes
quite large.

This paper is organized as follows. In Sect. 2 we explain, through the well-known cases
of SU(2) and SU(3), that some groups have a center ZN with N ≥ 2 and some irreps of
those groups represent ZN trivially while other irreps do not.7 In Sect. 3 we make a system-
atic survey of the centers of all the discrete groups G of order up to 2000 that cannot be
written as the direct product of a cyclic group and another group and that have some faith-
ful irreducible representation.8 In Sect. 4 we briefly state our conclusions. As an appendix to
this paper, comprehensive listings of the groups that we have studied are available online at
https://github.com/jurciukonis/GAP-group-search.

3The trivial representation of a group is the one where all the group elements are mapped onto the unit
matrix.

4The group �(81) cannot be written as a direct product Z3 × G′, G′ being a group of order 27. Rather,
�(81) (which has SmallGroups identifier [81, 7]) is of the form (Z3 × Z3 × Z3) � Z3; i.e., it is a semi-direct
product.

5The group �(81) was used in model building by E. Ma [23]. See also Ref. [24].
6In the course of the present investigation we have found that this indeed happens for all the discrete

subgroups of SU(2), except the trivial subgroup.
7Hurried readers may skip Sect. 2.
8We do not survey groups of order either 512, 1024, or 1536, because there are impractically very many

groups of those orders.
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2. SU(2) and SU(3)
2.1 SU(2)
The defining representation of SU(2) consists of the 2 × 2 unitary matrices with determinant
1. One such matrix is

A2 =
(

−1 0
0 −1

)
. (1)

This is proportional to the unit matrix and therefore it commutes with all the 2 × 2 matrices;
in particular, it commutes with all the matrices in the defining representation of SU(2). Hence,
in any irrep of SU(2), A2 must be represented by a matrix that commutes with all the matrices
in that irrep. Schur’s first lemma (see, e.g., Ref. [26]) states that any matrix that commutes with
all the matrices in an irrep of a group must be proportional to the unit matrix. Therefore, in
the D-dimensional irrep of SU(2),9 A2 must be represented by a multiple of the D × D unit
matrix 1D. But, as is clear from Eq. (1), (A2)2 = 12 is the unit element of SU(2) in the defining
representation. This property must be reproduced in the D-dimensional irrep of SU(2). One
hence concludes that, in that irrep,

A2 �→ (−1)qD × 1D, (2)

where qD is an integer that is either 0 or 1 modulo 2. The integer qD depends on the irrep.
The irreps of SU(2) wherein A2 is mapped onto the unit matrix, i.e., the ones for which qD is 0

modulo 2, are unfaithful.10 Those are the integer-spin irreps. They have odd D and are faithful
irreps of the quotient group

SU (2)/Z2
∼= SO(3). (3)

In Eq. (3),

Z2 = {12, A2} (4)

is the center of SU(2); i.e., it is the subset of SU(2) elements (in the defining representation)
that commute with all the elements of SU(2); it is a Z2 subgroup of SU(2).

The D-dimensional irreps of SU(2) with even D are the half-integer-spin representations and
represent SU(2) faithfully; i.e., they map A2 �→ −1D.

Let us consider the tensor product of the irreps of SU(2) with dimensions D1 and D2. Clearly,
A2 �→ (−1)qD1 × 1D1 in the irrep with dimension D1 and A2 �→ (−1)qD2 × 1D2 in the irrep with
dimension D2. In the product representation, which is in general reducible,

A2 �→ (−1)qD1 +qD2 × 1D1+D2 . (5)

Therefore, the subset of the irreps of SU(2) that have qD = 0 modulo 2 is closed under tensor
products. This property of the irreps of SU(2) also holds for the irreps of discrete subgroups of
SU(2). If one such subgroup contains A2 in its defining representation, then a D-dimensional
irrep of that subgroup must represent A2 either by 1D or by −1D, and the subset of irreps that
represent A2 by unit matrices is closed under tensor products. It was suggested in Ref. [25] that
this property may be used to stabilize DM. In that suggestion, nature possesses an internal
symmetry under a discrete subgroup of SU(2) that contains in its defining irrep the matrix A2;
standard matter sits in a (in general, reducible) representation of that internal symmetry where
A2 is mapped onto the unit matrix, while DM is in a representation of the internal symmetry

