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Analysis of Government Bond Spreads in the Euro Area

Abstract

This thesis investigates the spreads of 10-year bond yields of sovereign euro area countries versus Germany
as the way to highlight the differences or similarities among its member states. For this purpose, the thesis,
first, examines the convergence and divergence patterns of 13 euro area countries over the period from
2003 to 2022, implementing the Phillips and Sul method. Second, since the property of dependence on
distant events unfolds in the long memory parameter, the ARFIMA model finds the fractional part of the
differencing parameter. The latter approach is tested against the periodogram-based methods, which serve
as a robustness check of the assessed potentially long memory feature having parameters. The empirical
findings suggest the acceptance of the overall convergence of euro area government bond spreads in the
long-run. Although there are divergence features in a certain period in which the significant shocks occur,
the common treatment of the euro area as the unity is confirmed. The investigation of long memory in the
euro area discloses the absence of dependent distant events in the spreads residuals after removing ARIMA
impacts or this dependence is weak. According to the results, the proposed two-step procedure that involves
fitting both ARIMA and ARFIMA models to estimate the long memory parameter of the government bond
spreads in the euro area is more reliable in narrower confidence intervals sense than periodogram-based
alternatives.

Key words: government bonds, spreads, convergence, divergence, long memory, ARFIMA model
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Euro zonos vyriausybių obligacijų pajamingumų skirtumų analizė

Santrauka

Skirtumai tarp pinigų sąjungos narių gali būti vertinami įvairiais metodais. Vienas iš jų – nagrinėti euro
zonos vyriausybių obligacijų pajamingumų skirtumus nuo Vokietijos. Naudojantis Phillips ir Sul pasiūlytu
metodu, šiame darbe nagrinėjami 13 euro zonos šalių konvergencijos ir divergencijos ypatumai periodu nuo
2003 m. iki 2022 m. Be to, kadangi sąsaja tarp tolimų įvykių atskleidžiama per ilgos atminties parametrą,
darbe ARFIMA modeliu nustatoma trupmeninė skirtumo parametro dalis. ARFIMA modeliu rasti gali-
mai ilgos atminties savybę vaizduojantys parametrai yra lyginami su koeficientais, rastais naudojant pe-
riodograma grįstus metodus. Empiriniai rezultatai rodo, kad ilgame periode euro zonos suverenių šalių
obligacijų pelningumų skirtumai pasižymi konvergencijos savybe. Nors divergencijos požymiai ir yra paste-
bimi atsiradus pasauliniams ar didelio masto lokaliems sukrėtimams, tačiau rezultatai statistiškai neprieš-
tarauja tam, kad euro zona gali būti laikoma vieningu dariniu. Ilgos atminties tyrime atskleidžiama, kad
euro zonos vyriausybės obligacijų pelningumų skirtumų liekanos po ARIMA poveikio šalinimo neturi sąsajos
tarp tolimų įvykių arba ta priklausomybė yra silpna. Be to, šiame darbe siūloma euro zonos vyriausybės
obligacijų pelningumų skirtumų vertinimui naudoti ne periodograma pagrįstus būdus, o dviejų žingsnių
metodą, kuriame, visų pirma, yra pritaikomas ARIMA modelis, o tada ARFIMA modeliu yra perverti-
namas ilgos atminties parametras, kuris statatistiškai duoda siauresnius pasikliautinuosius intervalus nei
periodograma grįsti metodai.

Raktiniai žodžiai: vyriausybės obligacijos, pajamingumų skirtumai, konvergencija, divergencija, ilga at-

mintis, ARFIMA modelis
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ADF – Augmented Dickey-Fuller test
AIC – Akaike Information Criteria
ARFIMA – Autoregressive Fractionally Integrated Moving Average
ARIMA – Autoregressive Integrated Moving Average
CI – Confidence Interval
EA – the Euro Area
EU – the European Union
GPH – Geweke and Porter-Hudak method
KPSS – Kwiatkowski-Phillips-Schmidt-Shin Test
PP – Phillips-Perron Test
ZA – Zivot and Andrews Test
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d – fractional differencing parameter
d̃ – integer part of differencing parameter
p, q – short memory parameters
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1 Introduction

In general, the state of being in full agreement and harmony defines the underlying idea of unity
concept, such as the euro area (EA). Furthermore, the amalgamation process gives the reason to
believe that members of the community behave the same or, at least, have similar characteristics.
Since the beginning of the EA formation, each country in the block is deemed to implicate the same
behaviour or features in the respective fields. Consequently, no exceptions could be made to the
expectations of the European Union (EU) when forming the rules to join the EA club or scrutinizing
the features of the EA member states. The question arises: do the euro area countries possess this
phenomenon?

The introduction of the euro area was followed by the common belief in the existence of a solid
club of single-minded EU member states. As a consequence, the countries in the euro area were
treated equally by the market participants for a respectively long period. However, in the past two
decades, several events completely changed investors’ and markets’ expectations of the euro area
unity patterns. First of all, the financial crisis divulged the first signs of disparity between the
club. As it is widely known, the latter historical event was accompanied by a sovereign debt crisis,
in which the market’s expectations of governments in the euro area countries became perceptibly
diverse.

The importance of the market’s treatment of each country’s ability to repay the debts is another
key point to recognize. Since Greece was considered unreliable in the context of paying off debts,
the market had no desire to lend money to such a country. Therefore, after the end of the sovereign
debt crisis, the Greek debt predicament occurred, emphasising the variant expectations from the
market compared to other EA countries. The occurrence of such significant shocks did not recur
till now and after the above-mentioned phenomena. Hence, the market started to revive the unity
concept in the euro area. Even though the equal reliability of the countries slowly returns, notable
global events such as the coronavirus pandemic and the Russian invasion of Ukraine indicate the
fluctuations in the market, emphasizing the market participants’ concerns about the credibility of
certain countries.

From another perspective, unity can be analysed through the dissimilarity between the members
of the alliance. There are many ways to determine the differences among the countries. However,
in this particular research, the spreads between 10-year bond yields of sovereign countries in the
euro area are investigated. The yield is the key indicator that investors use to gauge the level of
expense for a bond or group of bonds. Conventionally, the German government bond is considered
a benchmark in the euro area. The factors that determine government bond spreads are connected
to the risks that an investor faces when buying a government bond compared to the hazards that
an investor takes on when purchasing a German government bond.

Bearing in mind the previously mentioned historical events, another question appears: Are there
any methods that can inspect such characteristics of the unity concept? Essentially, in this thesis,
the relevant issue is analysed through convergence and divergence patterns. The research contains
a comprehensive analysis of the converging and diverging behaviour in both: different periods and
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the whole sample from 2003 to 2022. For the purpose of convergence analysis, the Phillips and Sul
method [16] is considered appropriate to capture the unity property in the euro area government
bond spreads. To be more precise, the method is based on filtering the trend from the seasonal
components by using the Hodrick-Prescott filter and then the log t regression is performed to obtain
the results for the hypothesis testing. The method is able to catch the long-run behaviour and
consequently discloses the subgroups with similar patterns, even if, for instance, the convergence
overall is rejected.

Second, to obtain a thorough analysis, the thesis investigates the long memory feature of the
spreads. The long memory feature is characterized by a strong dependence between distant events.
In this regard, the examination of the long memory feature in the government bond spreads is
tested through the autoregressive fractional integrated moving average (ARFIMA) model denoted
as ARFIMA(p,d,q). To be more precise, the main objective of the ARFIMA model is to estimate
the long memory parameter d which is widely known as a differencing parameter that, in general,
has integer and fractional parts. Before the analysis of ARFIMA, the standard tests of time series
are performed and the important characteristics are reviewed. In particular, the ARFIMA model
requires the examination of unit root, autocorrelation and partial autocorrelation functions, selec-
tion of the appropriate p, d̃ and q parameters by using autoregressive integrated moving average
ARIMA(p, d̃, q) models, where d̃ is the integer part of d, and ultimately the estimation of the
fractional differencing parameter applying maximum likelihood approach.

The thesis possesses the following two tasks:

1. Detection of the convergence or divergence behaviour in the euro area sovereign bond spreads
using the Phillips and Sul method;

2. Examination whether the property of dependence between distant events can be attributed
to the spreads between government bond yields.

The empirical findings suggest the acceptance of the overall convergence of euro area government
bond spreads. Although there are divergence features in a certain period in which the significant
shocks occur, the common treatment of the EA as the unity is confirmed. The investigation of long
memory in the euro area discloses the absence of dependent distant events in the spreads residuals
after removing ARIMA impacts or this dependence is weak. Thus, the shocks that affected certain
members of the EA more in the past do not imply that they will be more exclusively affected than
other members in the future.

The thesis is organized as follows. Section 2 provides background on the convergence and long
memory analysis of sovereign bonds or other relevant financial instruments. Section 3 develops the
main theoretical knowledge of the used methods. Section 4 describes the data and performs the
investigation of the spreads. Section 5 discusses the results of the econometric analysis, and Section
6 concludes the research. Furthermore, the results are computed with the help of R (version 4.1.3)
and the relevant code is presented in the Appendix E.
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2 Literature review

The yield term is associated with the return that investors expect to gain on a bond. Government
bond spreads can indicate various signals in financial markets or a country’s economic situation, and
there are numerous methods for analysing and interpreting these spreads. In some papers, the most
often considered benchmark is the German government bond in the euro area. The debt securities
with higher yields determine the higher risks associated with them. Subsequently, the wide spreads
between bonds underline the significantly higher level of risk for one of the considered instruments.

Mauro Costantinia and Ricardo M. Sousa [4] demonstrate that increased uncertainty causes a
flight to safety and a flight to quality in the sovereign bond markets in the 10 euro area countries.
Forecasting of sovereign bond risk premia is more accurate when assuming global, macroeconomic,
and common euro area uncertainty, as opposed to country-level, financial, and euro area idiosyncratic
uncertainty, respectively. Sovereign bondholders ask for a larger premium to hold risky long-term
government bonds compared to the safe-haven bond when faced with greater uncertainty. Therefore,
a flight to quality is sparked by uncertainty. According to Mauro Costantinia and Ricardo M. Sousa,
models using uncertainty measures, particularly at long horizons, predict around one-third of the
volatility in sovereign bond risk premia. Similar to other authors, Carlo A. Favero [6] analyses three
main factors: local factor, driven by fiscal fundamentals and growth, international factor, driven by
the market’s appetite for risk and the expectations of exchange rate devaluations.

The spreads of government bonds in the euro area can be classified into groups or subgroups
based on their characteristics using different techniques. For example, Nikolaos Antonakakis,
Christina Christou, Juncal Cunado, and Rangan Gupta [1] examine the convergence patterns of
17 euro area countries using Phillips and Sul method. The authors analyse the period between 2002
and 2015 and find no full convergence over selected euro area countries. Despite the rejection of full
convergence, Phillips and Sul’s method indicates the existence of convergence in three subgroups
over euro area countries. Even though transitional curves might imply divergence of bond yield
spreads in the short-run, the same spreads tend to converge in the long-run except for Greece and
Cyprus.

