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Tikslios homogeninio diskretaus laiko rizikos modelio
iSgyvenamumo tikimybeés isSraiskos ir Vandermonde matricos

Santrauka

Siame baigiamajame magistro darbe apzvelgiamas begalinio laiko i§gyvenimo tikimybés
©(u) generuojanciosios funkcijos taikymas homogeniniam diskretaus laiko rizikos modeliui.
Pristatomas pats modelis bei pagrindiniai apibrézimai kartu su iSgyvenimo tikimybémis.
Suformuluojamos bei jrodomos teoremos, kuriy pagalba randami tikimybiy skaiciavimo al-
goritmai. Naudojantis Wolfram Mathematica pagalba, pateiktuose pavyzdziuose randame
i8gyvenimo tikimybiy iSraiSkas bei reik8mes skirtingiems zaly skirstiniams ir keliems viene-
tinio apskritimo Sakny kartotinumo atvejams.

Raktiniai zodzZiai : homogeninis diskretaus laiko rizikos modelis, bankroto tikimybeé, is-
gyvenimo tikimybé, rekursinis skai¢iavimas, atsitiktinis kintamasis, pasiskirstymo funkcija,
matrica, lygciy sistemos.

Exact expressions of survival probabilities of homogeneous
discrete-time risk model and Vandermonde matrices

Abstract

This master’s thesis reviews application of ultimate time survival probability ¢(u)
generating function for a homogeneous discrete time risk model. The model itself is pre-
sented with main definitions and survival probabilities. Theorems required for algorithms
of probabilities calculations are formulated and proved. In presented examples, with the
help of Wolfram Mathematica expressions and numerical values of survival probabilities are
found with different claim amount distributions and cases when roots inside unit circle are
multiple.

Key words : homogeneous discrete-time risk model, ruin probability, survival probability,
recursive calculation, random variable, probability generating function, matrix, equation
Systems.
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1 Introduction

Risk theory encounters many versions of surplus processes which define transi-
tion from profit to loss and vice versa. These transitions or sequence of sum > | Z;
are actually a random walk, where n € N and Z; are some random variables. Con-
sidering insurance theory, random walk appears in the insurers’ surplus model which
was originally introduced as collective risk model by E. Sparre Andersen [I]. One of
the modified model versions is known as classical risk process or a discrete version
of the more general continuous time Cramér-Lundberg model is called the discrete
time risk model. It is based mainly on parameters such as initial insurer’s surplus,
premium income rate and incurred losses which are interpreted as claim amounts or
already mentioned random walk. The goal of discrete time risk model is to evaluate
insurer’s probability to survive or ruin throughout some finite or infinite time.

In actuarial mathematics the problem of calculation of ultimate time survival
probabilities have become more relevant in the recent years. In this master’s thesis
probability generating functions (p.g.f.) are used to find the ultimate time survival
probabilities. Main goal of this paper is to review homogeneous discrete time risk
model and based on theoretical definitions and proofs find survival probability
and its generating function calculation algorithms and expressions. Also, several
numerical examples are given to examine how those expressions change for different
claim distributions.



2 Homogeneous Discrete-Time Risk Model

The discrete time risk model describes the behaviour of the insurer’s surplus in
time. In this master’s thesis, let us consider the special case of the general Sparre
Andersen’s model [1]. Let’s define a risk model for discrete non-negative random
variable Z and the behaviour of the process U can be considered only for natural
time moments t € N,.

Definition 2.1. [t is said that insurer’s surplus U(t) varies according to a homoge-
neous discrete-time risk model if for each t

Uty =u+ct—Y 7 (1)

with these restrictions:
e ¢ € N denotes premium rate per time unit;

e u = U(0) € Ny is non-negative integer - the initial insurer’s surplus (at the
moment t = 0);

o 7 4 Z, i.e. independently distributed sequence of claim amounts (Z;)2, is
independent copies of a non-negative random variable Z .

The fact that claim amounts are identically distributed allows this discrete-time
risk model to be considered homogeneous. Integer-valued and non-negative random
variables Zy, Z, ... are independent and sum ) ., Z; is considered as random walk.
In addition, r.v. Z can be characterized by probability mass function

P(Z = k) = hy.

We can also define value of the cumulative distribution function of Z by
H(z)=P(Z<x)=) hy
k=0

The time of ruin and the ruin probability are the main extremal characteristics
of insurance risk models. The time of ruin can be defined as

T min{t > 1:U(t) < 0},
“ oo, if U(t)>0 VteN.



Definition 2.2. The finite time ruin probability for a discrete-time risk model de-
scribed in 1s such probability

T t t
w(u,T):P(TusT):IEb(U {u+ct—;Zi <o}> :P<1rgtzg%‘ (Z; — ¢) >u),

t=1 =1

The main concern is whether the initial savings and the subsequent income is
always sufficient to cover incurred expenses. For that we can define the opposite
probability, known as the survival probability

o(u,T)=PT,>T)=1—-¢u,T)=1-P(T, <T)

—p ((T] (Ut > 0}) .

Let us present the algorithm to calculate the values of the finite time survival prob-
ability by using the Definition above and distribution function of Z. Therefore

ou, 1) =Plu+c—2;>0)=H(u+c—1); (2)

T t
ﬂ{u+ct—ZZi>O},Zlgu+c—1>

T-1 t
= Z ]P’(ﬂ {u+ct+c—z’—ZZi>O},lei>

i=0 =1 i=1
u+c—1
= Z o(u+c—i, T —1)h,, where © >0 and T > 2. (3)
i=0

Both ruin and survival probabilities can be defined for infinite time, where the
initial insurer’s surplus is considered as the main variable.

Theorem 2.1. The survival probability of a homogeneous discrete-time risk mode
for ultimate time satisfies the expression

u+-c

p(u) = hurerol(r) (4)

Proof. For proof we will use definition of ultimate time ruin probability for the model
considered in this thesis.
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After changing the summation variable 7 to r = u + ¢ — 7 we get

u+-c

Zhw () + 1 — H(u).

