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Abstract
In this paper we consider the product�n =

∏n
k=1 ξk of n independent normally

distributed zero mean random variables ξ1, . . . ,ξn . We derive an asymptotic formula
for the survival probability P(�n > x), as x → ∞, with the first remaining term.
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1 Introduction
The normal distribution is the most popular continuous distribution in probability theory
due to its wide range of applications in various fields of science and practice. We say that
a random variable (r.v.) ξ has normal distribution if its density function has the form

fξ (x) = ϕμ,σ (x) =
1

σ
√

2π
exp

{

–
1
2

(
x – μ

σ

)2}

, x ∈R,

where the parameter μ ∈R is the expectation and σ > 0 is the standard deviation of ξ . The
distribution function (d.f.) of the normal r.v. ξ is

Fξ (x) = �μ,σ (x) =
1

σ
√

2π

∫ x

–∞
exp

{

–
1
2

(
y – μ

σ

)2}

dy.

In the case where μ = 0 and σ = 1, the distribution above is called the standard normal
distribution. In such a case,

ϕ(x) := ϕ0,1(x) =
1√
2π

e–x2/2, �(x) := �0,1(x) =
1√
2π

∫ x

–∞
e–y2/2 dy.

In this paper we deal with the products of normal random variables. In general, the
theory for the products of independent random variables is far less developed than the
mature theory for the sums of independent random variables (we mention the books [5,
12], and [24, Chap. 4]).
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In the case of two standard normal r.v.s., the exact expression for the distribution of
their product was obtained almost a century ago. In [7, 28, 30], it was observed that for
independent standard normal r.v.s ξ and η, the density function of the product ξη is

fξη(x) =
1
π

K0
(|x|), x ∈ R, (1)

where K0(·) is the modified Bessel function of the second kind of order zero, i.e.,

K0(x) =
1
2

∫ ∞

0
y–1 exp

{

–y –
x2

4y

}

dy, x ≥ 0.

Craig [7] also derived a closed-form expression for the exact density function fξη in the
case of dependent normally distributed r.v.s ξ and η, showing that essentially fξη is of that
form, reached when correlation Corr(ξ ,η) = 0, multiplied by an exponential function (see
also [8, 13, 22]). Further developments of Craig’s result can be found in numerous subse-
quent papers. Haldane [15] derived the cumulant generating function, the first four mo-
ments, and the first four cumulants of ξη in the general case. Aroian [2] showed that the
distribution of ξη can be approximated by a normal distribution when the ratios of the
means to standard deviations of the normally distributed multipliers are large. Aroian
et al. [3] and Simon [23] provided expressions for the distribution of ξη with normally
distributed multipliers in the special cases of parameters and dependence structures. Re-
cently, Gaunt [14] (see also the references therein) successfully used the Stein method to
obtain the exact expression of the density function not only for the product of zero-mean
normal multipliers but also for sum of such independent summands.

Concerning applications of the distribution of the product of two (correlated or not)
normal variables, we mention [4], where the authors showed that a Lagrangian power dis-
tribution in two-dimensional turbulence is well described by Craig’s ξη distribution, and
[19, 20] for testing of the indirect effect based on the distribution of the product of two
normal variables. Along with the exact formula, the asymptotic behaviour of the tail distri-
bution of the product of n normal r.v.s. is often of interest. An obvious application comes
from the financial portfolio analysis, when calculating the compound return of the port-
folio with normally distributed one-period returns and estimating tails of its distribution,
as this could be beneficial for the portfolio decision making.

In Sect. 2 we formulate our main result, which is proved in Sect. 3.

2 Asymptotic behaviour of the product distribution tail
The asymptotic behaviour of the tail of the product of normal r.v.s. can be derived from ex-
act formulas or using the saddle point method described in details by Butler [6], Fedoryuk
[10], Jensen [16], for instance. Using the latter method described in [10], Arendarczyk and
Dȩbicki [1] obtained the following result (see their Lemma 2.1) on the Weibull tail distri-
butions.