9As is well known, SU(2) has one and only one D-dimensional irrep for each integer D.
10An unfaithful representation of a group represents two or more distinct elements by the same matrix.
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in which A2 is mapped onto minus the unit matrix. Then, any collection of standard-matter
particles will be invariant under the transformation represented in the defining representation
by A2, which implies that the lightest DM particle, which changes sign under that transforma-
tion, is stable. Dark matter is stabilized by the Z2 symmetry in Eq. (4); that Z2 symmetry is the
center of the internal-symmetry group of the model.

Example: The quaternion group Q8 is the order-eight subgroup of SU(2) formed, in its defin-
ing 2D irrep, by the matrices11

A =
(

i 0
0 −i

)
, A3 =

(
−i 0
0 i

)
; (6a)

B =
(

0 1
−1 0

)
, B3 =

(
0 −1
1 0

)
; (6b)

AB =
(

0 i
i 0

)
, BA =

(
0 −i
−i 0

)
; (6c)

A2 = A2 = B2 =
(

−1 0
0 −1

)
; (A2)2 = A4 = B4 =

(
1 0
0 1

)
. (6d)

The center of this group consists of the Z2 in Eq. (4), cf. line (6d); yet, Q8 is not the direct
product of that Z2 and any order-four group. The quaternion group has five irreps: the 2D one
in Eqs. (6) and the four 1D ones

1rs : A �→ r, B �→ s, (7)

where both r and s may be either 1 or −1. Clearly, in all the 1D irreps A2 = A2 = B2 is mapped
onto 1, while in the 2D irrep A2 is mapped onto −12. In model building, standard matter might
sit in singlet irreps of Q8 while DM would be placed in doublets of Q8. We envisage, for instance,
an extension of the SM with global symmetry Q8 and four Higgs doublets H1, 2, 3, 4 that are
singlets of Q8 as

H1 : 1++, H2 : 1+−, H3 : 1−+, H4 : 1−−. (8)

If there are in the scalar potential quadratic terms H †
1 H2, H †

1 H3, H †
1 H4, H †

2 H3, H †
2 H4, H †

3 H4,
and their Hermitian conjugates, then the symmetry Q8 is softly broken—but its center Z2 is
preserved, because H1, 2, 3, 4 are all invariant under it. If either H2, H3, or H4 acquire a VEV,
then the symmetry Q8 is spontaneously broken—but its center is, once again, preserved. If ad-
ditionally there is in the model some matter (either fermionic or bosonic) placed in doublets of
Q8, then the lightest particle arising from that matter would be a DM candidate.

2.2 SU(3)
The defining representation of SU(3) consists of the 3 × 3 unitary matrices with determinant
1 and includes the matrix

A3 =

⎛
⎜⎝ω 0 0

0 ω 0
0 0 ω

⎞
⎟⎠ = ω × 13, (9)

where ω = exp (2iπ /3). The Abelian group

Z3 =
{
13, A3, (A3)2

}
(10)

11In Eqs. (6) and below, we separate the classes of each group through semicolons.
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forms the center of SU(3) in the defining representation. The matrix A3 commutes with all
the matrices in the defining representation of SU(3) and satisfies (A3)3 = 13. Therefore, in a
D-dimensional irrep of SU(3),

A3 �→ ωqD × 1D, (11)

where qD is an integer that depends on the irrep and may be either 0, 1, or 2 modulo 3.12 Irreps
with qD = 0 (like the octet and the decaplet) have A3 represented by 1D and are unfaithful
representations of SU(3). Irreps with either qD = 1 (like the triplet) or qD = 2 (like the sextet
and the anti-triplet) are faithful. Clearly, if A3 �→ ωqD1 × 1D1 in an irrep with dimension D1 and
A3 �→ ωqD2 × 1D2 in an irrep with dimension D2, then in the product representation

A3 �→ ωqD1 +qD2 × 1D1+D2 . (12)

Therefore, the irreps with qD = 0 form a closed set under tensor products. There is a selection
rule in tensor products of irreps of SU(3), similar to the selection rule in tensor products of
irreps of SU(2), but with the group Z3 of Eq. (10) in SU(3) instead of the group Z2 of Eq. (4)
in SU(2).