Robinson Kruse and Christoph Wegener [13] investigate a simple autoregressive model, which
contains a unit root or even explosive behaviour, and the innovations of the model are strongly
correlated in the sense of the long memory model. Robinson Kruse and Christoph Wegener conduct
Monte Carlo simulations and study the finite-sample properties of the Phillips unit root test against
explosive alternatives. In the case of the strongly autocorrelated residuals, the authors demonstrate
the benefit of adjusting critical values in the unit root test, which leads to a size-controlled test
with increased power. Moreover, the authors perform the Lagrange Multiplier test to examine
long memory in time series. Robinson Kruse and Christoph Wegener analyse France and Greece
government bond spreads versus Germany, and their findings show the existence of long memory and
explosive behaviour in Greek-German spreads, while both the unit root behaviour and no evidence
of the long memory are demonstrated in the example of French-German spreads.

The investigation of Lucio Della Ratta and Giovanni Urga [17] takes into account parametric
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and semiparametric long memory estimators. The main objectives of their research are US Treasury
and corporate yields and the spreads between them. Their research concludes that the fractional
difference parameter discloses the nonstationary long memory ARFIMA process, while the first-order
of difference has the short or long memory stationary features in some cases. Due to the fractional
cointegration in the bivariate systems of yields, the authors suggest the existence of a long-term
equilibrium relationship between them. Furthermore, Philipp Sibbertsen, Christoph Wegener, and
Tobias Basse [19] highlight the alteration of the integration order of the government bond yield
spreads during the crisis period. The analysed spreads of the sovereign bonds issued by Germany,
Spain, Italy, and France are closer to the process with the first-order of difference rather than I(0).

The presented literature review hints at the appropriate methods and approaches for the analysis
of government bond spreads in the euro area. The following sections of the thesis are dedicated to
further investigation of the Autoregressive Fractionally Integrated Moving Average model and to
testing the convergence or divergence behaviour using Phillips and Sul’s approach in the context of
EA sovereign bond spreads and the most recent shocks, including coronavirus outbreak and Russia’s
invasion of Ukraine.

3 Methodology

3.1 Methodology of Phillips and Sul method

This section reveals the approach suggested by Phillips and Sul [16] to test the long-run con-
vergence among the variables related to, for instance, economies or countries that are referred to
as individuals. The main idea of this method is that it discovers groups of individuals who possess
the resembling behaviour in the long-run. The technique is able to disclose the subgroups with
similar patterns and at the same time allows some individuals to diverge. As Kris Ivanoviski, Sefa
Awaworyi Churchill, and Russell Smyth state [11], the method has the following advantages. First,
it does not require prior assumptions and allows for heterogeneity among the time series. Second,
the approach is robust regardless of whether the time series is trend-stationary or not. Third, the
Phillips and Sul [16] method renders the framework for modelling both transitional dynamics and
long-run behaviour through a nonlinear time-varying factor model.

3.1.1 log t regression

Suppose sit is panel data. The starting point is the rearrangement of the data. Accordingly,
suppose sit consists of two components:

sit = ait + vit, (1)

where the component ait holds the systematic part of the data and variable vit denotes the temporary
behaviour of sit. Since the preceding equation can contain both common and temporal components
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in both variables, Phillips and Sul [16] suggest rearranging (1) as:

sit =

(
ait + vit
µt

)
µt = βitµt, (2)

where µt is both a steady-state trend function of the group and mutual for everyone in a panel,
βit is a unit-specific component that varies over time. In other words, the element µt catches the
trending behaviour of sit while βit gauges the range between the common component µt and sit.
The βit represents the relative share of individual i in common trend component µt at time t. The
(2) equation is a dynamic factor model.

The modification of the (1) equation to the form of (2) allows capturing the long-run equilibrium
patterns. The key idea of the Phillips and Sul [16] is that relative temporal behaviour is sufficient
to estimate convergence over a long period into the future. Many authors analyse the distant
future behaviour by using cointegration methods, even though cointegration is not an obligatory
condition to account for long-run behaviour. In the case of cointegration deficiency, the common
stochastic trends accommodate long-run co-movement in aggregate behaviour in the time-varying
model. Consequently, it allows the modelling of the transitional effects. To find the convergence
patterns of the relevant variable, the main task is to estimate the parameter βit.

The following representation accounts for the existence of relatively long-run equilibrium or
convergence in the context of individual heterogeneity:

lim
k→∞

sit+k

sjt+k
= 1,∀i, j,

where sjt and sit are two different time series. The condition of relative convergence of sit is
equivalent to:

lim
t→∞

βit = β,∀i. (3)

Likewise to other econometric models, some restrictions are necessary for the construction of
this method. Phillips and Sul [16] propose to eliminate the common trend component while defining
the relative transition parameter as:

ψit =
sit

1
N

∑N
i=1 sit

. (4)

Given (2) equation, the relative transition parameter is rearranged to:

ψit =
sit

1
N

∑N
i=1 sit

=
βitµt

1
N

∑N
i=1 βitµt

=
βit

1
N

∑N
i=1 βit

. (5)

The condition of relative convergence (3) indicates the convergence of the relative transition
parameter (5) to unity:

lim
t→∞

ψit = lim
t→∞

βit
1
N

∑N
i=1 βit

=
β

β
= 1.
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From a different viewpoint, the convergence term implies that relative transition parameters
should become of the same level over a long period of time. To put it in another way, in the case of
convergence, the limit of cross-sectional variance between relative transition parameters approaches
zero when t→ ∞. Therefore, premise Ψt is cross-sectional variance defined as:

Ψt =
1

N

N∑
i=1

(ψit − 1)2, (6)

then:

lim
t→∞

Ψt = lim
t→∞

1

N

N∑
i=1

(ψit − 1)2 = 0, ∀i.

Despite the decrease of the cross-sectional variance when t → ∞, there are cases when the
convergence overall cannot be obtained for the whole sample. More specifically, the method should
be able to identify local convergence within subgroups, as local convergence cannot be treated in
the same way as overall convergence. To solve this issue, Phillips and Sul [16] propose to define
loading coefficient βit in the semi-parametric form as:

βit = βi +
σiξit
L(t)tα

, (7)

where βi is the part of the factor loading parameter which does not vary over time, L(t) is a slowly
varying function that satisfies the subsequent condition:

L(λt)

L(t)
→ 1, t→ ∞ (8)

and increases over time (L(t) → ∞), ξit are independent identically distributed variables (i.i.d.
(0,1)), although weakly dependent over time and α is the speed of convergence. The elements of the
equation (7) satisfy several conditions, which are thoroughly introduced in the initial Phillips and
Sul paper [16]. Although, it is worth mentioning that L(t) is usually considered to be an increasing
but slowly varying function, for instance, log(t + 1). Even if the speed of convergence is equal to
zero, the expression of L(t) through slowly varying and yet still increasing function guarantees that
βit −→

p
βi when t→ ∞.

In the case of convergence or divergence, the following conditions must correspondingly hold:

lim
k→∞

P(|βit+k − β| > ϵ) = 0 ⇐⇒ βi = β and α ≥ 0,

lim
k→∞

P(|βit+k − β| > ϵ) ̸= 0 ⇐⇒ βi ̸= β and α < 0.

The behaviour over a long period of time is analyzed through the test, in which the null hypoth-
esis H0 supports the convergence patterns:

H0 : βi = β,∀i and α ≥ 0, (9)
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versus the alternative H1 that discloses divergent behaviour:

H1 : βi ̸= β,∀i and α < 0. (10)

Given (9) and (10), the rejection of the null hypothesis does not lead to the fact that the
individual units cannot converge to the subgroups. In simple words, H0 accounts for the temporary
divergence and there is a possibility of different transitional paths. Phillips and Sul [16] propose
to test the above-mentioned phenomenon of convergence through the model with least ordinary
squares, which is known as OLS, so that:

log

(
Ψ1

Ψt

)
− 2 logL(t) = c+ b log t+ ut, for t = [rT ], [rT ] + 1, [rT ] + 2, ..., T, (11)

where Ψt as in (6), L(t) = log(t + 1), b = 2c, the estimate of α in H0 is c, b is the speed of
convergence parameter of βit, r is the fraction between the interval (0, 1] and subsequently [rT ]

denotes the integer number of the multiplication of the sample size T and chosen r. Referring to
the views of Kerui Du [5], the results depend on the fraction r and it is proven using Monte Carlo
simulations that the algorithm performs satisfactorily when r is between the interval 0.2 and 0.3,
the value of r is chosen accordingly for the large sample (T ≥ 100) and small sample (T ≤ 50). In
the convergence estimation, the share represented by the r variable is eliminated from the whole
sample.

The hypothesis of the convergence is tested by applying heteroskedasticity and autocorrelation
consistent (HAC) robust one-sided t-test of the weak inequality α ≥ 0 (using the estimated b). As
Kerui Du emphasizes [5], the limit distribution of the regression t statistic is:

tb =
b̂− b

eb
→ N(0, 1),

where eb is a conventional HAC estimate established from the regression residuals. Such residuals
are expressed as:

e2b = l̂var(ût)

 T∑
t=[Tr]

log t− 1

T − [Tr] + 1

T∑
t=[Tr]

log t

2−1

,

where l̂var is a conventional autocorrelated and heteroskedastic estimate formed from the regression
residuals and

ût = log

(
Ψ1

Ψt

)
− 2 logL(t)− ĉ− b̂ log t, for t = [Tr], ..., T.

Therefore, the null hypothesis H0 is rejected at the 5% level when the t-value satisfies tb < −1.65.
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3.1.2 Clustering and merging algorithms

In the previous section, the focal point is the single equilibrium in the whole sample. But
is the condition of only one equilibrium decent in the analysis of long-run behaviour? Is there
a possibility of multiple equilibria? Indeed, the existence of multiple equilibria is a widespread
phenomenon. Persuasive, the non-acceptance of the general convergence (the rejection of the null
hypothesis) does not imply that all research subjects diverge to different levels. Conversely, there
is a big chance of club convergence in the sample. The multiple convergences exhibit homogeneous
behaviour among the groups. Therefore, the existence of those convergence clubs enlarges the
understanding of long-run behaviour. To deal with this issue, Phillips and Sul [16] propose the
following clustering algorithm to find the existing convergence clubs (if any exist). As described
in Roberto Sichera, Pietro Pizzuto [20], the process of grouping and merging the units into clubs
consists of six steps:

1) Sort all N countries in descending order regarding the last observation in the time series. As
a consequence, the country with the highest value of the latest observation becomes the first
while the country with the lowest value turns into the last in the row.

2) Find the first subgroup consisting of k individuals with the highest values of the latest obser-
vations such that tk > −1.65 for {k, k + 1}. The existence of such a subgroup is not always
defined. In the case of the absence of such subgroup k for which tk > −1.65, the conclusion
of no club convergence is drawn.

3) Run the regression for the remainingN−k subgroups with individuals {k, k+1, k+2, ..., k+m},
where m ∈ {1, 2, .., N − k}. The next step is selecting the value of m that subgroups with
individuals {k, k + 1, .., k +m} grant the biggest value of test statistic of log t regression and
defining that group as the core. In other words, the core group formation is expressed as:

m = argmax
k

{tk} subject to min{tk} > −1.65.

