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Savaranki²kas mokymasis ir jo i�taka skaitymo pasiekimams: Lietuvos

dalyvavimo PISA 2018 analiz
e

Santrauka

Raktiniai ºodºiai: (skaitymo ra²tingumas, savivaldus mokymasis, hierarchinis tiesinis modelis,

duomenu� analiz
e)

�io darbo tikslas buvo i²tirti PISA 2018 metu� Lietuvos duomenis, pritaikyti savivaldaus mokymosi arba

savireguliacijos teorij¡ ir i�vertinti savireguliacijos i�g	udºiu� i�tak¡ ir reik²mingum¡ skaistymo ra²tingumui

Lietuvoje. Tikslui pasiekti buvo pasitelktas dvieju� lygiu� hierarchinis tiesinis modelis. Modelio rezultatai

buvo palyginti su analogi²kais modeliais Latvijai ir Estijai. Rezultatai parod
e tam tikru� savireguliacijos

i�g	udºiu� reik²mingum¡ skaitymo ra²tingumui ir pabr
eº
e Lietuvos skirtumus nuo Latvijos bei Estijos.

Analiz
es rezultatai gali paskatinti toliau tirti aspektus, lemian£ius savireguliacijos i�g	udºiu� skirtumus

bei kod
el Lietuvos moksleiviai ²ioje srityje yra silpnesni.

Self-Regulated Learning and it's E�ect on Reading Achievement:

Analysis of Lithuania's Participation in PISA 2018

Abstract

The aim of this thesis was to investigate the Programme of International Student Assessment (PISA)

2018 data from Lithuania, apply self-regulated learning theory to the data, and evaluate the e�ect and

signi�cance of self-regulated learning skills on reading literacy in Lithuania. This involved building a

two-level hierarchical linear model and comparing the results obtained in Lithuania with those from

Latvia and Estonia. Results revealed signi�cance of certain self-regulated learning elements for reading

literacy, and highlighted Lithuania's di�erences from Latvia and Estonia. The �ndings of this analysis

may lead to further investigation into the speci�c factors that contribute to the di�erences between

Baltic countries in terms of self-regulation, particularly why Lithuanian students tend to be weaker in

this area.

Keywords: (reading literacy, self-regulated learning, hierarchical linear modelling, PISA, data

analysis)
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1 Introduction

The COVID-19 pandemic has presented numerous challenges to children's education, including the

sudden shift to remote learning. This sudden transition has highlighted the vulnerability and lack of

preparedness of educational systems in the face of unexpected changes, leading to negative impacts on

the educational environment, content, and nature. As a result, there is a growing interest in research

to understand the e�ects of these changes on societies, educational systems, and individuals, in order

to better prepare for potential future crises.

In Lithuanian context, an extensive project was carried out to assess and analyse the consequences

of compulsory remote learning imposed during quarantine in Lithuania on children's education and

health [33]. Results of the project indicates decreased motivation to learn, lack of self-learning skills,

lack of digital competence (for students and parents as well), lack of appropriate study conditions,

etc [33]. Participants of the project concludes that remote learning revealed both weaknesses of as

well as possibilities for the education system. Some suggestions for policy makers were also proposed

however, even though the potential of developing self-learning skills was acknowledged [33], this was not

presented as the topic worth paying attention to in the future. Unconventional settings, such as remote

learning during the COVID-19 pandemic, when students had to quickly organize and self-regulate their

learning with little preparation [10], highlight the importance of fostering a more proactive student

role in the learning process. While most would agree that in-person learning is a priority, the current

post-pandemic context and its outcomes suggest that the development of students' skills to study

independently, as well as an examination of how these skills a�ect student achievement, should be

considered important topics for future research.

Self-regulated learning (SRL) has long been recognised as an important contributor to learning

success in various educational contexts, whether online or o�ine [10, 7, 8]. Even though nowadays there

is a large variety of di�erent theoretical constructs and de�nitions of this concept, most de�nitions agree

on the common ground and view self-regulated learning students as metacognitively, motivationally

and behaviourally active participants in their learning process who self-regulate their actions to achieve

speci�c goals [5, 21, 7]. It is a very broad conceptual framework which consists of di�erent strategies

and components. Additionally, there are numerous studies which support the connection between these

strategies and academic achievement [8]. For example, there is evidence that di�erent learning strategies

di�erently a�ect reading comprehension and achievement [14, 36, 11, 15], as well as learning outcomes

in other areas, such as chemistry [34]. Other studies demonstrate the importance of motivational and

behavioural SRL aspects [10, 30, 12, 28, 19].

Programme of International Student Assessment (PISA) is an ongoing worldwide programme which

measures 15 year old student`s performance in three domains: mathematics, science, and reading. The

main aim of this assessment is to measure an extent to which students have acquired the knowledge

and skills of each domain that are essential for full participation in modern societies [23]. Assessment is

carried out in cycles every three years and in each round, one of the three topics is tested in more detail.

In 2018 main domain of the assessment was reading literacy. According to assessment's analytical

framework, individual's reading practices, motivation, attitudes, and awareness of e�ective reading

strategies all contribute signi�cantly to an individual's reading ability. Students who read frequently, are
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interested in reading, feel con�dent in their abilities, and know how to use strategies such as summarizing

or searching for information tend to be more pro�cient in reading. These practices, motivation, and

metacognition are not only potential predictors of reading achievement, but also important goals or

outcomes of education that can drive lifelong learning [23].

Hence, the main goals of this thesis are as follows:

- Investigate dataset of PISA 2018 and �nd out which variables are measuring di�erent self-regulated

learning components

- Apply self-regulated learning theory on PISA 2018 data and evaluate the e�ect and signi�cance

SRL skills had on reading achievement in Programme of International Student Assessment 2018 in

Lithuania by building a two-level hierarchical linear model.

- Compare Lithuanian obtained results with models from Latvia and Estonia.

Final results of this work revealed that use of speci�c learning strategies is signi�cant predictor of

reading literacy in all three countries. Feelings of competence was a signi�cant factor in reading literacy

in Lithuania as well as Latvia and Estonia, with self-e�cacy having no signi�cant e�ect. Enjoyment

of reading was found to be a signi�cant predictor in all three countries, with the e�ect being stronger

in Latvia and Estonia. Negative emotions had a complex relationship with reading literacy, with the

perception of di�culty having a negative impact and fear of failure having a positive impact, particularly

stronger in Latvia and Estonia. The economic, social, and cultural status of a school had a stronger

impact on student performance in Lithuania. Overall, Lithuanian students appeared to be weaker

in terms of self-regulated learning compared to Latvian and Estonian students and this gives more

possibilities for future research.

Next part of the thesis outlines the theoretical framework while the following parts describe data and

methodology used. Finally, the thesis will be concluded by exploratory analysis and model description

together with explained results, conclusions and future implications.

2 Theoretical framework

The theory of self-regulated learning (SRL) developed as a result of the shift towards the belief

that students should actively participate in their own learning process, rather than simply following

instructional theories [7]. SRL as a concept has a number of di�erent theoretical de�nitions and models

but all of them share common assumptions and features [29]. From a social cognitive perspective, self-

regulated learning is seen as the interaction between personal, behavioural, and environmental processes

[1, 4]. It refers to self-generated thoughts, feelings and actions that are planned and adapted for the

attainment of personal goals [4]. In self-regulated learning, students are expected to take an active role

in the learning process and engage in it willingly, rather than simply responding to teaching [9, 3, 4]. In

other words, self-regulated learning involves developing control over the educational process and taking

responsibility for one's own learning in order to achieve speci�c goals. This involves the student setting

learning goals and taking charge of the learning process in order to achieve them [9].

Paul R. Pintrich, an educational psychologist and researcher, developed a more structured theoret-

ical framework for self-regulated learning that combined various concepts associated with SRL into a

single framework [29]. According to Pintrich, self-regulated learning "is an active, constructive process
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where learners set their goals for learning and afterwards attempt to monitor, regulate, and control their

cognition, motivation, and behaviour, guided and constrained by goals and the contextual features in the

environment" [29]. Activities coming from the de�nition can mediate relationships between individuals,

contextual environment and overall achievement [29]. According to Pintrich's framework [29], there are

four main processes involved in self-regulated learning: goal-setting, monitoring, control, and re�ection.

These processes take place across di�erent areas of regulation, such as cognition, motivation, behaviour,

and context. The phases of this framework do not have to occur in a speci�c order or be hierarchi-

cal in structure. In many models and real-life examples, these stages can occur simultaneously [29].

Therefore, this general framework o�ers a taxonomy for the processes and components of self-regulated

learning, which can be used to organize research in a structured manner.

This work adapts and applies two main areas and components of the above described framework -

regulation of cognition and motivation. Both these areas are in detail described in a further subchapters.

Self-regulation of cognition

Cognitive strategies are tools that students can use to learn and acquire knowledge more e�ciently

and they are a key part of self-regulated learning [30]. Some examples of strategies for learning and

retaining information include memorization, note taking, summarizing, and similar techniques. These

strategies can range from simple memory aids to more complex methods for organizing and synthesizing

information [29]. According to Pintrich's framework, di�erent learning strategies can be used as part

of a cognitive control process in which individuals evaluate their thought process and decide whether

to continue using a particular strategy or switch to a di�erent one. These activities involve actively

regulating and modifying one's own cognition in order to better understand and retain information [29].

Therefore, process of selecting and implementing strategies for memory, learning, and problem solving

is a key aspect of the cognitive control process. This involves making decisions about which strategies

to use and how to use them e�ectively in order to achieve one's learning and problem-solving goals [29].

Empirical evidence has shown that selection of appropriate cognitive strategies can have a positive

in�uence on learning results and performance. For example, an analysis of PISA 2009 data from

Shanghai found that metacognitive strategies, such as understanding and remembering, as well as

summarizing, were signi�cantly related to students' reading literacy [36]. These �ndings were also

supported by an analysis of 2018 data conducted in Greece [14]. Similarly, using data from Turkey

in 2009, researchers found that higher-level control and elaboration strategies (as opposed to simple

memorization) had a direct impact on students' enjoyment of reading and their reading scores [11].

Studies mentioned above and many other have found that students who use strategies such as under-

standing and summarizing texts tend to have better reading comprehension and academic achievement.

While the e�ectiveness of these strategies may vary from country to country, the overall trend is clear:

using these strategies can have a positive impact on learning outcomes.

Elements of motivation

Simply being aware of various learning strategies is often not su�cient to promote self-regulation and

improve academic achievement. If an individual lacks the motivation to use their self-regulation skills,
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these skills are of little value [4, 30, 29]. Hence, it is also believed that students' motivational attitudes

and beliefs are related to their academic performance and achievement [30]. Pintrich's framework for

self-regulated learning incorporates a general model of motivation that includes expectancy, value, and

a�ective components. This model is known as the expectancy-value model of motivation [30].

Expectancy component of student motivation includes students' belief that they are capable of

performing a task [30]. Self-e�cacy judgments, or beliefs about one's own ability to perform a task,

can be modi�ed at any point during the learning process based on actual performance, feedback, and

e�orts to regulate these beliefs about one's competence [30]. People who are self-doubters are more

likely to withdraw if they do not believe in their competence to perform a certain task [4]. The more

capable people believe themselves to be, the higher goals they usually set for themselves hence the more

committed they remain while trying to achieve them [4]. There is also empirical evidence to support

these assumptions. For example, research conducted in among Austrian secondary school students

showed that students who believe they are competent tend to be better at managing their time, setting

goals, using metacognitive strategies, and have higher levels of intrinsic motivation [10]. Results from

questionnaire administered to seventh graders in United States revealed that self-e�cacy is positively

related not only to cognitive engagement but to academic performance as well [30].