Theorem 2.1 Let ξ1 and ξ2 be two independent, nonnegative r.v.s such that

Fξ1 (x) ∼
x→∞ A1xγ1 exp

{
–β1xα1

}
, Fξ2 (x) ∼

x→∞ A2xγ2 exp
{

–β2xα2
}

,
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where Ai > 0, γi ∈R, βi > 0, αi > 0, i = 1, 2. Then

Fξ1ξ2 (x) ∼
x→∞ Axγ exp

{
–βxα

}
,

where

α =
α1α2

α1 + α2
,

β = β

α2
α1+α2

1 β

α1
α1+α2

2

((
α1

α2

) α2
α1+α2

+
(

α2

α1

) α1
α1+α2

)

,

γ =
α1α2 + 2α1γ2 + 2α2γ1

2(α1 + α2)
,

A =
√

2π
A1A2√
α1 + α2

(α1β1)
α2–2γ1+2γ2

2(α1+α2) (α2β2)
α1–2γ2+2γ1

2(α1+α2) .

In particular, this theorem implies that if ξ1, ξ2, ξ3 are i.i.d. standard normal r.v.s, then

Fξ1ξ2 (x) ∼
x→∞

1√
2π

x–1/2e–x, Fξ1ξ2ξ3 (x) ∼
x→∞

2√
6π

x–1/3e–(3/2)x2/3
. (2)

Let us describe the derivation of the above formulas. At first, suppose n = 2. Random
variables ξ1, ξ2 are distributed according to a symmetric law �. Therefore,

Fξ1ξ2 (x) = P(ξ1ξ2 > x) = 2P
(
ξ+

1 ξ+
2 > x

)
= 2Fξ+

1 ξ+
2

(x), x > 0, (3)

where here and everywhere below η+ denotes the positive part of an r.v. η.
For x > 0, by partial integration, we obtain (see also [11, Sect. 7.1])

1√
2π

(
1
x

–
1
x3

)

e–x2/2 ≤ Fξ1 (x) ≤ 1√
2π

1
x

e–x2/2. (4)

To derive an asymptotic formula for Fξ+
1 ξ+

2
(x), we apply Theorem 2.1 with

α1 = α2 = 2, β1 = β2 =
1
2

, γ1 = γ2 = –1, A1 = A2 =
1√
2π

.

After some calculations we get

Fξ+
1 ξ+

2
(x) ∼

x→∞
1

2
√

2π
x–1/2e–x. (5)

The asymptotics in (5), together with equality (3), implies the first formula in (2).
In the case of n = 3, similarly to the formula (3), it holds that

Fξ1ξ2ξ3 (x) = 4Fξ+
1 ξ+

2 ξ+
3

(x), x > 0. (6)

To derive the asymptotics for Fξ+
1 ξ+

2 ξ+
3

(x), we can apply Theorem 2.1 again by using the
asymptotic formula (5) and the estimate (4). According to these relations, the parameters
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in Theorem 2.1 are the following:

α1 = 1, β1 = 1, γ1 = –
1
2

, A1 =
1

2
√

2π
,

α2 = 2, β2 =
1
2

, γ2 = –1, A2 =
1√
2π

.

Using the formulas of Theorem 2.1, we derive

Fξ+
1 ξ+

2 ξ+
3

(x) ∼
x→∞ Axγ e–βxα

,

with α = 2/3, β = 3/2, γ = –1/3, and A = 1/(2
√

6π ). To obtain the second formula in (2), it
is enough to use formula (6).

Note that the product of normally distributed r.v.s (or Weibull r.v.s in general), which are
light-tailed, can produce heavy-tailed distributions, as seen from (2). We refer to [9, 17,
18, 21, 27] and the references therein for various extensions related to this phenomenon.

In our paper, we derive a more precise formula for the tail of the product of normal r.v.s.
The following two statements are the main results of the paper.

Theorem 2.2 Let ξ1, ξ2, . . . be i.i.d. r.v.s such that, for each k, ξk is distributed according to
� and let �n :=

∏n
k=1 ξk . Then

F�n (x) =
2(n/2)–1
√

πn
x–1/n exp

{

–
n
2

x2/n
}
(
1 + On

(
x–2/n)), (7)

where the constant in On depends on n.