Further, let us use equality ¥(u) = 1 — ¢(u). Then

_1_<uz+chu+crw +1_ ())7

u+-c

u) =1- Zhqucfr(l - QD(T)) -1+ H(“):

u+-c u+-c

Z hu+c 7'90 Z hu+c T + H )

u+c
Let us note that »_ hyic—r is none other than H(u), so finally ultimate time survival

probability
u+c

U) = Z hu—l—c—rsp(r)' (5)



3 Expression of survival probabilities for a homoge-
neous discrete-time risk model

To calculate the ultimate time survival probability ¢(u), u = ¢, ¢+ 1, ...,
by the derived formula we can notice that it is required to know the initial
values of survival probabilities ¢(0), ¢(1), ..., ¢(c—1). Initial values of survival
probabilities can be found not only by the method of recurrent sequences which were
presented and derived in [0, see Section 3|, but also by using probability generating
functions.

3.1 Several basic notations and net profit condition

The net profit condition [EZ < ¢ for the model described in ([1)) means that the in-
surer’s activity can continue to develop without experiencing guaranteed bankruptcy.
Otherwise, if claim amounts on average are greater or equal to the collected premi-
ums, long term survival is not possible.

Furthermore, let us rewrite the homogeneous discrete-time risk model from

as
t

Uty =u—Y (Z—c).

i=1
Recalling that the positive part of a function f* := max{0, f}, f € R and by
using ultimate time survival probability definition

[e%¢] t n
p(u) =P <m {u+ct— ZZi > O}) =P <supZ(Zi —c) < u)
t=1 i=1 nzl
a new random variable is defined
n +
M :=su Zi—c ) 6

Let us also denote the probability mass function of the new random variable
such as was done for r.v. Z by

T = P(M = Z), 1€ No.



Then from the ultimate time survival probability definition
plu+1) = Zm =P(M < u) for all u € Ny.
i=0

By using the definition of generating function of ultimate time ruin probability
from [10], let us denote the generating function of the sequence of survival probabil-
ities {¢(1),¢(2),...} inside the unit circle {s € C, |s| < 1}

Lo(s) = 3 oli + )5 ()

Following, probability generating function of some non-negative and integer-
valued random variable Z

Ty(s) =Y sP(Z=i)=Y hs' =Es” [s| <1,
=0 =0
as well as of r.v. M .
Cum(s) = st‘, Is] <1
i=0

Finally, by using notation of ¢(u+1) above and (7)) we get the following relation:
Ly(s) =Y wli+1)s'
i=0

00 7 00 o)
=2 D> M=) M
i=0 7=0 7=0 i=j

00 .
. el
ijo mist  Tam(s)

T 1l-s  1-s (8)

Remark. Notations in this section were used as in [3, see Section 2/.



3.2 Survival probability calculations using Vandermonde-like
matrices

In order to formulate main theorems used in this work, notations from section
above are used. Also, several auxiliary statements which similarly recently are used
in the works of [3] and [4] and are needed to help prove main results.

Lemma 3.1. If the net profit condition is satisfied then the random variable M
admits the following distribution property

(M+Z—-c)" £ M.

Proof. The equation states that random variables are distributed identically. Actu-
ally by [2, page 198] and maximum properties,

(M+Z —¢)t = max {0, M+Z—c}:max{0, sup (Zn:(Zi—c)> —I—Z—c}

nzl \ G5

= 0, 0, + Z —
max{ max{ itill)z } c}
d n
=max< 0, max < Z; — ¢, su Z; —c¢

R CRE Xt

max {O supz } = sup (i(Zl — c)) =M.

n=1 n=>1 i—1

(8

Further let us construct a theorem that defines the equalities required to obtain
the expression of the probability generating function.

Theorem 3.1. Suppose that the net profit condition EZ < c for the homogeneous
discrete-time risk model s satisfied. Then the following equalities are correct:

Ta(s)(s€ =Tz(s) = > m > hi(s =), |s| < 1, 9)
i=0  j=0
c—1 c—1—1

c—EZ=)» m hi(c—1i—7j). (10)
=0  j=0



Proof. By the law of total expectations E(X) = E(E(X]|Y)) and by Lemma

T pi(s) = EsM+Z-0) —]E<E< (M+Z— c)+|M>)

c—1 00
_ Z WiES(i+Z—C)+ + Z 7, Es(ttZ=)
=0 i=c

b BSOS mEst 70

1=c

g (o (L= 5™ oo by (L= 57)) e e (o (1— 7))

+ Es? (WOSC 4ot ms Z msic>

c—

— moEs#=¢

[y

i <]Es(Z”’C)+ — 5 Fz(s)) + s Tx(s)Tm(s).

I
o

By making rearrangements to the euqality @D we get

c—1

aals) (5"~ Ta(s)) = D (B0 — /T ()

i=0
= mlE (ho (8= 1)+ -+ hey (SC _ Sc—l))
+ .- +7TC_1E (ho (Sc . Sc—l))

c—1 c—1—1
:Zm Z hj(s¢ — s't7). (11)
=0 j=0

Moving forward, let us calculate the derivative of with respect to s

diS(FM( )(s¢—=Tz(s ) < ) (FM(S)> _’_FM(S)%(SC_Fz(S))
) e—1 m cilh] — (i + j)sY), (12)

Furthermore, let s approach 1 from the left, that is s — 17. To find the limit as
EM = oo, let us divide formula into three parts. For the first part of the
left-hand side, by using Lemma 9 from [5]

lim ((30 - FZ(S)>C%<FM(S)>) = lim —SC _ FZ(S) — lim y st — %FZ@)

o /G Tn(s) o1 — LT (s)/ (£Tu(s))”

10



where

2

(£ m(s)) N &
lim sup ~% < m; forany N € {2, 3, ...}.
o1 LT u(s) N—1;v { }

Therefore, by observing that EM < oo [3], see proof of Theorem 3.1] this limit equals
to zero in spite EM = oco. Next, the remaining limit on the left-hand side of
equation

: d c . c—1 d _
sl—1>r{1* FM(3)£<3 —FZ(3)> = lim FM(S)(CS — dSFZ(s)) =c—EZ.

s—1—
Finally,

C 7

i (G o =) ) = S 3 e i)

i= j=
Then, after inserting the found limits into the formula above, we get equality

c—1 c—1—1

1—
c—EZ = Wth]C—Z—j

=0

-
I

o
<.

