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Abstract: Inorganic luminescent materials that can be excited with NIR radiation and emit in the
visible spectrum have recently gained much scientific interest. Such materials can be utilized as anti-
counterfeiting pigments, luminescent thermometers, bio-imaging agents, etc. In this work, we report
the synthesis and optical properties of K2Gd(PO4)(WO4):Ho3+ and K2Gd(PO4)(WO4):20%Yb3+,Ho3+

powders. The single-phase samples were prepared by the solid-state reaction method, and the
Ho3+ concentration was changed from 0.5% to 10% with respect to Gd3+. It is interesting to note
that under 450 nm excitation, no concentration quenching was observed in K2Gd(PO4)(WO4):Ho3+

(at least up to 10% Ho3+) samples. However, adding 20% Yb3+ has caused a gradual decrease in
Ho3+ emission intensity with an increase in its concentration. It turned out that this phenomenon is
caused by the increasing probability of Ho3+ → Yb3+ energy transfer when Ho3+ content increases.
K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ sample showed exceptionally high up-conversion (UC) emis-
sion stability in the 77–500 K range. The UC emission intensity reached a maximum at ca. 350 K,
and the intensity at 500 K was around four times stronger than the intensity at 77 K. Moreover, the
red/green emission ratio gradually increased with increasing temperature, which could be used for
temperature sensing purposes.

Keywords: luminescence; temperature-dependent up-conversion emission; energy transfer; CIE1931
color coordinates

1. Introduction

In recent decades, the up-converting luminescent materials based on lanthanide ions
attracted much scientific interest due to their outstanding luminescence properties. The
up-converting luminescent materials are widely used in a variety of applications, such as
solar energy [1,2], anti-counterfeiting pigments [3], temperature sensors [4], fluorescence
probes [5], bio-imaging [6], cancer therapeutics [7], etc. Usually, the inorganic up-converting
luminescent materials contain at least two incorporated lanthanide ions: one as a sensitizer,
typically Yb3+, and another as an emitter, such as Er3+ [8,9], Ho3+ [10–13], Tm3+ [14–16], etc.
Another critical step in preparing up-converting phosphors is the selection of an appro-
priate host matrix. The researchers usually focus on the fluoride (or another halide) and
tellurate glass hosts because they possess relatively low phonon frequencies, which, in turn,
reduces the energy losses via non-radiative processes and yield high up-conversion lumi-
nescence efficiencies [10]. Among the fluoride-based hosts for up-converting phosphors,
the (Li,Na,K)(La,Y,Gd,Lu)F4 host is probably the most studied [17–19]. On the other hand,
these host matrices have several drawbacks, for instance, insufficient thermal, physical,
and chemical stability. They are also toxic, hygroscopic, and so on [20]. Therefore, other
inorganic matrices, such as tungstates, molybdates, vanadates, titanates, etc., are gaining
more and more attention [21]. Among these materials, tungstates are widely studied as
luminescent materials due to their excellent thermal and chemical stability [22–24]. For this
reason, the well-known K2Gd(PO4)(WO4) [25–27] was chosen as a host matrix in this study.
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There is a long list of lanthanide ions used as emitters in up-converting phosphors.
We want to stress that Ho3+ is one of the most exciting lanthanide ions due to its unique
energy level structure. Besides, Ho3+ energy levels match well with the energy levels of
Yb3+, thus, the Yb3+/Ho3+ couple could be one of the choices for preparing up-converting
phosphors [28]. Solely Ho3+ doped matrices could be used as a down-conversion (DC)
material if Ho3+ is directly excited with 450 nm radiation. Furthermore, Yb3+/Ho3+ co-
doped materials are bi-functional since they can be suitable for up-conversion and down-
conversion (DC) applications.

In this contribution, we report the successful synthesis of K2Gd(PO4)(WO4) host lattice
co-doped with Yb3+ and Ho3+. Yb3+ concentration was fixed at 20% with respect to Gd3+,
whereas Ho3+ concentration was varied between 0.5% and 10%. The influence of Ho3+

concentration on luminescence properties was investigated and discussed. The obtained
results show that this particular compound could be used as an NIR-excited luminescent
security pigment.