4) Gradually add individuals one by one that are not included in the core group and run the
log t regression to the new groups. The new unit is added to the group if the test statistic
tk is greater than a critical value. This suggests that the units satisfying the latter condition
create the convergence club.

5) Collect all the units that do not hold the latter condition and run the log t regression to find
out if tk > −1.65 is implemented. In case tk > −1.65 is fulfilled, it is concluded that there are
two convergence clubs. If not, repeat the procedure defined above on this subgroup. If the
conditions are satisfied, a new convergence club is formed. In the absence of other convergence
clubs, the conclusion of the divergence of remaining individuals is drawn.

6) Since a high critical value c∗ sometimes leads to the over-determination of the groups, perform
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the log t regression test for all pairs of the previously found convergence clubs. If the condition
tk > −1.65 is satisfied jointly, merge those clubs into one.

3.2 Methodology of finding the long memory in time series

This section describes how the long memory feature could be tackled by using Autoregressive
Fractionally Integrated Moving Average (ARFIMA) models. The generic approach is, first, to
consider the standard Autoregressive Integrated Moving Average (ARIMA) model and then assess
the fractional difference parameter.

As it is stated in [12], the ARIMA model combines the autoregressive model with the moving
average model and includes a differencing component to account for non-stationarity in the data.
To be more precise, the model may consist of three types of parts:

1. Autoregressive (AR) component that reflects the dependence of the time series on its own
past values;

2. Moving average (MA) component that represents the error of the forecast as a linear combi-
nation of past errors;

3. Integrated (I) component that specifies the integer order of differencing d applied to the initial
time series in order to attain weak stationarity in the covariance sense.

The main drawback of the ARIMA model is that it can obtain only integer values for the
differencing parameter d. Hence, the ARFIMA model is introduced to account for long-term de-
pendencies and overcome this limitation. The main difference between ARIMA and ARFIMA is
that the parameter d can obtain fractional values. Subsequently, ARFIMA may tackle the class of
long-memory models and these models extend beyond the presence of random walks and unit roots
in univariate time series processes.

3.2.1 Stationary ARFIMA model

ARFIMA {Xt} process is defined through the ARFIMA(p,d,q) in the following form:

Φ(L)(1− L)dXt = Ψ(L)Zt, (12)

where Zt is a white noise process with (finite or infinite) variance σZ and zero mean (EZt = 0).
Moreover, the autoregressive polynomial Φ(L) of the order p is expressed as:

Φ(L) = (1− ϕ1L− ϕ2L
2 − ...− ϕpL

p), (13)

and the moving average polynomial Ψ(L) of the order q takes the shape of:

Ψ(L) = (1− ψ1L− ψ2L
2 − ...− ψqL

q). (14)
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L denotes backward shift or lag operator that holds LXt = Xt−1. (12) can be transformed as:

Φ(L)Xt = Ψ(L)(1− L)−dZt,

where the fractional differencing parameter (1− L)−d is expressed as:

(1− L)−d =
∞∑
j=0

bj(d)L
j

and bj(d) denotes the coefficients in the expansion function f(z) = (1 − z)−d, |z| < 1. Therefore,
bj(d) can be defined through gamma functions:

bj(d) =
Γ(j + d)

Γ(d)Γ(j + 1)
, j = 0, 1, 2, . . . ,

so that

(1− L)−d =
∞∑
j=0

Γ(j + d)

Γ(d)Γ(j + 1)
Lj .

When j is large, an asymptotic approximation of Γ(j+d)
Γ(d)Γ(j+1) is derived in the following way:

Γ(j + d)

Γ(d)Γ(j + 1)
∼ jd−1

Γ(d)
.

Furthermore, by defining (1−L)−dXt as Ut, the ARMA(p, q) process is derived. Subsequently,
if both polynomials Φ(B) and Ψ(B) have roots that lie outside of the unit circle and if the absolute
value of d is less than 0.5, then the process {Xt} is stationary and invertible. The spectral density
of the stationary and invertible {Xt} process is given by the following formula:

fX(λ) = fU (λ)

[
2 sin

(
λ

2

)]−2d

,

where λ ∈ [−π, π].
There are three interpretation cases of the d parameter:

• d ∈ (0, 0.5) – the long memory exists in the {Xt} process,

• d ∈ (−0.5, 0) – the process is characterized by intermediate memory,

• d = 0 – {Xt} process is a short memory process.

Furthermore, Niels Handrup and J. Eduardo Vera Valdes [8] state that the hyperbolic decay
of the autocorrelation function at a sufficient pace indicates the presence of long memory in the
process. To be more explicit, in the existence of the long memory, the autocorrelation function slowly
approaches zero. Figure 1 depicts the example of the autocorrelation function in the presence of
long memory.
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Figure 1: The example of the autocorrelation function in the presence of the long memory

3.2.2 Non-stationary ARFIMA model

Controversially to stationary ARFIMA, the non-stationary ARFIMA model is characterized
by time-varying statistical properties, such as a changing mean, variance, or autocovariance. In
the most common case of non-stationary ARFIMA, the source of non-stationarity is the integer
integration part, similar to the standard ARIMA model, when (12) is rewritten as:

Φ(L)(1− L)vXt = Ψ(L)Zt, (15)

where v = d+ d̃, d̃ ∈ Z, d ∈ (0, 0.5), and d̃ > 0, so that (15) is rearranged as:

Φ(L)(1− L)(d+d̃)Xt = Φ(L)(1− L)d(1− L)d̃Xt = Φ(L)(1− L)dYt,

where Yt = (1 − L)d̃Xt is a stationary process. Therefore, if v ≥ 0.5 – the process is the mean-
reverting yet with time-varying variance and, hence, is considered non-stationary. Subsequently, the
conclusion of no long memory is drawn in this case. On the other hand, one can study if the long
memory phenomenon is present in the residuals after the appropriate number of integer differences
d̃ were applied.
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3.2.3 ARIMA model

If the order of the fractional differencing parameter d is equal to zero in an ARFIMA model, then
the model becomes equivalent to an ARIMA model, which is sufficient to model short-term depen-
dencies but also, due to the integrated part, may admit a description of non-stationary processes.
To be more precise, the long-dependencies are not present if the fractional differencing parameter is
set to zero and, therefore, the ARIMA model is appropriate to fit. Taking into account the absence
of the long memory, (15) can be transformed to the form (16), in which only the short-dependencies
are considered:

Φ(L)(1− L)d̃Xt = Ψ(L)Zt, (16)

where the notations are the same as previously defined.

3.2.4 Unit root tests

Before fitting both ARFIMA and ARIMA models, it is crucial to test for the integer level of
integration of the data. There are many ways to test if the data have unit roots, this thesis takes
into account the following tests:

1. Augmented Dicky Fuller test (ADF),

2. Phillips-Perron test (PP),

3. Kwiatkowski-Phillips-Schmidt-Shin test (KPSS),

4. Zivot and Andrews test (ZA).

The appropriate unit root test selection is another key point to master. Unit root tests help
to find the proper integer order of differencing. Since the number of the latter tests is quite large,
the question arises: which methods are suitable for use? Of course, the eligibility of unit root tests
depends on the time series types. The number of studies compares ADF, PP, and KPSS tests. For
example, Markéta Arltová and Darina Fedorová [2] analyse time series with AR(1) process without
a constant but with positive ϕ1 values varying from 0.01 to 0.99. Their findings conclude that the
ADF test is the most appropriate method to test the unit root existence in the case of long time
series. The KPSS and PP tests are recommended to apply for the shorter time series.

The latter tests are expressed in the following forms:

1. ADF:

∆yt = α+ βt+ γyt−1 +

p∑
j=1

σj∆yt−j + ϵt,

where p the AR process lag order, α is an intercept , β, γ – coefficients of time trend and
process root accordingly, t – time index, yt – data, and ϵt denotes i.i.d. residuals;
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2. PP:
∆yt = α+ γyt−1 + ϵt,

where ϵt is serially correlated;

3. KPSS:
∆yt = βt+ yt−1 + et + ϵt,

where the expression yt−1 + et may be considered random walk;

4. ZA:

∆yt = α+ γyt−1 + βt+ aDUt + bDTt +

p∑
j=1

σj∆yt−j + ϵt,

where DUt – indicator of the occurring mean shift at break-date, DTt – indicator of the
occurring trend shift at break-date.

The details of ADF, PP, KPSS, and ZA tests are presented in the papers [15], [14], [22], and
[23] accordingly.

3.2.5 Periodogram-based methods

The default method to estimate the fractional difference parameter after a sufficient level of
integration is reached is the maximum likelihood approach. However, the pioneering fractional
difference estimation approaches stem from the use of periodogram-based methods.

For instance, the Geweke and Porter-Hudak (GPH) method and the Sperio technique are applied
in this research in order to derive the alternative estimate of the long memory-related fractional
difference parameter. As Tetiana Stadnytska, Simone Braun and Joachim Werner [21] state, the
Geweke and Porter-Hudak algorithm estimates long memory by performing a linear regression of
the log periodogram on a deterministic predictor, while the Sperio method assesses the long memory
parameter through a regression equation that uses the smoothed periodogram function to model the
spectral density. Furthermore, these methods are not restricted to the limitation of the stationary
time series. Therefore, the latter techniques are employed regardless of whether the time series
is stationary or not. On the other hand, the periodogram-based methods might suffer from the
presence of unit roots in the data that significantly disturb periodograms by dragging the mass
closer to zero frequency. Hence, the pre-differencing step is deemed crucial in investigating the long
memory feature.

The explanations of the latter approaches are found in [7] and [18].
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4 Empirical results

4.1 Data

The main objectives of this research are spreads between government bond yields in the euro
area. Even though the euro area consists of 19 European Union Member States, only 14 of them
are included in this analysis. The euro area is formed from the European Union countries, whose
national currency is the euro. The reason for eliminating Cyprus, Estonia, Luxembourg, Malta, and
Slovenia from the sample is the deficiency of the available data. The daily data of government bond
yields are sourced from Bloomberg and cover the period from January 2003 to November 2022. In
addition, the sourced data are yields to maturity, frequently known as YTMs. YTM shows the rate
of return that a bond earns after making all interest payments and repaying the original principal.
YTM is calculated as follows:

Y TM =
n

√
FV

CP
− 1,

where FV is the face value, CP is the current price of the bond and n is the number of years to
maturity. To be more precise, face value represents the nominal value of the bond that is defined
during the issuance of the debt security. The current price of the bond is computed in the following
way:

CP =

(
COUPON ·

1− 1
(1+Y TM)n

Y TM

)
+

(
FV · 1

(1 + Y TM)n

)
,

where COUPON is the rate paid on the bond annually. The latter rate is exhibited as the percentage
of the nominal value.