This also holds for many—but not all—the discrete subgroups of SU(3). The three matrices
in Eq. (10) may all belong to the defining representation of a discrete subgroup of SU(3); when
that happens, a D-dimensional irrep of that subgroup possesses a qD-value, defined by Eq. (11).
The qD-values help determine the tensor products of irreps of the subgroup. This may be used
to explain the stability of DM: if nature had an internal symmetry that was a discrete subgroup
of SU(3) that contained the matrix A3 in its defining representation and that stayed unbroken,
then standard matter would sit in irreps of that subgroup with qD = 0 while DM would be in
irreps with either qD = 1 or qD = 2; the lightest DM particle would then automatically be stable.

Example: The group A4 is the order-12 subgroup of SU(3) formed, in its defining represen-
tation, by the matrices

B =

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠ , A2BA =

⎛
⎜⎝−1 0 0

0 1 0
0 0 −1

⎞
⎟⎠ , ABA2 =

⎛
⎜⎝−1 0 0

0 −1 0
0 0 1

⎞
⎟⎠ ; (13a)

A =

⎛
⎜⎝0 1 0

0 0 1
1 0 0

⎞
⎟⎠ , AB =

⎛
⎜⎝0 −1 0

0 0 −1
1 0 0

⎞
⎟⎠ ,

BA =

⎛
⎜⎝ 0 1 0

0 0 −1
−1 0 0

⎞
⎟⎠ , BAB =

⎛
⎜⎝ 0 −1 0

0 0 1
−1 0 0

⎞
⎟⎠ ; (13b)

A2 =

⎛
⎜⎝0 0 1

1 0 0
0 1 0

⎞
⎟⎠ , A2B =

⎛
⎜⎝0 0 −1

1 0 0
0 −1 0

⎞
⎟⎠ ,

BA2 =

⎛
⎜⎝ 0 0 1

−1 0 0
0 −1 0

⎞
⎟⎠ , ABA =

⎛
⎜⎝ 0 0 −1

−1 0 0
0 1 0

⎞
⎟⎠ ; A3 = B2 =

⎛
⎜⎝1 0 0

0 1 0
0 0 1

⎞
⎟⎠ . (13c)

Neither the matrix A3 nor (A3)2 belong to the defining representation of A4; the center of A4

is trivial; i.e., it is formed just by the unit element. The four irreps 3, 1, 1′, and 1′′ of A4 do not
12The value of qD is the “triality” of the irrep (see, e.g., Ref. [27]).
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have any selection rule in their tensor products. Thus, the group A4 is of no use to explain the
stability of DM.

3. Group search
3.1 Motivation
The defining representation of SU(D) consists of the D × D unitary matrices with determinant
1. It is obvious that, in this representation, the center of SU(D) is formed by the D diagonal
matrices

� × 1D, �2 × 1D, �3 × 1D, . . . , �D × 1D = 1D, (14)

where � = exp (2iπ /D). Thus, the center of SU(D) is a ZD group. Any discrete group that has
a firrep formed by matrices that belong to SU(D) may contain in that representation either

� all the matrices in Eq. (14),
� only the last one of them,
� or—if D is not a prime number and may be divided by an integer m different from both 1

and D—the mth, 2mth,…, Dth matrices in Eq. (14).