It is worth mentioning that equalities from Theorem [3.1]for survival probabilities
generating function I',(s) imply

Caa(s)  Dicomidogoo  hy(s® —s™)
1—5s (1—5)(s° — T(s)) .

Of course, this generating function requires initial values of m;, ¢ =10, 1, ..., ¢ — 1.
In order to find them relations @D and can be used and another theorem with
Vandermonde-like matrices can be constructed. First of all, let us notice that such
|s| < 1 can be chosen to find the roots by solving the equation s¢ = I'z(s), which
means that the left-hand side of @ vanishes.

Ly(s) = (13)

Theorem 3.2. Let ay, ao, ..., ap_q1 be the simple roots of s¢ = I'z(s) inside unit
circle |s| < 1. Then by Theorem
Z] 0a1H< ) Z;j) a{“]—](j) . af th o
Sl i) St ahie| | e
diohile—g) Yi—ghjlc—3i—1) ... ho Te—1
0
- : 14
: (1)
c—EZ

11



Proof. By replacing s = a from equation @D we get system of equations for a;, i =
1,2, ...,c—1.

( c—1 . c—2 )
mo 3y (05 — o) 1 3y (0 — ) o meih (o — af1) =0
7=0 j=0
c—1 . c—2 .
o Y. h; (ag — Oz;) +m Y h; (ag — aéﬂ) + ..+ Te_1ho (ag — ag_l) =0
Jj=0 j=0

c—1 . c—2 .
ey h; (ag,l — ozi,l) +m Y. h; (ag,l - ociir{) + ...+ m_1ho (ag,l — agj) =0
=0 =0

c—1 c—2
Wozjohj(c—j)—.—ﬂ'l Z:Ohj(c—1—j)—|—...+7TC,1hOIC—EZ.
]:

. J=

Let us notice that the last equation of the system is none other than presented
in Theorem [3.1] By rewriting this system in matrix form the following is

c—1 . c—2 .
> hy (af —af) > hy (af — O&ﬂ) . ho(af— o)
7=0 7=0 o
= c J = c 1+j c c—1 .
Z hj (ac—l - ac—l) Z hj (Qc—l - ac—l) s hO (ac—l - Ofc—l) Te—2
=0 c—1 ]20072 Te—1
Zoha(c—j) Ohj(c—l—]) ho
j= j=
0
- 0
c—EZ

Now the first ¢ — 1 rows of the matrix above can be divided by (o; — 1), i =
1,2, ..., ¢c—1. Then it leads to

c—1 c—1—j c—2 c—2—j
Shy > astE hy S a5 R 0 hgatT!
j=0 k=0 j=0 k=0 o 0
c—1 c—1—j c—2 c—2—j : — .

h; astlok h; a1 L heatTh Te s 0
j:oc_1 k=0 jc=_02 k=0 o1 c—EZ

Ohj(C—j) Oh](C—l—]) ]’LO
J= J=

12



By making rearrangements using definition of r.v. Z accumulated distribution
x

function H(z) = P(Z < ) = > hy the form presented in is obtained. [
k=0

It is worth mentioning that this matrix system of finding local probabilities 7;
of random variable M, which is actually a Vandermonde-like matrix [8, see p.27|,
can be used if roots of s = I'z(s) has multiplicity higher than one. Then another
theorem can be formulated.

Theorem 3.3. Suppose aq, as, ..., ap_1 are the roots of s = T'z(s) in s < 1 are
of multiplicity | € {2, 3, ..., ¢c— 1}, ¢ = 3. Then modified version of can be
created by replacing its lines, except last one, with the corresponding derivatives and
the main matriz from (14) remains non-singular.

Proof. First of all, let us note that the derivatives
dm c—1 c—1—1
dom <Z7T’ Z OﬂﬂH(i)) =0forallme{0,1,...,1—1},

when [ € {2,3, ..., ¢c— 1}, ¢ > 3 is the multiplicity of the roots of s¢ = I'z(s) in
s < 1.

Then for the simplicity let us state that root oy has multiplicity two and there
exists § € R\ {0} which is a number close to zero. Then matrix (14) with replaced
second line by derivative

Ym0 H () St HG) . afhg
Z;;o(al +O0)YH(j) di—olan+ OV H() ... (a1 +6)"ho
: : : (15)
Zime e H() Yo HG) e aitthe
2 j—o hilc = 3) dimohile=j—=1) ... ho
By substracting second line of the matrix from the first and then dividing it by 9,
when § — 0, it would lead to desired line replacement by derivative. |

13



4 Particular examples

In this section the already defined expressions of survival probabilities and prob-
ability generating functions will be used for practical calculations. Wolfram Mathe-
matica 13.1 was used for various claim distributions, graphs and calculations of exact
values of probabilities. Probability values that are presented in the below tables and
are less than 1 are rounded to four decimal places.

Example 4.1. Suppose the random claim amount Z s distributed according to the
displaced Poisson distribution P(\,r) with parameters X > 0 and r € Ny, if
)\m—r

]P)(Z = m) = 67/\m,

me{r,r+1,... }.

Let c=3 and Z ~ P(3,1).

First of all, it needs to be checked if in this particular example net profit condition
is satisfied, actually

4
]EZ:)\—i—r:g—!—l:l.S < 3.