2. Materials and Methods

A series of K2Gd(PO4)(WO4) samples doped with Ho3+ and co-doped with 20% Yb3+

and Ho3+ (where Ho3+ concentration was 0%, 0.5%, 1%, 2%, 5%, and 10% with respect
to Gd3+) were synthesized by the solid-state reaction method. The starting materials,
namely, Gd2O3 (99.99% Tailorlux, Münster, Germany), K2CO3 (99+% Acros Organics, Geel,
Belgium), NH4H2PO4 (99% Reachem Slovakia, Petržalka, Slovakia), WO3 (99+% Acros
Organics), Yb2O3 (99.99% Alfa Aesar, Haverhill, MA, USA), and Ho2O3 (99.99% Alfa Aesar)
were weighed and blended in stoichiometric amounts. The powders were blended in an
agate mortar. A few milliliters of acetone were added to accelerate the homogenization. The
mixed reagents were poured into the porcelain crucible and annealed at 873 K temperature
for 10 h in the air in a muffle furnace. Subsequently, the annealing process was repeated
twice more with intermediate grinding of the products.

The structural analysis of the synthesized materials was performed using a Rigaku
MiniFlexII diffractometer working on a Bragg–Brentano-focusing geometry (Tokyo, Japan).
SEM images were taken on a field-emission scanning electron microscope FE-SEM Hitachi
SU-70. The optical properties (room temperature reflection, excitation, and emission spectra;
temperature-dependent emission spectra; PL decay) were investigated employing the
modular Edinburgh Instruments FLS980 spectrometer. The instrumental parameters for
each measurement are summarized in Tables S1–S4.

Rietveld refinement of the XRD patterns was performed using FullProf Suite software
(version 2 December 2022). Peak profiles were modeled using a pseudo-Voigt peak shape.
A 24-term Chebyshev-type background function was used. Other experimental parameters
refined were the instrument zero, scale factor, lattice parameters, preferred orientation,
and the peak shape parameters u, v, w, γ0, and γ1. For Rietveld fits, the K2Ho(PO4)(WO4)
structure (PDF-4+ (ICDD) 04-015-9304) reported by Terebilenko et al. [29] was used and
atomic coordinates were refined.

3. Results and Discussion

The phase purity of the synthesized K2Gd(PO4)(WO4):x%Ho3+ and K2Gd(PO4)(WO4):
20%Yb3+,x%Ho3+ samples was investigated by recording powder XRD patterns. In order
to extract the lattice parameters of the synthesized compounds, the Rietveld refinement
of the recorded powder XRD patterns was performed. The Rietveld refinement of un-
doped K2Gd(PO4)(WO4), K2Gd(PO4)(WO4):10%Ho3+, K2Gd(PO4)(WO4):20%Yb3+, and
K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ samples are shown in Figure 1. The calculated lattice
parameters of K2Gd(PO4)(WO4), K2Gd(PO4)(WO4):10%Ho3+, K2Gd(PO4)(WO4):20%Yb3+,
and K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ samples are given in Table S5. The lattice param-
eters decrease with increasing Yb3+ and Ho3+ content in the structure which, in fact, was
expected since both ions are smaller than Gd3+. The XRD patterns of all the synthesized
samples were similar and matched exceptionally well with the reference pattern, indicating
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that single-phase compounds were obtained. The synthesized K2Gd(PO4)(WO4):Yb3+,Ho3+

compounds crystalize in an orthorhombic crystal structure and adopt the Ibca (#73) space
group [30]. The crystal structure of the K2Gd(PO4)(WO4) compound is constructed by PO4
and WO4 tetrahedrons and K+ and Gd3+ polyhedrons (both K+ and Gd3+ are eight-fold
coordinated). Since the ionic radii of eight-coordinated Gd3+ (r = 1.053 Å), Yb3+ (r = 0.985 Å),
and Ho3+ (r = 1.015 Å) [31] are very similar, we assumed that Yb3+ and Ho3+ occupied
the Gd3+ sites in the crystal lattice. It is also worth mentioning that the K2Gd(PO4)(WO4)
crystal structure is very versatile from a chemical point of view. For instance, potassium
ions in the structure can be easily replaced by sodium [32] and rubidium [33] ions. Gd3+, in
turn, can be replaced by nearly all rare-earth ions [34] as well as Y3+ [35], and Bi3+ [36]. WO4
groups can be also exchanged by MoO4 groups [36] making virtually endless possibilities
for modification of chemical structures’ chemical composition.
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Figure 1. Rietveld refinement of undoped K2Gd(PO4)(WO4) (a), K2Gd(PO4)(WO4):10%Ho3+ (b),
K2Gd(PO4)(WO4):20%Yb3+ (c), and K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ (d) XRD patterns.