The value component of student motivation is about the student's goals and interest in the task

[30]. It is believed that students who are more interested in performing a task are more likely to engage

in the metacognitive activity and strategy use which in turn improves their results [30]. Interest in

a speci�c task is linked to increased learning, persistence and e�ort [29]. Some studies suggest that

motivation is one of the most important components of SRL explaining student performance. For

example, Hong Kong study on PISA 2009 concluded that motivation is the most crucial SRL factor

which explains strong performance of Hong Kong students [20]. In a similar way, Chinese study on 2018

data demonstrated that achievement goals contribute to academic performance as well [31]. Finally,

similar �ndings were presented in already mentioned Greek study [14]. Additionally, other evidence

shows that intrinsic value of a task has a positive e�ect on cognitive engagement as well as performance

[30, 14], students who use di�erent learning strategies for reading related tasks are more likely to enjoy

reading as a whole [36] which in turn improves their reading performance [11].

A�ective components of motivation describe emotional reaction to a task [30]. One of the exam-

ples in school learning contexts could be test anxiety, which was found to be a strong predictor of

performance among US seventh graders [30, 29]. However, the student's reactions and its relationship

with achievement is not straightforward. For example, it was observed that students, who are more

anxious before tests, can be as persistent as students with lower anxiety, however they often did not use

appropriate learning strategies [30]. Another a�ective could be perception of how di�cult a particular

task is and how it a�ects task performance [29]. Generally, negative emotions about a speci�c task are

considered to negatively impact performance

To summarize assumptions coming from theoretical framework described above, following hypothe-

ses were raised:

H1: Students who employ various metacognitive strategies and �nd them helpful are more likely

to achieve higher score in reading literacy.

H2: Students who believe in they competence and are self-e�cacious are more likely to achieve
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higher score in reading literacy.

H3: Students who are motivated to master tasks, are mastery goal oriented and enjoy reading are

more likely to achieve higher score in reading literacy.

H4: Students who have negative reactions about speci�c tasks are more likely to be less successful

in reading literacy.

The whole framework described and which will be analysed in this work is also summarised by

Figure 1.

Figure 1: Self-regulated learning framework

3 Data description

The OECD Programme for International Student Assessment (PISA) is an ongoing global assess-

ment conducted every 3 years that aims to assess knowledge and skills of 15-year-old students and

how prepared they are to participate in contemporary societies [23]. PISA evaluates not only student's

ability to recall speci�c information, but also their ability to use what they have learned to solve novel

problems and adapt to new situations [23].

Assessment focuses on three main subjects � reading, mathematics and science � and in each cycle

one of the subjects is tested in more detail. In 2018 the survey focused on reading, while mathematics

and science were assessed as minor domains [23]. The reading assessment included a computer-based

test that featured a combination of multiple-choice questions and open-response questions requiring

students to generate their own responses. Included questions measured students' ability to understand,

use, re�ect on, and engage with written texts in various formats, such as literary and informational

texts, and to think critically and creatively. In addition to the assessment test, students and school

principals also completed a series of questionnaires. The student questionnaire gathered information

about the student's personal characteristics, home life, school and learning experiences. Students were

also asked about their reading habits and attitudes, as well as about the reading-related support and

resources available to them at home and at school. The school questionnaire collected data about the
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school system and learning environment [23].

Further subsections describe main characteristics of 2018 dataset and all of the variables which will

be included in the subsequent analysis.

3.1 Data characteristics

The PISA methodology includes several key components that are essential for accurate analysis of

the survey results. One important aspect is the sampling design, which refers to selecting a represen-

tative group of individuals from the population being studied. Sample weights are also an important

part of the methodology, as they are used to adjust the results of the survey to account for any biases

or imbalances in the sample. Plausible values are another key component of the methodology, which

are derived from the data collected in the survey and are used to improve the accuracy of the esti-

mates produced. All of these components work together to ensure that the survey results are reliable

and accurately re�ect the broader population being studied [22]. All three components mentioned are

described in more detail below.

Sampling design. Instead of simple random sampling, students for the survey are sampled in two

stages [22]. The �rst-stage samples individual schools that had or potentially could have 15-year-old

students at the time of assessment [22, 26]. Before selecting the schools for the sample, they are divided

into distinct groups called explicit strata based on speci�c characteristics of the school. These were

created in order to increase the accuracy of estimates based on a sample [26]. Strata may vary from

country to country, but they usually include di�erent regions and types of schools [16, 26]. Schools

are chosen randomly from within each of these speci�c strata, with the probability of selection being

proportional to the size of the school [16]. Within the selected schools, a simple random sample of

students is then drawn. In PISA, typically 30 or 35 students from the population of 15-year-olds are

randomly selected from within the selected schools [16, 22]. This type of survey design has important

implications for how the data is analysed by secondary users [16].

Sampling weights. In order to accurately represent the full population of students in the PISA

study, the �nal sample of students from each country/economy is chosen randomly, but the selection

probabilities of individual students may vary. To correct for this, survey weights are applied to ensure

that their contribution to the overall population estimate is proportional. These weights, called sam-

pling weights, are used to control the in�uence of each student on the �nal analysis [26, 16]. If the

appropriate weights are not applied to the data, the characteristics of some students or schools may

be overrepresented or under-represented in the analysis, potentially resulting in biased estimates. It

is important to apply weights to ensure that the analysis accurately re�ects the full population being

studied [16].

Plausible values. Rather than providing a single measure to report on student achievement,

PISA survey includes several plausible values [17, 22]. In PISA 2018 10 plausible values for reading

literacy and other domains were reported. In other words, 10 separate variables are included in the

�nal dataset to measure the achievement of the particular domain. Each plausible value represents a

randomly drawn estimate from a distribution of possible values (posterior distribution) for that student

and they are used to account for uncertainty in score estimation [17]. When conducting an analysis

using plausible values, the statistical model or analysis is conducted separately for each value and then
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results are combined. It is not recommended to take the average of the plausible values for use in

analysis [17, 22].

More details on how these components are handled practically during the subsequent analysis will

be provided in a further section dedicated to methodology.

3.2 Key variables

This subchapter details each of the key dependant and independent variable included in the analysis.

The selected variables are combination of di�erent measures collected from reading tests and contextual

questionnaires.

Reading literacy as dependent variable

Since reading is a major domain in 2018's assessment, reading literacy (or reading pro�ciency)

was selected as a dependent or outcome variable in this analysis. According to 2018 assessment's

analytical framework, reading literacy is "understanding, using, evaluating, re�ecting on and engaging

with texts in order to achieve one's goals, to develop one's knowledge and potential and to participate in

society" [23]. The reading literacy assessment administered by PISA evaluates the ability to read and

comprehend various types of texts and complete tasks of varying di�culty levels [24]. Final scores for

reading literacy are provided as a set of 10 separate plausible values (as PV1READ, PV2READ and

etc.).

Independent variables

There are two main types of independent variables used in this analysis: student level and school

level. Student level variables refer to characteristics related to self-regulated learning, speci�cally learn-

ing strategies and motivational elements. School-level variables, on the other hand, refer to character-

istics of the school or educational setting in which survey was taking place.

Learning strategies. 2018 survey included to scenarios which were assessing students cognition

and their use of learning strategies. Two types of strategies were assessed: understanding and remem-

bering, and summarising. Students were asked to evaluate the e�ectiveness of di�erent strategies for

completing a reading task [26]. These strategies were also rated by reading experts through a series of

pairwise comparisons. The resulting hierarchy of strategies for each task was determined based on the

consensus of at least 80% of the experts [26]. Using the hierarchy of strategies generated by the expert

ratings, rules were established to calculate a score for each student based on how often they chose a

more e�ective strategy over a less e�ective one [26]. The �nal derived scores ranges from 0 to 1. The

higher the score, the higher the number of times in which a student chose an expert-validated strategy

over a less useful one [26]. Therefore, the following variables were obtained:

� Understanding and remembering (UNDREM )

� Summarising (METASUM )
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Motivational elements. Variables attributed to motivational elements are part of scale indices,

which were constructed through the scaling of multiple items (questions) [25]. The following motiva-

tional elements were selected:

� Perception of competence in reading (SCREADCOMP) - included three questions about student's

self-perception as a reader. Positive values of the index indicates greater perception of competence

than the OECD average [25].

� Self-e�cacy (RESILIENCE ) - index concerns student's self-e�cacy and belief in their own ca-

pabilities. Positive values of this index mean that student reported higher self-e�cacy than did

average student across all countries participating in the assessment [25].

� Perception of di�culty (SCREADDIFF ) - index consists of questions whether student encoun-

tered any di�culties while performing reading tasks. Positive values represent a higher perception

of di�culty compared to the average of the OECD countries [25].

� Fear of failure (GFOFAIL) - students were asked if they experience feelings of fear or anxiety of

not being successful. Positive values indicate greater fear of failure than did the average student

across OECD countries [25].

� Enjoyment of reading (JOYREAD) - index was created based on questions about whether reading

is a hobby or enjoyable activity for the students. Values above zero indicate that student enjoys

reading to greater extent than the average student across participating countries [25].

� Motivation to master tasks (WORKMAST ) - index was composed of questions about whether

students �nd satisfaction in completing tasks and whether they are motivated to �nish them.

Positive values indicate greater motivation [25]

� Learning goals (MASTGOAL) - index for learning goals was constructed by asking questions

about student's goals and how ambitious they are. Positive values show more ambitious learning

goals than the average student across OECD countries [25].

Additionally, to control for gender e�ect, student-level gender variable was included (MALE ) derived

from the questionnaire and converted to a binary form.

School-level variables. Three variables from a questionnaire administered to school principals

were included to control for school-level e�ect:

� School's economic, social and cultural status (SCHOOL_ESCS ) - average of student's individual

ESCS across a school.

� A type of area in which school is located (WHICH_AREA) - possible values: rural area, small

town, town, city or a large city.

� Public or private school (PUBLIC ) - binary variable, where 0 means that school is public and 1

- private.
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4 Methodology

To address the research questions and achieve the objective of this work, hierarchical linear modelling

approach will be used. Hierarchical linear models (HLM) are used to analyse data that have a nested

or hierarchical structure. This means that the data can be organised into multiple levels, with lower

levels nested within higher levels. This type of data structure is common in many �elds, especially in

education. Considering a hierarchical model when analysing educational data is advisable due to the

fact that, for example, students within the same school tend to be more similar to each other than

students attending di�erent schools. This can help to account for shared factors within a school that

may a�ect student outcomes [18]. Hierarchical linear models allow researchers to take into account the

nested structure of the data and to estimate the e�ects of variables at each level of the hierarchy while

controlling for the other variables at that level and all higher levels [13].

In this thesis, a two-level hierarchical linear modelling approach will be used, with �rst level repre-

senting students and second level representing schools. Typically, HLM is performed in three main steps

[35]. The �rst step is to determine whether hierarchical structure of the data should be considered.

This can be achieved with unconditional (null) model where no student or school characteristics are

included. Mathematical form for unconditional model is as follows:

Yij = γ00 + U0j + rij , i = 1, ...., nj , j = 1, ...., J. (1)

Where Yij represents outcome, γ00 represents the intercept, V ar(rij) = σ2 - within group variance

and V ar(U0j) = τ00 - between group variance [13, 17]. In other words, a one-way analysis of variance

is conducted to determine if the variability in the outcome variable Yij (for person i in school j )

signi�cantly di�ers from zero at di�erent levels of analysis. This tests for the existence of di�erences in

the outcome variable at the group level [13].