Further, the expression of probability generating function of random variable Z for
displaced Poisson distribution

o AT o AT

_ Y i =X i
o) =2 e Gy = oo
A0 AL A2
AT (U 17t 274
=e ’s (s 0!—|—S 1!+3 2!+...)
= A.r - (S)\>n =X _r _SA
= € S ZOT =€ S e
= "M, (16)

As it can be seen, applying Taylor series of the exponential function e” in gives a
simplified expression of p.g.f for this example. By the statement provided in Theorem

the equation looks like this:
T,(s) = se®86~D = 3,

By solving it for |s| < 1, s # 1, one non-zero solution is found inside the unit circle
a = -0.54008. Also from the survival probabilities generating function

[y(s) = Z?ZO i Zi;é hi(s® — s'17)
o (1 —5)(s% — 5e08(s=1))

14



Now using formulas @ and let us construct a matrix system

(h1 (o — gf)htrh}gb(a?’ —a?) Iy (oil— a)) (:1)) _ (3 _OEz) '

Solving this system gives the unique solution of (m, m) = (0.93656, 0.04829), where

_ (3-E2)a
O T a—1)
o (3—EZ) (h1 4+ a(hy + hy))
b hi(1—a) '

Then, finally by and relation p(u + 1) = > m; the ultimate time survival proba-

=0
bilities
2 3_EZ
= hy, = hoo(1) + hyp(2) = = 0.77917...,
©(0) ;3 p(r) = hap(1) + hip(2) [ = 077917
(3—EZ)a
1) = mp = ———222 — 0.93656...
(1) = mo e 1) = 0-936%...
3—EZ)(h,+h
p(2) =m+m = ( ) (I + haa) = (.98485...

h?(1—a)

p(u) = hil (@(u —2) - z_: hu—itp(i + 1)) , u =3

As for the finite time survival probabilities, formulas (2]) and (3]) are used. Calculated
results are presented in the Table [I]

1\2\3\u4 5 10 2030

T 0 ‘

1 || 0.8088 | 0.9526 | 0.9909 | 0.9986 | 0.9998 1

2 1] 0.7877 | 0.9419 | 0.9872 | 0.9976 | 0.9996 | 0.9999
3 || 0.7821 | 0.9385 | 0.9858 | 0.9971 | 0.9995 | 0.9999
4

5

0.7803 | 0.9374 | 0.9853 | 0.9969 | 0.9994 | 0.9999
0.7796 | 0.9369 | 0.9850 | 0.9968 | 0.9994 | 0.9999
10 || 0.7792 | 0.9366 | 0.9849 | 0.9968 | 0.9993 | 0.9999
20 || 0.7792 | 0.9366 | 0.9848 | 0.9967 | 0.9993 | 0.9998
30 || 0.7792 | 0.9366 | 0.9848 | 0.9967 | 0.9993 | 0.9998 1

| oo [ 0.7791 | 0.9366 | 0.9848 | 0.9967 | 0.9993 | 0.9998 | 0.9999 |

U (Y (U VNI [N U [

1|1
1|1
1|1
1|1
1|1
1|1
1 (1
111
1|1

[ 1]

Table 1: Finite and ultimate time survival probabilities for the model in Example

15



Example 4.2. Let us consider the model when ¢ = 8 and random claim amount
Z is distributed by Poisson distribution which is displaced Poisson distribution with
r =0, i.e. Z~P(A\0) with parameter A\ =7 and p.q.f.

AT

P(Z=m)=c¢ el

m=0,1,2,....
Starting with an observation on the net profit condition one can notice that
EZ=X=7 < 8.

By using Taylor series of the exponential function e” as in the example above, we
find probability generating function of r.v. Z

0.004F

0.002F

I
05 10

0}
Figure 1: Tz(s) = ™) = 58 for A\ =7.  Figure 2: Roots of I'z(s) = €771 = 8.

The function shown in Figure[l| has seven complex solutions inside the unit circle
|s| < 1 which are shown in Figure [2| figure and their complex values are:

a1 = —0.3161 + 0.0000i, as = —0.2686 — 0.1910i, a3 = —0.26856 + 0.19104,
aq = —0.1161 — 0.3582i, a5 = —0.1161 + 0.3582i, ag = 0.1856 — 0.45384,
a7 = 0.1856 + 0.4538i.

16



Then by Theorem

7o 0.496398
™ 0.100381
s 0.0860687
ms | | 0.0704941
m |~ | 0.0560149 |
s 0.043717
76 0.0338064
7 0.0260431

is the unique solution of

7 ) 1 .

ZooziH(ﬂ Zoﬂ“ () Zoai+6H<j> alhg

Jj= Jj=

7 ) 1 .

S ajH (j) Zoﬂ“ () > 3P H(j) alho | [T 0
=0 =0 ™ 0
S QHG) S odTHG) ... Y adH(G) alhy | | ™ 0

[0 [0 [0 0]

J=0 [ j=0 ! =0 ’ J 7o 7 §—EZ
7 6 6
> hi®—=j) 2 hi(T—1) > hi(2—7)  ho
j=0 j=0 j=0

Once again, the ultimate time survival probability definition imply

8
0) =Y hs_pp(r) = hrp(1) + hep(2) + . .. + hop(0) = 0.3866...
r=1

(1) = mo = 0.4964....,
(2) = mp + m = 0.59678...,
(3) = mp + m + me = 0.6828...,
w(4) =mo + 7 + Mo + w3 = 0.7533...,
(5) = mo + m + w2 + w3 + 14 = 0.8094...
(6) = mo + m + o + w3 + M4 + 75 = 0.8531...,
(7) = mo + m + mo + 73 + M4 + 75 + Mg = 0.88609...,
( ):7To+7T1+7T2+7T3+7T4+7T5+7T6+7T7:0.9129...,

SO(U)Z;O< Zhg (i ) w8

If by Theorem urvival probabilities generating function I',(s) expression in (13)
are divided by (1 — s) then

ZZ:OWZ‘Z 0 s H(j)
—FZ( ) '

17

Fw(s) =



The results of finite and ultimate time survival probabilities for ¢ = 8 are presented

in Table 2L

1\2\3\475\10\20 30 40

T —5

1 || 0.5987 | 0.7291 | 0.8305 | 0.9015 | 0.9467 | 0.9730 | 0.9996 1
2 1| 0.5139 | 0.6437 | 0.7533 | 0.8379 | 0.8985 | 0.9391 | 0.9972 1
3 || 0.4748 | 0.6009 | 0.7107 | 0.7989 | 0.8652 | 0.9125 | 0.9931 1
4
5

0.4521 | 0.5750 | 0.6837 | 0.7730 | 0.8419 | 0.8926 | 0.9884 1
0.4373 | 0.5578 | 0.6653 | 0.7547 | 0.8248 | 0.8775 | 0.9839 | 0.9999
10 || 0.4056 | 0.5199 | 0.6236 | 0.7117 | 0.7829 | 0.8385 | 0.9671 | 0.9992 1
20 || 0.3912 | 0.5022 | 0.6035 | 0.6902 | 0.7610 | 0.8171 | 0.9541 | 0.9976 | 0.9999
30 || 0.3881 | 0.4983 | 0.5989 | 0.6852 | 0.7558 | 0.8119 | 0.9504 | 0.9968 | 0.9998 1

[ oo ][ 0.3866 | 0.4964 | 0.5968 | 0.6828 | 0.7533 | 0.8094 | 0.9484 [ 0.9962 [ 0.9996 | 0.9999

[UN YT BTN U Y

—_ = = = = = =

Table 2: Survival probabilities for ¢ = 8 when claim amount Z ~ P(7,0).