Corollary 2.1 Let ξ̂1, ξ̂2, . . . be independent r.v.s such that, for each k, ξ̂k is distributed ac-
cording to �0,σk and let �̂n :=

∏n
k=1 ξ̂k . Then

F�̂n (x) =
2(n/2)–1(σ (n))1/n

√
πn

x–1/n exp

{

–
n(σ (n))–2/n

2
x2/n

}
(
1 + On

(
x–2/n)),

where σ (n) :=
∏n

k=1 σk and the constant in On depends on n and σ (n).

Remark 2.1 The assertion of Corollary 2.1 follows from Theorem 2.2 immediately, be-
cause the r.v. ξk = ξ̂k/σk is distributed according to � for each k and

F�̂n (x) = P(�̂n > x) = P

(

�n >
x

σ (n)

)

= F�n

(
x

σ (n)

)

.

Remark 2.2 Note that the density of product �̂n, as in Corollary 2.1, can be written in
terms of the Meijer G-function (see [25, 26]),

f�n (x) =
1

(2π )n/2σ (n) Gn,0
0,n

(
2–n(x/σ (n))2|0, . . . , 0

)
.

In the case n = 2, this formula gives the modified Bessel function of order zero,

fξ1ξ2 (x) =
1

πσ1σ2
K0

( |x|
σ1σ2

)

, x ∈ R,
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cf. (1). In our proof, we use a different approach based on the saddle point method which
does not require knowledge of G-functions and their properties. Moreover, it allows ob-
taining higher-order terms in the result (7).

3 Proof of the main theorem
We start with the formulation of an auxiliary lemma, which we use repeatedly in our proof.
The lemma below can be obtained by applying the saddle point method to a real integral
of a special form. The proof of the lemma can be found in [29] (see Theorem 1, Chap. II).

Lemma 3.1 Let h and g be two real functions defined on an interval [a, b) (b can be finite
or infinite) such that:

(i) h(z) = h(a) +
N∑

k=0

ak(z – a)k+μ + o
(
(z – a)N+μ

)
,

g(z) =
N∑

k=0

bk(z – a)k+α–1 + o
(
(z – a)N+α–1),

h′(z) =
N∑

k=1

(k + μ)ak(z – a)k+μ–1 + o
(
(z – a)N+μ–1)

as z ↘ a for all N ≥ 1, where a0 �= 0, b0 �= 0, μ > 0, and α > 0;

(ii) h(z) > h(a) for z ∈ (a, b), and

inf
z∈[a+δ,b)

(
h(z) – h(a)

)
> 0 for each δ > 0;

(iii) h′ and g are continuous in a neighbourhood of point a.

If the integral
∫ b

a g(z)e–xh(z) dz converges absolutely for all sufficiently large x, then

∫ b

a
g(z)e–xh(z) dz = e–xh(a)

( N∑

k=0




(
k + α

μ

)

dkx–(k+α)/μ + O
(
x–(N+α+1)/μ)

)

for all N ∈ N, where 
(·) denotes the Gamma function and coefficients dk are expressible
in terms of ak and bk .

Wong [29] also provided the explicit forms of the first three coefficients:

d0 =
b0

μaα/μ
0

, d1 =
(

b1

μ
–

(α + 1)a1b0

μ2a0

)
1

a(α+1)/μ
0

,

d2 =
(

b2

μ
–

(α + 2)a1b1

μ2a0
+

(
(α + μ + 2)a2

1 – 2μa0a2
) (α + 2)b0

2μ3a2
0

)
1

a(α+2)/μ
0

.

Proof of Theorem 2.2 We use induction on n. The estimate (4) implies the assertion of
Theorem 2.2 in the case n = 1.
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Suppose n = 2. By the symmetry of the distribution �, for x > 0, we have

Fξ1ξ2 (x) = 2
∫ ∞

0
�

(
x
y

)

ϕ(y) dy

=
2√
2π

(∫ 2x1/2

0
+

∫ ∞

2x1/2

)

�

(
x
y

)

e–y2/2 dy

=: I1 + I2. (8)

Obviously,

I2 ≤ 1√
2π

∫ ∞

2x1/2
e–y2/2 dy =

1√
2π

∫ ∞

2x
(2u)–1/2e–u du

≤ C11x–1/2e–2x (9)

for some positive constant C11.
For integral I1, due to the first inequality in (4), we have