Moreover, the sourced data are 10-year government bond yields. It is common knowledge that
a 10-year yield is often deemed as being reflective of investor confidence in the market, roughly
encompassing two political cycles. Since the availability of such data is limited for some countries,
the information about the government bond yields is obtained in two ways. To exemplify, there
are countries (especially the smaller ones) that have a very restricted number of government bonds
and the remaining maturity of those bonds is not exactly 10 years, therefore there are a lot of
missing values in the extracted time series. To solve this issue, the interpolation and extrapolation
methods are implemented. The interpolation method is able to produce the values between the
known observations, meanwhile, the extrapolation method is capable of constructing the unknown
values beyond the observations range. As a result, the extrapolation method comes with a higher
risk and unreliability than the interpolation. Consequently, the method producing values between
the known observations is preferred to the method producing values beyond the observed range.
The interpolation formula is written as:

y =
(y2 − y1)

(x2 − x1)
(x− x1) + y1, (17)

where y1 is the yield of the bond with a shorter maturity than 10-year, y2 is the yield of the bond
with a longer maturity than 10-year, x1 is the remaining maturity of the bond that matures earlier
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than in 10-year, x2 is the remaining maturity of the bond that matures later than in 10-year and x
is exactly ten years in this case.

Date y1 y2 x1 x2
01/01/2015 1.820 1.541 11.833 9.063

Table 1: Lithuanian government bond yield on 01/01/2015

In light of Table 1, Lithuanian 10-year government bond yield is interpolated in the following
way.

1.820− 1.541

11.833− 9.063
(10− 9.063) + 1.541 = 1.635

Figure 2: Interpolation of Lithuania’s yield

The extrapolation is implemented as follows:

y =
(x− x1)

(x2 − x1)
(y2 − y1) + y1,

where y1, y2, x1, x2, x as in (17). For illustration purposes, the Lithuanian government bond yield
on 01/01/2003 is extrapolated using the data provided in Table 2.
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Date y1 y2 x1 x2

01/01/2003 4.969 4.214 9.362 5.140

Table 2: Lithuanian government bond yield on 01/01/2003

Referring to the values provided in the Table 2, 10-year Lithuanian government bond yield is
calculated as:

y =
10− 5.140

9.362− 5.140
(4.969− 4.214) + 4.214 = 5.083.

Figure 3: Extrapolation of Lithuania’s yield

It is widely known that German government bonds, also known as Bunds, are commonly con-
sidered a benchmark of the euro area – the analysis of this thesis is no exception. The 10-year
Bund yield is chosen to be a reference against the other euro area countries. The spreads between
countries are computed by subtracting the Bunds yield from each country’s government bond yield.
First of all, let us study the following Table 3 sample of euro area government bond yields.

The euro area government bond spreads versus Germany are computed according to (18).

sEA = (yEA − yDE) · 100, (18)

where yDE is the German government bond yield and yEA is the euro area country’s yield (excluding
Germany). For the sake of brevity, the countries will be denoted as their country codes later in this
research (the table of the country codes is presented in the Appendix B). Therefore, the spreads are
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Country Yield 05/01/2003 Yield 06/01/2003 Yield 07/01/2003
Austria 4.394 4.373 4.353
Belgium 4.450 4.430 4.396
Finland 4.422 4.399 4.378
France 4.932 4.399 4.345

Germany 4.333 4.312 4.286
Greece 4.582 4.562 4.535
Ireland 4.441 4.419 4.392
Italy 4.552 4.531 4.492

Latvia 5.410 5.427 5.299
Lithuania 5.166 5.138 5.110

Netherlands 4.386 4.431 4.304
Portugal 4.456 4.431 4.397
Slovakia 5.117 5.117 5.117
Spain 4.410 4.389 4.358

Table 3: Euro area government bond yields on 05/01/2003 - 07/01/2003

calculated as:
sAT = (4.394− 4.333) · 100 = 6.1,

sBE = (4.450− 4.333) · 100 = 11.7.

By using the same approach, the spreads for sampled euro area countries are found. The measure-
ment units of spreads are selected to be the basis points (bps). To clarify, the basis points are often
used in finance to sketch the percentage change in the value of financial instruments, where one
basis point is equal to 0.01%.

Figure 4: Euro area government bond yield spreads versus Germany
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To sum up, spreads of sovereign bond yields (versus Germany) in the whole analysed period are
presented in Figure 4. Individual graphs of euro area government bond yield spreads are provided
in Figure 5.

Figure 5: Individual graphs of euro area government bond yield spreads versus Germany

4.2 Application of Phillips and Sul method

This section provides the convergence analysis of the government bond spreads in the euro area.
To begin with, the data is divided into four periods for this particular convergence analysis. The first
period covers the entire timeline from January 2003 to November 2022. The second period embraces
the interval from the start of 2003 to the end of 2008. The third period begins in 2009 and ends in
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the middle of 2015, encompassing notable fluctuations in government bond yields. The fourth period
covers the rest of the time span, from the middle of 2015 to November 2022, and includes events such
as the coronavirus pandemic and the Russian invasion of Ukraine, during which there were smaller
fluctuations in the spreads. The motivation for dividing the data into smaller periods is to analyse
the different behaviours of the spreads in each stage. As there were clear periods of convergence and
divergence throughout the entire term (see Figure 4), these contradictory phenomena may balance
each other out in the long-run. Therefore, the composition of clubs can vary and change over time
depending on which of the above time periods are analysed.

Besides, the time-trimming coefficient presented in equation (11) is denoted as the variable r.

4.2.1 Hodrick and Prescott filter

The initial data is transformed using the method proposed by Hodrick and Prescott (1997) to
separate it into trend and cyclical components. According to Hodrick and Prescott [9], the cyclical
components represent deviations from the trend and have an average of approximately zero in the
long-run. The trend is smoothed using a smoothing parameter, which is defined as the sum of
squares of the second differences of the trend. This transformation is used in the proposed method
of Phillips and Sul to analyse the spreads, which are composed of two components. The Hodrick
and Prescott filter is suitable for this purpose due to its ability to penalize the variability of the
trend.

Several smoothing parameters are considered in this research. The selection of an appropriate
level of smoothness is done by considering the variation of the cut-off frequency. The cut-off fre-
quency can be defined as the point in a system’s frequency response at which energy flowing through
the system starts to diminish rather than pass through. The smoothing parameter and the cut-off

frequency are related according to the following equation: λ =
(
2 · sin

(
π

freq

))−4
, where λ is the

smoothing parameter and freq is the cut-off frequency. Three cut-off frequencies are analysed, and
the appropriate level of smoothness is chosen based on the graphs of the Hodrick-Prescott filter with
different relevant parameters (see Appendix C). To summarise, a cut-off frequency of freq = 30 is
determined as the proper level of smoothness for this research.

4.2.2 Analysis of convergence in the period from 2003 to 2022

With reference to (6), the cross-sectional variances are computed for the period from the start
of 2003 to the end of 2008. Subsequently, the log t regression (11) is performed and the following
results are derived.

r b coefficient standard deviation t-statistic p-value
1
3 0.45 0.04 10.63 1.00
1
5 -0.34 0.06 -5.68 0.00

Table 4: The log t regression results for the period 2003-2022
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The results of the statistical analysis suggest that the null hypothesis, which proposes the ex-
istence of convergence in the spreads among euro area countries, cannot be rejected at the 5%
significance level when the time-trimming parameter is 1

3 . This indicates that the spreads exhibit
converging behaviour, and the unity of the euro area is not challenged by the data. The t-statistic,
which is a measure of the strength of the evidence against the null hypothesis, is found to be greater
than −1.65.

In this analysis, a relatively long time series of daily data is considered comprising 5192 observa-
tions. If the time-trimming fraction 1

5 is used, the results are contradictory, with the t-statistic for
the convergence overall being less than the 5% significance value. This leads to both the rejection of
the hypothesis of convergence overall and the construction of two convergence clubs. Lithuania and
Italy are assigned to the first club, while the remaining countries are designated to the second club.
However, upon closer examination of the data in Figure 4, the similar behaviour of Lithuania and
Italy is observed towards the end of the series and influenced by the small time-trimming fraction,
which is insufficient to minimise the impact of the final trend on the convergence estimate. As a
result, the overall hypothesis of convergence cannot be rejected and the relative transition paths are
presented in Figure 6.

Figure 6: Relative transition paths 2003-2022

4.2.3 Analysis of convergence in the period from 2003 to 2008

The convergence analysis of separate periods is conducted in the same manner as for the whole
sample. Therefore, the selected smoothing parameter of the Hodrick-Prescott filter is the same as
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previously defined and the results of implemented log t regression are provided in Table 5.

r b coefficient standard deviation t-statistic p-value
1
3 1.21 0.02 78.83 1.00
1
5 0.56 0.08 7.22 1.00

Table 5: The log t regression results for the period 2003-2008

According to Table 5, the results of the analysis support the existence of a convergence process,
as the t-statistics for both time-trimming fractions of 1

3 and 1
5 are greater than −1.65. Thus, the

concept of unity is not rejected for the period from 2003 to 2008. The relative transition paths are
derived from the relative transition parameter (5). The relative transition paths for both cases are
shown in Figure 7.

Figure 7: Relative transition paths 2003-2008

4.2.4 Analysis of convergence in the period from 2009 to 2015

Referring to the views of presented historical events, the second subperiod includes two signifi-
cant occurrences: the financial crisis and the sovereign debt crisis. It is worth mentioning that the
largest variation of government bond yields is observed from 2009 to 2015. As a consequence, in
the beginning, the spreads of government bonds in the euro area increase by a very large amount
and then begin to fall rapidly in the second half of the period.

The log t regression gives the following results.
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r b coefficient standard deviation t-statistics p-value
1
3 -0.52 0.11 -4.832 0.00
1
5 -0.62 0.04 -14.28 0.00

Table 6: The log t regression results for the period 2009-2015

In this case, the t-statistics for both r variables are less than -1.65, indicating the rejection of
H0. Since the overall convergence is rejected, the club convergence is tested for the period from
2009 to 2015 with the time-trimming parameter that is equal to 1

3 . The convergence clubs are given
in Table 7.

Club1 Portugal, Italy, Spain, Ireland, Lithuania, Latvia, Belgium,
France, Slovakia, Netherlands, Austria, Finland

Divergent Greece

Table 7: Convergence clubs for the period 2009-2015 (r = 1
3)

The relative transition paths, excluding the divergent country, are presented in Figure 8.

Figure 8: Relative transition paths 2009-2015
(
r = 1

3

)

Since the t-statistics computed for both time-trimming parameters differ from each other, the
detection of convergence clubs is repeated with the time-trimming parameter r = 1

5 . The results
are provided in Table 8.
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Number of units b coefficient std.err t-statistics
club1 7 0.04 0.01 8.14
club2 5 -0.03 0.04 -0.67

Table 8: Convergence clubs for the period 2009-2015 (r = 1
5)

The table implies the following results:

1. the first convergence club includes Portugal, Italy, Spain, Ireland, Lithuania, Latvia, and
France;

2. the second convergence club consists of Belgium, Slovakia, Netherlands, Austria, and Finland,

3. the divergent behaviour of Greece is confirmed this time as well.

The relative transition paths of these convergence clubs are depicted in Figure 9.

Figure 9: Relative transition paths 2009-2015
(
r = 1

5

)

Since two convergence clubs were identified, the method of clustering and merging algorithm
(described in Section 3.1.2) is applied. The algorithm determines if it is possible to merge these
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clubs into one. Based on the results, it appears that it is not possible to merge the convergence
clubs. Therefore, the conclusion of the existence of two convergence clubs is derived.