Example 4.3. Let us suppose that discrete-time risk model random claim amount’s
Z distribution is:

ZT o 1] 2 [ 3
P1/8]1/2[5/32]7/32

One can check that net profit condition for premium income rate ¢ = 3 is satisfied

1 1 T 47
EZ=0--4+1--4+2-—4+3- —=—= < 3.
8 * 2 - 32 * 32 32
Now the equation T'z(s) = > h;s; = s© is:
i=0

J— — —2 — p—
s T8 T Tps =5,

and has one root s := a = —0.4 of multiplicity two. Continuing forward, from
Theorem is used. Then the second line of matrix is derivative with respect to o

ho+a(h0+h1) +052(h0+h1 +h2> Oéh0+062(h0+h1) 042]10 o 0
(ho + hl) + 204(]10 + hl + hz) ho + 20é<h0 + h1> ZOého ™ = 0
3h0 + 2h1 + hg 2h0 + h1 ho 9 3—EZ

By solving matrix system above given result (g, 71, ) = (1, 0, 0) with expressions

_ (B3-EZ)? ~ B-EZ)a(hia+ ho(2+a))
= la—12 T n(l—a)? ’
y— (3—EZ)(hia® + h3(1 + 2a) + hoa(hi (2 + ) — hga))‘

Ra — 1)?
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Finally to find ultimate time survival probabilities ¢(u) we notice that

3
0) = hs_ip(i) = hy + hy + ho = 0.78125,

u—1
since p(u) = > m =1, for all u > 1. The expression of ¢(u) p.g.f after making
i=0

required arrangements is:

22—
ESICERU I
Ly(s) = = =13 ls| < 1.

(1—3)(3353 55t —35—5) |

Example 4.4. Let us suppose that discrete-time risk model random claim amount’s
Z distribution is:

Z] 0 1 2 | 3
P|1/64]11/64 | 9/16 | 1/4

In this example let us say that premium income rate is 4. Then

131
EZ = ~>= — 2046875 < 4,
64 <

which states that net profit condition is satisfied. Moving forward,

s, 9, 11 1,
1% 7167 T6a” Tea

By solving equation above it needs to be noticed that the only root s := a = —l

has multiplicity three. By Theorem [3.3] replacing the second and the third lines of a
matrix with the corresponding the first and the second order derivatives we get

ho +aH(1) +a?H(2) + a*H(3) ahy+a?H(1) +a*H(2) o’hg+a®H(1) o3hg
H(1) 4+ 2aH (2) 4+ 3a*H(3) ho +2aH (1) + 30?H(2) 2ahg + 3a>H(1) 3a’hg

2H (2) + 6(3) 2H(1) 4 6aH(2) 2ho + 6aH (1) 6ahg
4h0 + 3h1 + 2h2 + hl 3h0 + 2h1 + hg 2h0 + hl h()
T 0
1 . 0
% 9 o 0
R} 4—EZ
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Once again we find 7;, 1 = 0,1, 2, 3. In fact,

(4 —EZ)o?
To =————3
ho(av — 1)3
- (4 — EZ)O(2(thé + h0(3 + Oé))
" R3(1— a)? ’
- (4 =EZ)a(hia® + 3h§(1 + a) 4+ hoa(hi (3 4 o) — hoa))
2T hd(a—1)3 ’
T3 =(4 —EZ)(h3a® + h3(1 + 3a) + hoh1a®(h1(3 + @) — 2hs) + haa(3hi(1 + @)
1

+ a(hsa — ho(3 + @))))m'

Even though expressions of 7;, ¢ = 0, 1, 2, 3 might seem a bit complex, but calculated
values gives (mg, 1, m2, m3) = (1, 0,0,0). It is worth noticing that probability
generating function’s form is

1
Ly(s) = T3 |s| < 1.
Consequently ¢(1) = I',(0) = 64mho and p(u) = 1, Vu € N. Coming back to
u=20

4
p(0) = hyi=1/4+9/16+11/64 + 1/64 = 1.
r=1
This means that ruin will not occur if initial surplus is higher or even equal to zero
and then modified expression p(u) =1, Vu € Ny.
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5 Conclusions

In this master’s thesis by using theoretical definitions and notations it was re-
viewed that ultimate time survival probabilities for homogeneous discrete-time risk
model can be calculated using the linear equations in the form of Vandermonde-
like matrices. Expressions of survival probabilities are based on probability generat-
ing functions of random variables, in fact, by solving the equation s¢ = I'z(s) and
finding its roots. Based on corollaries, numerical examples were given to illustrate
that different claim amount distributions and even root multiplicity can lead to dif-
ferent numerical results. To avoid complexity of multiple formulas expressions and
to find numerical values of ultimate and finite time survival probabilities Wolfram
Mathematica programming software and language was used. Eventually from the
results given in section [4] it can be noticed and once again ascertained that as the
initial surplus u increases, the survival probability approaches 1 at different rates
depending on the parameter of the claim distribution and income rate.

The obtained results and used techniques can be adapted in any future’s works
on discrete-time risk models and its modifications such as when model is multi sea-
sonal (as in [5]) or when the net profit condition is not satisfied. These are only few
options because model not only can be dependent on random variable or premium
income rate c. A wide variety of possible applications can be used which should not
only dwell on ruin theory.
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Appendix

Calculations were performed as well as graphics were drawn using Wolfram
Mathematica Desktop 13.1 software. All source codes with their outputs and required
comments for the examples in section [ are provided below.