I1 ≤ 1
π

∫ 2x1/2

0

y
x

e
– 1

2 ( x2
y2 +y2)

dy =
1

2π

∫ 4

0
e– x

2 (u+ 1
u ) du

=
1

2π

(∫ 1

0
+

∫ 4

1

)

e– x
2 (u+ 1

u ) du =: I11 + I12, (10)

where the variable change y =
√

xu was used in the second step.
Using Lemma 3.1 for integral I12 (with μ = 2, α = 1, a0 = b0 = 1, a1 = –1, and b1 = 0), we

get

I12 =
e–x

2π

(




(
1
2

)(
2
x

)1/2 1
2

+ 
(1)
2
x

1
2

+ O
(
x–3/2)

)

=
e–x

2π

(√
π

2
x–1/2 + x–1 + O

(
x–3/2)

)

, (11)

because u + 1
u |u=1 = 2, and

u +
1
u

= 2 +
N∑

k=0

(–1)k+2(u – 1)k+2 + o
(
(u – 1)N+2) (12)

for all N ≥ 1 due to the Taylor formula.
In a similar way, using Lemma 3.1 (with μ = 2, α = 1, a0 = b0 = 1, a1 = –1, and b1 = –2),

we derive

I11 =
1

2π

∫ 1

0
e– x

2 (u+ 1
u ) du =

1
2π

∫ ∞

1
e– x

2 (v+ 1
v ) 1

v2 dv

=
e–x

2π

(




(
1
2

)(
2
x

)1/2 1
2

+ 
(1)
2
x

(

–
1
2

)

+ O
(
x–3/2)

)

=
e–x

2π

(√
π

2
x–1/2 – x–1 + O

(
x–3/2)

)

, (13)
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because of (12) and the following decomposition:

1
v2 =

N∑

k=0

(–1)k(k + 1)(v – 1)k + o
(
(v – 1)N)

,

according to the Taylor formula.
Estimates (10), (11), and (13) imply that for some C12 > 0,

I1 ≤ 1√
2π

x–1/2e–x(1 + C12x–1). (14)

Substituting the derived estimates (9) and (14) into (8), we obtain

Fξ1ξ2 (x) ≤ 1√
2π

x–1/2e–x(1 + C2x–1) (15)

with a positive constant C2.
Now let us consider the lower bound for Fξ1ξ2 (x). Equality (8) and the lower bound in

(4) imply

Fξ1ξ2 (x) ≥ 2√
2π

∫ 2x1/2

0
�

(
x
y

)

e–y2/2 dy

≥ 1
π

∫ 2x1/2

0

y
x

(

1 –
y2

x2

)

e
– 1

2 (y2+ x2
y2 )

dy

≥ 1
2π

∫ 4

0

(

1 –
u
x

)

e– x
2 (u+ 1

u ) du

≥ 1
2π

(

1 –
4
x

)∫ 4

0
e– x

2 (u+ 1
u ) du

=
(

1 –
4
x

)

(I11 + I12).

Thus, due to the estimates (11) and (13),

Fξ1ξ2 (x) ≥ 1√
2π

x–1/2e–x(1 – C3x–1) (16)

for a positive constant C3. Inequalities (15) and (16) imply the assertion of the theorem in
the case n = 2.

Let us suppose now that formula (7) holds for n = m, m ≥ 2, i.e., let

F�m (x) =
2(m/2)–1
√

πm
x–1/m exp

{

–
m
2

x2/m
}
(
1 + Om

(
x–2/m))

. (17)

Obviously,

F�m+1 (x) =
2√
2π

∫ ∞

0
F�m

(
x
y

)

e–y2/2 dy

=
2√
2π

(∫ (m+1)x1/(m+1)

0
+

∫ ∞

(m+1)x1/(m+1)

)

F�m

(
x
y

)

e–y2/2 dy

=: J1 + J2. (18)
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According to (4),

J2 ≤ 2√
2π

∫ ∞

(m+1)x1/(m+1)
e–y2/2 dy

≤ C4mx– 1
m+1 exp

{

–
(m + 1)2

2
x2/(m+1)

}

(19)

with a positive quantity C4m depending only on m.
Using the induction hypothesis (17) and the variable change y = x1/(m+1)u1/2, we get

J1 ≤ 2(m–1)/2

π
√

m

∫ (m+1)x1/(m+1)