To conclude, the convergence overall is rejected for the period from 2009 to 2015. Despite the
overall divergence of the spreads, the existence of club convergence is confirmed. Even though both
r = 1

3 and r = 1
5 cases show a different number of existing clubs, the divergent behaviour of Greece

is confirmed for both of them. Bearing in mind that Phillips and Sul suggest choosing the larger
time-trimming parameter of the considered ones when the sample of time series is relatively large,
the conclusion of one convergence club and one divergent unit is drawn.

4.2.5 Analysis of convergence in the period from 2015 to 2022

During the fourth period, the spreads of most sovereign bonds decreased moderately, tending
towards a similar level. However, with the emergence of the coronavirus pandemic and the Russian
invasion of Ukraine, the yields on these bonds began to react differently. For this reason, the spreads
have increased unevenly, especially for Lithuania and Italy (see Figure 4).

To examine whether the variance of the difference between successive values of the spreads for
the period from 2015 to 2022 is decreasing, log t regression is applied. The results of this regression
are provided in Table 9.

b coefficient standard deviation t-statistics p-value
r = 1

3 1.22 0.00 438.86 1.00
r = 1

5 0.93 0.07 14.13 1.00

Table 9: The log t regression results for the period 2015-2022

The results for both time-trimming cases indicate the non-rejection of H0 of an overall conver-
gence. However, it is worth mentioning that the t-statistics for the two time-trimming fractions
differ significantly. The reason for such a significant difference can be attributed to the fluctuation
of the yields for Lithuania and Italy at the end of the period, as discussed in the analysis of the
entire time span. Despite the differences in the t-statistics for the two time-trimming fractions, the
overall convergence is not rejected in either case.
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Figure 10: Relative transition paths 2015-2022

4.3 Long memory analysis

In this section, the procedure of the long memory testing is described and practically imple-
mented on the government bond spreads in the euro area. In this thesis, the algorithm for testing
long memory consists of three main stages:

1. Testing the unit roots in the time series;

2. Fitting the ARIMA model;

3. Assessing the fractional difference parameter using the ARFIMA model with integer model
parameters determined in step 2.

Later, in this research, the procedure of fitting the ARIMA model and assessing the fractional
difference parameter using the ARFIMA model is denoted as a two-step procedure. The obtained
results from the two-step procedure are compared to results derived from the periodogram-based
methods.

4.3.1 Unit roots

First, unit root tests described in Section 3.2.4 for the spreads in the euro area are executed.
The null hypothesis of the ADF and PP test specifies the existence of the unit root, whereas H0 of
the KPSS test indicates the absence of a unit root in time series. ZA is an alternative test with the
unit root null hypothesis that also admits a single structural break in the intercept. The results of
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the subsequent tests are presented in Table 10 with p-values returned for ADF, PP and KPSS tests
and t-statistic reported for the ZA test.

ADF PP KPSS ZA
Austria 0.33 0.06 0.01 -4.34
Belgium 0.49 0.36 0.01 -3.79
Finland 0.21 0.04 0.01 -4.05
France 0.29 0.04 0.01 -4.77**
Greece 0.63 0.66 0.01 -3.35
Ireland 0.76 0.81 0.01 -2.69
Italy 0.45 0.47 0.01 -3.63
Latvia 0.63 0.67 0.01 -4.12
Lithuania 0.34 0.67 0.01 -3.88
Netherlands 0.16 0.02 0.01 -5.51*
Portugal 0.90 0.79 0.01 -3.17
Slovakia 0.08 0.27 0.01 -4.11
Spain 0.78 0.75 0.01 -3.54

The rejection of the ZA test is indicated by one and two asterisks, respectively, for the 1% and 10% levels
of significance.

Table 10: Unit root tests

Referring to the views of Table 10, the p-values of the ADF test are higher than 0.05, indicating
the non-rejection of the null hypothesis for the whole sample at the 5% level of significance. Likewise,
the PP test shows the unit root existence in the time series, even though there are several exceptions.
To be more precise, the obtained p-values from the PP test are 0.04, 0.04 and 0.02 respectively for
Finland, France and Netherlands. Since the p-values point to statistically significant deviation from
the null hypothesis, theH0 is rejected, meaning that FI, GR, and NL time series can be handled later
as having no unit roots. Furthermore, the KPSS test indicates the rejection of the null hypothesis
that the time series may be trend-stationary.

Since the results of unit root existence are deceptive in the PP test compared to the ADF and
KPSS tests, the execution of an additional test is performed. The unit root test of ZA is adopted
as the supplemental one. Since the latter test accounts for the single structural break, the testing
procedure contains the following hypotheses: the null hypothesis states that the time series is unit
root series with drift versus the alternative hypothesis of the process with a one-time break in the
level and without unit roots. The conclusion of rejection or non-rejection of the null hypothesis in
the Zivot and Andrews test can only be drawn by determining the critical values of the test statistic
at the appropriate level of significance. Due to the importance of selecting the significance levels,
the critical values are elected at 1%, 5% and 10% significance levels. Table 11 exhibits the chosen
critical values.
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Critical value (1%) Critical value (5%) Critical value (10%)
-5.34 -4.80 -4.58

Table 11: Critical values of the Zivot and Andrews test statistic

The test statistics of Zivot and Andrews are less than 10% critical value for France and the
Netherlands. Since the examined level of confidence is chosen to be 5% in ADF, PP and KPSS
tests, the consequence of the rejection of the null hypothesis for the Netherlands is obtained.

Government bond spreads actively demonstrate the existence of unit root for the whole sample
with the inconsistency for the Netherlands. To summarize, two out of four tests designate the
rejection of the hypothesis of the unit root for the case of the Netherlands. Since the integrated
process in data is obtained from the unit root tests in most cases, the cogitation of both integer
difference and fractional difference parameters should be taken into account. Even though PP
and ZA tests disclose the contradictory behaviour of the Netherlands compared to the rest of the
EA countries, for homogeneity treatment of the time series, disregard the results of the rejection
of the null hypothesis based on the PP and ZA tests. The unit root feature is reflected in the
autocorrelation graphs (see Appendix D.1).

Since the existence of unit root is non-rejected for the initial data, the first-order of differencing
parameter (d = 1) is analysed. The results of the unit root tests for the first-order of difference are
presented in Table 12.

ADF PP KPSS ZA
Austria 0.01 0.01 0.10 -65.95
Belgium 0.01 0.01 0.10 -62.62
Finland 0.01 0.01 0.10 -66.65
France 0.01 0.01 0.10 -72.59
Greece 0.01 0.01 0.10 -63.63
Ireland 0.01 0.01 0.10 -55.64
Italy 0.01 0.01 0.10 -68.98

Latvia 0.01 0.01 0.10 -85.30
Lithuania 0.01 0.01 0.10 -94.33

Netherlands 0.01 0.01 0.10 -69.61
Portugal 0.01 0.01 0.10 -61.30
Slovakia 0.01 0.01 0.10 -78.92
Spain 0.01 0.01 0.10 -65.15

Table 12: Unit root tests for the first-order of differencing

Using the same reasoning about the rejection and the non-rejection of the null hypothesis in
respective tests as previously described, the absence of unit root is considered in the spreads when
the order of difference is equal to one. Subsequently, the autocorrelation graphs reflect the latter
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phenomenon (see Appendix D.2).
The question comes up: Is it appropriate order of differencing? For instance, over-differencing

removes the trend patterns and can result in the loss of important information. Rob J. Hyndman
and Yeasming Khandakar point out [10] that over-differencing has adverse effects on forecasting and
predicting confidence intervals. In the following sections, it is examined whether the first-order of
difference is an appropriate parameter for the spreads in the EA countries.

4.3.2 ARFIMA

Before fitting the ARFIMA model, it is necessary to determine the parameters of the short
memory to more accurately estimate the parameters of the long memory. The short-term parameters
can be fully and properly estimated using the ARIMA model. The most appropriate values for the
p, d̃ and q parameters are selected using the Akaike Information Criteria (AIC), which is described
in detail in [3]. To find ARIMA p, d̃ and q parameters, the KPSS unit root test is used. The
appropriate coefficients are found using R and the relevant code is presented in Appendix E. To
discover more accurate estimates, the exact method is used to fit the model. Moreover, all the
possible combinations of models are considered and the optimal ARIMA model is selected based on
AIC.

Once the ARIMA parameters are determined, the fractional difference parameter d is assessed
using the ARFIMA model. Since the ARIMA parameter d̃ is equal to one for all government bond
spreads in the euro area, the initial value of the difference parameter in the ARFIMA model is set
to one as well. The results are given in Table 13.

ARIMA p ARIMA d ARIMA q ARFIMA d 95% CI
Austria 1 1 4 -0.14 (-0.20;-0.09)
Belgium 2 1 1 0.08 (-0.08;0.25)
Finland 2 1 1 -0.08 (-0.13;-0.03)
France 3 1 2 -0.19 (-0.25;-0.12)
Greece 2 1 3 -0.03 (-0.08;0.02)
Ireland 2 1 3 0.02 (-0.01;0.05)
Italy 1 1 2 -0.05 (-0.13;0.02)
Latvia 5 1 0 -0.01 (-0.08;0.06)
Lithuania 4 1 1 0.15 (0.09;0.21)
Netherlands 4 1 1 -0.16 (-0.22;-0.10)
Portugal 0 1 5 -0.05 (-0.11;0.00)
Slovakia 1 1 3 0.08 (0.02;0.14)
Spain 1 1 4 -0.01 (-0.11;0.09)

Table 13: Estimated p, d̃, q, d parameters and 95% CI of d

In view of Table 13, the estimated d parameters in the ARFIMA model in most of the cases
are less than 0, indicating that there is no sign of long memory in the residuals of analysed EA
government bond spreads obtained after fitting ARIMA models. As described in Section 3.2.1, the
range between -0.5 and 0 refers to the intermediate memory, meaning that the spreads fall between

33



short and long memory. The assessed fractional difference parameters for BE, IE, LT, and SK
are higher than 0 but less than 0.5. Therefore, these countries implicate the persisting memory in
the residuals. Although the d parameter is relatively small for those countries, weak signs of long
memory are considered.

4.3.3 Periodogram-based methods

To justify the assessed fractional differencing parameters, two additional tests are considered.
The tests for the verification of the results are selected to be Geweke and Porter-Hudak and Sperio.
The latter tests are based on the regression equation that uses the smoothed periodogram function
as an estimate of the spectral density. The results of those tests are presented in Table 14.