Unconditional model is also used to compute the interclass correlation coe�cient (ICC) which has

the following formula:

ICC = τ00/(σ
2 + τ00) (2)

Here τ00 is equal to school-level variance while σ2 is a student-level variance. Coe�cient can be

interpreted as a proportion of variation at level-2 for the given outcome measure [17]. In the context

of the current analysis, it's a proportion of variability in reading literacy at the school level. If, for

example, this measure would be equal to 0, this would mean there is no variation on a school level

hence hierarchical modelling approach is not necessary.

After evaluating unconditional model, separate level-1 models are developed for each level-2 unit.

This type of a models are also called within unit models as they describe the e�ects in a context of

a single group [13]. On level-2, level-1 regression coe�cients are used as outcome variables and are

related to each of the level-2 predictors [13]. The model has the following form [13]:
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Level-1:

Yij = β0j + β1jXij + rij (3)

Level-2:

β0j = γ00 + γ01Gj + U0j (4)

β1j = γ10 + γ11Gj + U1j (5)

Here:

Yij - dependent variable which is measure for the ith level-1 unit nested within j th level-2 unit;

Xij - level-1 predictor;

β0j - intercept for j th level-2 unit;

β1j - regression coe�cient associated with the predictor or slope for the j th level-2 unit;

Gj - value on the level-2 predictor;

rij - random error related to ith level-1 unit nested within j th level-2 unit;

γ00 and γ10 - overall mean intercepts adjusted for G;

γ01 and γ11 - regression coe�cient associated with G relative to level-1 intercept and slope accord-

ingly;

U0j and U1j - random e�ects of the j th level-2 unit adjusted for G on the intercept and slope

accordingly.

Finally, combined two-level model is derived, which contains predictors from both levels. This

model can include both �xed and random e�ects [13]. Generally, random e�ect is any variable where

main interested lays in the distribution of the outcome across all categories, which are modelled as

�xed e�ect [17]. In the case of this analysis, only the intercept is allowed to vary. Finally, combined

model for this particular analysis considering key variables described in a previous chapter will have a

following form:

Yij = γ00 + γ01SHCOOL_ESCSj + γ02WHICH_AREAj + γ03PUBLICj+

γ10MALEij + γ20UNDREMij + γ30METASUMij+

γ40SCREADCOMPij + γ50RESILIENCEij + γ60SCREADDIFFij+

γ70GFOFAILij + γ80JOY READij + γ90WORKMASTij

γ100MASTGOALij + U1jMALEij + U2jUNDREMij + U3jMETASUMij+

U4jSCREADCOMPij + U5jRESILIENCEij + U6jSCREADDIFFij + U7jGFOFAILij+

U8jJOY READij + U9jWORKMASTij + U10jMASTGOALij + U0j + rij . (6)

The fact that the outcome variable is not an assigned single score but rather a set of 10 plausible

values adds additional complexity to the analysis. It is important to carefully consider the correct

approach for analyzing data with plausible values, as common mistakes such as using only one value

or the mean of the plausible values as a single estimate of achievement can lead to underestimation
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of the standard errors of estimated statistics [2]. Therefore, in this study, analysis will be conducted

separately for each of the 10 plausible values [2, 17]. To compute the point estimate of a speci�c

statistic, statistic will be computed once for each plausible value and then the average will be taken.

Therefore, the same model will be estimated 10 times.

Another thing to consider before conducting the hierarchical analysis, is the use of sampling weights.

PISA 2018 provides both school-level wi and student-level wij weights that can be used to correctly

analyse speci�c populations [18]. However, when analysing data from multiple levels at the same time,

these weights need to be used or adapted di�erently in order to accurately account for the hierarchical

structure of the data [18]. Using only the �nal student weight is not su�cient for multilevel analysis

and using unscaled student weights may result in biased variance estimates [18]. Hence, to properly

incorporate weights into hierarchical analysis, it may be necessary to scale the level one weights.

In this analysis, �nal student weights were scaled using cluster weights approach. This approach

was found to be one of the least biased across di�erent options [18, 2]. Here, on level-1, weights are

scaled up to add up to the cluster size [18, 2]. Cluster weight for student i in school j was computed

in the following way:

W ∗
ij = Wij

nj∑
jWij

(7)

Here Wij is the total student weight, nj is the student sample size in school j and
∑

jWij is the

sum of total student weights in school j [2]. For the second school-level, available in the dataset school

weights will be used.

Finally, analysis will be conducted using WeMix package from statistical software R, which is used

to to �t hierarchical linear models. This package was found to be more bene�cial in comparison with

other due to it's ability to apply sampling weights at multiple levels of the analysis [27].

5 Results

5.1 Exploratory analysis

To begin with, general descriptive statistics are calculated from the data. In Lithuania, total sample

size was 6885 observations with 362 schools. Mean reading literacy score is equal to 475.87 (see Table

1). In comparison to other Baltic countries, Latvia has a mean reading literacy score of 478.7 based

on a sample of 5303 individuals from 308 schools. Estonia, on the other hand, had the highest mean

reading performance score of 523.02, with a sample size of 5316 individuals from 230 schools (see Table

1).

Country Freq Mean SE SD SE
LTU 6885 475.87 1.52 94.3 1
LVA 5303 478.7 1.62 90.03 1.07
EST 5316 523.02 1.84 93.21 1.18

Table 1: Mean achievement score and standard error in each country
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Graphical representation of mean reading literacy score di�erences in each school and each country

can be observed in Figure 2.

Figure 2: Mean reading literacy scores by school

Table 2 shows di�erences in the mean of reading literacy between female and male students. Trend

towards female students being more successful in reading literacy can be observed.

Lithuania Latvia Estonia
Frequency Mean Frequency Mean Frequency Mean

Female students 3377 495.63 2685 494.84 2651 538.35
Male students 3508 456.97 2618 462.04 2665 507.7

Table 2: Mean reading literacy distribution among female and male students

Table 3 describes percentages of students at di�erent pro�ciency levels. PISA scales are divided

into 6 levels, where simplest tasks correspond to level 1 (at or above 357.77 in Table 3) and tasks which

are the most challenging correspond to level 6 (at or above 669.3 in Table 3) [24]. Table 3 indicates

that the distribution of pro�ciency levels in Lithuania is similar to that of Latvia, while Estonia has a

higher proportion of students achieving higher levels of pro�ciency.

Lithuania Latvia Estonia
Benchmark Percentage SE Percentage SE Percentage SE

At or above 357.77 88.5 0.53 90.39 0.57 95.88 0.38
At or above 420.07 71.73 0.82 73.29 0.77 86.27 0.68
At or above 482.38 48.7 0.84 49.28 0.89 66.93 1.02
At or above 544.68 24.55 0.62 24.14 0.81 41.25 0.85
At or above 606.99 7.9 0.37 7.75 0.47 18.8 0.7
At or above 669.3 1.33 0.2 1.25 0.2 5.77 0.49

Table 3: Share of students by reading literacy pro�ciency levels

Additionally, statistics of mean reading literacy in di�erent types of areas and cities can be observed
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in Table 4. From there it appears that students from schools which are located in rural areas tend to

have lower academic achievement compared to those in larger cities.

Lithuania
Freq Mean s.e. SD s.e

Rural area 1342 427.01 4.66 89.04 2.19
Small town 1488 470.57 3.43 86.67 2.09

Town 1355 477.09 4.13 90.92 2.38
City 2700 504.65 2.85 91.35 1.78

Latvia
Rural area 756 445.94 4.64 84.46 2.15
Small town 1305 466.63 3.43 83.22 2.32

Town 1528 481.73 2.76 89.75 1.99
City 1551 497.54 3.06 89.93 1.98

No response 163 528.28 9.31 88.68 5.71
Estonia

Rural area 930 517.34 5.02 95.9 2.39
Small town 1210 515.7 3.03 86.75 1.94

Town 1532 517.46 3.22 91.5 2.21
City 1644 536.82 3.43 95.12 1.72

Table 4: Mean achievement score by area type in which school is located

Finally, missing value analysis was conducted. It determined that the most appropriate and straight-

forward method for handling these missing values was list-wise deletion since this did not results in

a signi�cant loss of data. After implementing list-wise deletion, we were left with the �nal datasets

that were used for the analysis. Final Lithuanian sample contains 357 schools with 5618 observations,

Latvian sample - 289 schools with 4158 observations and Estonian sample - 229 schools with 4638

observations.

5.2 Modelling self-regulated learning and reading literacy in Lithuania

Table 5 shows the results of a two-level hierarchical linear model (HLM) that was used to examine

the relationship between reading literacy and components of self-regulated learning in Lithuania. The

model includes both school- and student-level variables as predictors, and reading achievement as the

dependent or outcome variable. Student-level predictors include components of self-regulated learning

while school-level predictors include school type, area in which school is located and average school's

economic, social and cultural status.

Model 1 in table 5, or unconditional model, estimated variance at both student and school levels.

The estimate of the intercept γ̂00 is equal to 455.995 and indicates the mean reading achievement for

the overall sample. Student-level variance estimate σ̂2 is equal to 5860.445 and school-level variance

estimate τ̂00 is 2272.123. Interclass correlation coe�cient (ICC) is equal to 0.28 which indicates that

around 28% of di�erence in student results can be attributed to school-level variation. The estimates

of the unconditional model suggest that there may be factors at the student and school levels that are

contributing to the variance in reading literacy, and therefore, the hierarchical structure of the data

should be taken into account. Hence, hierarchical linear modelling approach is applicable in this case.
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Unconditional model in table 5 was expanded by including predictors from student-level (Model 2 in

table 5) which are related to self-regulated learning, speci�cally regulation of cognition and motivation.

Addition of these predictors improved ICC value from 0.28 to 0.23 however variance coming from

di�erences between schools remained relatively high. Hence, combined model (Model 3 in table 5) with

school-level predictors was build. Additional predictors reduced variance unexplained by school-level

factors to 10% (ICC=0.1 ). Improved model �t is also demonstrated by reduced AIC and BIC values.

E�ects of di�erent predictors were estimated as well. Components of cognition or usage of speci�c

learning strategies had a strongest positive e�ect on reading achievement from all self-regulated learning

components for Lithuanian students. Out of two strategies,METASUM had a stronger signi�cant e�ect

with p < .001. An increase of one unit in the index of usefulness of using summarizing as a reading

strategy will result in a 17.458 point increase in a student's reading score. Hence, hypothesis number

1 is con�rmed.

Out of 7 indexes related to student motivation included in the model, 4 were found to be statistically

signi�cant predictors. The index of perception of competence in reading tasks (SCREADCOMP) had

a strongest positive relationship, with e�ect size of 16.355 and p < .01. As expected, one unit increase

in the index of perceived di�culty in reading (SCREADDIFF ) will result in reading score reduced by

9.131 with p < .001. However, index of fear of failure (GFOFAIL) had, although not very strong, but a

positive e�ect of 1.944, with p < .05. Enjoyment of reading (JOYREAD) was found to have a positive

e�ect on reading score as well with p < .001, however only by 4 points. Additionally, controlling for

the gender variable (MALE ) revealed a negative e�ect on reading literacy score with p < .01. Being

a male student reduces reading score by 8.7. Student's index of resilience (RESILIENCE ), motivation

to master tasks (WORKMAST ) and goal setting (MASTGOAL) were rejected as having no signi�cant

relationship with reading achievement with p > .05. In this case, hypotheses number 2, 3 and 4 were

con�rmed only partially since not all variables related to self-e�cacy and motivation were signi�cant

or had a desired e�ect.

The only signi�cant school-level variable was average school's economic, social and cultural status

(SCHOOL_ESCS ), with p < .001. It had the strongest e�ect size from all predictors. One unit increase

in school's ESCS leads to 61 point improvement in reading score.