Example source code

In[1]=
Z=PoissonDistribution [4/5]

Out[1]= PoissonDistributionH}

In[2]= h[n_]:=PDF[Z,{n-11}]
In[3]= H[n_]:=CDF[Z,{n-1}]

In[4]=
nsoll = Simplify[Solve [{s*xExp[(8/10)*(s-1)]==s"3, s>-1&&s<0},{s}]]
Out [4]=

5 2
11
Hs - - 5 Pr‘oductLog{ T ] I

In[5]= soll = N[Solve [{s*Exp[(8/10)*(s-1)]==s"3, s>-1&&s<0},s]]
out[5]= {s — —0.540083}

In[6]=
nsol2 = Simplify[Solve [{7m0*(x1*(a~3-a)+x2*x(a~3-a~2))+ml*x1
*(q"3-a"2)==0, mO*x(2*x1+x2)+7w1*xx1==3-D}, {7n0,w1}]1]

Out [6]=
. r (-3+D) o (-3+D) (¥l +xla+x2al
HnE}_;- y 1 ! L1
o ¥x1 -1+ Klzlf—l+|]’] H

In[7]=
sol2 = NSolveValues [{wO*x(h[1]*((-0.540083)"3-(-0.540083))
+h [2]*((-0.540083)"3-(-0.540083)"2))
+m1*h [1]1*((-0.540083)"3-(-0.540083)"~2)==0,
m0*(2xh[1]+h [2])+7m1*h [1]==3-(1.8)}, {70,w1}]
out [71= {{0.936555, 0.0482956} }

In[8]=
pl1]l=s012[[1,1]]
Out[8]= 0.936555

In[9]= p[2]=s012[[1,1]] + sol2[[1,2]]
Out[9]= 0.98485

In[10]= p[0]=h [2]*p[1] + h[1]*¢p[2]
out[101= {0.779179}

In[11]= Do [Print [{N[w[n]l=(1/h[1]1)*(p[n-2] -(Sum[h[n+1-il*p[i],
{iylyn_l}])), 4], n}]: {nysys}]

23



outf11]= {{0.9967}, 3}
{{0.9993}, 4}
{{0.9998}, 5}

In[12]= Do [Print [{N[p[n]l=(1/h[1])*(p[n-2] -(Sum[h[n+1-il*p[i],
{i,1,n-1}1)), 41, n}], {n,10,30,10}]
out[12]1= {{0.9999}. 10}
{{1.0000}, 20}
{{1.0000}, 30}

In[13]=
Do [Print [{N[¢[n,1]1=H[n+2],5],n}], {n,0,53}]

out[13]1= {{0.8088}, 0}

{{0.9526}, 1}

{{0.9909}, 2}

{{0.9986}, 3}

{{0.9998}, 4}

{{1.0000}, 5}

In[14]= Do [Print [{N[¢[n,1]=H[n+2] ,5] ,n}], {n,10,30,10}]
out[14]1= {{1.0000}, 10}

{{1.0000}, 20}

{{1.0000}, 30}

In[15]=
Do[Print [{N[¢[n,T]=Sum[¢[n+3-i,T-11*h[i], {i,0,n+23}],
{n,O’S}’ {T’2,5}]

out[15]1= {{0.7877}, 0, 2}

{{0.9419}, 1, 2}
{{0.9872}, 2, 2}
{{0.9976}, 3, 2}
{{0.9996}, 4, 2}
{{0.9999}, 5, 2}
{{0.7821}, 0, 3}
{{0.9385}, 1, 3}
{{0.9858}, 2, 3}
{{0.9971}, 3, 3}
{{0.9995}, 4, 3}
{{0.9999}, 5, 3}
{{0.7803}, 0, 4}
{{0.9374}, 1, 4}
{{0.9853}, 2, 4}
{{0.9969}, 3, 4}
{{0.9994}, 4, 4}
{{0.9999}, 5, 4}
{{0.7796}, 0, 5}
{{0.9369}, 1, 5}
{{0.9850}, 2, 5}
{{0.9968}, 3, 5}
{{0.9994}, 4, 5}
{{0.9999}, 5, 5}
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Example source code

In[1]=
Z=PoissonDistribution [7]

Out[1]= PoissonDistribution[7]

In[2]= h[n_]:=PDF[Z,n]
In[3]= H[n_] :=CDF[Z,n]

In[4]= EZ = N[Mean[Z]]
Out[4]= 7.

In[5]= c=8
OQut[5]= 8

In[6]=

soll = {s}/.NSolve[{Exp[(7)*(s - 1)]I==s"c, Abs[sl<1}, {s}]
Out [6]=

[{-0.316127+@. i}, {-0.268558 - ©.19102 1},

[-0.268558 +0.19102 i}, {-0.116121 - ©.358237 1},

[-9.116121 + ©.358237 i}, {0.185643 - ©.453889 1}, [0.185643 + ©.453889 1)}

In[7]1= Do [a[il=s011 [[i]], {i,1,7}]
In[8l= Plot [Exp[7(-1+s)]-s"8, {s,-1,0}, PlotRange->{{-1,0},{-.5,.2}2}]

In[9]= ComplexListPlot [Table [al[i]l, {i,1,7}],
PlotStyle->{Directive [Black,PointSize [0.02]]},
PlotRange ->{{-.5,.5},{-.5,.5}}]