0

(
y
x

)1/m

× exp

{

–
1
2

(

m
(

x
y

)2/m

+ y2
)}(

1 + C5m

(
y
x

)2/m)

dy

=
2(m–3)/2

π
√

m

∫ (m+1)2

0
u–(m–1)/(2m)

× exp

{

–
1
2

x2/(m+1)(mu–1/m + u
)
}
(
1 + C5m

(
x–2/(m+1)u1/m))

du

≤ 2(m–3)/2

π
√

m
(
1 + C6m

(
x–2/(m+1)))

×
∫ (m+1)2

0
u–(m–1)/(2m) exp

{

–
1
2

x2/(m+1)(mu–1/m + u
)
}

du

=
2(m–3)/2

π
√

m
(
1 + C6m

(
x–2/(m+1)))(J11 + J12), (20)

where C5m and C6m are positive quantities depending only on m, and

J11 :=
∫ 1

0
u–(m–1)/(2m) exp

{

–
1
2

x2/(m+1)(mu–1/m + u
)
}

du,

J12 :=
∫ (m+1)2

1
u–(m–1)/(2m) exp

{

–
1
2

x2/(m+1)(mu–1/m + u
)
}

du.

Using Lemma 3.1 (with μ = 2, α = 1, a0 = (m + 1)/(2m), a1 = –(m + 1)(2m + 1)/(6m2),
b0 = 1, and b1 = –(m – 1)/(2m)), we obtain

J12 = exp

{

–
m + 1

2
x2/(m+1)

}(




(
1
2

)√
m

2(m + 1)

(
x2/(m+1)

2

)–1/2

+ 
(1)
m + 5

2(m + 1)

(
x2/(m+1)

2

)–1

+ Om
(
x–3/(m+1))

)

= exp

{

–
m + 1

2
x2/(m+1)

}(√
πm

m + 1
x–1/(m+1)

+
m + 5

2(m + 1)
x–2/(m+1) + Om

(
x–3/(m+1))

)

, (21)
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because mu–1/m + u|u=1 = m + 1, and

mu–1/m + u = m + 1 +
N∑

k=0

(–1)k
∏k+1

l=1 (1 + lm)
(k + 2)!mk+1 (u – 1)k+2

+ o
(
(u – 1)N+2),

u–(m–1)/(2m) = 1 +
N∑

k=1

(–1)k ∏k
l=1((2l – 1)m – 1)
k!(2m)k (u – 1)k

+ o
(
(u – 1)N)

for each N ≥ 1 due to the Taylor formula.
Concerning the term J11, after the variable change u = 1/v, we get

J11 =
∫ ∞

1
v–(3m+1)/(2m) exp

{

–
x2/(m+1)

2
(
mv1/m + v–1)

}

dv.

Therefore, using Lemma 3.1 again (with μ = 2, α = 1, a0 = (m+1)/(2m), a1 = –(4m–1)(m+
1)/(6m2), b0 = 1, and b1 = –(3m + 1)/(2m)), similarly as in (21), we get that

J11 = exp

{

–
m + 1

2
x

2
m+1

}(




(
1
2

)√
m

2(m + 1)

(
x2/(m+1)

2

)–1/2

+ 
(1)
m + 5

6(m + 1)

(
x2/(m+1)

2

)–1

+ Om
(
x–3/(m+1))

)

= exp

{

–
m + 1

2
x2/(m+1)

}(√
πm

m + 1
x–1/(m+1)

–
m + 5

2(m + 1)
x–2/(m+1) + Om

(
x–3/(m+1))

)

, (22)

because mv1/m + v–1|v=1 = m + 1 and

mv1/m + v–1 = m + 1 +
N∑

k=0

(∏k+1
l=1 (1 – lm)

(k + 2)!mk+1 + (–1)k
)

(v – 1)k+2

+ o
(
(v – 1)N+2),

v–(3m+1)/(2m) = 1 +
N∑

k=1

(–1)k ∏k
l=1((2l + 1)m + 1)
k!(2m)k (v – 1)k

+ o
(
(v – 1)N)

,

for each N ≥ 1. Equations (18)–(22) imply that

F�m+1 (x) ≤ 2(m+1)/2–1
√

π (m + 1)
x–1/(m+1) exp

{

–
m + 1

2
x2/(m+1)