Further subchapter compares results described above with the analogous models build for Latvia

and Estonia.
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Lithuania
Model 1 Model 2 Model 3

Intercept 455.995*** (3.35) 468.210*** (3.28) 476.8*** (8.58)
MALE - -7.279** (2.76) -8.7** (2.74)

Regulation of cognition

UNDREM - 11.717*** (1.39) 11.046*** (1.39)
METASUM - 18.097*** (1.39) 17.458*** (1.38)

Regulation of motivation

JOYREAD - 4.836*** (1.22) 4.053*** (1.20)
RESILIENCE - 2.187 (1.74) 2.119 (1.70)

SCREADCOMP - 16.485*** (1.43) 16.355** (1.42)
SCREADDIFF - -9.172*** (1.17) -9.131*** (1.17)
GFOFAIL - 1.940* (0.97) 1.944* (0.96)

WORKMAST - -2.896 (1.51) -2.481 (1.48)
MASTGOAL - 0.523 (1.40) 0.708 (1.41)

School level variables

WHICH_AREA - - 0.99 (2.09)
PUBLIC - - 10.708 (11.23)

SCHOOL_ESCS - - 61.629*** (6.59)

Level 1 variance 5860.449 4587.414 4549.864
Level 2 variance 2272.123 1394.673 513.4475

ICC 0.28 0.23 0.1
N (schools) 357 357 357
Observations 5618 5618 5618

AIC 65458.41 64008.86 63670.62
BIC 65471.67 64081.83 63763.49
Notes: Standard errors are in parentheses. * p<.05. **p<.01. *** p<.001.

Table 5: Results from two-level hierarchical linear model on Lithuania's reading achievement in PISA
2018.

5.3 Model comparison with Latvia and Estonia

Table 6 summarizes the results from analogous two-level hierarchical linear model performed for

Latvia and Estonia. In both cases, the intercepts from the unconditional model are higher compared

to Lithuania's (see Model 1 in table 6 for Latvia and Estonia). This is probably because Latvia and

Estonia had a higher mean score for reading achievement in the 2018 assessment overall. Estimated

variance at school-level is much lower than in Lithuania. 12% and 15% of variance is attributed to

schools in Latvia and Estonia respectively (see Model 1 in table 6 for Latvia and Estonia) compared

to 28% in Lithuania. Hence, the majority of variance is explained by the student related factors within

schools. When controlling for school level predictors, ICC values reduced to very small - 0.04 and 0.07

respectively (see Model 3 in table 6 for Latvia and Estonia).

The results from the combined model in some cases di�ered from those of the model built for Lithua-

nia. Motivational components of self-regulated learning, such as enjoyment of reading (JOYREAD),

perceived competence (SCREADCOMP), and fear of failure (GFOFAIL), appear to be stronger pre-

dictors of reading literacy in both countries, with p < .01. In Latvia's case, one unit change in index
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for the enjoyment of reading leads to 11.955 point increase in reading score. In Estonia, this e�ect size

is even bigger and equal to 13.256. Index of competence perception in Latvia has a strongest positive

e�ect from all three countries. In comparison with Lithuania and Latvia, index of fear of failure has

a strongest positive e�ect in Estonia. One point shift in this index leads to reading score increasing

by 6.889. Additionally, unlike in Lithuania, gender has no signi�cant e�ect on reading score. And in

a similar manner, student's index of resilience (RESILIENCE ), motivation to master tasks (WORK-

MAST ) and goal setting (MASTGOAL) were rejected as having no signi�cant relationship with reading

achievement Latvia and Estonia as well, with p > .05.

As in Lithuania's case, the only signi�cant school-level variable was found to be average school's

social, economic and cultural status (SCHOOL_ESCS ). However, the e�ect sizes of this predictor in

both countries were much lower compared to Lithuania's: 35.218 in Latvia and 47.773 in Estonia.

Latvia Estonia
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Intercept 476.85*** (2.844) 488.754*** (2.53) 487.526*** (6.08) 528.565*** (3.63) 523.237*** (3.29) 532.546*** (7.24)
MALE - -4.558 (3.43) -5.444 (3.40) - 4.120 (4.95) 3.512 (4.94)

Regulation of cognition

UNDREM - 14.007*** (1.20) 13.451*** (1.22) - 12.989** (1.37) 12.824*** (1.36)
METASUM - 18.463*** (1.55) 18.125*** (1.55) - 19.476** (1.49) 19.143*** (1.51)

Regulation of motivation

JOYREAD - 12.964*** (1.71) 11.955*** (1.73) - 13.587** (1.61) 13.256*** (1.61)
RESILIENCE - 1.919 (2.50) 1.296 (2.48) - 2.878 (1.49) 2.586 (1.43)

SCREADCOMP - 21.7054*** (2.16) 21.48*** (2.17) - 20.079*** (1.72) 19.928*** (1.70)
SCREADDIFF - -10.076*** (1.72) -9.961*** (1.73) - -9.499*** (1.62) -9.314*** (1.61)
GFOFAIL - 4.732** (1.60) 4.545** (1.59) - 7.219*** (1.40) 6.889*** (1.38)

WORKMAST - 3.037 (1.58) 3.12* (1.58) - -1.372 (1.59) -1.309 (1.58)
MASTGOAL - -3.748* (1.73) -3.288 (1.70) - -0.167 (1.57) -0.411 (1.56)

School level variables

WHICH_AREA - - 1.948 (1.81) - - -4.228* (2.06)
PUBLIC - - -20.549 (29.13) - - -13.485 (12.54)

SCHOOL_ESCS - - 35.218*** (5.77) - - 47.773*** (7.03)

Level 1 variance 6429.012 4416.22 4414.822 6679.51 4804.122 4791.932
Level 2 variance 885.929 437.2074 203.5267 1184.61 630.479 369.538

ICC 0.12 0.09 0.04 0.15 0.11 0.07
N (schools) 289 289 289 229 229 229
Observations 4158 4158 4158 4638 4638 4638

AIC 48596.11 46984.59 46871.58 54365.92 52801.94 52716.52
BIC 48608.78 47054.25 46960.24 54378.8 52872.81 52806.71

Notes: Standard errors are in parentheses. * p<.05. **p<.01. *** p<.001.

Table 6: Results from two-level hierarchical linear model in Latvia and Estonia

6 Conclusions

The main goals of this thesis were to investigate the Programme of International Student Assessment

(PISA) 2018 data from Lithuania, apply self-regulated learning theory to the data, and evaluate the

e�ect and signi�cance of self-regulated learning skills on reading literacy in Lithuania. This involved

building a two-level hierarchical linear model and comparing the results obtained in Lithuania with

those from Latvia and Estonia. The results of this work can be summarised as follows:

1. Exploratory analysis of the PISA 2018 revealed that Lithuania had the lowest mean reading

score between three Baltic countries with Latvia being a close second. Estonia is an outlier with being

on a higher level on a pro�ciency scale. Closer look to gender di�erences reveal that female students
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has a higher average reading score in all three countries. Another common similarity is that students

who attend school in a bigger cities tend to score higher on average than those living in smaller towns

or rural areas. Initial exploratory analysis indicates Lithuania and Latvia being more similar to each

other in terms of achievement levels and characteristics.

2. In Lithuania, learning strategies were found to be signi�cant predictors of reading literacy. This

supported theoretical assumptions [30, 29, 4] as well as �ndings from Shanghai [36], Greece [14] and

Turkey [11]. These �nding were also supported by models build for Latvia and Estonia, which con�rmed

that use of metacognitive strategies is important in attaining a higher score in reading.

3. Feeling competent was found to be a signi�cant factor in success in achievement in Lithuania.

This supports previous assumptions made by Pintrich and Zimmerman [30, 29, 4] and �ndings from

research conducted in Austria [10]. Additionally, feeling competent in reading was a stronger predictor

of success in Latvia and Estonia compared to Lithuania. However, self-e�cacy was not found to be

a signi�cant factor in Lithuania, Latvia, or Estonia, which contradicts previous research �ndings in

United States as well as theoretical assumptions [30, 29, 4].

4. Enjoyment of reading was found to be a signi�cant predictor of reading literacy in Lithuania.

This �nding supports previous research [30, 36, 11]. Furthermore, the e�ect of enjoyment of reading on

literacy was stronger in Latvia and Estonia compared to Lithuania. However, in contrast to previous

�ndings from China [31] and Greece [14], motivation to master tasks and goal orientation were not

found to be signi�cant predictors of reading literacy in Lithuania or the other Baltic countries, which

is a surprising result. Overall, enjoyment of reading appears to be an important factor in predicting

reading literacy in the Baltic region.

5. The results on the e�ects of negative emotions on reading performance con�rm that the rela-

tionship is not straightforward [30]. As expected, the perception of di�culty had a negative impact on

reading literacy scores in Lithuania, and a similar e�ect was observed in Latvia and Estonia. However,

fear of failure was found to have a positive impact, stronger in Latvia and Estonia. This suggests that

certain negative emotions may make students more determined and focused on succeeding.

6. The economic, social, and cultural status of a school had a stronger impact on student per-

formance in Lithuania compared to the other two countries. This is also con�rmed by comparing

characteristics of all three models, where unexplained variance on a school-level (Table 5, Model 1 ) was

much higher in Lithuania than in other two countries (Table 6).

7. To summarize, while some self-regulated learning components had an e�ect on reading literacy

for Lithuanian students in PISA 2018, overall, Lithuanian students appear to be weaker in terms of self-

regulated learning compared to Latvian and Estonian students, as evidenced by the smaller e�ect sizes

of these components in Lithuania. This �nding supports the results of a study conducted after the �rst

quarantine in Lithuania, which found that Lithuanian students struggled with certain self-regulation

skills while studying remotely [33]. Therefore, the results of this analysis may possibly prompt further

research into the speci�c factors that contribute to these di�erences between Baltic countries and why

Lithuanian students tend to be weaker at self-regulation, as well as potential ways to improve it.
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7 Appendix A: R script

In the script printed here only part for combined model is present. Unconditional and only student-
level models were following similar structure. Full script, with unconditional and student-level model as
well as exploratory analysis can be hound here: https://github.com/k4rinaa/MasterThesis/blob/main/KarinaSilkinaFT2023.R
and in a separate �le attached.

library("intsvy")

library("WeMix")

## Data import and adjustment of certain variables, their naming

pisa2018_all <- pisa.select.merge(folder = file.path(getwd(), "PISA 2018"),

school.file = "CY07_MSU_SCH_QQQ.sav",

student.file = "CY07_MSU_STU_QQQ.sav",

student = c("CNT",

"CNTSCHID",

"STRATUM",

"ST004D01T",

"ESCS",

"UNDREM",

"METASUM",

"JOYREAD",

"SCREADCOMP",

"SCREADDIFF",

"WORKMAST",

"GFOFAIL",

"RESILIENCE",

"MASTGOAL"),

school = c("CNTSCHID",

"SC001Q01TA",

"SC013Q01TA",

"SCHSIZE",

"W_SCHGRNRABWT"),

countries = c("LTU", "LVA", "EST"))

# Which area school is located in (town, small town, village, etc.)

pisa2018_all$WHICH_AREA <- pisa2018_all$SC001Q01TA

# Public or private school adjusted

pisa2018_all$PUBLIC <- NA

pisa2018_all$PUBLIC[pisa2018_all$SC013Q01TA==1] <- 0

pisa2018_all$PUBLIC[pisa2018_all$SC013Q01TA==2] <- 1

# Adjusting Gender variable (1=female, 2=male) (converting to binary) - MALE

pisa2018_all$MALE <- NA

pisa2018_all$MALE[pisa2018_all$ST004D01T==1] <- 0

pisa2018_all$MALE[pisa2018_all$ST004D01T==2] <- 1

23



## Separate datasets for each country

# Lithuania

pisa2018 <- pisa2018_all[pisa2018_all$CNT=='LTU',]