GPH d GPH 95% CI Sperio d Sperio 95% CI
Austria 1.01 (0.83;1.18) 0.98 (0.91;1.05)
Belgium 1.06 (0.94;1.19) 1.03 (0.98;1.08)
Finland 0.85 (0.71;1.00) 0.90 (0.83;0.96)
France 0.96 (0.83;1.09) 0.97 (0.92;1.02)
Greece 1.05 (0.91;1.20) 1.04 (0.96;1.13)
Ireland 1.08 (0.94;1.23) 1.07 (0.99;1.15)
Italy 1.01 (0.87;1.15) 1.00 (0.95;1.05)
Latvia 1.02 (0.85;1.19) 1.01 (0.93;1.08)
Lithuania 0.94 (0.79;1.09) 0.93 (0.84;1.02)
Netherlands 0.96 (0.78;1.15) 0.92 (0.84;1.00)
Portugal 1.25 (1.10;1.40) 1.19 (1.12;1.26)
Slovakia 0.89 (0.76;1.03) 0.83 (0.78;0.89)
Spain 1.04 (0.88;1.20) 1.07 (0.99;1.14)

Table 14: Long memory estimates by GPH and Sperio methods

In the context of the ARFIMA model, the integer differencing parameter d̃ obtained from the
ARIMA model is equal to one, indicating that the first-order of differences is chosen for the initial
data. However, the GPH and Sperio tests do not take into account that the data should be differ-
enced, and, therefore, return results for undifferenced data. To compare the results between Table
13 and Table 14, the proper solution is to either add a unit to the d parameter obtained from the
ARFIMA model or subtract a unit from the d estimates derived from GPH and Sperio tests. The
selected assertion is the subtraction of unity from the GPH and Sperio tests. With the consideration
of the property of results being biased for GDP and Sperio, the long memory is considered in more
countries than in ARFIMA for both GPH and Sperio methods. Moreover, the methods of GPH
and Sperio do not indicate the long memory in Lithuania’s and Slovakia’s spreads, even though
such a feature is obtained by the ARFIMA model. The GPH and Sperio parameters have wider
confidence intervals indicating that the error in the estimation of the d parameter could lead to
completely different interpretations. In the evaluation of differencing parameter methods based on
the periodogram, the most striking difference is observed for the spread of Portugal. The fractional
difference estimate of the ARFIMA model does not indicate long memory for Portugal, however,
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the d parameter found by the GPH and Sperio method falls into the long memory range. In this
case, 95% confidence intervals confirm the long memory for the case of Portugal. When evaluating
the results in general, all three methods (ARFIMA, GPH, Sperio) show that the d parameter does
not indicate long memory in most of the cases, and if it does, the memory is weak and observed
only for several countries.

Looking from another perspective, since pre-differencing is the crucial step to assess the long
memory parameter, the estimates of long memory are calculated for the first-order differenced
spreads. The results are presented in Table 15.

GPH d GPH 95% CI Sperio d Sperio 95% CI
Austria 0.07 (-0.09;0.22) 0.01 (-0.07;0.08)
Belgium 0.10 (-0.06;0.26) 0.03 (-0.02;0.08)
Finland -0.02 (-0.17;0.13) -0.03 (-0.09;0.03)
France 0.01 (-0.11;0.13) -0.04 (-0.09;0.01)
Greece 0.05 (-0.10;0.20) 0.04 (-0.05;0.13)
Ireland 0.09 (-0.05;0.23) 0.06 (-0.02;0.15)
Italy 0.03 (-0.09;0.16) -0.01 (-0.06;0.04)
Latvia 0.04 (-0.11;0.20) 0.00 (-0.08;0.08)
Lithuania -0.06 (-0.20;0.09) -0.08 (-0.16;0.01)
Netherlands 0.00 (-0.19;0.19) -0.09 (-0.16;-0.01)
Portugal 0.23 (0.10;0.37) 0.21 (0.13;0.29)
Slovakia -0.08 (-0.22;0.07) -0.13 (-0.19;-0.07)
Spain 0.11 (-0.06;0.28) 0.05 (-0.03;0.14)

Table 15: Long memory estimates by GPH and Sperio methods for the first-order differenced spreads

Little differences are observed comparing Table 14 with Table 15. To be more precise, the
disparities are found in the interpretation of: FR and NL for the GPH method, AT and IT for
the Sperio method. Again, the confidence intervals computed for the first-order differenced data
include the existence and absence of long memory. Despite tiny discrepancies between these two
methods, the remaining results are very similar. Therefore, the results of the two-step procedure
are compared to the estimates of GPH and Sperio methods for undifferenced data.

5 Discussion of the results

The first part of the work presents the methodologies of convergence patterns and long memory
testing. The convergence of the government bond spreads in the euro area is examined via Phillips
and Sul method. Furthermore, the analysis of long memory is implemented through both ARIMA,
ARFIMA models and periodogram-based approaches. The government bond yield spreads versus
Germany are computed manually and some modifications are adapted to the initial data.

Examining the unity concept in the context of the government bond spreads in the euro area
considers the importance of selecting the appropriate parameters. For example, in the case of
Hodrick and Prescott’s filter, several smoothing parameters are considered, even though the chosen
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cut-off frequency is freq = 30. Furthermore, two cases are analyzed, considering that Phillips and
Sul [16] recommend trimming some portion of the period when running the log t regression model.
In the first case, the selected fraction to trim is considered 1

3 and later results are recomputed with
the trimming parameter 1

5 . The importance of selecting the appropriate time-trimming parameter
is most evident when analyzing the entire period from 2003 to 2022 where the overall convergence is
challenged by the notable fluctuations of the spreads at the end. As it is known, the key role of the
time-trimming parameter is to eliminate the impact of the initial and final trends in the data. The
results indicate rejection of convergence overall when considering a smaller fraction of trimming,
although the outcome of log t regression is entirely different with a larger time-trimming particle.
Therefore, the conclusion of the non-rejection of H0 is drawn based on the larger of considered
time-trimming parameters. The findings remain identical in the analyzed subperiods except for
the interval from 2009 to 2015. Since the values of t-statistics are −4.83 and −14.28 respectively
for time-trimming coefficients 1

3 and 1
5 , the overall convergence is rejected. In the latter episode,

the log t regression with the time-trimming 1
3 indicates the convergence of all countries, excluding

Greece. The divergent patterns of Greece are confirmed by running the log t regression with the
time-trimming coefficient 1

5 . Hence, two converging clubs are found in this case. For the shorter
time-trimming, the Phillips and Sul method combines Portugal, Italy, Spain, Ireland, Lithuania,
Latvia, and France into one club and the rest of the countries are assigned to the second club,
leaving Greece as a divergent country. The values of t-statistics in the final period vary remarkably
while assuming different fractions to trim. Even though the results do not indicate the rejection of
convergence, in the long-run, the fluctuations in yields at the end of the period significantly affect
the regression results.

Continuing the analysis from a long memory perspective, the unit root existence in the spreads
of euro area countries is confirmed in most cases. Particularly, four unit root tests (ADF, PP,
KPSS, ZA) are performed. For the case of the Netherlands, two of four tests (PP and ZA) show
that the null hypothesis of the unit root is statistically significantly rejected. Therefore, the time
series of the Netherlands government bonds can be considered as having no unit roots, although,
for the sake of homogeneity treatment, the results of PP and ZA tests are disregarded. Since the
fundamental fractional parameter assessment methods are restricted to the stationary process in
the R, the research scrutinizes the parameter of long-range dependence in two steps. The first step
consists of the investigation of the short memory components (p and q parameters) and integer
part of differencing parameter d̃ using ARIMA. The second step is to re-evaluate the d parameter
by providing the p, d̃ and q parameters found in the previous step. The fraction parts of the long
memory parameter d for most EA countries are between the interval -0.5 and 0, indicating a mean-
reverting process and the absence of long memory. However, the fractional parts of differencing
coefficients for Belgium, Ireland, Lithuania and Slovakia are respectively 0.08, 0.02, 0.15, and 0.08,
disclosing weak signs of long memory since d coefficients obtained from the ARFIMA model fall
between 0 and 0.5. Moreover, the results obtained through periodogram-based methods, such as the
Geweke and Porter-Hudak (GPH) and Sperio approaches, discover the long memory feature in more
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countries than in the two-step procedure. However, the outcomes of the latter methods are likely to
be shifted due to periodogram smoothing and the unit root residual impact. As a consequence, the
associated confidence intervals for periodogram-based approaches are, in general, wider than those
produced by the two-step approach.

6 Conclusions

This thesis confirms the unity concept in the euro area. The unity concept is examined through
the dissimilarities between the members of the EA while measurements of disparity are spreads be-
tween government bond yields versus Germany in the euro area. This research provides statistically
significant evidence of united behaviour by equating the process of convergence to the same level
among the group to the unity patterns. Even though there are some signs of divergence for Greece
in the period from 2009 to 2015, the research, in general, concludes the convergence of the euro
area countries in the long-run. Although all series are first-order integrated, hence, possess no long
memory feature in levels of spreads, some weak evidence of long memory in the residuals is obtained
after taking the first difference. Moreover, this research proposes to use the two-step procedure that
involves fitting both ARIMA and ARFIMA models to estimate the long memory parameter of the
government bond spreads in the euro area rather than relying on periodogram-based methods. This
proposal is reasoned by the fact that the order of difference is not taken into account and that the
confidence intervals of the methods based on the periodogram are significantly wider and include
both the existence and absence of long memory cases.

The investigation shows that even if the market treats particular countries differently in certain
periods, in general, the EA is considered a unitary club. The occurrence of shocks, for example,
significant global events, such as financial or sovereign debt crises, may show different short-term
expectations for the euro area members’ abilities to remain stable and repay their debts. Despite
the temporary variant treatment, the common belief of monetary union long-run stability in the
EA is observed. The arising shocks do not contain the feature of the strong dependence between
themselves. Thus, even if certain major events disproportionately impact one country or a group
of countries, it does not necessarily mean that the upcoming shocks will be equally severe as prior
ones for particular countries.
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Appendices

A Some explanations of Phillips and Sul method

Notoriously, µt can have both stochastic and deterministic constituents. To account for both
components, µt must fit both the convergence and divergence behaviour of each i. To achieve the
desired result, Phillips and Sul [16] propose employing the standardization process. The essence is
to standardize sit and, respectively, the relevant variable µt acquires the standardized form.

Suppose vit is the function that varies regularly at infinity and fi(t) = vit. Then fi(t) satisfies

fi(t) = tγiWi(t), (19)

where tγi is power exponent and Wi(t) is slowly varying function. In addition, Wi(t) satisfies (8).
Similarly to fi(t), µt is denoted as

µt = tγZ(t), (20)

where Z(t) is another slowly varying function.
In light of introduced denotations (19) and (20), the method holds for a more extensive diversity

of asymptotic behaviour. Considering (19) and (20) equations, assume t = [Tr] where T denotes
the whole sample and r is the share of the sample T , then:

vit
T γi

=
fi(t)

T γi
=
tγiWi(t)

T γi
=

[Tr]γi

T γi

Wi(Tr)

Wi(T )
Wi(T ) ∼ rγiWi(T ) (21)

and
µt
T γ

=
tγZ(t)

T γ
=

[Tr]γ

T γ

Z(Tr)

Z(T )
Z(T ) ∼ rγZ(T ) (22)

In view of (21) and (22), the following equations are implemented:

sit
T γi

=
ait + vit
T γi

=
ait
T γi

+
vit
T γi

∼ rγiWi(T ), (23)

µt
T γi

∼ rγZ(T ). (24)

From this point premise rγ = µ(r). Considering (2) and (21)-(24) equations, the following one is
derived:

sit
T γi

=
(ait + vit)µt

T γiµt
=

ait
T γi

+
vit
T γi

µt
T γ

T γ

µt
= o(1) +

vit
T γi

µt
T γ

T γ

µt

∼ rγiWi(T )r
γZ(T )

1

rγZ(T )
∼ rγi−γWi(T )

Z(T )
rγZ(T ) = rγi−γJi(T )r

γZ(T ),

where Ji(t) = Wi(T )
Z(T ) . Presume the constituent rγi−γJi(T ) as βJiT (r) and rγZ(T ) as µZT (r). Since

Ji(t) is a slowly varying function, then both βJiT (r) and µZT (r) are regularly varying functions and
act asymptotically like power exponents rγi−γ and rγ respectively.
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Taking into consideration the standardization factor diT = T γiWi(t), where γi > 0, the stan-
dardized form of sit is obtained in the following way:

1

diT
sit =

1

T γiWi(T )

(
ait + vit
µt

)
µt =

ait
T γiWi(T )µt

µt +
vit

T γiWi(T )µt
µt

=
ait

T γiWi(T )
+

vit
T γiWi(T )

µt
T γZ(T )

T γZ(T )

µt

= o(1) +
tγiWi(t)

T γiWi(T )

T γZ(T )

µt

µt
Z(T )T γ

=

= o(1) +

(
t

T

)γi−γWi

(
tT
T

)
Wi(T )

Z(T )

Z
(
tT
T

)( t

T

)γZ
(
tT
T

)
Z(T )

∼ βiT

(
t

T

)
µT

(
t

T

)
,

(25)

where

βiT

(
t

T

)
=

(
t

T

)γi−γWi

(
tT
T

)
Wi(T )

Z(T )

Z
(
tT
T

)
and

µT

(
t

T

)
=

(
t

T

)γZ
(
tT
T

)
Z(T )

.