}

× (
1 + C7mx–2/m+1) (23)

with a positive quantity C7m depending only on m.
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On the other hand, by hypothesis (17), similarly as in the derivation of (20), we get

F�m+1 (x) ≥ 2(m+1)/2–2

π
√

m
(
1 – C8mx–2/(m+1))

×
∫ (m+1)2

0
u–(m–1)/(2m) exp

{

–
x2/(m+1)

2
(
mu–1/m + u

)
}

du

=
2(m+1)/2–2

π
√

m
(
1 – C8mx–2/(m+1))(J11 + J12)

with a positive quantity C8m. Using estimates (21) and (22), we obtain

F�m+1 (x) ≥ 2(m+1)/2 – 1√
π (m + 1)

x–1/(m+1) exp

{

–
m + 1

2
x2/(m+1)

}

× (
1 – C9mx–2/(m+1))

with a positive quantity C9m depending only on m, which together with (23) implies for-
mula (7) in the case n = m + 1. The induction principle implies now the validity of (7) for
all n ∈N. Theorem 2.2 is proved. �

4 A small simulation study
In this section, we consider two examples of products of normally distributed random
variables. In both cases, we will compare the obtained theoretical results with the tail
probabilities estimated by the Monte Carlo method.

Example 4.1 Consider the product �4 of four independent random variables ξ1, ξ2, ξ3, ξ4

distributed according to the normal law �. According to Theorem 2.2, there exist positive
constants D1 and D2 such that for x ≥ D2,

1√
π

x–1/4e–2
√

x
(

1 –
D1√

x

)

≤ P(�4 > x) ≤ 1√
π

x–1/4e–2
√

x
(

1 +
D1√

x

)

.

Figure 1 Simulated values and asymptotic bounds for the tail probability of �4
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Figure 2 Simulated values and asymptotic bounds for the tail probability of �̂3

The simulated values of P(�4 > x), together with the upper and lower estimates (blue
lines), are presented in Fig. 1. Several values of constants D1 and D2 can be selected from
the obtained graphs. For instance, Fig. 1 shows that it is possible to take D1 = 0.8 and D2 = 6
in the case under consideration.

Example 4.2 Consider the product �̂3 of three independent random variables ξ̂1, ξ̂2, and
ξ̂3 distributed according to the normal laws �0,1, �0,2, and �0,3, respectively. Due to Corol-
lary 2.1, there exist two positive constants D̂1 and D̂2 such that for x ≥ D̂2,

P(�̂3 > x) ≥
(

1 –
D̂1
3√x2

)√
2

3π

(
x
6

)–1/3

exp

{

–
3
2

(
x
6

)2/3}

,

P(�̂3 > x) ≤
(

1 +
D̂1
3√x2

)√
2

3π

(
x
6

)–1/3

exp

{

–
3
2

(
x
6

)2/3}

.

The simulated values of P(�̂3 > x), together with the upper and lower bounds (blue lines),
are presented in Fig. 2. In particular, Fig. 2 shows that it is possible to take D̂1 = 2 and
D̂2 = 15 in this example.

5 Conclusions
In this paper, we obtained an asymptotic formula with the first leading-order term for the
tail of the distribution of the product of independent normal laws. The main results of the
work are formulated in Theorem 2.2 and Corollary 2.1. We considered normal random
variables with zero means only, but in Corollary 2.1 we allowed the variances of these laws
to be unconstrained. From the assertion of Theorem 2.2, it follows that for the product of
n independent standard normal distributions �n:

P(�n > x) ≥
(

1 –
C2n
n√x2

)
1√
πn

x–1/n exp

{

–
n
2

x2/n
}

,

P(�n > x) ≤
(

1 +
C3n
n√x2

)
1√
πn

x–1/n exp

{

–
n
2

x2/n
}



Leipus et al. Journal of Inequalities and Applications         (2023) 2023:32 Page 12 of 13

if x ≥ C1n, where C1n, C2n, and C3n are positive quantities depending only on n. It fol-
lows from the theorem that such three quantities exist. However, their structure remains
unclear. Apparently, this requires a deeper analysis of the problem.
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