# Latvia

pisa2018_LVA <- pisa2018_all[pisa2018_all$CNT=='LVA',]

# Estonia

pisa2018_EST <- pisa2018_all[pisa2018_all$CNT=='EST', !grepl("GLCM", names(pisa2018_all))]

## Calculation of cluster weights

# CLUSTER WEIGHT - LTU

# Student sample size in school j

pisa2018 <- pisa2018 %>%

group_by(CNTSCHID) %>%

mutate(count = n())

# Sum of total student weights in school j

pisa2018 <- pisa2018 %>%

group_by(CNTSCHID) %>%

mutate(w_st_total_j = sum(W_FSTUWT))

# Cluster weight for student i in school j:

cluster_weight <- (pisa2018$count/pisa2018$w_st_total_j)*pisa2018$W_FSTUWT

pisa2018 <- cbind(pisa2018, cluster_weights=cluster_weight)

pisa2018 <- as.data.frame(pisa2018)

#--------------------------------#

# CLUSTER WEIGHT - LVA

# Student sample size in school j

pisa2018_LVA <- pisa2018_LVA %>%

group_by(CNTSCHID) %>%

mutate(count = n())

# Sum of total student weights in school j

pisa2018_LVA <- pisa2018_LVA %>%

group_by(CNTSCHID) %>%

mutate(w_st_total_j = sum(W_FSTUWT))

# Cluster weight for student i in school j:

cluster_weight <- (pisa2018_LVA$count/pisa2018_LVA$w_st_total_j)*pisa2018_LVA$W_FSTUWT

pisa2018_LVA <- cbind(pisa2018_LVA, cluster_weights=cluster_weight)

pisa2018_LVA <- as.data.frame(pisa2018_LVA)

#--------------------------------#
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# CLUSTER WEIGHT - EST

# Student sample size in school j

pisa2018_EST <- pisa2018_EST %>%

group_by(CNTSCHID) %>%

mutate(count = n())

# Sum of total student weights in school j

pisa2018_EST <- pisa2018_EST %>%

group_by(CNTSCHID) %>%

mutate(w_st_total_j = sum(W_FSTUWT))

# Cluster weight for student i in school j:

cluster_weight <- (pisa2018_EST$count/pisa2018_EST$w_st_total_j)*pisa2018_EST$W_FSTUWT

pisa2018_EST <- cbind(pisa2018_EST, cluster_weights=cluster_weight)

pisa2018_EST <- as.data.frame(pisa2018_EST)

## Missing values analysis

# How many missing values?

sum(is.na(pisa2018))

sum(is.na(pisa2018_LVA))

sum(is.na(pisa2018_EST))

# How many missing values by column?

colSums(is.na(pisa2018))

colSums(is.na(pisa2018_LVA))

colSums(is.na(pisa2018_EST))

# Which columns have missing values?

names(which(colSums(is.na(pisa2018))>0))

names(which(colSums(is.na(pisa2018_LVA))>0))

names(which(colSums(is.na(pisa2018_EST))>0))

## Handling missing values

# Omitting NA values by listwise deletion

pisa2018_2 <- na.omit(pisa2018)

pisa2018_2_LVA <- na.omit(pisa2018_LVA)

pisa2018_2_EST <- na.omit(pisa2018_EST)

#--------------------------------#

# Create variable for average school ESCS

pisa2018final <- pisa2018final %>%

group_by(CNTSCHID) %>%

mutate(SCHOOL_ESCS = mean(ESCS))
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pisa2018final_LVA <- pisa2018final_LVA %>%

group_by(CNTSCHID) %>%

mutate(SCHOOL_ESCS = mean(ESCS))

pisa2018final_EST <- pisa2018final_EST %>%

group_by(CNTSCHID) %>%

mutate(SCHOOL_ESCS = mean(ESCS))

### Modelling part

##### Final combined model

########## Lithuania #######

model2_pv1 <- mix(PV1READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv2 <- mix(PV2READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv3 <- mix(PV3READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv4 <- mix(PV4READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv5 <- mix(PV5READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv6 <- mix(PV6READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv7 <- mix(PV7READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv8 <- mix(PV8READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

model2_pv9 <- mix(PV9READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),
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data = pisa2018final)

model2_pv10 <- mix(PV10READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final)

## COEFFICIENTS

# Averages from all 10 PVs

model2_coef <- rowMeans(cbind(model2_pv1$coef, model2_pv2$coef, model2_pv3$coef,

model2_pv4$coef, model2_pv5$coef,

model2_pv6$coef, model2_pv7$coef, model2_pv8$coef,

model2_pv9$coef, model2_pv10$coef))

round(as.data.frame(model2_coef), 3)

## SE

M <- 10

se_coef1 <- mean(model2_pv1$SE[1], model2_pv2$SE[1], model2_pv3$SE[1], model2_pv4$SE[1],

model2_pv5$SE[1],

model2_pv6$SE[1], model2_pv7$SE[1], model2_pv8$SE[1], model2_pv9$SE[1],

model2_pv10$SE[1])+(1+(1/M))*var(

c(model2_pv1$coef[1], model2_pv2$coef[1], model2_pv3$coef[1],

model2_pv4$coef[1],

model2_pv5$coef[1], model2_pv6$coef[1], model2_pv7$coef[1],

model2_pv8$coef[1],

model2_pv9$coef[1], model2_pv10$coef[1]))

se_coef2 <- mean(model2_pv1$SE[2], model2_pv2$SE[2], model2_pv3$SE[2], model2_pv4$SE[2],

model2_pv5$SE[2],

model2_pv6$SE[2], model2_pv7$SE[2], model2_pv8$SE[2], model2_pv9$SE[2],

model2_pv10$SE[2])+(1+(1/M))*var(

c(model2_pv1$coef[2], model2_pv2$coef[2], model2_pv3$coef[2],

model2_pv4$coef[2],

model2_pv5$coef[2], model2_pv6$coef[2], model2_pv7$coef[2],

model2_pv8$coef[2],

model2_pv9$coef[2], model2_pv10$coef[2]))

se_coef3 <- mean(model2_pv1$SE[3], model2_pv2$SE[3], model2_pv3$SE[3], model2_pv4$SE[3],

model2_pv5$SE[3],

model2_pv6$SE[3], model2_pv7$SE[3], model2_pv8$SE[3], model2_pv9$SE[3],

model2_pv10$SE[3])+(1+(1/M))*var(

c(model2_pv1$coef[3], model2_pv2$coef[3], model2_pv3$coef[3],

model2_pv4$coef[3],

model2_pv5$coef[3], model2_pv6$coef[3], model2_pv7$coef[3],

model2_pv8$coef[3],
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model2_pv9$coef[3], model2_pv10$coef[3]))

se_coef4 <- mean(model2_pv1$SE[4], model2_pv2$SE[4], model2_pv3$SE[4], model2_pv4$SE[4],

model2_pv5$SE[4],

model2_pv6$SE[4], model2_pv7$SE[4], model2_pv8$SE[4], model2_pv9$SE[4],

model2_pv10$SE[4])+(1+(1/M))*var(

c(model2_pv1$coef[4], model2_pv2$coef[4], model2_pv3$coef[4],

model2_pv4$coef[4],

model2_pv5$coef[4], model2_pv6$coef[4], model2_pv7$coef[4],

model2_pv8$coef[4],

model2_pv9$coef[4], model2_pv10$coef[4]))

se_coef5 <- mean(model2_pv1$SE[5], model2_pv2$SE[5], model2_pv3$SE[5], model2_pv4$SE[5],

model2_pv5$SE[5],

model2_pv6$SE[5], model2_pv7$SE[5], model2_pv8$SE[5], model2_pv9$SE[5],

model2_pv10$SE[5])+(1+(1/M))*var(

c(model2_pv1$coef[5], model2_pv2$coef[5], model2_pv3$coef[5],

model2_pv4$coef[5],

model2_pv5$coef[5], model2_pv6$coef[5], model2_pv7$coef[5],

model2_pv8$coef[5],

model2_pv9$coef[5], model2_pv10$coef[5]))

se_coef6 <- mean(model2_pv1$SE[6], model2_pv2$SE[6], model2_pv3$SE[6], model2_pv4$SE[6],

model2_pv5$SE[6],

model2_pv6$SE[6], model2_pv7$SE[6], model2_pv8$SE[6], model2_pv9$SE[6],

model2_pv10$SE[6])+(1+(1/M))*var(

c(model2_pv1$coef[6], model2_pv2$coef[6], model2_pv3$coef[6],

model2_pv4$coef[6],

model2_pv5$coef[6], model2_pv6$coef[6], model2_pv7$coef[6],

model2_pv8$coef[6],

model2_pv9$coef[6], model2_pv10$coef[6]))

se_coef7 <- mean(model2_pv1$SE[7], model2_pv2$SE[7], model2_pv3$SE[7], model2_pv4$SE[7],

model2_pv5$SE[7],

model2_pv6$SE[7], model2_pv7$SE[7], model2_pv8$SE[7], model2_pv9$SE[7],

model2_pv10$SE[7])+(1+(1/M))*var(

c(model2_pv1$coef[7], model2_pv2$coef[7], model2_pv3$coef[7],

model2_pv4$coef[7],

model2_pv5$coef[7], model2_pv6$coef[7], model2_pv7$coef[7],

model2_pv8$coef[7],

model2_pv9$coef[7], model2_pv10$coef[7]))

se_coef8 <- mean(model2_pv1$SE[8], model2_pv2$SE[8], model2_pv3$SE[8], model2_pv4$SE[8],

model2_pv5$SE[8],

model2_pv6$SE[8], model2_pv7$SE[8], model2_pv8$SE[8], model2_pv9$SE[8],

model2_pv10$SE[8])+(1+(1/M))*var(
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c(model2_pv1$coef[8], model2_pv2$coef[8], model2_pv3$coef[8],

model2_pv4$coef[8],

model2_pv5$coef[8], model2_pv6$coef[8], model2_pv7$coef[8],

model2_pv8$coef[8],

model2_pv9$coef[8], model2_pv10$coef[8]))

se_coef9 <- mean(model2_pv1$SE[9], model2_pv2$SE[9], model2_pv3$SE[9], model2_pv4$SE[9],

model2_pv5$SE[9],

model2_pv6$SE[9], model2_pv7$SE[9], model2_pv8$SE[9], model2_pv9$SE[9],

model2_pv10$SE[9])+(1+(1/M))*var(

c(model2_pv1$coef[9], model2_pv2$coef[9], model2_pv3$coef[9],

model2_pv4$coef[9],

model2_pv5$coef[9], model2_pv6$coef[9], model2_pv7$coef[9],

model2_pv8$coef[9],

model2_pv9$coef[9], model2_pv10$coef[9]))

se_coef10 <- mean(model2_pv1$SE[10], model2_pv2$SE[10], model2_pv3$SE[10], model2_pv4$SE

[10], model2_pv5$SE[10],

model2_pv6$SE[10], model2_pv7$SE[10], model2_pv8$SE[10], model2_pv9$SE[10],

model2_pv10$SE[10])+(1+(1/M))*var(

c(model2_pv1$coef[10], model2_pv2$coef[10], model2_pv3$coef[10],

model2_pv4$coef[10],

model2_pv5$coef[10], model2_pv6$coef[10], model2_pv7$coef[10],

model2_pv8$coef[10],

model2_pv9$coef[10], model2_pv10$coef[10]))

se_coef11 <- mean(model2_pv1$SE[11], model2_pv2$SE[11], model2_pv3$SE[11], model2_pv4$SE