As formerly suppose t = [Tr], then:

βiT

(
t

T

)
= βiT

(
Tr

T

)
=

(
Tr

T

)γi−γWi(Tr)

Wi(T )

Z(T )

Z(Tr)
∼ rγi−γ = βi(r)

as well as
µT

(
t

T

)
= µT

(
Tr

T

)
=

(
Tr

T

)γZ(Tr)

Z(T )
∼ rγ = µ(r).

The above-stated expressions of the relative transition parameter and common trend component
apply only to the non-stochastic version. To consider the stochastic features, a standardized form
of sit arises using op(1) error uniformly in t ⩽ T so that the following conditions hold:

βiT (r) −→
p
rγi−γ = βi(r),

µT (r) −→
p
rγ = µ(r).

(26)

Referring to the views of (25) and (26), the following conclusion is drawn:

1

diT
siT → βi(r)µ(r) = si(r).

To account for asymptotic relative transition paths, the next step is to deduce the asymptotic
behaviour of the relative transition parameter ψit. In light of ( 4) and (25), the following adjustments
of ψit are fitted:
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ψiT

(
t

T

)
=

sit
diT

1
n

∑n
j=1

(
sjt
djT

) =
βiT

(
t
T

)
1
n

∑n
j=1 βiT

(
t
T

) . (27)

Recurrently, presume t = [Tr], then:

ψiT

(
[Tr]

T

)
−→
p

βi(r)
1
n

∑n
j=1 βi(r)

= ψi(r), when T → ∞. (28)

The elimination of the business cycle component in the initial data is another key point in the
investigation of the long-run equilibrium. To recall, the st has two components: µt and βit. (2) can
be extended by adding the business cycle component ωit so that:

sit = βitµt + ωit. (29)

To remove the effect of the business cycle, the most popular and appropriate way is to use
smoothing methods. One of the most often used methods of smoothing is the Whittaker-Hodrick-
Prescott smoothing filter, in which the nature of µt and sit does not have to be specified previously
in order to use this tool. To simplify, the (29) equation consists of two parts: the first constituent
βitµt embodies the trend information while the second one, ωit, depicts the business effects. By
using Whittaker-Hodrick-Prescott smoothing filter, the trend estimate is calculated as θ̂it = v̂itµt.
The following expression of θ̂it is derived:

θ̂it = θit + ϵit =

(
βit +

ϵit
µt

)
µt, (30)

where the error in the filter estimate is denoted as ϵit and θit is the trend. The relative transition path
ψit is estimated as ĥi(r) = ĥi[Tr] when both a common standardization and t = [Tr] conditions are
implemented. As Phillips and Sul [16] indicates, the condition ϵit

µt
−→
p

0 uniformly in i, is sufficiently

reasoned to use in this case, so that when T → ∞:

ψ̂i(r) =

(
βi[Tr] +

ϵi[Tr]

µ[Tr]

)
1
n

∑n
i=1

(
βj[Tr] +

ϵj[Tr]

µ[Tr]

) =
βiT

(
t
T

)
1
n

∑n
j=1 βiT

(
t
T

) + op(1) −→
p

βi(r)
1
n

∑n
j=1 βi(r)

. (31)

To conclude, the approximately calculated value of the transition path is sufficient to estimate
the relative transition parameter.
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B Country codes

Code Country
AT Austria
BE Belgium
DE Germany
FI Finland
FR France
GR Greece
IE Ireland
IT Italy
LV Latvia
LT Lithuania
NL Netherlands
PT Portugal
SK Slovakia
ES Spain

C The selection of Hodrick Prescott’s smoothing parameter
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D Autocorrelation functions

D.1 Initial spreads

Figure 11: Autocorrelation functions for spreads
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D.2 First-order differenced spreads

Figure 12: Autocorrelation functions for the first-order differenced spreads

E R code
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R code

Ineta Beriozovaitė

2023-01-07

library(ConvergenceClubs)
library(mFilter)
library(readxl)
library(arfima)
library(fracdiff)
library(forecast)
library(stats)
library(lmtest)
library(tseries)
library(data.table)
library(urca)
library(psych)
library(FCVAR)
library(urca)
library(smoots)
library(forecast)
library(xtable)
yields <- read_excel("bloomberg_data_nuo_2003_be _cyprus.xlsx")
yields <- data.frame(yields)
yields <- yields[(weekdays(yields$Date) != c('Saturday') &

weekdays(yields$Date) != c('Sunday')),]
spreads <- data.frame(yields$Date,

(yields$Austria-yields$Germany)*100,
(yields$Belgium-yields$Germany)*100,
(yields$Finland - yields$Germany)*100,
(yields$France - yields$Germany)*100,
(yields$Greece - yields$Germany)*100,
(yields$Ireland - yields$Germany)*100,
(yields$Italy - yields$Germany)*100,
(yields$Latvia - yields$Germany)*100,
(yields$Lithuania-yields$Germany)*100,
(yields$Netherlands - yields$Germany)*100,
(yields$Portugal-yields$Germany)*100,
(yields$Slovakia-yields$Germany)*100,
(yields$Spain-yields$Germany)*100)

colnames(spreads) <- c("Date", "Austria", "Belgium", "Finland", "France",
"Greece", "Ireland", "Italy", "Latvia", "Lithuania",
"Netherlands", "Portugal", "Slovakia", "Spain")

spreads1 <- spreads[,2:11]
spreads2 <- spreads[,12:14]
par(mfrow =c(2,1))
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plot.ts(spreads1,plot.type = "multiple", col = "black")
plot.ts(spreads2,plot.type = "multiple", col = "black")

#spreads_2003-2022
spreads_euro_area <- as.data.frame(t(sapply(spreads[,-1], as.numeric)))
countries<-rownames(spreads_euro_area)
rownames(spreads_euro_area) <- NULL
colnames(spreads_euro_area) <- spreads[,1]
filteredspreads_euro_area <- apply(spreads_euro_area, 1,

function(x){mFilter::hpfilter(x,freq=30,
type="frequency")$trend})

filteredspreads_euro_area <- data.frame(Countries = countries,
t(filteredspreads_euro_area),
stringsAsFactors=FALSE )

colnames(filteredspreads_euro_area) <- colnames(spreads_euro_area)
H_euro_area <- computeH(filteredspreads_euro_area[,-1], quantity = "H")
round(estimateMod(H_euro_area, time_trim=1/3, HACmethod = "FQSB"), 3)
clubs_euro_area <- findClubs(filteredspreads_euro_area, dataCols=2:5193,

unit_names = 1, refCol=5193, time_trim=1/3, cstar=0,
HACmethod = 'FQSB')

summary(clubs_euro_area)
clubs_euro_area
plot(clubs_euro_area, avgTP = FALSE, legend = TRUE,

plot_args=list(xlabs=c("01/2003","12/2004","11/2006","10/2008","09/2010",
"08/2012","07/2014","06/2016","05/2018","04/2020",
"03/2022"), lty = 6, lwd = 2),

legend_args = list(lwd = 2))
mclubs_euro_area <- mergeClubs(clubs_euro_area, mergeMethod='PS')
summary(mclubs_euro_area)

#spreads_2003-2008
spreads_2003_2008 <- spreads[match(as.POSIXct("2003-01-01 00:00",

tz = "UTC"), spreads$Date):
match(as.POSIXct("2008-12-31 00:00",

tz = "UTC"), spreads$Date), ]
spreads_2003_2008 <- as.data.frame(t(sapply(spreads_2003_2008[,-1],

as.numeric)))
countries<-rownames(spreads_2003_2008)
rownames(spreads_2003_2008) <- NULL
colnames(spreads_2003_2008) <- spreads[match(as.POSIXct("2003-01-01 00:00",

tz = "UTC"),
spreads$Date):

match(as.POSIXct("2008-12-31 00:00",
tz = "UTC"),

spreads$Date),1]
filteredspreads_2003_2008 <- apply(spreads_2003_2008, 1,

function(x){mFilter::hpfilter(x, freq=30,
type="frequency")$trend})

filteredspreads_2003_2008 <- data.frame(Countries = countries,
t(filteredspreads_2003_2008),
stringsAsFactors=FALSE )

colnames(filteredspreads_2003_2008) <- c("Countries",
colnames(spreads_2003_2008))
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H_2003_2008 <- computeH(filteredspreads_2003_2008[,-1], quantity = "H")
describe(head(H_2003_2008))
round(estimateMod(H_2003_2008, time_trim=1/3, HACmethod = "FQSB"), 3)

clubs_2003_2008 <- findClubs(filteredspreads_2003_2008, dataCols=2:1567,
unit_names = 1, refCol=1567, time_trim=1/3, cstar=0,
HACmethod = 'FQSB')

summary(clubs_2003_2008)
clubs_2003_2008
plot(clubs_2003_2008, avgTP = FALSE, legend = TRUE,

plot_args=list(xlabs=c("01/2003","01/2005","01/2007","09/2008"), lty = 6, lwd = 2),
legend_args = list(lwd = 2))

#spreads_2009-2015
spreads_2009_2015 <- spreads[match(as.POSIXct("2009-01-01 00:00",

tz = "UTC"), spreads$Date):
match(as.POSIXct("2015-06-01 00:00",

tz = "UTC"), spreads$Date), ]

spreads_2009_2015 <- as.data.frame(t(sapply(spreads_2009_2015[,-1],
as.numeric)))

countries<-rownames(spreads_2009_2015)
rownames(spreads_2009_2015) <- NULL
colnames(spreads_2009_2015) <- spreads[match(as.POSIXct("2009-01-01 00:00",

tz = "UTC"),
spreads$Date):

match(as.POSIXct("2015-06-01 00:00",
tz = "UTC"),

spreads$Date),1]

filteredspreads_2009_2015 <- apply(spreads_2009_2015,1,
function(x){mFilter::hpfilter(x,freq=30,

type="frequency")$trend})
filteredspreads_2009_2015 <- data.frame(Countries = countries,

t(filteredspreads_2009_2015),
stringsAsFactors=FALSE )

colnames(filteredspreads_2009_2015) <- c("Countries",
colnames(spreads_2009_2015))