The morphological features of the synthesized compounds were investigated by taking
SEM images. The SEM images of K2Gd(PO4)(WO4):20%Yb3+, K2Gd(PO4)(WO4):10%Ho3+,
and K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ specimens are depicted in Figure S1. All three SEM
images demonstrate that the synthesized powders consist of aggregated microparticles with
irregular shapes. Moreover, the powder particles were virtually identical, and no differences
in crystallite size or morphology were observed with varying Yb3+ or Ho3+ concentrations.

The body color of the undoped K2Gd(PO4)(WO4) and 20% Yb3+ doped samples was
white, indicating that both compounds do not absorb in the visible spectrum range. The
Ho3+ doped samples, in turn, possessed a yellowish body color under sunlight and the
reddish body color under fluorescent lamp (FL) illumination. The yellowish body color is
caused by many strong absorption lines of Ho3+ in the visible spectrum, whereas the reddish
body color is a result of Ho3+ excitation by the fluorescent lamp leading to red emission.
The reflection spectra of undoped, 20% Yb3+ doped, and 10% Ho3+ doped, together with
20% Yb3+ and 10%Ho3+ co-doped samples are shown in Figure 2. The reflectance spectra
were measured in a 250–800 nm range. The reflectance spectra of Ho3+ doped samples
possess several sets of absorption lines typical to Ho3+, i.e., 5I8 → 3H6 (ca. 355–368 nm),
5I8 → 5G4 (ca. 380–390 nm), 5I8 → 5G5 (ca. 410–426 nm), 5I8 → 5G6;5F1 (ca. 440–464 nm),
5I8→ 5F2;3K8 (ca. 466–480 nm), 5I8→ 5F3 (ca. 483 nm), 5I8→ 5F4;5S2 (ca. 525–555 nm), and
5I8 → 5F5 (ca. 624–665 nm). The broad absorption band in the UV range (around 300 nm)
can be assigned to the O2− →W6+ charge transfer transition in the host lattice [37].
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The excitation (λem = 544 nm) spectra of K2Gd(PO4)(WO4):Ho3+ and K2Gd(PO4)(WO4):
20%Yb3+,Ho3+ (where the Ho3+ concentration is 1% and 10%) samples were measured in
the 250–500 nm range and are depicted in Figure 3a,c, respectively. The measured spectra
consist of several sets of excitation lines which originated from the typical Ho3+ ground
state (5I8) transitions to 3H6 (ca. 355–368 nm), 5G4 (ca. 380–390 nm), 5G5 (ca. 410–426 nm),
5G6 + 5F1 (ca. 440–464 nm), and 3K8 + 5F2 (ca. 466–480 nm) [38,39]. The highest excitation
line intensity for solely Ho3+ doped samples was observed for the 10% doped sample.
Moreover, a weak excitation line attributed to the 8S→ 6P7/2 (ca. 311 nm) transition of
Gd3+ [40] is also visible in the excitation spectra. This indicates that some Gd3+ → Ho3+

energy transfer occurs in the given host matrix. The same Gd3+ line was also observed in the
K2Gd(PO4)(WO4):20%Yb3+,Ho3+ excitation spectra. Besides, the strongest Ho3+ excitation
line intensity for Yb3+-containing samples was observed when the Ho3+ concentration was
fixed at 1%. The broad excitation band in the range of 250–330 nm is attributed to the O2–

to W6+ charge-transfer transition within the WO4
2−. Such transitions are typical for the

tungstate compounds in this spectral range and reported by many authors [41,42].
The emission spectra (λex = 450 nm) of K2Gd(PO4)(WO4) and K2Gd(PO4)(WO4):20%Yb3+

samples doped with 1% and 10% Ho3+ were measured in 450–800 nm range and are
presented in Figure 3b,d, respectively. Three sets of emission lines were observed in
the emission spectra and the lines are attributed to Ho3+ transitions: 5S2 + 5F4 → 5I8
(ca. 530–555 nm), 5F5→ 5I8 (ca. 630–670 nm), and 5S2 + 5F4→ 5I7 (ca. 740–765 nm). Among
solely Ho3+ doped samples, the one doped with 10% showed the most intensive emission.
This finding is rather surprising since Ho3+ energy levels are exceptionally suitable for
cross-relaxation processes [43,44]. However, the opposite tendency was observed when
Yb3+ was incorporated into the host matrix. The sample doped with 1% Ho3+ showed the
most intensive emission in this case. This is related to the increasing Ho3+ → Yb3+ energy
transfer probability at higher Ho3+ concentrations resulting in a decrease in Ho3+ emission
intensity. Similar results were also obtained by other authors working with other host
matrices [10].
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doped with 1% and 10% Ho3+. (c) Excitation (λem = 544 nm) and (d) emission (λex = 450 nm) spectra
of K2Gd(PO4)(WO4):20%Yb3+ doped with 1% and 10% Ho3+.