In[10]=
sol2 = Chop[NSolveValues [{Sum[p[il*Sum[h[jl*(al[1]~(c)-al1]1~(i+j)),

{j,0,c-1-1}]1,{1i,0,c-1}1==0,
Sum[pl[il*Sum[h[jl*(a[2]~(c)-al2]~(i+j)),
{j,0,c-1-i}]1,{i,0,c-1}1==0,
Sum[p[il*Sum[h[jI*(a 3]~ (c)-al3]~(i+j)),
{j,0,c-1-1i}]1,{1i,0,c-1}]1==0,
Sum[pl[il*Sum[h[jl*(a[4]~(c)-al4]~(i+j)),
{j,0,c-1-i}1,{i,0,c-1}1==0,
Sum[p[il*Sum[h[jl*(a[5]~(c)-al[B]~(i+j)),
{j,0,c-1-1}],{i,0,c-1}1==0,
Sum[pl[il*Sum[h[jl*(al6]~(c)-al6]~(i+j)),
{j,0,c-1-i}]1,{1i,0,c-1}1==0,
Sum[pl[il*Sum[h[jl*(a[7]~(c)-al7]1~(i+j)),
{j,0,c-1-i}]1,{i,0,c-1}1==0,
Sum[p[il*Sum[h[jl*(c-i-j), {j,0,c-1-i}]1,{i,0,c-1}]1==8-EZ},
{pl0],p[1],p[2],p[3]1,p[4],p[5]1,p[6]1,p[7]1}]1]

Out [10]= {{0.496398,0.100381,0.0860687,0.0704941,0.0560149,0.043717,0.0338064,0.0260431}}

In[11]= 70 = sol2[[1,1]]

w1 = sol2[[1,2]]
2 = sol2[[1,3]]
w3 = sol2[[1,4]1]
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w4 = sol2[[1,5]]
w5 = sol2[[1,6]]
76 = sol2[[1,7]1]
m7 = sol2[[1,8]]

out[11]= {0.4964}

out[12]= {0.1004}

out[13]= {0.0861}

Out[14]= {0.0705}

out[151= {0.0560}

out[16]= {0.0437}

out[17]= {0.0338}

out[18]= {0.0260}

In[19]1= ¢ [1]=70
pl[2]=m0+m1
p[3]=m0+m1+72
p[4]=m0+m1+72+73
p[5]=n0+m1+72+7w3+74
p[6]1=m0+m1+m2+7w3+74+75
@l[7]1=m0+m1+72+7w3+74+75+76
@ [8]=m0+m1+7m2+w3+T4+T5+T6+7T
Out[19]= 0.4964

Out[20]= 0.5968
Out[21]= 0.6828
Out[22]= 0.7533
Out[23]= 0.8094
Out[24]= 0.8531
Out[25]= 0.8869
Out[26]= 0.9130

In[27]= ¢ [0]=Sum[h[8-i]*p[i], {i,1,8}]
Out[27]= 0.3866

In[28]= Do [Print [{N[¢[n]l=((1/h[0]1)*(p[n-cl-Sum[h[n-il*p[il,
{i,1,n-1}1)), 41, n}], {n,10,40,10}]
out[28]1= {{0.9484}, 10}
{{0.9962}, 20}
{{0.99961, 30}
{{0.9999}, 40}

In[29]=
Do [Print [{N[¢[n,1]1=H[n+7],4],n}], {n,0,53}]

out[201= {{0.5987}, 0}
{{0.7291}, 1}
{{0.8305}, 2}
{{0.9015}, 3}
{{0.9467}, 4}
{{0.9730}, 5}

In[30]1= Do [Print [{N[¢[n,1]1=H[n+7],4],n}], {n,10,40,10}]
out(301= {{0.9996}, 10}

{{1.0000}, 20}

{{1.0000}, 30}
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{{1.0000}, 40}

In[31]=

Do[Print [{N[¢[n,T]=Sum[¢[n+8-i,T-1]1*h[i],

{n,OJS}J {T,2,5}]

out[31]= {{0.5139}, 0,
{{0.6437}, 1,
{{0.7533}, 2,

{{0.8379},
{{0.8985},
{{0.9391},
{{0.4748},
{{0.6009},
{{0.7107},
{{0.7989},
{{0.8652},
{{0.9125},
{{0.4521},
{{0.5750},
{{0.6837},
{07730},
{{0.8419},
{{0.8926},
{{0.4373},
{{0.5578},
{{0.6653},
{{0.7547},
{{0.8248},
{{0.8775},

ot

RN TR

Ll Rt

2}
2}
2}
2}
2}
2}
3}
3}
3}
3}
3}
3}
4y
4}
4}
4}
4}
4}
5}
5}
5}
5}

5}
5}

in[32]= Do [Print [{N[¢[n,T]=Sum[p[n+8-i,T-11*h[i],

{n,0,5}, {T,10,30,10%}]

out[321= {{0.4056}, 0,
, 10}
b 10}
, 10}
, 10}
, 10}

{{0.5199},
{{0.6236},
{{0.7117},
{{0.7829},
{{0.8385},
{{0.3912},
{{0.5022},
{{0.6035},
{{0.6902},
{{0.7610Y,
{{0.8171},
{{0.3881},
{{0.4983},
{{0.5989},
{{0.6852},
{{0.7558},
{{0.8119},

ot

In[33]= Do [Print [{N[¢[n,T]=Sum[p[n+8-i,T-11*h[i],

—

O N

=)

W N OOtk W

10}

20}

b 20}
, 20}
, 20}
, 20}
, 20}
, 30}
, 30}
, 30}
, 30}

{n,10,40,10%},
out[331= {{0.9972}, 10, 2}

{T,2,5}]
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{i,0,n+71}1,

{i,0,n+7}],

{i,0,n+7}],

4],

4],

4],

n,T}],

n,T}H,

n,T}H,



{{1.0000}, 20, 2}
{{1.0000}, 30, 2}
{{1.0000}, 40, 2}
{{0.9931}, 10, 3}
{{1.0000}, 20, 3}
{{1.0000}, 30, 3}
{{1.0000}, 40, 3}
{{0.9884}, 10, 4}
{{1.0000}, 20, 4}
{{1.0000}, 30, 4}
{{1.0000}, 40, 4}
{{0.9839}, 10, 5}
{{0.9999}, 20, 5}
{{1.0000}, 30, 5}
{{1.0000}, 40, 5}