In general, if m is an integer that divides D and μ = exp (2iπ /m), then there is a cyclic sym-
metry Zm given, in the defining representation of SU(D), by

Zm = {
μ × 1D, μ2 × 1D, μ3 × 1D, . . . , μm × 1D = 1D

}
. (15)

Some discrete subgroups of SU(D) may then have Zm as their center.
Thus, discrete subgroups of SU(D) that are not subgroups of any U(D′) with D′ < D may

have very few centers. For instance, a discrete subgroup of SU(10) that is not a subgroup of
any U(D′) with D′ < 10 may only have center Z2, Z5, Z10, or the trivial group; and a discrete
subgroup of SU(11) that is not a subgroup of any U(D′) with D′ < 11 may only have center Z11

or the trivial group.
Example: Consider the discrete group generated by two transformations b and c that obey

c8 = e, b4 = c4, c2bc2 = b, c3b = b3c, (16)

where e is the identity transformation. There is a 4D irreducible representation of Eqs. (16) as

b �→

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ , c �→

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠ . (17)

Both matrices in Eqs. (17) are orthogonal and have determinant +1; therefore this group (see
Ref. [28]) is a subgroup of both SO(4) and SU(4). One easily sees that in the representation (17)

b4 �→ diag (−1, −1, −1, −1) , (18)

while b2 is not mapped onto a diagonal matrix. Hence, this subgroup of SU(4) has center Z2

generated by b4. One finds that the defining conditions (16) allow two inequivalent doublet
representations:

21 : b �→
(

1 0
0 −1

)
, c �→

(
0 −1
1 0

)
, (19)
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and

22 : b �→
(

0 −1
1 0

)
, c �→

(
1 0
0 −1

)
. (20)

Additionally, the conditions (16) have eight inequivalent singlet representations:

1p : b �→ i p, c �→ i p and 14+p : b �→ i p, c �→ −i p, where p ∈ {0, 1, 2, 3) . (21)

In irreps (19)–(21) the transformation b4 is represented by the unit matrix instead of minus
the unit matrix as in Eq. (18); therefore, those irreps are unfaithful. This group thus has only
one firrep—the quadruplet (17)—and 10 unfaithful inequivalent irreps—the two doublets (19)
and (20) and the eight singlets (21). If one had a theory with this group as internal symmetry
and in that theory the only scalars that acquired VEVs were placed in unfaithful irreps of the
group, then the internal symmetry would get spontaneously broken to the Z2 generated by b4.
Alternatively, the theory might have soft-breaking terms of types either 1†

p1q (with p �= q) or
2†

122, and then the discrete group would be broken softly but its Z2 subgroup would remain
unbroken. Any fields in such a theory placed in quadruplets of the symmetry group might then
take the role of DM.

Discrete subgroups of U(D) do not bear the constraint that the determinants of the matrices
in their defining representations should be 1. As a consequence, if

Zt = {
θ × 1D, θ2 × 1D, θ3 × 1D, . . . , θ t × 1D = 1D

}
, (22)

where θ = exp (2iπ /t), is the center of a discrete subgroup of U(D), then there appears to be a
priori no restriction on t.

Example: The discrete group Z8 � Z2 has order 16 and SmallGroups identifier [16, 6]. In its
defining representation it is formed by the matrices(

1 0
0 −1

)
,

(
−1 0
0 1

)
;

(
i 0
0 −i

)
,

(
−i 0
0 i

)
; (23a)

(
0 −1
i 0

)
,

(
0 1
−i 0

)
;

(
0 i
1 0

)
,

(
0 −i

−1 0

)
; (23b)

(
0 i

−1 0

)
,

(
0 −i
1 0

)
;

(
0 −1
−i 0

)
,

(
0 1
i 0

)
; (23c)

(
i 0
0 i

)
;

(
−i 0
0 −i

)
;

(
−1 0
0 −1

)
;

(
1 0
0 1

)
. (23d)

This is the firrep 2 of Z8 � Z2. The other inequivalent irreps of that group are the 2∗ (wherein
each matrix of the 2 is mapped onto its complex-conjugate matrix) and eight inequivalent un-
faithful singlet irreps. Most of the 2 × 2 unitary matrices (23) do not have determinant 1;
therefore, Z8 � Z2 is a subgroup of U(2) but not of SU(2). One sees in line (23d) that the center
of Z8 � Z2 is

Z4 =
{(

i 0
0 i

)
,

(
−1 0
0 −1

)
,

(
−i 0
0 −i

)
,

(
1 0
0 1

)}
. (24)

Thus, while discrete subgroups of SU(2) may have center either Z1 or Z2, discrete subgroups
of U(2) enjoy further possibilities, for instance Z4.