The schematic energy level diagram with the main Yb3+ and Ho3+ transitions is
depicted in Figure 4. Samples containing Ho3+ could be directly excited to 5G6; 5F1 energy
levels with the 450 nm excitation radiation (blue arrow). After relaxation to the lower-lying
energy levels, emission in the cyan, green, red, and deep red spectral regions occurs. If the
Ho3+ doped sample also contains Yb3+, the sample can be excited with the NIR radiation
via the Yb3+ → Ho3+ energy transfer.

Materials 2023, 16, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 4. Schematic energy level diagram of energy transitions in Yb3+ and Ho3+. 

Yb3+ transfers energy to Ho3+ through several steps. First of all, the Yb3+ ion absorbs 

one NIR photon and transfers it to the 5I6 level of Ho3+ (I step). The subsequent NIR photon 

from Yb3+ excites the electrons within the 5I6 level to the 5S2 and 5F4 levels of Ho3+ (II step). 

of These transitions can be written. Since the UC emission spectra also contain emission 

lines from the 5F2;3 level, indicating that this level is also slightly populated through the 

cooperative sensitization as was also reported by the other researchers (III step) [45]. The 

mentioned UC mechanism can be expressed through these transitions [45–47]: 

I step 2F5/2(Yb3+) + 5I8(Ho3+) → 2F7/2(Yb3+) + 5I6(Ho3+) 

II step 2F5/2(Yb3+) + 5I6(Ho3+) → 2F7/2(Yb3+) + 5S2;5F4(Ho3+) 

III step 2F5/2(Yb3+) + 5I8(Ho3+) → 2F7/2(Yb3+) + 5F3(Ho3+) 

After the population of the mentioned energy levels of Ho3+, the emission from these 

levels occurs in the green, red, and deep-red spectral areas. 

Up-conversion emission spectra (λex = 980 nm) of K2Gd(PO4)(WO4):20%Yb3+,Ho3+ and 

normalized integrated emissions as a function of Ho3+ concentration are depicted in Figure 

5. As shown in Figure 1, Ho3+ does not have energy levels that could be directly excited 

with the 980 nm laser radiation; therefore, in this case, Yb3+ absorbs the laser radiation and 

transfers the energy to Ho3+. The measured Ho3+ up-conversion spectra are very similar to 

those when Ho3+ was directly excited with blue radiation (please refer to Figure 4). Typical 

Ho3+ emission lines were observed in up-conversion spectra measured in the 400–800 nm 

range, i.e., 5F2;3 → 5I8 (ca. 460–488 nm), 5S2;5F4 → 5I8 (ca. 530–555 nm), 5F5 → 5I8 (ca. 630–670 

nm), and 5S2;5F4 → 5I7 (ca. 740–765 nm). The most intensive emission lines were observed 

for the 5F5 → 5I8 transition in the red spectral region. The highest up-conversion emission 

intensity was observed for the sample doped with 0.5% Ho3+. The up-conversion emission 

intensity decreases with further increasing the Ho3+ concentration. The normalized inte-

grated emission of the samples (please refer to the inset in Figure 5) confirms that the total 

up-conversion emission intensity drastically decreases with increasing Ho3+ concentra-

tions. The up-conversion emission intensity decrease with increasing Ho3+ concentration 

is caused by the increasing probability of Ho3+ → Yb3+ energy transfer, as discussed above. 

The digital images of K2Gd(PO4)(WO4):20%Yb3+,Ho3+ up-conversion luminescence (λex = 

980 nm laser) as a function of Ho3+ concentration are given in Figure S2. 

Figure 4. Schematic energy level diagram of energy transitions in Yb3+ and Ho3+.