[11], model2_pv5$SE[11],

model2_pv6$SE[11], model2_pv7$SE[11], model2_pv8$SE[11], model2_pv9$SE[11],

model2_pv10$SE[11])+(1+(1/M))*var(

c(model2_pv1$coef[11], model2_pv2$coef[11], model2_pv3$coef[11],

model2_pv4$coef[11],

model2_pv5$coef[11], model2_pv6$coef[11], model2_pv7$coef[11],

model2_pv8$coef[11],

model2_pv9$coef[11], model2_pv10$coef[11]))

se_coef12 <- mean(model2_pv1$SE[12], model2_pv2$SE[12], model2_pv3$SE[12], model2_pv4$SE

[12], model2_pv5$SE[12],

model2_pv6$SE[12], model2_pv7$SE[12], model2_pv8$SE[12], model2_pv9$SE[12],

model2_pv10$SE[12])+(1+(1/M))*var(

c(model2_pv1$coef[12], model2_pv2$coef[12], model2_pv3$coef[12],

model2_pv4$coef[12],

model2_pv5$coef[12], model2_pv6$coef[12], model2_pv7$coef[12],

model2_pv8$coef[12],

model2_pv9$coef[12], model2_pv10$coef[12]))
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se_coef13 <- mean(model2_pv1$SE[13], model2_pv2$SE[13], model2_pv3$SE[13], model2_pv4$SE

[13], model2_pv5$SE[13],

model2_pv6$SE[13], model2_pv7$SE[13], model2_pv8$SE[13], model2_pv9$SE[13],

model2_pv10$SE[13])+(1+(1/M))*var(

c(model2_pv1$coef[13], model2_pv2$coef[13], model2_pv3$coef[13],

model2_pv4$coef[13],

model2_pv5$coef[13], model2_pv6$coef[13], model2_pv7$coef[13],

model2_pv8$coef[13],

model2_pv9$coef[13], model2_pv10$coef[13]))

se_coef14 <- mean(model2_pv1$SE[14], model2_pv2$SE[14], model2_pv3$SE[14], model2_pv4$SE

[14], model2_pv5$SE[14],

model2_pv6$SE[14], model2_pv7$SE[14], model2_pv8$SE[14], model2_pv9$SE[14],

model2_pv10$SE[14])+(1+(1/M))*var(

c(model2_pv1$coef[14], model2_pv2$coef[14], model2_pv3$coef[14],

model2_pv4$coef[14],

model2_pv5$coef[14], model2_pv6$coef[14], model2_pv7$coef[14],

model2_pv8$coef[14],

model2_pv9$coef[14], model2_pv10$coef[14]))

model2_se <- rbind(Intercept=se_coef1, MALE=se_coef2, UNDREM=se_coef3, METASUM=se_coef4,

JOYREAD=se_coef5,

RESILIENCE=se_coef6, SCREADCOMP=se_coef7, SCREADDIFF=se_coef8, GFOFAIL=

se_coef9,

WORKMAST=se_coef10, MASTGOAL=se_coef11, WHICH_AREA=se_coef12, PUBLIC=

se_coef13, SCHOOL_ESCS=se_coef14)

## t-values

model2_t <- model2_coef/model2_se

## p-values

model2_p <- round(2 * pnorm( abs(model2_t), lower.tail=FALSE), 3)

## ICC

model2_ICC <- mean(model2_pv1$ICC, model2_pv2$ICC, model2_pv3$ICC, model2_pv4$ICC,

model2_pv5$ICC,

model2_pv6$ICC, model2_pv7$ICC, model2_pv8$ICC, model2_pv9$ICC,

model2_pv10$ICC)

# School variance

mean(model2_pv1$vars[1], model2_pv2$vars[1], model2_pv3$vars[1], model2_pv4$vars[1],

model2_pv5$vars[1],

model2_pv6$vars[1], model2_pv7$vars[1], model2_pv8$vars[1], model2_pv9$vars[1],

model2_pv10$vars[1])
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# Student level variance

mean(model2_pv1$vars[2], model2_pv2$vars[2], model2_pv3$vars[2], model2_pv4$vars[2],

model2_pv5$vars[2],

model2_pv6$vars[2], model2_pv7$vars[2], model2_pv8$vars[2], model2_pv9$vars[2],

model2_pv20$vars[2])

## AIC

model2_loglik <- mean(model2_pv1$lnl, model2_pv2$lnl, model2_pv3$lnl, model2_pv4$lnl,

model2_pv5$lnl,

model2_pv6$lnl, model2_pv7$lnl, model2_pv8$lnl, model2_pv9$lnl,

model2_pv10$lnl)

model2_AIC <- -2 * model2_loglik + 2 * 14

## BIC

model2_BIC <- log(nrow(pisa2018final)) * 14 - 2 * model2_loglik

#--------------------------------#

######## Latvia ######

model2_pv1_lva <- mix(PV1READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv2_lva <- mix(PV2READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv3_lva <- mix(PV3READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv4_lva <- mix(PV4READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv5_lva <- mix(PV5READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv6_lva <- mix(PV6READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)
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model2_pv7_lva <- mix(PV7READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv8_lva <- mix(PV8READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv9_lva <- mix(PV9READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

model2_pv10_lva <- mix(PV10READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF

+ GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_LVA)

## COEFFICIENTS

# Averages from all 10 PVs

model2_coef_lva <- rowMeans(cbind(model2_pv1_lva$coef, model2_pv2_lva$coef,

model2_pv3_lva$coef, model2_pv4_lva$coef, model2_pv5_lva$coef,

model2_pv6_lva$coef, model2_pv7_lva$coef, model2_pv8_lva$coef,

model2_pv9_lva$coef, model2_pv10_lva$coef))

round(as.data.frame(model2_coef_lva), 3)

## SE

M <- 10

se_coef1_lva <- mean(model2_pv1_lva$SE[1], model2_pv2_lva$SE[1], model2_pv3_lva$SE[1],

model2_pv4_lva$SE[1], model2_pv5_lva$SE[1],

model2_pv6_lva$SE[1], model2_pv7_lva$SE[1], model2_pv8_lva$SE[1],

model2_pv9_lva$SE[1], model2_pv10_lva$SE[1])+(1+(1/M))*var(

c(model2_pv1_lva$coef[1], model2_pv2_lva$coef[1], model2_pv3_lva$coef

[1], model2_pv4_lva$coef[1],

model2_pv5_lva$coef[1], model2_pv6_lva$coef[1], model2_pv7_lva$coef

[1], model2_pv8_lva$coef[1],

model2_pv9_lva$coef[1], model2_pv10_lva$coef[1]))

se_coef2_lva <- mean(model2_pv1_lva$SE[2], model2_pv2_lva$SE[2], model2_pv3_lva$SE[2],

model2_pv4_lva$SE[2], model2_pv5_lva$SE[2],

model2_pv6_lva$SE[2], model2_pv7_lva$SE[2], model2_pv8_lva$SE[2],

model2_pv9_lva$SE[2], model2_pv10_lva$SE[2])+(1+(1/M))*var(

c(model2_pv1_lva$coef[2], model2_pv2_lva$coef[2], model2_pv3_lva$coef

[2], model2_pv4_lva$coef[2],

model2_pv5_lva$coef[2], model2_pv6_lva$coef[2], model2_pv7_lva$coef

[2], model2_pv8_lva$coef[2],

model2_pv9_lva$coef[2], model2_pv10_lva$coef[2]))

32



se_coef3_lva <- mean(model2_pv1_lva$SE[3], model2_pv2_lva$SE[3], model2_pv3_lva$SE[3],

model2_pv4_lva$SE[3], model2_pv5_lva$SE[3],

model2_pv6_lva$SE[3], model2_pv7_lva$SE[3], model2_pv8_lva$SE[3],

model2_pv9_lva$SE[3], model2_pv10_lva$SE[3])+(1+(1/M))*var(

c(model2_pv1_lva$coef[3], model2_pv2_lva$coef[3], model2_pv3_lva$coef

[3], model2_pv4_lva$coef[3],

model2_pv5_lva$coef[3], model2_pv6_lva$coef[3], model2_pv7_lva$coef

[3], model2_pv8_lva$coef[3],

model2_pv9_lva$coef[3], model2_pv10_lva$coef[3]))

se_coef4_lva <- mean(model2_pv1_lva$SE[4], model2_pv2_lva$SE[4], model2_pv3_lva$SE[4],

model2_pv4_lva$SE[4], model2_pv5_lva$SE[4],

model2_pv6_lva$SE[4], model2_pv7_lva$SE[4], model2_pv8_lva$SE[4],

model2_pv9_lva$SE[4], model2_pv10_lva$SE[4])+(1+(1/M))*var(

c(model2_pv1_lva$coef[4], model2_pv2_lva$coef[4], model2_pv3_lva$coef

[4], model2_pv4_lva$coef[4],

model2_pv5_lva$coef[4], model2_pv6_lva$coef[4], model2_pv7_lva$coef

[4], model2_pv8_lva$coef[4],

model2_pv9_lva$coef[4], model2_pv10_lva$coef[4]))

se_coef5_lva <- mean(model2_pv1_lva$SE[5], model2_pv2_lva$SE[5], model2_pv3_lva$SE[5],

model2_pv4_lva$SE[5], model2_pv5_lva$SE[5],

model2_pv6_lva$SE[5], model2_pv7_lva$SE[5], model2_pv8_lva$SE[5],

model2_pv9_lva$SE[5], model2_pv10_lva$SE[5])+(1+(1/M))*var(

c(model2_pv1_lva$coef[5], model2_pv2_lva$coef[5], model2_pv3_lva$coef

[5], model2_pv4_lva$coef[5],

model2_pv5_lva$coef[5], model2_pv6_lva$coef[5], model2_pv7_lva$coef

[5], model2_pv8_lva$coef[5],

model2_pv9_lva$coef[5], model2_pv10_lva$coef[5]))

se_coef6_lva <- mean(model2_pv1_lva$SE[6], model2_pv2_lva$SE[6], model2_pv3_lva$SE[6],

model2_pv4_lva$SE[6], model2_pv5_lva$SE[6],

model2_pv6_lva$SE[6], model2_pv7_lva$SE[6], model2_pv8_lva$SE[6],

model2_pv9_lva$SE[6], model2_pv10_lva$SE[6])+(1+(1/M))*var(

c(model2_pv1_lva$coef[6], model2_pv2_lva$coef[6], model2_pv3_lva$coef

[6], model2_pv4_lva$coef[6],

model2_pv5_lva$coef[6], model2_pv6_lva$coef[6], model2_pv7_lva$coef

[6], model2_pv8_lva$coef[6],

model2_pv9_lva$coef[6], model2_pv10_lva$coef[6]))

se_coef7_lva <- mean(model2_pv1_lva$SE[7], model2_pv2_lva$SE[7], model2_pv3_lva$SE[7],

model2_pv4_lva$SE[7], model2_pv5_lva$SE[7],

model2_pv6_lva$SE[7], model2_pv7_lva$SE[7], model2_pv8_lva$SE[7],

model2_pv9_lva$SE[7], model2_pv10_lva$SE[7])+(1+(1/M))*var(

c(model2_pv1_lva$coef[7], model2_pv2_lva$coef[7], model2_pv3_lva$coef

[7], model2_pv4_lva$coef[7],
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model2_pv5_lva$coef[7], model2_pv6_lva$coef[7], model2_pv7_lva$coef