Motivated by this observation that discrete subgroups of U(D) may in general have diverse
centers, in our work we have surveyed many discrete groups in order to find out their centers
and also which groups U(D) they are subgroups of.
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3.2 GAP and SmallGroups
GAP [29] is a computer algebra that provides a programming language and includes many func-
tions that implement various algebraic algorithms. It is supplemented by libraries containing a
large amount of data on algebraic objects. With GAP it is possible to study groups and their rep-
resentations, to display the character tables, to find the subgroups of larger groups, to identify
groups given through their generating matrices, and so on.

GAP allows access to the SmallGroups library [30]. This library contains all the finite groups
of order less than 2001, but for order 1024—because there are many thousands of millions of
groups of order 1024. SmallGroups also contains some groups for some specific orders larger
than 2000. In SmallGroups the groups are ordered by their orders; for each order, the complete
list of non-isomorphic groups is given. Each discrete group of order smaller than 2001 is labeled
[O, n] by SmallGroups, where O ≤ 2000 is the order of the group and n ∈ N is an integer that
distinguishes between the non-isomorphic groups of the same order.

3.3 Procedure
We have surveyed all the discrete groups of order O ≤ 2000 in the SmallGroups library, except
the groups of order either 512, 1024, or 1536.13 We have discarded all the groups that are iso-
morphic to the direct product of a smaller (i.e., of lower order) group and a cyclic group.14

We have used GAP to find out all the irreps of each remaining group, and then to ascertain
whether those irreps are faithful or not. We have discarded all the groups that do not have any
firrep.15 We have thus obtained 87 349 non-isomorphic groups, which are all listed in our tables
available at the site https://github.com/jurciukonis/GAP-group-search. We have looked only at
the firreps of each group; non-faithful irreps, and all reducible representations, were neglected.
We have computed the determinants of the matrices of each firrep in order to find out whether
all those determinants are 1 or not. We have also looked for all the matrices in the firreps that

13Rather exceptionally, we have included in our search four groups of order 1536 that are known to
have 3D firreps, according to our previous paper [31].

14SmallGroups itself informs us about the structure of each group, namely, whether it is isomorphic
to the direct product of smaller groups. We have found that there are, however, at least two exceptions.
One of them is the group with SmallGroups identifier [180, 19]; SmallGroups informs us that this is the
group GL (2, 4) but omits the well-known fact that GL (2, 4) is isomorphic to Z3 × A5, where A5 is the
group of the even permutations of five objects. (Thus, [180, 19] is discarded in our search, because it
is the direct product of A5 and the cyclic group Z3.) The other exception is the dihedral groups DO of
order O = 12 + 8p, where p is an integer, namely, the groups D12, D20, D28, and so on. (SmallGroups
instead uses the notation DO/2 for these groups; namely, it uses D6, D10, D14, and so on.) It is easy to
check analytically that these specific DO groups are isomorphic to Z2 × DO/2, but SmallGroups omits
this fact. We have used a method, suggested to us by Gábor Horváth, to check whether any group [O, n]
is a direct product of smaller groups, namely the succession of GAP commands G := SmallGroup(O, n)
and ListX(DirectFactorsOfGroup(G), StructureDescription).