Materials 2023, 16, 917 6 of 12

Yb3+ transfers energy to Ho3+ through several steps. First of all, the Yb3+ ion absorbs
one NIR photon and transfers it to the 5I6 level of Ho3+ (I step). The subsequent NIR photon
from Yb3+ excites the electrons within the 5I6 level to the 5S2 and 5F4 levels of Ho3+ (II step).
of These transitions can be written. Since the UC emission spectra also contain emission
lines from the 5F2;3 level, indicating that this level is also slightly populated through the
cooperative sensitization as was also reported by the other researchers (III step) [45]. The
mentioned UC mechanism can be expressed through these transitions [45–47]:

I step 2F5/2(Yb3+) + 5I8(Ho3+)→ 2F7/2(Yb3+) + 5I6(Ho3+)
II step 2F5/2(Yb3+) + 5I6(Ho3+)→ 2F7/2(Yb3+) + 5S2;5F4(Ho3+)
III step 2F5/2(Yb3+) + 5I8(Ho3+)→ 2F7/2(Yb3+) + 5F3(Ho3+)

After the population of the mentioned energy levels of Ho3+, the emission from these
levels occurs in the green, red, and deep-red spectral areas.

Up-conversion emission spectra (λex = 980 nm) of K2Gd(PO4)(WO4):20%Yb3+,Ho3+

and normalized integrated emissions as a function of Ho3+ concentration are depicted in
Figure 5. As shown in Figure 1, Ho3+ does not have energy levels that could be directly
excited with the 980 nm laser radiation; therefore, in this case, Yb3+ absorbs the laser
radiation and transfers the energy to Ho3+. The measured Ho3+ up-conversion spectra are
very similar to those when Ho3+ was directly excited with blue radiation (please refer to
Figure 4). Typical Ho3+ emission lines were observed in up-conversion spectra measured
in the 400–800 nm range, i.e., 5F2;3 → 5I8 (ca. 460–488 nm), 5S2;5F4 → 5I8 (ca. 530–555 nm),
5F5 → 5I8 (ca. 630–670 nm), and 5S2;5F4 → 5I7 (ca. 740–765 nm). The most intensive
emission lines were observed for the 5F5 → 5I8 transition in the red spectral region. The
highest up-conversion emission intensity was observed for the sample doped with 0.5%
Ho3+. The up-conversion emission intensity decreases with further increasing the Ho3+

concentration. The normalized integrated emission of the samples (please refer to the inset
in Figure 5) confirms that the total up-conversion emission intensity drastically decreases
with increasing Ho3+ concentrations. The up-conversion emission intensity decrease with
increasing Ho3+ concentration is caused by the increasing probability of Ho3+ → Yb3+

energy transfer, as discussed above. The digital images of K2Gd(PO4)(WO4):20%Yb3+,Ho3+

up-conversion luminescence (λex = 980 nm laser) as a function of Ho3+ concentration are
given in Figure S2.

Materials 2023, 16, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 5. Up-conversion emission spectra of K2Gd(PO4)(WO4) as a function of Ho3+ concentration, 

under the 980 nm excitation. The inset graph shows Ho3+ concentration-dependent normalized in-

tegrated emission. 

In order to better understand the up-conversion process of the prepared materials, 

the PL decay curves (λex = 980 nm, λem = 660 nm) of the most intensive emission peak (5F5 

→ 5I8 transition) were measured. The recorded UC PL decay curves of 

K2Gd(PO4)(WO4):20%Yb3+,Ho3+ samples as a function of Ho3+ concentration are shown in 

Figure 6a–c, in turn, show the calculated PL rise time and τeff values of the same samples, 

respectively. The PL decay curves become steeper with increasing Ho3+ concentration, in-

dicating that PL lifetime values decrease. This indeed is true since the calculated τeff values 

decreased from 191 μs for 0.5% Ho3+ doped samples to 83 μs for 10% Ho3+ doped samples 

(please refer to Figure 6c). The opposite tendency, however, was observed for the PL rise 

time values, which increased with increasing Ho3+ concentration. The exact calculated PL 

rise time and lifetime values, together with standard deviations, are summarized in Table 

S6. The calculated UC PL lifetime values for 5F5 → 5I8 transition are very similar to the ones 

reported by other authors in a wide variety of materials, i.e., oxides, phosphates, titanates, 

silicates, tungsten tellurite glasses, and even fluorides. For instance, Guo et al. reported 

that the UC PL lifetime value of BaGdF5:20%Yb3+,1%Ho3+ is around 131 μs [28] which is 

close to the 122 μs for our K2Gd(PO4)(WO4):20%Yb3+,2%Ho3+ sample. Rather similar UC 

PL lifetimes were also observed in Sr3Y(PO4)3:10%Yb3+,2%Ho3+ (261 μs) and Ba-

TiO3:3%Yb3+,0.2%Ho3+ (155 μs for cubic phase and 125 μs for tetragonal phase) compounds 

which were reported by Liu et al. [48] and Mahata et al. [11], respectively. However, there 

are also host matrixes where Ho3+ UC PL lifetimes are much shorter, for instance, 

La9.31(Si1.04O4)6O2:20%Yb3+,1%Ho3+ (around 18 μs) [49] and tungsten–tellurite glass (around 

33 μs) [50]. An overview of these materials is given in Table 1. 