[7], model2_pv8_lva$coef[7],

model2_pv9_lva$coef[7], model2_pv10_lva$coef[7]))

se_coef8_lva <- mean(model2_pv1_lva$SE[8], model2_pv2_lva$SE[8], model2_pv3_lva$SE[8],

model2_pv4_lva$SE[8], model2_pv5_lva$SE[8],

model2_pv6_lva$SE[8], model2_pv7_lva$SE[8], model2_pv8_lva$SE[8],

model2_pv9_lva$SE[8], model2_pv10_lva$SE[8])+(1+(1/M))*var(

c(model2_pv1_lva$coef[8], model2_pv2_lva$coef[8], model2_pv3_lva$coef

[8], model2_pv4_lva$coef[8],

model2_pv5_lva$coef[8], model2_pv6_lva$coef[8], model2_pv7_lva$coef

[8], model2_pv8_lva$coef[8],

model2_pv9_lva$coef[8], model2_pv10_lva$coef[8]))

se_coef9_lva <- mean(model2_pv1_lva$SE[9], model2_pv2_lva$SE[9], model2_pv3_lva$SE[9],

model2_pv4_lva$SE[9], model2_pv5_lva$SE[9],

model2_pv6_lva$SE[9], model2_pv7_lva$SE[9], model2_pv8_lva$SE[9],

model2_pv9_lva$SE[9], model2_pv10_lva$SE[9])+(1+(1/M))*var(

c(model2_pv1_lva$coef[9], model2_pv2_lva$coef[9], model2_pv3_lva$coef

[9], model2_pv4_lva$coef[9],

model2_pv5_lva$coef[9], model2_pv6_lva$coef[9], model2_pv7_lva$coef

[9], model2_pv8_lva$coef[9],

model2_pv9_lva$coef[9], model2_pv10_lva$coef[9]))

se_coef10_lva <- mean(model2_pv1_lva$SE[10], model2_pv2_lva$SE[10], model2_pv3_lva$SE[10],

model2_pv4_lva$SE[10], model2_pv5_lva$SE[10],

model2_pv6_lva$SE[10], model2_pv7_lva$SE[10], model2_pv8_lva$SE[10],

model2_pv9_lva$SE[10], model2_pv10_lva$SE[10])+(1+(1/M))*var(

c(model2_pv1_lva$coef[10], model2_pv2_lva$coef[10], model2_pv3_lva$coef

[10], model2_pv4_lva$coef[10],

model2_pv5_lva$coef[10], model2_pv6_lva$coef[10], model2_pv7_lva$coef

[10], model2_pv8_lva$coef[10],

model2_pv9_lva$coef[10], model2_pv10_lva$coef[10]))

se_coef11_lva <- mean(model2_pv1_lva$SE[11], model2_pv2_lva$SE[11], model2_pv3_lva$SE[11],

model2_pv4_lva$SE[11], model2_pv5_lva$SE[11],

model2_pv6_lva$SE[11], model2_pv7_lva$SE[11], model2_pv8_lva$SE[11],

model2_pv9_lva$SE[11], model2_pv10_lva$SE[11])+(1+(1/M))*var(

c(model2_pv1_lva$coef[11], model2_pv2_lva$coef[11], model2_pv3_lva$coef

[11], model2_pv4_lva$coef[11],

model2_pv5_lva$coef[11], model2_pv6_lva$coef[11], model2_pv7_lva$coef

[11], model2_pv8_lva$coef[11],

model2_pv9_lva$coef[11], model2_pv10_lva$coef[11]))

se_coef12_lva <- mean(model2_pv1_lva$SE[12], model2_pv2_lva$SE[12], model2_pv3_lva$SE[12],

model2_pv4_lva$SE[12], model2_pv5_lva$SE[12],
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model2_pv6_lva$SE[12], model2_pv7_lva$SE[12], model2_pv8_lva$SE[12],

model2_pv9_lva$SE[12], model2_pv10_lva$SE[12])+(1+(1/M))*var(

c(model2_pv1_lva$coef[12], model2_pv2_lva$coef[12], model2_pv3_lva$coef

[12], model2_pv4_lva$coef[12],

model2_pv5_lva$coef[12], model2_pv6_lva$coef[12], model2_pv7_lva$coef

[12], model2_pv8_lva$coef[12],

model2_pv9_lva$coef[12], model2_pv10_lva$coef[12]))

se_coef13_lva <- mean(model2_pv1_lva$SE[13], model2_pv2_lva$SE[13], model2_pv3_lva$SE[13],

model2_pv4_lva$SE[13], model2_pv5_lva$SE[13],

model2_pv6_lva$SE[13], model2_pv7_lva$SE[13], model2_pv8_lva$SE[13],

model2_pv9_lva$SE[13], model2_pv10_lva$SE[13])+(1+(1/M))*var(

c(model2_pv1_lva$coef[13], model2_pv2_lva$coef[13], model2_pv3_lva$coef

[13], model2_pv4_lva$coef[13],

model2_pv5_lva$coef[13], model2_pv6_lva$coef[13], model2_pv7_lva$coef

[13], model2_pv8_lva$coef[13],

model2_pv9_lva$coef[13], model2_pv10_lva$coef[13]))

se_coef14_lva <- mean(model2_pv1_lva$SE[14], model2_pv2_lva$SE[14], model2_pv3_lva$SE[14],

model2_pv4_lva$SE[14], model2_pv5_lva$SE[14],

model2_pv6_lva$SE[14], model2_pv7_lva$SE[14], model2_pv8_lva$SE[14],

model2_pv9_lva$SE[14], model2_pv10_lva$SE[14])+(1+(1/M))*var(

c(model2_pv1_lva$coef[14], model2_pv2_lva$coef[14], model2_pv3_lva$coef

[14], model2_pv4_lva$coef[14],

model2_pv5_lva$coef[14], model2_pv6_lva$coef[14], model2_pv7_lva$coef

[14], model2_pv8_lva$coef[14],

model2_pv9_lva$coef[14], model2_pv10_lva$coef[14]))

model2_se_lva <- rbind(Intercept=se_coef1_lva, MALE=se_coef2_lva, UNDREM=se_coef3_lva,

METASUM=se_coef4_lva, JOYREAD=se_coef5_lva,

RESILIENCE=se_coef6_lva, SCREADCOMP=se_coef7_lva, SCREADDIFF=se_coef8_lva,

GFOFAIL=se_coef9_lva,

WORKMAST=se_coef10_lva, MASTGOAL=se_coef11_lva, WHICH_AREA=se_coef12_lva,

PUBLIC=se_coef13_lva, SCHOOL_ESCS=se_coef14_lva)

## t-values

model2_t_lva <- model2_coef_lva/model2_se_lva

## p-values

model2_p_lva <- round(2 * pnorm( abs(model2_t_lva), lower.tail=FALSE), 3)

## ICC
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model2_ICC_lva <- mean(model2_pv1_lva$ICC, model2_pv2_lva$ICC, model2_pv3_lva$ICC,

model2_pv4_lva$ICC, model2_pv5_lva$ICC,

model2_pv6_lva$ICC, model2_pv7_lva$ICC, model2_pv8_lva$ICC,

model2_pv9_lva$ICC, model2_pv10_lva$ICC)

# School variance

mean(model2_pv1_lva$vars[1], model2_pv2_lva$vars[1], model2_pv3_lva$vars[1],

model2_pv4_lva$vars[1], model2_pv5_lva$vars[1],

model2_pv6_lva$vars[1], model2_pv7_lva$vars[1], model2_pv8_lva$vars[1],

model2_pv9_lva$vars[1], model2_pv10_lva$vars[1])

# Student level variance

mean(model2_pv1_lva$vars[2], model2_pv2_lva$vars[2], model2_pv3_lva$vars[2],

model2_pv4_lva$vars[2], model2_pv5_lva$vars[2],

model2_pv6_lva$vars[2], model2_pv7_lva$vars[2], model2_pv8_lva$vars[2],

model2_pv9_lva$vars[2], model2_pv10_lva$vars[2])

## AIC

model2_loglik_lva <- mean(model2_pv1_lva$lnl, model2_pv2_lva$lnl, model2_pv3_lva$lnl,

model2_pv4_lva$lnl, model2_pv5_lva$lnl,

model2_pv6_lva$lnl, model2_pv7_lva$lnl, model2_pv8_lva$lnl,

model2_pv9_lva$lnl, model2_pv10_lva$lnl)

model2_AIC_lva <- -2 * model2_loglik_lva + 2 * 14

## BIC

model2_BIC_lva <- log(nrow(pisa2018final_LVA)) * 14 - 2 * model2_loglik_lva

#--------------------------------#

########## Estonia

model2_pv1_est <- mix(PV1READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv2_est <- mix(PV2READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv3_est <- mix(PV3READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)
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model2_pv4_est <- mix(PV4READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv5_est <- mix(PV5READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv6_est <- mix(PV6READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv7_est <- mix(PV7READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv8_est <- mix(PV8READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv9_est <- mix(PV9READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF+

GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

model2_pv10_est <- mix(PV10READ~MALE+UNDREM+METASUM+JOYREAD+RESILIENCE+SCREADCOMP+SCREADDIFF

+ GFOFAIL+WORKMAST+MASTGOAL+WHICH_AREA+PUBLIC+SCHOOL_ESCS+(1|CNTSCHID),

weights = c("cluster_weights", "W_SCHGRNRABWT"),

data = pisa2018final_EST)

names(pisa2018final)

## COEFFICIENTS

# Averages from all 10 PVs

model2_coef_est <- rowMeans(cbind(model2_pv1_est$coef, model2_pv2_est$coef,

model2_pv3_est$coef, model2_pv4_est$coef, model2_pv5_est$coef,

model2_pv6_est$coef, model2_pv7_est$coef, model2_pv8_est$coef

, model2_pv9_est$coef, model2_pv10_est$coef))

round(as.data.frame(model2_coef_est), 3)

## SE

M <- 10

se_coef1_est <- mean(model2_pv1_est$SE[1], model2_pv2_est$SE[1], model2_pv3_est$SE[1],

model2_pv4_est$SE[1], model2_pv5_est$SE[1],
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model2_pv6_est$SE[1], model2_pv7_est$SE[1], model2_pv8_est$SE[1],

model2_pv9_est$SE[1], model2_pv10_est$SE[1])+(1+(1/M))*var(

c(model2_pv1_est$coef[1], model2_pv2_est$coef[1], model2_pv3_est$coef

[1], model2_pv4_est$coef[1],

model2_pv5_est$coef[1], model2_pv6_est$coef[1], model2_pv7_est$coef

[1], model2_pv8_est$coef[1],

model2_pv9_est$coef[1], model2_pv10_est$coef[1]))

se_coef2_est <- mean(model2_pv1_est$SE[2], model2_pv2_est$SE[2], model2_pv3_est$SE[2],

model2_pv4_est$SE[2], model2_pv5_est$SE[2],

model2_pv6_est$SE[2], model2_pv7_est$SE[2], model2_pv8_est$SE[2],

model2_pv9_est$SE[2], model2_pv10_est$SE[2])+(1+(1/M))*var(

c(model2_pv1_est$coef[2], model2_pv2_est$coef[2], model2_pv3_est$coef

[2], model2_pv4_est$coef[2],

model2_pv5_est$coef[2], model2_pv6_est$coef[2], model2_pv7_est$coef

[2], model2_pv8_est$coef[2],

model2_pv9_est$coef[2], model2_pv10_est$coef[2]))

se_coef3_est <- mean(model2_pv1_est$SE[3], model2_pv2_est$SE[3], model2_pv3_est$SE[3],