In[34]= Do [Print [{N[p[n,T]=Sum[p[n+8-i,T-11*h([i],
{n,10,40,10}, {T,10,30,10}]

out3a1= {{0.9671}, 10, 10}
{{0.9992}, 20, 10}
{{1.0000}, 30, 10}
{{1.0000}, 40, 10}
{{0.9541}, 10, 20}
{{0.9976}, 20, 20}
{{0.9999}, 30, 20}
{{1.0000}, 40, 20}
{{0.9504}, 10, 30}
{{0.9968}, 20, 30}
{{0.9998}, 30, 30}
{{1.0000}, 40, 30}

Example source code

In[1]=
h[0]=1/8
h[1]=1/2
h[2]=5/32
h[3]1=7/32
Out[1]= &

Out[2]= §
Out[3]= 5

Out[4]= -

In[5]= EZ = O0xh[0]+1xh [1]+2*xh[2]+3*xh[3]
Out[s]=

In[6]= c=3
Out[6]= 3
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In[7]=
soll = {s}/.NSolve[{(4/32)+(16/32)s+(5/32)s"2-(25/32)s"3==0,
Abs [s]<1}, {s}]
out[71= {{—0.4}, {—0.4}}

In[8]=
nsol2 = Simplify[Solve [{pO*x(hO+a*x(hO+hl)+a~2*x(h0O+h1+h2))+
pl*(a*xhO+a~2* (hO+h1))+p2*a~2*h0==0,
pO*((hO+h1)+2*a*(hO+h1+h2))+pl*(hO+2*a*(h0O+h1l))+
p2*2*xa*xh0==0,
pO* (3%h0+2%h1+h2)+pl*(2%h0+h1)+p2*h0==3-D}, {p0,pl,p2}]]
Out [8]=
[ (-3+D)a* (-3+D) a (hlo-ho (2+0))
Lt he? (-1+a)?
(-3-0) (h1%0?-h6® (1-22) ~hBo (-h2a~hl (2-a)))
he? (-1 o) 1

)

p2 = -

In[9]=
s0l2 = NSolveValues [{w0*(1/8+(-0.4)*(1/8+1/2)+(-0.4)"2%

(1/8+1/2+5/32))+mw1*x((-0.4)*1/8+(-0.4)"2*%(1/8+1/2))+
2% (-0.4)"2%1/8==0, w0*x((1/8+1/2)+2%(-0.4)*(1/8+1/2+5/32))+
m1%(1/8+2%(-0.4)*(1/8+1/2))+m2*2%(-0.4)*1/8==0,
TO*x(3%1/8+2%1/2+5/32)+mw1*(2*%1/8+1/2)+7w2x1/8==3-47/32},
{70,n1,7w2}]

Out[9]=

[{1., 1.11022 %107, -4.16334x 107"} |

Example source code

In[1]=
h[0]=1/64
h[1]=11/64
h[2]=36/64
h[3]=16/64

Out [1]= ()%

11

Out[2]= &7

Out [3]= %
Out [4]= i

In[5]= EZ = O0xh[0]+1*xh[1]+2*xh[2]+3*xh [3]

31
64

Out [6]=

In[6]= c=4
Out[6]= 4

In[7]1=
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soll = {s}/.NSolve[{(16/64)*s~3+(36/64)*xs~2+(11/64)s+(1/64)==s"4,
Abs[s1<1}, {s}]

Out[71= {{s — 711} {s — ,ll}} {s — ,ll}}

In[8]=

nsol2 = Simplify[Solve [{pO*(hO+a*(hO+h1)+a~2%(h0+h1+h2)+a"3
*(hO+h1+h2+h3))+pl*x(a*hO+a~ 2% (h0+h1)+a~3*(h0+h1+h2))
+p2*(a~2*xh0+a~3*(h0O+hl))+p3*a~3*xh0==0,
pO*((hO+h1)+2*xa*(h0O+h1+h2)+3*a~2*x(hO+h1+h2+h3))
+pl*(h0+2*a*(hO+h1)+3*a~2*(h0O+h1+h2))
+p2* (2xa*h0+3*xa~2*x(h0+h1))+p3*3*a~2*h0==0,
pO* (2% (hO+h1+h2)+6*a*(hO+h1+h2+h3))
+pl* (2% (h0+h1)+6*a*(h0O+h1+h2))
+p2*(2xh0+6*a* (hO+hl))+p3*6*a*xh0==0,
pO* (4*h0+3*h1+2%h2+h3)+pl1*(3*xh0+2*xh1+h2)+p2*(2*xh0+h1)
+p3*h0==4-D}, {p0,pl,p2,p3}1]

I (-4 +D) o (-4+D) o? (hla+hd (3+a))
L he (-1 +c)3 he? (-1 + )3
(-4+D) o (h1?a® + 3h@? (1+a) + h@a (-h2a+hl (3+a)) )

E

p2 + -

he® (-1+a)? ’

1
he* (-1+a)3

(-4+D) (h1*o®+h@® (1+30) +hohlo® (-2h2a+hl (3+a)) +

p3 =+
f@zaf3h1f1+a)+a(h3&—h2(3+a)nj}}

In[9]=
sol2 = NSolveValues [{pO0O*(hO+a*(hO+hl)+a~2*(h0+h1+h2)

+a~3*(h0+h1+h2+h3))+pl*(a*h0+a~2*x (hO+hl)+a~3*(hO+h1+h2))
+p2*(a~2*xh0+a~3* (hO0O+h1))+p3*a~3*xh0==0,
pO*((hO+h1)+2*%a*(h0O+h1+h2)+3*a~2*x(hO+h1+h2+h3))
+pl1*(hO+2*xa*(hO+h1)+3*a~2*(h0O+h1+h2))
+p2* (2xa*h0+3*xa~2*x(h0+h1))+p3*3*a~2%xh0==0,
pO* (2% (hO+h1+h2)+6*a*(hO+h1+h2+h3))+pl*x (2% (hO0+hl)
+6*a*x (hO+h1+h2))+p2*(2xh0+6*a* (h0+h1l))+p3*6*a*xh0==0,
pO*(4*h0+3*h1+2*h2+h3)+pl1*(3*xh0+2%xh1+h2)+p2*(2%xh0+h1)
+p3*h0==4-EZ}, {p0,pl,p2,p3}]

outf9l= {{1., 0., 0., 0.}}
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