Figure 5. Up-conversion emission spectra of K2Gd(PO4)(WO4) as a function of Ho3+ concentration,
under the 980 nm excitation. The inset graph shows Ho3+ concentration-dependent normalized
integrated emission.



Materials 2023, 16, 917 7 of 12

In order to better understand the up-conversion process of the prepared materi-
als, the PL decay curves (λex = 980 nm, λem = 660 nm) of the most intensive emis-
sion peak (5F5 → 5I8 transition) were measured. The recorded UC PL decay curves of
K2Gd(PO4)(WO4):20%Yb3+,Ho3+ samples as a function of Ho3+ concentration are shown in
Figure 6a–c, in turn, show the calculated PL rise time and τeff values of the same samples,
respectively. The PL decay curves become steeper with increasing Ho3+ concentration,
indicating that PL lifetime values decrease. This indeed is true since the calculated τeff

values decreased from 191 µs for 0.5% Ho3+ doped samples to 83 µs for 10% Ho3+ doped
samples (please refer to Figure 6c). The opposite tendency, however, was observed for
the PL rise time values, which increased with increasing Ho3+ concentration. The exact
calculated PL rise time and lifetime values, together with standard deviations, are summa-
rized in Table S6. The calculated UC PL lifetime values for 5F5 → 5I8 transition are very
similar to the ones reported by other authors in a wide variety of materials, i.e., oxides,
phosphates, titanates, silicates, tungsten tellurite glasses, and even fluorides. For instance,
Guo et al. reported that the UC PL lifetime value of BaGdF5:20%Yb3+,1%Ho3+ is around
131 µs [28] which is close to the 122 µs for our K2Gd(PO4)(WO4):20%Yb3+,2%Ho3+ sample.
Rather similar UC PL lifetimes were also observed in Sr3Y(PO4)3:10%Yb3+,2%Ho3+ (261 µs)
and BaTiO3:3%Yb3+,0.2%Ho3+ (155 µs for cubic phase and 125 µs for tetragonal phase)
compounds which were reported by Liu et al. [48] and Mahata et al. [11], respectively.
However, there are also host matrixes where Ho3+ UC PL lifetimes are much shorter, for
instance, La9.31(Si1.04O4)6O2:20%Yb3+,1%Ho3+ (around 18 µs) [49] and tungsten–tellurite
glass (around 33 µs) [50]. An overview of these materials is given in Table 1.

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 6. (a) Up-conversion PL decay curves (λex = 980 nm, λem = 660 nm) of 

K2Gd(PO4)(WO4):20%Yb3+,Ho3+ as a function of Ho3+ concentration, (b) PL rise time and (c) effective 

decay lifetime (τeff) values of the same samples as a function of Ho3+ concentration. 

Table 1. UC PL lifetime values of inorganic host matrixes doped with Ho3+. 

Upconverting Material UC PL Lifetime (μs) Ref. 

BaGdF5:20%Yb3+,1%Ho3+ 131 [28] 

Sr3Y(PO4)3:10%Yb3+,2%Ho3+ 261 [48] 

cubic BaTiO3:3%Yb3+,0.2%Ho3+ 155 [11] 

tetragonal BaTiO3:3%Yb3+,0.2%Ho3+ 125 [11] 

La9.31(Si1.04O4)6O2:20%Yb3+,1%Ho3+ 18 [49] 

TeO2–WO3 glass 33 [50] 

K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ 191 This work 

K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ 83 This work 

In order to evaluate the PL lifetime values of Yb3+ in the prepared samples, the PL 

curves under the 980 nm laser excitation were recorded by monitoring emission at 1050 

nm. The obtained PL decay curves are depicted in Figure 7. The PL lifetime values of Yb3+ 
2F5/2 → 2F7/2 transition drastically decrease from 1279 ± 23 μs to 278 ± 6 μs with increasing 