model2_pv4_est$SE[3], model2_pv5_est$SE[3],

model2_pv6_est$SE[3], model2_pv7_est$SE[3], model2_pv8_est$SE[3],

model2_pv9_est$SE[3], model2_pv10_est$SE[3])+(1+(1/M))*var(

c(model2_pv1_est$coef[3], model2_pv2_est$coef[3], model2_pv3_est$coef

[3], model2_pv4_est$coef[3],

model2_pv5_est$coef[3], model2_pv6_est$coef[3], model2_pv7_est$coef

[3], model2_pv8_est$coef[3],

model2_pv9_est$coef[3], model2_pv10_est$coef[3]))

se_coef4_est <- mean(model2_pv1_est$SE[4], model2_pv2_est$SE[4], model2_pv3_est$SE[4],

model2_pv4_est$SE[4], model2_pv5_est$SE[4],

model2_pv6_est$SE[4], model2_pv7_est$SE[4], model2_pv8_est$SE[4],

model2_pv9_est$SE[4], model2_pv10_est$SE[4])+(1+(1/M))*var(

c(model2_pv1_est$coef[4], model2_pv2_est$coef[4], model2_pv3_est$coef

[4], model2_pv4_est$coef[4],

model2_pv5_est$coef[4], model2_pv6_est$coef[4], model2_pv7_est$coef

[4], model2_pv8_est$coef[4],

model2_pv9_est$coef[4], model2_pv10_est$coef[4]))

se_coef5_est <- mean(model2_pv1_est$SE[5], model2_pv2_est$SE[5], model2_pv3_est$SE[5],

model2_pv4_est$SE[5], model2_pv5_est$SE[5],

model2_pv6_est$SE[5], model2_pv7_est$SE[5], model2_pv8_est$SE[5],

model2_pv9_est$SE[5], model2_pv10_est$SE[5])+(1+(1/M))*var(

c(model2_pv1_est$coef[5], model2_pv2_est$coef[5], model2_pv3_est$coef

[5], model2_pv4_est$coef[5],

model2_pv5_est$coef[5], model2_pv6_est$coef[5], model2_pv7_est$coef

[5], model2_pv8_est$coef[5],

model2_pv9_est$coef[5], model2_pv10_est$coef[5]))
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se_coef6_est <- mean(model2_pv1_est$SE[6], model2_pv2_est$SE[6], model2_pv3_est$SE[6],

model2_pv4_est$SE[6], model2_pv5_est$SE[6],

model2_pv6_est$SE[6], model2_pv7_est$SE[6], model2_pv8_est$SE[6],

model2_pv9_est$SE[6], model2_pv10_est$SE[6])+(1+(1/M))*var(

c(model2_pv1_est$coef[6], model2_pv2_est$coef[6], model2_pv3_est$coef

[6], model2_pv4_est$coef[6],

model2_pv5_est$coef[6], model2_pv6_est$coef[6], model2_pv7_est$coef

[6], model2_pv8_est$coef[6],

model2_pv9_est$coef[6], model2_pv10_est$coef[6]))

se_coef7_est <- mean(model2_pv1_est$SE[7], model2_pv2_est$SE[7], model2_pv3_est$SE[7],

model2_pv4_est$SE[7], model2_pv5_est$SE[7],

model2_pv6_est$SE[7], model2_pv7_est$SE[7], model2_pv8_est$SE[7],

model2_pv9_est$SE[7], model2_pv10_est$SE[7])+(1+(1/M))*var(

c(model2_pv1_est$coef[7], model2_pv2_est$coef[7], model2_pv3_est$coef

[7], model2_pv4_est$coef[7],

model2_pv5_est$coef[7], model2_pv6_est$coef[7], model2_pv7_est$coef

[7], model2_pv8_est$coef[7],

model2_pv9_est$coef[7], model2_pv10_est$coef[7]))

se_coef8_est <- mean(model2_pv1_est$SE[8], model2_pv2_est$SE[8], model2_pv3_est$SE[8],

model2_pv4_est$SE[8], model2_pv5_est$SE[8],

model2_pv6_est$SE[8], model2_pv7_est$SE[8], model2_pv8_est$SE[8],

model2_pv9_est$SE[8], model2_pv10_est$SE[8])+(1+(1/M))*var(

c(model2_pv1_est$coef[8], model2_pv2_est$coef[8], model2_pv3_est$coef

[8], model2_pv4_est$coef[8],

model2_pv5_est$coef[8], model2_pv6_est$coef[8], model2_pv7_est$coef

[8], model2_pv8_est$coef[8],

model2_pv9_est$coef[8], model2_pv10_est$coef[8]))

se_coef9_est <- mean(model2_pv1_est$SE[9], model2_pv2_est$SE[9], model2_pv3_est$SE[9],

model2_pv4_est$SE[9], model2_pv5_est$SE[9],

model2_pv6_est$SE[9], model2_pv7_est$SE[9], model2_pv8_est$SE[9],

model2_pv9_est$SE[9], model2_pv10_est$SE[9])+(1+(1/M))*var(

c(model2_pv1_est$coef[9], model2_pv2_est$coef[9], model2_pv3_est$coef

[9], model2_pv4_est$coef[9],

model2_pv5_est$coef[9], model2_pv6_est$coef[9], model2_pv7_est$coef

[9], model2_pv8_est$coef[9],

model2_pv9_est$coef[9], model2_pv10_est$coef[9]))

se_coef10_est <- mean(model2_pv1_est$SE[10], model2_pv2_est$SE[10], model2_pv3_est$SE[10],

model2_pv4_est$SE[10], model2_pv5_est$SE[10],

model2_pv6_est$SE[10], model2_pv7_est$SE[10], model2_pv8_est$SE[10],

model2_pv9_est$SE[10], model2_pv10_est$SE[10])+(1+(1/M))*var(

c(model2_pv1_est$coef[10], model2_pv2_est$coef[10], model2_pv3_est$coef

[10], model2_pv4_est$coef[10],
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model2_pv5_est$coef[10], model2_pv6_est$coef[10], model2_pv7_est$coef

[10], model2_pv8_est$coef[10],

model2_pv9_est$coef[10], model2_pv10_est$coef[10]))

se_coef11_est <- mean(model2_pv1_est$SE[11], model2_pv2_est$SE[11], model2_pv3_est$SE[11],

model2_pv4_est$SE[11], model2_pv5_est$SE[11],

model2_pv6_est$SE[11], model2_pv7_est$SE[11], model2_pv8_est$SE[11],

model2_pv9_est$SE[11], model2_pv10_est$SE[11])+(1+(1/M))*var(

c(model2_pv1_est$coef[11], model2_pv2_est$coef[11], model2_pv3_est$coef

[11], model2_pv4_est$coef[11],

model2_pv5_est$coef[11], model2_pv6_est$coef[11], model2_pv7_est$coef

[11], model2_pv8_est$coef[11],

model2_pv9_est$coef[11], model2_pv10_est$coef[11]))

se_coef12_est <- mean(model2_pv1_est$SE[12], model2_pv2_est$SE[12], model2_pv3_est$SE[12],

model2_pv4_est$SE[12], model2_pv5_est$SE[12],

model2_pv6_est$SE[12], model2_pv7_est$SE[12], model2_pv8_est$SE[12],

model2_pv9_est$SE[12], model2_pv10_est$SE[12])+(1+(1/M))*var(

c(model2_pv1_est$coef[12], model2_pv2_est$coef[12], model2_pv3_est$coef

[12], model2_pv4_est$coef[12],

model2_pv5_est$coef[12], model2_pv6_est$coef[12], model2_pv7_est$coef

[12], model2_pv8_est$coef[12],

model2_pv9_est$coef[12], model2_pv10_est$coef[12]))

se_coef13_est <- mean(model2_pv1_est$SE[13], model2_pv2_est$SE[13], model2_pv3_est$SE[13],

model2_pv4_est$SE[13], model2_pv5_est$SE[13],

model2_pv6_est$SE[13], model2_pv7_est$SE[13], model2_pv8_est$SE[13],

model2_pv9_est$SE[13], model2_pv10_est$SE[13])+(1+(1/M))*var(

c(model2_pv1_est$coef[13], model2_pv2_est$coef[13], model2_pv3_est$coef

[13], model2_pv4_est$coef[13],

model2_pv5_est$coef[13], model2_pv6_est$coef[13], model2_pv7_est$coef

[13], model2_pv8_est$coef[13],

model2_pv9_est$coef[13], model2_pv10_est$coef[13]))

se_coef14_est <- mean(model2_pv1_est$SE[14], model2_pv2_est$SE[14], model2_pv3_est$SE[14],

model2_pv4_est$SE[14], model2_pv5_est$SE[14],

model2_pv6_est$SE[14], model2_pv7_est$SE[14], model2_pv8_est$SE[14],

model2_pv9_est$SE[14], model2_pv10_est$SE[14])+(1+(1/M))*var(

c(model2_pv1_est$coef[14], model2_pv2_est$coef[14], model2_pv3_est$coef

[14], model2_pv4_est$coef[14],

model2_pv5_est$coef[14], model2_pv6_est$coef[14], model2_pv7_est$coef

[14], model2_pv8_est$coef[14],

model2_pv9_est$coef[14], model2_pv10_est$coef[14]))

model2_se_est <- rbind(Intercept=se_coef1_est, MALE=se_coef2_est, UNDREM=se_coef3_est,

METASUM=se_coef4_est, JOYREAD=se_coef5_est,
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RESILIENCE=se_coef6_est, SCREADCOMP=se_coef7_est, SCREADDIFF=

se_coef8_est, GFOFAIL=se_coef9_est,

WORKMAST=se_coef10_est, MASTGOAL=se_coef11_est, WHICH_AREA=

se_coef12_est, PUBLIC=se_coef13_est, SCHOOL_ESCS=se_coef14_est)

## t-values

model2_t_est <- model2_coef_est/model2_se_est

## p-values

model2_p_est <- round(2 * pnorm( abs(model2_t_est), lower.tail=FALSE), 3)

## ICC

model2_ICC_est <- mean(model2_pv1_est$ICC, model2_pv2_est$ICC, model2_pv3_est$ICC,

model2_pv4_est$ICC, model2_pv5_est$ICC,

model2_pv6_est$ICC, model2_pv7_est$ICC, model2_pv8_est$ICC,

model2_pv9_est$ICC, model2_pv10_est$ICC)

# School variance

mean(model2_pv1_est$vars[1], model2_pv2_est$vars[1], model2_pv3_est$vars[1],

model2_pv4_est$vars[1], model2_pv5_est$vars[1],

model2_pv6_est$vars[1], model2_pv7_est$vars[1], model2_pv8_est$vars[1],

model2_pv9_est$vars[1], model2_pv10_est$vars[1])

# Student level variance

mean(model2_pv1_est$vars[2], model2_pv2_est$vars[2], model2_pv3_est$vars[2],

model2_pv4_est$vars[2], model2_pv5_est$vars[2],

model2_pv6_est$vars[2], model2_pv7_est$vars[2], model2_pv8_est$vars[2],

model2_pv9_est$vars[2], model2_pv10_est$vars[2])

## AIC

model2_loglik_est <- mean(model2_pv1_est$lnl, model2_pv2_est$lnl, model2_pv3_est$lnl,

model2_pv4_est$lnl, model2_pv5_est$lnl,

model2_pv6_est$lnl, model2_pv7_est$lnl, model2_pv8_est$lnl,

model2_pv9_est$lnl, model2_pv10_est$lnl)

model2_AIC_est <- -2 * model2_loglik_est + 2 * 14

## BIC

model2_BIC_est <- log(nrow(pisa2018final_EST)) * 14 - 2 * model2_loglik_est
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