H_2009_2015 <- computeH(filteredspreads_2009_2015[,-1], quantity = "H")
round(estimateMod(H_2009_2015, time_trim=1/3, HACmethod = "FQSB"), 3)
clubs_2009_2015 <- findClubs(filteredspreads_2009_2015, dataCols=2:1674,

unit_names = 1, refCol=1674, time_trim=1/3, cstar=0,
HACmethod = 'FQSB')

summary(clubs_2009_2015)
clubs_2009_2015
t(data.frame(clubs_2009_2015$club1$unit_names, clubs_2009_2015$divergent$unit_names))[1,]
plot(clubs_2009_2015, avgTP = FALSE, legend = TRUE,

plot_args=list(xlabs=c("01/2009","01/2011","01/2013","09/2014"), lty = 6, lwd = 2),
legend_args = list(lwd = 2))

mclubs_2009_2015 <- mergeClubs(clubs_2009_2015, mergeMethod='PS')
summary(clubs_2009_2015)

#spreads_2015-2022
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spreads_2015_2022 <- spreads[match(as.POSIXct("2015-06-02 00:00",
tz = "UTC"), spreads$Date):

match(as.POSIXct("2022-11-24 00:00",
tz = "UTC"), spreads$Date), ]

spreads_2015_2022 <- as.data.frame(t(sapply(spreads_2015_2022[,-1],
as.numeric)))

countries<-rownames(spreads_2015_2022)
rownames(spreads_2015_2022) <- NULL
colnames(spreads_2015_2022) <- spreads[match(as.POSIXct("2015-06-02 00:00",

tz = "UTC"),
spreads$Date):

match(as.POSIXct("2022-11-24 00:00",
tz = "UTC"),

spreads$Date),1]
filteredspreads_2015_2022 <- apply(spreads_2015_2022, 1,

function(x){mFilter::hpfilter(x, freq=30,
type="frequency")$trend})

filteredspreads_2015_2022 <- data.frame(Countries = countries,
t(filteredspreads_2015_2022),
stringsAsFactors=FALSE )

colnames(filteredspreads_2015_2022) <- c("Countries",
colnames(spreads_2015_2022))

H_2015_2022 <- computeH(filteredspreads_2015_2022[,-1], quantity = "H")
round(estimateMod(H_2015_2022, time_trim=1/3, HACmethod = "FQSB"), 3)
clubs_2015_2022 <- findClubs(filteredspreads_2015_2022, dataCols=2:1954,

unit_names = 1, refCol=1954, time_trim=1/3, cstar=0,
HACmethod = 'FQSB')

summary(clubs_2015_2022)
clubs_2015_2022
plot(clubs_2015_2022, avgTP = FALSE, legend = TRUE,

plot_args=list(xlabs=c("06/2015","04/2017","01/2019","12/2020"), lty = 6, lwd = 2),
legend_args = list(lwd = 2))

#ARFIMA
AT <- spreads[,2]
BE <- spreads[,3]
FI <- spreads[,4]
FR <- spreads[,5]
GR <- spreads[,6]
IE <- spreads[,7]
IT <- spreads[,8]
LV <- spreads[,9]
LT <- spreads[,10]
NL <- spreads[,11]
PT <- spreads[,12]
SK <- spreads[,13]
ES <- spreads[,14]

#Unit root tests
#The Augmented Dickey and Fuller's (1981) test
adftest <- function(y){

adf_p_value <- adf.test(y)$p.value
return(adf_p_value)

}
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adftest_pvalues<-apply(spreads[,2:14], 2, adftest)

#Phillips and Perron's (1988) test.
pptest <- function(y){

pp_p_value <- pp.test(y)$p.value
return(pp_p_value)

}
pptest_pvalues<-apply(spreads[,2:14], 2, pptest)

#Kwiatkowski et al.'s (1992) test
kpsstest <- function(y){

kpss_p_value <- kpss.test(y)$p.value
return(kpss_p_value)

}
kpsstest_pvalues<-apply(spreads[,2:14], 2, kpsstest)

unitroots <- data.frame(adftest_pvalues, pptest_pvalues, kpsstest_pvalues)
colnames(unitroots) <- c("ADF", "PP", "KPSS")
#unitroots

#Zivot and Andrews Unit Root Test
zivotandrewstest <- function(y){

zivotandrews <- ur.za(y)
zivotandrews_teststatistic <- zivotandrews@teststat
zivotandrews_criticalvalues <- zivotandrews@cval
return(c(zivotandrews_teststatistic, zivotandrews_criticalvalues))

}
zivotandrewstest_results<-apply(spreads[,2:14], 2, zivotandrewstest)
zivotandrewstest_results
zivotandrewstest_results

Tstatistic <- data.frame(zivotandrewstest_results[1,])
colnames(Tstatistic) <- c("Zivot & Andrews test statistic")
critical_values <- data.frame(zivotandrewstest_results[2,1],

zivotandrewstest_results[3,1],
zivotandrewstest_results[4,1])

rownames(critical_values) <- NULL
colnames(critical_values) <- c("Critical value (1%)","Critical value(5%)",

"Critical value(10%)")

#The Augmented Dickey and Fuller's (1981) test
adftest_diff <- function(y){

y <- diff(y)
adf_p_value_diff <- adf.test(y)$p.value
return(adf_p_value_diff)

}
adftestdiff_pvalues<-apply(spreads[,2:14], 2, adftest_diff)

#Phillips and Perron's (1988) test.
pptest_diff <- function(y){

y <- diff(y)
pp_p_value_diff <- pp.test(y)$p.value
return(pp_p_value_diff)
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}
pptest_pvalues_diff<-apply(spreads[,2:14], 2, pptest_diff)

#Kwiatkowski et al.'s (1992) test
kpsstest_diff <- function(y){

y <- diff(y)
kpss_p_value_diff <- kpss.test(y)$p.value
return(kpss_p_value_diff)

}
kpsstest_pvalues_diff<-apply(spreads[,2:14], 2, kpsstest_diff)

#Zivot and Andrews Unit Root Test
zivotandrewstest_diff <- function(y){

y <- diff(y)
zivotandrews_diff <- ur.za(y)
zivotandrews_teststatistic_diff <- zivotandrews_diff@teststat
zivotandrews_criticalvalues_diff <- zivotandrews_diff@cval
return(c(zivotandrews_teststatistic_diff, zivotandrews_criticalvalues_diff))

}
zivotandrewstest_results_diff<-apply(spreads[,2:14], 2, zivotandrewstest_diff)
Tstatistic_diff <- data.frame(zivotandrewstest_results_diff[1,])
colnames(Tstatistic_diff) <- c("Zivot & Andrews test statistic")

unitroots_diff <- data.frame(adftestdiff_pvalues, pptest_pvalues_diff,
kpsstest_pvalues_diff, Tstatistic_diff)

colnames(unitroots_diff) <- c("ADF", "PP", "KPSS", "ZA test statistic")
unitroots_diff

autoarima_arfima <- function(y){
coeffic <- c(forecast::auto.arima(y, approximation = FALSE,

stepwise=FALSE, ic = c("aic"),
stationary = FALSE, test = c("kpss"))$arma)

pdq <- c(coeffic[1], coeffic[6], coeffic[2])
fit <- arfima::arfima(y, order = c(coeffic[1],coeffic[6],coeffic[2]), useC=3)
cov<-vcov(fit, type = "o")
cov<- cov$`Mode 1`$observed
se <- sqrt(diag(cov))
t <- 1.96
dfrac <- fit$modes[[1]][9][[1]]
CI_upper <- fit$modes[[1]][9][[1]] + t*se
CI_lower <- fit$modes[[1]][9][[1]] - t*se
CI_upper <- tail(CI_upper, 2)[-2]
CI_lower <- tail(CI_lower, 2)[-2]
return(c(pdq, dfrac, CI_lower, CI_upper))

}
arima_arfima <- apply(spreads[,2:14], 2, autoarima_arfima)
results <- t(data.frame(arima_arfima))
results
colnames(results) <- c("ARIMA p", "ARIMA d", "ARIMA q", "ARFIMA d",

"Lower bound of 95% CI", "Upper bound of 95% CI")
results[,4] <- results[,4] + 1
results[,5] <- results[,5] + 1
results[,6] <- results[,6] + 1
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results
#GPH
GPH <- function(y){

GPHfit <- fdGPH(y,bandw.exp=0.5)
se<-GPHfit$sd.reg
t<- 1.96
upper<- GPHfit$d + t*se
lower<- GPHfit$d - t*se
return(c(GPHfit$d, lower, upper))

}
GPH_res <- apply(spreads[,2:14], 2, GPH)
GPH_results <- t(data.frame(GPH_res))
colnames(GPH_results) <- c("GPH d", " 95% CI", "95% CI")

SPERIO <- function(y){
Speriofit <- fdSperio(y,bandw.exp=0.5)
se<-Speriofit$sd.reg
t<- 1.96
upper<- Speriofit$d + t*se
lower<- Speriofit$d - t*se
return(c(Speriofit$d, lower, upper))

}
Sperio_res <- apply(spreads[,2:14], 2, SPERIO)
Sperio_results <- t(data.frame(Sperio_res))
colnames(Sperio_results) <- c("Sperio d", "Sperio 95% CI", "Sperio 95% CI")

GPH_diff <- function(y){
GPHfit <- fdGPH(diff(y),bandw.exp=0.5)
se<-GPHfit$sd.reg
t<- 1.96
upper<- GPHfit$d + t*se
lower<- GPHfit$d - t*se
return(c(GPHfit$d, lower, upper))

}
GPH_res_diff <- apply(spreads[,2:14], 2, GPH_diff)
GPH_results_diff <- t(data.frame(GPH_res_diff))
colnames(GPH_results_diff) <- c("GPH d", " 95% CI", "95% CI")

dtfr<- data.frame(GPH_results, Sperio_results)
colnames(dtfr) <- c("GPH d","GPH 95% CI","GPH 95% CI","Sperio d",

"Sperio 95% CI","Sperio 95% CI")

SPERIO_diff <- function(y){
Speriofit <- fdSperio(diff(y),bandw.exp=0.5)
se<-Speriofit$sd.reg
t<- 1.96
upper<- Speriofit$d + t*se
lower<- Speriofit$d - t*se
return(c(Speriofit$d, lower, upper))

}
Sperio_res_diff <- apply(spreads[,2:14], 2, SPERIO_diff)
Sperio_results_diff <- t(data.frame(Sperio_res_diff))
colnames(Sperio_results_diff) <- c("Sperio d", "Sperio 95% CI", "Sperio 95% CI")
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Sperio_results_diff
dtfr_diff<- data.frame(GPH_results_diff, Sperio_results_diff)
colnames(dtfr_diff) <- c("GPH d","GPH 95% CI","GPH 95% CI","Sperio d",

"Sperio 95% CI","Sperio 95% CI")
dtfr_diff
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