Ho3+ concentration from 0% to 10%; the tendency and exact values are represented in Fig-

ure 7 inset and Table S7. Such an abrupt decrease of Yb3+ PL lifetime with increasing Ho3+ 

concentration is related to the Yb3+ → Ho3+ energy transfer. The energy transfer efficiency 

(ηtr) was calculated from the Yb3+ PL lifetime values by the following formula [51]: 

𝜂𝑡𝑟 = (1 −
𝜏𝑌𝑏−𝐻𝑜
𝜏𝑌𝑏

) × 100% (1) 

where τYb−Ho and τYb are Yb3+ PL lifetime values of 2F5/2 → 2F7/2 transition in the presence 

and absence of Ho3+, respectively. The calculated ηtr values are summarized in Figure 7 

inset and Table S7. The ηtr increases from 66% to 78% when changing Ho3+ concentration 

from 0.5% to 10%, respectively. The obtained results show that the energy transfer from 

Yb3+ to Ho3+ is very efficient in this particular host matrix. 

Figure 6. (a) Up-conversion PL decay curves (λex = 980 nm, λem = 660 nm) of
K2Gd(PO4)(WO4):20%Yb3+,Ho3+ as a function of Ho3+ concentration, (b) PL rise time and (c) effective
decay lifetime (τeff) values of the same samples as a function of Ho3+ concentration.

Table 1. UC PL lifetime values of inorganic host matrixes doped with Ho3+.

Upconverting Material UC PL Lifetime (µs) Ref.

BaGdF5:20%Yb3+,1%Ho3+ 131 [28]
Sr3Y(PO4)3:10%Yb3+,2%Ho3+ 261 [48]

cubic BaTiO3:3%Yb3+,0.2%Ho3+ 155 [11]
tetragonal BaTiO3:3%Yb3+,0.2%Ho3+ 125 [11]
La9.31(Si1.04O4)6O2:20%Yb3+,1%Ho3+ 18 [49]

TeO2–WO3 glass 33 [50]
K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ 191 This work
K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ 83 This work
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In order to evaluate the PL lifetime values of Yb3+ in the prepared samples, the
PL curves under the 980 nm laser excitation were recorded by monitoring emission at
1050 nm. The obtained PL decay curves are depicted in Figure 7. The PL lifetime values
of Yb3+ 2F5/2 → 2F7/2 transition drastically decrease from 1279 ± 23 µs to 278 ± 6 µs
with increasing Ho3+ concentration from 0% to 10%; the tendency and exact values are
represented in Figure 7 inset and Table S7. Such an abrupt decrease of Yb3+ PL lifetime with
increasing Ho3+ concentration is related to the Yb3+ → Ho3+ energy transfer. The energy
transfer efficiency (ηtr) was calculated from the Yb3+ PL lifetime values by the following
formula [51]:

ηtr =

(
1− τYb−Ho

τYb

)
× 100% (1)

where τYb−Ho and τYb are Yb3+ PL lifetime values of 2F5/2→ 2F7/2 transition in the presence
and absence of Ho3+, respectively. The calculated ηtr values are summarized in Figure 7
inset and Table S7. The ηtr increases from 66% to 78% when changing Ho3+ concentration
from 0.5% to 10%, respectively. The obtained results show that the energy transfer from
Yb3+ to Ho3+ is very efficient in this particular host matrix.
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Figure 7. Yb3+ decay curves of K2Gd(PO4)(WO4):20%Yb3+ as a function of Ho3+ concentration. Inset
graphs show the energy transfer efficiency (ηtr) and τeff values as a function of Ho3+ concentration.