15There are groups for which all the faithful representations are reducible. An example is the group
formed by the 32 matrices ⎛

⎜⎜⎝
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 a 0 0
b 0 0 0
0 0 0 c
0 0 d 0

⎞
⎟⎟⎠ ,

where a, b, c, and d may be either 1 or −1. This group—with SmallGroups identifier [32, 27] and structure
(Z2 × Z2 × Z2 × Z2) � Z2—has eight inequivalent singlet irreps and six inequivalent doublet irreps, but
all of them are unfaithful. The defining representation of this group is, by definition, faithful, but it is
reducible.
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are proportional to the unit matrix and we have checked that those matrices form a group ZN

for some integer N (which for some groups is just 1).
We have tried to answer the questions on how the following three integers are related:

(1) The integer O that is the order of the discrete group G.
(2) The integer N corresponding to the group ZN that is the center of G.
(3) The integer D such that G has one or more firreps of dimension D.

We have also examined the question whether each D-dimensional firrep is equivalent to a
representation through matrices of SU(D).16

There are relatively few groups that have firreps with different dimensions. (For instance, A5

has firreps of dimensions three, four, and five. On the other hand, the group �(36 × 3), that
has SmallGroups identifier [108, 15], has irreps of dimensions 1, 3, and 4, but the 1D and 4D
irreps are unfaithful—all the firreps have dimension 3.) We have found just 2787 such discrete
groups, out of the total 87 349 groups that we have surveyed; they are collected in the table
entitled Intersections at https://github.com/jurciukonis/GAP-group-search.

Computing time: The scan over the SmallGroups library to find the firreps of all possible di-
mensions constituted a computationally very expensive task. Our computations with GAP took
about three months. It is difficult to estimate the total number of CPU hours (CPUH) spent in
the computations, because various computers with different CPUs were used. Most of the time
was consumed in the computation of the irreps of the groups. For example, the computation for
group [1320, 15], took about 320 CPUH running on an Intel Xeon CPU @ 1.60 GHz or about
46 CPUH in the newer Intel i9-10850K CPU @ 3.60 GHz. Also, some groups of orders 1728
and 1920 require quite a few CPUH to find the irreps. Orders 768, 1280, and 1792 have more
than one million non-isomorphic groups of each order and therefore require many CPUH to
scan over all of them.

Example: The discrete group GL (2, 3) has order 48 and SmallGroups identifier [48, 29]. By
definition, it is the group generated by three transformations a, c, and d that satisfy (see Ref.
[32])

a4 = c3 = d2 = (cd )2 = e, (25a)

b2 = a2, (25b)

b3 = dad, (25c)

bab−1 = dbd = a−1, (25d)

b = a−1cac−1, (25e)

16All the irreps of discrete groups are equivalent to representations through unitary matrices, and there-
fore we know that the generators that GAP provides to us are equivalent to unitary generators, even
though GAP often gives them in a non-unitary version. In order to know whether the generators belong
to SU(D) we just compute their determinants.
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where e is the identity transformation and b ≡ c−1ac. There is a faithful representation of these
transformations through 2 × 2 unitary matrices:

a �→ 1
3

(
i
√

3
√

6ω

−√
6ω2 −i

√
3

)
, c �→

(
ω 0
0 ω2

)
, d �→

(
0 1
1 0

)
. (26)

The first two matrices (26) have determinant 1 while the third one has determinant −1; hence,
we classify GL (2, 3) as a subgroup of U(2), but it is not a subgroup of SU(2). On the other
hand, there is another faithful irrep of GL (2, 3), through 4 × 4 unitary matrices, all of them
with determinant 1:

a �→ 1
9

⎛
⎜⎜⎜⎝

−3
√

3i 0 6i −3
√

2
0 3

√
3i 3

√
2 −6i

6i −3
√

2 i
√

3 −2
√

6
3
√

2 −6i 2
√

6 −i
√

3

⎞
⎟⎟⎟⎠ , d �→

⎛
⎜⎜⎜⎝

0 −ω2 0 0
−ω 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎟⎠ , (27)

and c�→diag(ω, ω2, 1, 1). Therefore, we classify GL (2, 3) as a subgroup of both U(2) and SU(4),
but GL (2, 3) earns these two classifications through different irreps.