The temperature-dependent up-conversion emission spectra were recorded in the
77–500 K temperature range to evaluate samples’ performance at high temperatures. The
temperature-dependent up-conversion emission (λex = 980 nm) spectra of K2Gd(PO4)(WO4):
20%Yb3+,0.5%Ho3+ sample along with normalized integrated emission and red/green emis-
sion ratio are presented in Figure 8a. Ho3+ emission increases with increasing temperature
from 77 to 350 K and then decreases with further temperature increases. However, it should
be noted that the integrated UC emission intensity at 500 K is around four times higher
than the emission at 77 K. The normalized integrated UC emission intensity reaches a maxi-
mum of around 300 K and then decreases. The red/green emission ratio decreases in the
temperature range from 77 to 150 K and increases with further temperature increase. This
shows that the green emission is quenched faster with increasing temperature compared
to the red emission. Such temperature-dependent UC emission spectra feature could be
used for luminescent temperature sensing. Moreover, the red/green ratio change is also
reflected by a color change from orange-red (at 77 K) to orange (at 300 K) and then to a
deep-red region with a further temperature increase to 500 K. The color point shifting could
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be observed in the CIE1931 color space diagram. All the calculated color points are near
the edge of the CIE1931 color space diagram, showing the high color purity of the prepared
samples. The exact calculated color coordinates of the prepared samples are tabulated in
Table S8.
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Figure 8. (a) Temperature-dependent up-conversion emission spectra of K2Gd(PO4)(WO4):
20%Yb3+,0.5%Ho3+ sample under the 980 nm laser excitation. The inset shows normalized integrated
emission intensity and the ratio between Red (630–680 nm) and Green (530–555 nm) emission inte-
grals (lines were drawn to guide the eye). (b) temperature-dependent color coordinates of 0.5% Ho3+

doped sample.

4. Conclusions

The single-phase K2Gd(PO4)(WO4):Ho3+ and K2Gd(PO4)(WO4):20%Yb3+,Ho3+ pow-
ders, where Ho3+ concentration varied from 0.5% to 10%, were successfully prepared
by the solid-state reaction method. Solely Ho3+ doped samples under 450 nm excitation
showed no concentration quenching (at least up to 10% Ho3+). However, adding 20%
Yb3+ caused a gradual decrease in Ho3+ emission (under 450 nm excitation) intensity
with an increase in its concentration. It turned out that this phenomenon is caused by
the increasing probability of Ho3+ → Yb3+ energy transfer when Ho3+ content increases.
This was also confirmed by the fact that the strongest UC emission was observed for the
K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ sample. Moreover, the K2Gd(PO4)(WO4):20%Yb3+,
0.5%Ho3+ sample showed exceptionally high up-conversion (UC) emission stability in the
77–500 K range. The UC emission intensity reached a maximum at ca. 350 K, and the
intensity at 500 K was around four times stronger compared to the intensity at 77 K. Further-
more, the red/green emission ratio gradually increased with increasing temperature from
150 to 500 K, and it could be used for temperature sensing purposes. This also indicates
that green emission is quenched faster than red emission in Ho3+ temperature-dependent
UC emission spectra. The bright UC emission of the synthesized phosphors could also be
employed in preparing anti-counterfeiting pigments.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16030917/s1, Table S1. Spectrometer settings for mea-
suring reflection spectra of K2Gd(PO4)(WO4):20%Yb3+,x%Ho3+ phosphors. Table S2. Spectrom-
eter settings for measuring excitation spectra of K2Gd(PO4)(WO4):20%Yb3+,x%Ho3+ phosphors.
Table S3. Spectrometer settings for measuring emission spectra of K2Gd(PO4)(WO4):20%Yb3+,x%Ho3+

phosphors. Table S4. Spectrometer settings for measuring up-conversion emission spectra of
K2Gd(PO4)(WO4):20%Yb3+,x%Ho3+ phosphors. Table S5. Lattice parameters of K2Gd(PO4)(WO4),
K2Gd(PO4)(WO4):10%Ho3+, K2Gd(PO4)(WO4):20%Yb3+, and K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+

samples derived from Rietveld refinement analysis. Table S6. Effective up-conversion PL rise
time and lifetime values of K2Gd(PO4)(WO4):20%Yb3+ phosphors as a function of Ho3+ concen-
tration (λex = 980 nm, λem = 660 nm). Table S7. Effective up-conversion PL decay lifetime values

https://www.mdpi.com/article/10.3390/ma16030917/s1
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and energy transfer efficiency (ηtr) of K2Gd(PO4)(WO4):20%Yb3+,x%Ho3+ phosphors as a func-
tion of Ho3+ concentration (λex = 980 nm, λem = 1050 nm). Table S8. Color coordinates (CIE
1931 color space) of K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ as a function of temperature (λex = 980 nm).
Figure S1. SEM images of K2Gd(PO4)(WO4):20%Yb3+ (a), K2Gd(PO4)(WO4):10% Ho3+ (b), and
K2Gd(PO4)(WO4):20%Yb3+,10%Ho3+ (c), Figure S2. Digital images of the K2Gd(PO4)(WO4):20%Yb3+,
Ho3+ up-conversion luminescence (λex = 980 nm laser) as a function of Ho3+ concentration.
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