3.4 The discrete subgroups of U(3) and SU(3)
In Ref. [31] a classification of the discrete subgroups of SU(3) and of the discrete subgroups of
U(3) that are not subgroups of SU(3) has been provided. All those subgroups were classified
according to their generators and structures. In this subsection we give relations between the
integer N characterizing the center ZN of each group and the identifiers of the group series
defined in Ref. [31].

As explained in Sects. 2.2 and 3.1, the finite subgroups of SU(3) can only have either trivial
center or center Z3; thus, they have either N = 1 or N = 3. Explicitly, they have the following
values of N:

� The groups �(3n2), �(6n2), and C(k)
rn,n have N = 1 when n cannot be divided by three, and N

= 3 when n is a multiple of three.
� The groups D(1)

3l,l have N = 3.
� The exceptional groups �(60) and �(168) have N = 1.
� The exceptional groups �(36 × 3), �(72 × 3), �(216 × 3), and �(360 × 3) have N = 3.

The series of finite subgroups of U(3) that are not subgroups of SU(3) constructed in Ref. [31]
have the following values of N:

� The groups Y(m, j), L(m), J(m), and �(m) have N = 3m.
� The groups T (k)

r (m), �(3n2, m), L(k)
r (n, m), P(k)

r (m), Q(k)
r (m), Q(k)′

r (m), X(m), S(k)
r (m),

S(k)′
r (m), Y (k)

r (m), V (k)
r (m), W(n, m), Z(n, m), Z′(n, m), Z′′(n, m), ϒ(m), ϒ ′(m), and 
(m)

have N = 3m − 1.
� The groups M (k)

r , M (k)′
r , J (k)

r , Y(j), Ỹ ( j), V(j), and D(j) have N = 3.
� The groups U(n, m, j) have N = 3j.
� The groups S4(j) have N = 2j − 1.
� The groups �(6n2, j) have N = 2j − 1 when n cannot be divided by three, and N = 3 × 2j − 1

when n is a multiple of three.
� The groups �′(6n2, m, j), H(n, m, j), G(m, j), �̂ (m, j), and �(m, j) have N = 3m2j − 1.
� The groups Z(n, m, j) and Z′(n, m, j) have N = 3m − 12j − 1.
� The groups �(m, j) have N = 3m2j − 2.
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In Ref. [31] a few more subgroups of U(3) that are not subgroups of SU(3) are mentioned,
which could not be classified into any series. Their values of N are the following:

� The groups [729, 96], [729, 97], [729, 98], [1458, 663], [1458, 666], [1701, 130], and
[1701, 131] have N = 3.

� The group [1296, 699] has N = 6.
� The groups [972, 170], [1701, 102], and [1701, 112] have N = 9.

4. Conclusions
In this paper we have pointed out that dark matter may be stabilized by a ZN cyclic group un-
der which it has a non-trivial charge—contrary to standard matter, which is invariant under
that ZN—and that that ZN may be the center of the larger internal-symmetry group G of na-
ture, while G is not a direct product ZN × G′. Thereafter we have performed an extensive and
computationally very time-consuming search for the centers of discrete groups that cannot be
written in the form ZN × G′ and that have faithful irreducible representations. The following
are our conclusions:

� We have found groups with centers ZN for N ≤ 162.
� We have found groups with N = 2p × 3q for all the integers p and q such that N ≤ 162.
� We have found groups with N = 2p × 5 for 0 ≤ p ≤ 3.
� We have also found groups with N = 7, N = 11, N = 14, N = 15, and N = 25.
� The number N always divides the order O of the group. The integer O/N always has at least

two prime factors; we have found groups with O/N = 4, 6, 8, 9, 10, 12, 14, and so on.

In the cases of some smallish groups, we have explicitly computed the way in which an element
g of order17 N belonging to the ZN center of the group is represented in the various irreps. We
have found that the sum of the squares of the dimensions of the irreps where g is represented
by any Nth root of unity times the unit matrix is always equal to O/N.
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